1
0
mirror of https://github.com/gsi-upm/soil synced 2025-10-19 09:48:29 +00:00

Compare commits

...

83 Commits

Author SHA1 Message Date
J. Fernando Sánchez
2869b1e1e6 Clean-up
* Removed old/unnecessary models
* Added a `simulation.{iter_}from_py` method to load simulations from python
files
* Changed tests of examples to run programmatic simulations
* Fixed programmatic examples
2022-11-13 20:31:05 +01:00
J. Fernando Sánchez
d3cee18635 Add seed to cars example 2022-10-20 14:47:28 +02:00
J. Fernando Sánchez
9a7b62e88e Release 0.30.0rc3 2022-10-20 14:12:34 +02:00
J. Fernando Sánchez
c09e480d37 black formatting 2022-10-20 14:12:10 +02:00
J. Fernando Sánchez
b2d48cb4df Add test cases for 'ASK' 2022-10-20 14:10:34 +02:00
J. Fernando Sánchez
a1262edd2a Refactored time
Treating time and conditions as the same entity was getting confusing, and it
added a lot of unnecessary abstraction in a critical part (the scheduler).

The scheduling queue now has the time as a floating number (faster), the agent
id (for ties) and the condition, as well as the agent. The first three
elements (time, id, condition) can be considered as the "key" for the event.

To allow for agent execution to be "randomized" within every step, a new
parameter has been added to the scheduler, which makes it add a random number to
the key in order to change the ordering.

`EventedAgent.received` now checks the messages before returning control to the
user by default.
2022-10-20 12:15:25 +02:00
J. Fernando Sánchez
cbbaf73538 Fix bug EventedEnvironment 2022-10-20 12:07:56 +02:00
J. Fernando Sánchez
2f5e5d0a74 Black formatting 2022-10-18 17:03:40 +02:00
J. Fernando Sánchez
a2fb25c160 Version 0.30.0rc2
* Fix CLI arguments not being used when easy is passed a simulation instance
* Docs for `examples/events_and_messages/cars.py`
2022-10-18 17:02:12 +02:00
J. Fernando Sánchez
5fcf610108 Version 0.30.0rc1 2022-10-18 15:02:05 +02:00
J. Fernando Sánchez
159c9a9077 Add events 2022-10-18 13:11:01 +02:00
J. Fernando Sánchez
3776c4e5c5 Refactor
* Removed references to `set_state`
* Split some functionality from `agents` into separate files (`fsm` and
`network_agents`)
* Rename `neighboring_agents` to `neighbors`
* Delete some spurious functions
2022-10-17 21:49:31 +02:00
J. Fernando Sánchez
880a9f2a1c black formatting 2022-10-17 20:23:57 +02:00
J. Fernando Sánchez
227fdf050e Fix conditionals 2022-10-17 19:29:39 +02:00
J. Fernando Sánchez
5d759d0072 Add conditional time values 2022-10-17 13:58:14 +02:00
J. Fernando Sánchez
77d08fc592 Agent step can be a generator 2022-10-17 08:58:51 +02:00
J. Fernando Sánchez
0efcd24d90 Improve exporters 2022-10-16 21:57:30 +02:00
J. Fernando Sánchez
78833a9e08 Formatted with black 2022-10-16 17:58:19 +02:00
J. Fernando Sánchez
d9947c2c52 WIP: all tests pass
Documentation needs some improvement

The API has been simplified to only allow for ONE topology per
NetworkEnvironment.
This covers the main use case, and simplifies the code.
2022-10-16 17:56:23 +02:00
J. Fernando Sánchez
cd62c23cb9 WIP: all tests pass 2022-10-13 22:43:16 +02:00
J. Fernando Sánchez
f811ee18c5 WIP 2022-10-06 15:49:19 +02:00
J. Fernando Sánchez
0a9c6d8b19 WIP: removed stats 2022-09-16 18:14:16 +02:00
J. Fernando Sánchez
3dc56892c1 WIP: working config 2022-09-15 19:27:17 +02:00
J. Fernando Sánchez
e41dc3dae2 WIP 2022-09-13 18:16:31 +02:00
J. Fernando Sánchez
bbaed636a8 WIP 2022-07-19 17:18:02 +02:00
J. Fernando Sánchez
6f7481769e WIP 2022-07-19 17:17:23 +02:00
J. Fernando Sánchez
1a8313e4f6 WIP 2022-07-19 17:12:41 +02:00
J. Fernando Sánchez
a40aa55b6a Release 0.20.7 2022-07-06 09:23:46 +02:00
J. Fernando Sánchez
50cba751a6 Release 0.20.6 2022-07-05 12:08:34 +02:00
J. Fernando Sánchez
dfb6d13649 version 0.20.5 2022-05-18 16:13:53 +02:00
J. Fernando Sánchez
5559d37e57 version 0.20.4 2022-05-18 15:20:58 +02:00
J. Fernando Sánchez
2116fe6f38 Bug fixes and minor improvements 2022-05-12 16:14:47 +02:00
J. Fernando Sánchez
affeeb9643 Update examples 2022-04-04 16:47:58 +02:00
J. Fernando Sánchez
42ddc02318 CI: delay PyPI check 2022-03-07 14:35:07 +01:00
J. Fernando Sánchez
cab9a3440b Fix typo CI/CD 2022-03-07 13:57:25 +01:00
J. Fernando Sánchez
db505da49c Minor CI change 2022-03-07 13:35:02 +01:00
J. Fernando Sánchez
8eb8eb16eb Minor CI change 2022-03-07 12:51:22 +01:00
J. Fernando Sánchez
3fc5ca8c08 Fix requirements issue CI/CD 2022-03-07 12:46:01 +01:00
J. Fernando Sánchez
c02e6ea2e8 Fix die bug 2022-03-07 11:17:27 +01:00
J. Fernando Sánchez
38f8a8d110 Merge branch 'mesa'
First iteration to achieve MESA compatibility.
As a side effect, we have removed `simpy`.

For a full list of changes, see `CHANGELOG.md`.
2022-03-07 10:54:47 +01:00
J. Fernando Sánchez
cb72aac980 Add random activation example 2022-03-07 10:48:59 +01:00
J. Fernando Sánchez
6c4f44b4cb Partial MESA compatibility and several fixes
Documentation for the new APIs is still a work in progress :)
2021-10-15 20:16:49 +02:00
J. Fernando Sánchez
af9a392a93 WIP: mesa compat
All tests pass but some features are still missing/unclear:

- Mesa agents do not have a `state`, so their "metrics" don't get stored. I will
probably refactor this to remove some magic in this regard. This should get rid
of the `_state` dictionary and the setitem/getitem magic.
- Simulation is still different from a runner. So far only Agent and
Environment/Model have been updated.
2021-10-15 13:36:39 +02:00
J. Fernando Sánchez
5d7e57675a WIP: mesa compatibility 2021-10-14 17:37:06 +02:00
J. Fernando Sánchez
e860bdb922 v0.15.2
See CHANGELOG.md for a complete list of changes
2021-05-22 16:33:52 +02:00
J. Fernando Sánchez
d6b684c1c1 Fix docs requirements 2021-05-22 16:08:38 +02:00
J. Fernando Sánchez
05f7f49233 Refactoring v0.15.1
See CHANGELOG.md for a full list of changes

* Removed nxsim
* Refactored `agents.NetworkAgent` and `agents.BaseAgent`
* Refactored exporters
* Added stats to history
2020-11-19 23:58:47 +01:00
J. Fernando Sánchez
3b2c6a3db5 Seed before env initialization
Fixes #6
2020-07-27 12:29:24 +02:00
J. Fernando Sánchez
6118f917ee Fix Windows bug
Update URLs to gsi.upm.es
2020-07-07 10:57:10 +02:00
J. Fernando Sánchez
6adc8d36ba minor change in docs 2020-03-13 12:50:05 +01:00
J. Fernando Sánchez
c8b8149a17 Updated to 0.14.6
Fix compatibility issues with newer networkx and pandas versions
2020-03-11 16:17:14 +01:00
J. Fernando Sánchez
6690b6ee5f Fix incompatibility and bug in get_agents 2019-05-16 19:59:46 +02:00
J. Fernando Sánchez
97835b3d10 Clean up exporters 2019-05-03 13:17:27 +02:00
J. Fernando Sánchez
b0add8552e Tag version 0.14.0 2019-04-30 16:26:08 +02:00
J. Fernando Sánchez
1cf85ea450 Avoid writing gexf in test 2019-04-30 16:16:46 +02:00
J. Fernando Sánchez
c32e167fb8 Bump pyyaml to 5.1 2019-04-30 16:04:12 +02:00
J. Fernando Sánchez
5f68b5321d Pinning scipy to 1.2.1
1.3.0rc1 is not compatible with salib
2019-04-30 15:52:37 +02:00
J. Fernando Sánchez
2a2843bd19 Add tests exporters 2019-04-30 09:28:53 +02:00
J. Fernando Sánchez
d1006bd55c WIP: exporters 2019-04-29 18:47:15 +02:00
J. Fernando Sánchez
9bc036d185 WIP: exporters 2019-04-26 19:22:45 +02:00
J. Fernando Sánchez
a3ea434f23 0.13.8 2019-02-19 21:17:19 +01:00
J. Fernando Sánchez
65f6aa72f3 fix timeout in FSM. Improve logs 2019-02-01 19:05:07 +01:00
J. Fernando Sánchez
09e14c6e84 Add generator and programmatic examples 2018-12-20 19:25:33 +01:00
J. Fernando Sánchez
8593ac999d Swap test and build in CI. Remove tests in tags 2018-12-20 17:56:33 +01:00
J. Fernando Sánchez
90338c3549 skip-tls-verify in kaniko 2018-12-20 17:48:58 +01:00
J. Fernando Sánchez
1d532dacfe Remove entrypoint build stage 2018-12-20 15:14:58 +01:00
J. Fernando Sánchez
a1f8d8c9c5 Change entrypoint build stage 2018-12-20 15:07:45 +01:00
J. Fernando Sánchez
de326eb331 Remove CI global image 2018-12-20 15:05:45 +01:00
J. Fernando Sánchez
04b4380c61 Fix wrong import soil.web 2018-12-20 14:06:18 +01:00
J. Fernando Sánchez
d70a0c865c limit ci jobs to docker runners 2018-12-09 17:22:40 +01:00
J. Fernando Sánchez
625c28e4ee Fix CI syntax 2018-12-09 17:09:31 +01:00
J. Fernando Sánchez
9749f4ca14 Fix multithreading
Multithreading needs pickling to work.
Pickling/unpickling didn't work in some situations, like when the
environment_agents parameter was left blank.
This was due to two reasons:

1) agents and history didn't have a setstate method, and some of their
attributes cannot be pickled (generators, sqlite connection)
2) the environment was adding generators (agents) to its state.

This fixes the situation by restricting the keys that the environment exports
when it pickles, and by adding the set/getstate methods in agents.

The resulting pickles should contain enough information to inspect
them (history, state values, etc), but very limited.
2018-12-09 16:58:49 +01:00
J. Fernando Sánchez
3526fa29d7 Fix bug parallel 2018-12-09 14:06:50 +01:00
J. Fernando Sánchez
53604c1e66 Fix quickstart.rst markdown code 2018-12-09 13:10:00 +01:00
J. Fernando Sánchez
01cc8e9128 Merge branch 'refactor-imports'
* remove leftover import in example
* Update quickstart tutorial
* Add gitlab-ci
* Added missing gexf for tests
* Upgrade to python3.7 and pandas 0.3.4 because pandas has dropped support for
  python 3.4 -> There are some API changes in pandas, and I've updated the code
  accordingly.
* Set pytest as the default test runner
* Update dockerignore
* Skip testing long examples (>1000 steps)
2018-12-09 12:55:12 +01:00
J. Fernando Sánchez
a47ffa815b Fix CI. Skip testing long examples 2018-12-08 20:49:34 +01:00
J. Fernando Sánchez
b41927d7bf remove leftover import in example 2018-12-08 20:35:02 +01:00
J. Fernando Sánchez
70d033b3a9 Update dockerignore 2018-12-08 19:13:56 +01:00
J. Fernando Sánchez
3afed06656 Add gitlab-ci 2018-12-08 19:08:47 +01:00
J. Fernando Sánchez
0a7ef27844 Added missing gexf for tests 2018-12-08 18:53:12 +01:00
J. Fernando Sánchez
2e28b36f6e Python3.7, testing and bug fixes
* Upgrade to python3.7 and pandas 0.3.4 because pandas has dropped support for
python 3.4 -> There are some API changes in pandas, and I've update the code
accordingly.
* Set pytest as the default test runner
2018-12-08 18:53:06 +01:00
J. Fernando Sánchez
bd4700567e Update quickstart tutorial 2018-12-08 18:17:25 +01:00
J. Fernando Sánchez
ff1df62eec All tests pass 2018-12-08 18:17:21 +01:00
108 changed files with 92038 additions and 3477 deletions

5
.dockerignore Normal file
View File

@@ -0,0 +1,5 @@
**/soil_output
.*
**/__pycache__
__pycache__
*.pyc

1
.gitignore vendored
View File

@@ -8,3 +8,4 @@ soil_output
docs/_build*
build/*
dist/*
prof

53
.gitlab-ci.yml Normal file
View File

@@ -0,0 +1,53 @@
stages:
- test
- publish
- check_published
docker:
stage: publish
image:
name: gcr.io/kaniko-project/executor:debug
entrypoint: [""]
tags:
- docker
script:
- echo "{\"auths\":{\"$CI_REGISTRY\":{\"username\":\"$CI_REGISTRY_USER\",\"password\":\"$CI_REGISTRY_PASSWORD\"}}}" > /kaniko/.docker/config.json
# The skip-tls-verify flag is there because our registry certificate is self signed
- /kaniko/executor --context $CI_PROJECT_DIR --skip-tls-verify --dockerfile $CI_PROJECT_DIR/Dockerfile --destination $CI_REGISTRY_IMAGE:$CI_COMMIT_TAG
only:
- tags
test:
tags:
- docker
image: python:3.7
stage: test
script:
- pip install -r requirements.txt -r test-requirements.txt
- python setup.py test
push_pypi:
only:
- tags
tags:
- docker
image: python:3.7
stage: publish
script:
- echo $CI_COMMIT_TAG > soil/VERSION
- pip install twine
- python setup.py sdist bdist_wheel
- TWINE_PASSWORD=$PYPI_PASSWORD TWINE_USERNAME=$PYPI_USERNAME python -m twine upload dist/*
check_pypi:
only:
- tags
tags:
- docker
image: python:3.7
stage: check_published
script:
- pip install soil==$CI_COMMIT_TAG
# Allow PYPI to update its index before we try to install
when: delayed
start_in: 2 minutes

180
CHANGELOG.md Normal file
View File

@@ -0,0 +1,180 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.30 UNRELEASED]
### Added
* Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>`
* Ability to run
* Ability to
* The `soil.exporters` module to export the results of datacollectors (model.datacollector) into files at the end of trials/simulations
* A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology).
* FSM agents can now have generators as states. They work similar to normal states, with one caveat. Only `time` values can be yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. The return value *can* be a state, or a `(state, time)` tuple, just like in normal states.
### Changed
* Configuration schema is very different now. Check `soil.config` for more information. We are also using Pydantic for (de)serialization.
* There may be more than one topology/network in the simulation
* Ability
### Removed
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.
## [0.20.7]
### Changed
* Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument)
### Fixed
* Bug with time.NEVER/time.INFINITY
## [0.20.6]
### Fixed
* Agents now return `time.INFINITY` when dead, instead of 'inf'
* `soil.__init__` does not re-export built-in time (change in `soil.simulation`. It used to create subtle import conflicts when importing soil.time.
* Parallel simulations were broken because lambdas cannot be pickled properly, which is needed for multiprocessing.
### Changed
* Some internal simulation methods do not accept `*args` anymore, to avoid ambiguity and bugs.
## [0.20.5]
### Changed
* Defaults are now set in the agent __init__, not in the environment. This decouples both classes a bit more, and it is more intuitive
## [0.20.4]
### Added
* Agents can now be given any kwargs, which will be used to set their state
* Environments have a default logger `self.logger` and a log method, just like agents
## [0.20.3]
### Fixed
* Default state values are now deepcopied again.
* Seeds for environments only concatenate the trial id (i.e., a number), to provide repeatable results.
* `Environment.run` now calls `Environment.step`, to allow for easy overloading of the environment step
### Removed
* Datacollectors are not being used for now.
* `time.TimedActivation.step` does not use an `until` parameter anymore.
### Changed
* Simulations now run right up to `until` (open interval)
* Time instants (`time.When`) don't need to be floats anymore. Now we can avoid precision issues with big numbers by using ints.
* Rabbits simulation is more idiomatic (using subclasses)
## [0.20.2]
### Fixed
* CI/CD testing issues
## [0.20.1]
### Fixed
* Agents would run another step after dying.
## [0.20.0]
### Added
* Integration with MESA
* `not_agent_ids` parameter to get sql in history
### Changed
* `soil.Environment` now also inherits from `mesa.Model`
* `soil.Agent` now also inherits from `mesa.Agent`
* `soil.time` to replace `simpy` events, delays, duration, etc.
* `agent.id` is not `agent.unique_id` to be compatible with `mesa`. A property `BaseAgent.id` has been added for compatibility.
* `agent.environment` is now `agent.model`, for the same reason as above. The parameter name in `BaseAgent.__init__` has also been renamed.
### Removed
* `simpy` dependency and compatibility. Each agent used to be a simpy generator, but that made debugging and error handling more complex. That has been replaced by a scheduler within the `soil.Environment` class, similar to how `mesa` does it.
* `soil.history` is now a separate package named `tsih`. The keys namedtuple uses `dict_id` instead of `agent_id`.
### Added
* An option to choose whether a database should be used for history
## [0.15.2]
### Fixed
* Pass the right known_modules and parameters to stats discovery in simulation
* The configuration file must exist when launching through the CLI. If it doesn't, an error will be logged
* Minor changes in the documentation of the CLI arguments
### Changed
* Stats are now exported by default
## [0.15.1]
### Added
* read-only `History`
### Fixed
* Serialization problem with the `Environment` on parallel mode.
* Analysis functions now work as they should in the tutorial
## [0.15.0]
### Added
* Control logging level in CLI and simulation
* `Stats` to calculate trial and simulation-wide statistics
* Simulation statistics are stored in a separate table in history (see `History.get_stats` and `History.save_stats`, as well as `soil.stats`)
* Aliased `NetworkAgent.G` to `NetworkAgent.topology`.
### Changed
* Templates in config files can be given as dictionaries in addition to strings
* Samplers are used more explicitly
* Removed nxsim dependency. We had already made a lot of changes, and nxsim has not been updated in 5 years.
* Exporter methods renamed to `trial` and `end`. Added `start`.
* `Distribution` exporter now a stats class
* `global_topology` renamed to `topology`
* Moved topology-related methods to `NetworkAgent`
### Fixed
* Temporary files used for history in dry_run mode are not longer left open
## [0.14.9]
### Changed
* Seed random before environment initialization
## [0.14.8]
### Fixed
* Invalid directory names in Windows gsi-upm/soil#5
## [0.14.7]
### Changed
* Minor change to traceback handling in async simulations
### Fixed
* Incomplete example in the docs (example.yml) caused an exception
## [0.14.6]
### Fixed
* Bug with newer versions of networkx (0.24) where the Graph.node attribute has been removed. We have updated our calls, but the code in nxsim is not under our control, so we have pinned the networkx version until that issue is solved.
### Changed
* Explicit yaml.SafeLoader to avoid deprecation warnings when using yaml.load. It should not break any existing setups, but we could move to the FullLoader in the future if needed.
## [0.14.4]
### Fixed
* Bug in `agent.get_agents()` when `state_id` is passed as a string. The tests have been modified accordingly.
## [0.14.3]
### Fixed
* Incompatibility with py3.3-3.6 due to ModuleNotFoundError and TypeError in DryRunner
## [0.14.2]
### Fixed
* Output path for exporters is now soil_output
### Changed
* CSV output to stdout in dry_run mode
## [0.14.1]
### Changed
* Exporter names in lower case
* Add default exporter in runs
## [0.14.0]
### Added
* Loading configuration from template definitions in the yaml, in preparation for SALib support.
The definition of the variables and their possible values (i.e., a problem in SALib terms), as well as a sampler function, can be provided.
Soil uses this definition and the template to generate a set of configurations.
* Simulation group names, to link related simulations. For now, they are only used to group all simulations in the same group under the same folder.
* Exporters unify exporting/dumping results and other files to disk. If `dry_run` is set to `True`, exporters will write to stdout instead of a file (useful for testing/debugging).
* Distribution exporter, to write statistics about values and value_counts in every simulation. The results are dumped to two CSV files.
### Changed
* `dir_path` is now the directory for resources (modules, files)
* Environments and simulations do not export or write anything by default. That task is delegated to Exporters
### Removed
* The output dir for environments and simulations (see Exporters)
* DrawingAgent, because it wrote to disk and was not being used. We provide a partial alternative in the form of the GraphDrawing exporter. A complete alternative will be provided once the network at each state can be accessed by exporters.
## Fixed
* Modules with custom agents/environments failed to load when they were run from outside the directory of the definition file. Modules are now loaded from the directory of the simulation file in addition to the working directory
* Memory databases (in history) can now be shared between threads.
* Testing all examples, not just subdirectories
## [0.13.8]
### Changed
* Moved TerroristNetworkModel to examples
### Added
* `get_agents` and `count_agents` methods now accept lists as inputs. They can be used to retrieve agents from node ids
* `subgraph` in BaseAgent
* `agents.select` method, to filter out agents
* `skip_test` property in yaml definitions, to force skipping some examples
* `agents.Geo`, with a search function based on postition
* `BaseAgent.ego_search` to get nodes from the ego network of a node
* `BaseAgent.degree` and `BaseAgent.betweenness`
### Fixed
## [0.13.7]
### Changed
* History now defaults to not backing up! This makes it more intuitive to load the history for examination, at the expense of rewriting something. That should not happen because History is only created in the Environment, and that has `backup=True`.
### Added
* Agent names are assigned based on their agent types
* Agent logging uses the agent name.
* FSM agents can now return a timeout in addition to a new state. e.g. `return self.idle, self.env.timeout(2)` will execute the *different_state* in 2 *units of time* (`t_step=now+2`).
* Example of using timeouts in FSM (custom_timeouts)
* `network_agents` entries may include an `ids` entry. If set, it should be a list of node ids that should be assigned that agent type. This complements the previous behavior of setting agent type with `weights`.

View File

@@ -1,4 +1,11 @@
FROM python:3.4-onbuild
FROM python:3.7
WORKDIR /usr/src/app
COPY test-requirements.txt requirements.txt /usr/src/app/
RUN pip install --no-cache-dir -r test-requirements.txt -r requirements.txt
COPY ./ /usr/src/app
RUN pip install '.[web]'

View File

@@ -2,3 +2,6 @@ include requirements.txt
include test-requirements.txt
include README.rst
graft soil
global-exclude __pycache__
global-exclude soil_output
global-exclude *.py[co]

7
Makefile Normal file
View File

@@ -0,0 +1,7 @@
quick-test:
docker-compose exec dev python -m pytest -s -v
test:
docker run -t -v $$PWD:/usr/src/app -w /usr/src/app python:3.7 python setup.py test
.PHONY: test

View File

@@ -5,6 +5,62 @@ Learn how to run your own simulations with our [documentation](http://soilsim.re
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
**Note**: Mesa 0.30 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/migration_0.30.rst)
## SOIL vs MESA
SOIL is a batteries-included platform that builds on top of MESA and provides the following out of the box:
* Integration with (social) networks
* The ability to more easily assign agents to your model (and optionally to its network):
* Assigning agents to nodes, and vice versa
* Using a description (e.g., 2 agents of type `Foo`, 10% of the network should be agents of type `Bar`)
* **Several types of abstractions for agents**:
* Finite state machine, where methods can be turned into a state
* Network agents, which have convenience methods to access the model's topology
* Generator-based agents, whose state is paused though a `yield` and resumed on the next step
* **Reporting and data collection**:
* Soil models include data collection and record some data by default (# of agents, state of each agent, etc.)
* All data collected are exported by default to a SQLite database and a description file
* Options to export to other formats, such as CSV, or defining your own exporters
* A summary of the data collected is shown in the command line, for easy inspection
* **An event-based scheduler**
* Agents can be explicit about when their next time/step should be, and not all agents run in every step. This avoids unnecessary computation.
* Time intervals between each step are flexible.
* There are primitives to specify when the next execution of an agent should be (or conditions)
* **Actor-inspired** message-passing
* A simulation runner (`soil.Simulation`) that can:
* Run models in parallel
* Save results to different formats
* Simulation configuration files
* A command line interface (`soil`), to run multiple
* An integrated debugger (`soil --debug`) with custom functions to print agent states and break at specific states
Nevertheless, most features in SOIL have been designed to integrate with plain Mesa.
For instance, it should be possible to run a `mesa.Model` models using a `soil.Simulation` and the `soil` CLI, or to integrate the `soil.TimedActivation` scheduler on a `mesa.Model`.
Note that some combinations of `mesa` and `soil` components, while technically possible, are much less useful or even wrong.
For instance, you may add any `soil.agent` agent (except for the `soil.NetworkAgent`, as it needs a topology) on a regular `mesa.Model` with a vanilla scheduler from `mesa.time`.
But in that case the agents will not get any of the advanced event-based scheduling, and most agent behaviors that depend on that will greatly vary.
## Changes in version 0.3
Version 0.3 came packed with many changes to provide much better integration with MESA.
For a long time, we tried to keep soil backwards-compatible, but it turned out to be a big endeavour and the resulting code was less readable.
This translates to harder maintenance and a worse experience for newcomers.
In the end, we decided to make some breaking changes.
If you have an older Soil simulation, you have two options:
* Update the necessary configuration files and code. You may use the examples in the `examples` folder for reference, as well as the documentation.
* Keep using a previous `soil` version.
## Citation
If you use Soil in your research, don't forget to cite this paper:
```bibtex
@@ -28,7 +84,6 @@ If you use Soil in your research, don't forget to cite this paper:
```
@Copyright GSI - Universidad Politécnica de Madrid 2017
[![SOIL](logo_gsi.png)](https://www.gsi.dit.upm.es)
@Copyright GSI - Universidad Politécnica de Madrid 2017-2021
[![SOIL](logo_gsi.png)](https://www.gsi.upm.es)

View File

@@ -2,6 +2,8 @@ version: '3'
services:
dev:
build: .
environment:
PYTHONDONTWRITEBYTECODE: 1
volumes:
- .:/usr/src/app
tty: true

View File

@@ -31,7 +31,7 @@
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = []
extensions = ['IPython.sphinxext.ipython_console_highlighting']
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
@@ -69,7 +69,7 @@ language = None
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '**.ipynb_checkpoints']
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'

40
docs/example.yml Normal file
View File

@@ -0,0 +1,40 @@
---
name: MyExampleSimulation
max_time: 50
num_trials: 3
interval: 2
model_params:
topology:
params:
generator: barabasi_albert_graph
n: 100
m: 2
agents:
distribution:
- agent_class: SISaModel
topology: True
ratio: 0.1
state:
state_id: content
- agent_class: SISaModel
topology: True
ratio: .1
state:
state_id: discontent
- agent_class: SISaModel
topology: True
ratio: 0.8
state:
state_id: neutral
prob_infect: 0.075
neutral_discontent_spon_prob: 0.1
neutral_discontent_infected_prob: 0.3
neutral_content_spon_prob: 0.3
neutral_content_infected_prob: 0.4
discontent_neutral: 0.5
discontent_content: 0.5
variance_d_c: 0.2
content_discontent: 0.2
variance_c_d: 0.2
content_neutral: 0.2
standard_variance: 1

View File

@@ -1,12 +1,7 @@
.. Soil documentation master file, created by
sphinx-quickstart on Tue Apr 25 12:48:56 2017.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to Soil's documentation!
================================
Soil is an Agent-based Social Simulator in Python for modelling and simulation of Social Networks.
Soil is an Agent-based Social Simulator in Python focused on Social Networks.
If you use Soil in your research, do not forget to cite this paper:
@@ -39,6 +34,7 @@ If you use Soil in your research, do not forget to cite this paper:
installation
quickstart
configuration
Tutorial <soil_tutorial>
..

View File

@@ -14,11 +14,15 @@ Now test that it worked by running the command line tool
soil --help
Or using soil programmatically:
#or
python -m soil --help
Or, if you're using using soil programmatically:
.. code:: python
import soil
print(soil.__version__)
The latest version can be installed through `GitLab <https://lab.cluster.gsi.dit.upm.es/soil/soil.git>`_.
The latest version can be installed through `GitHub <https://github.com/gsi-upm/soil>`_ or `GitLab <https://lab.gsi.upm.es/soil/soil.git>`_.

View File

@@ -12,7 +12,7 @@ set BUILDDIR=_build
set SPHINXPROJ=Soil
if "%1" == "" goto help
eE
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.

22
docs/mesa.rst Normal file
View File

@@ -0,0 +1,22 @@
Mesa compatibility
------------------
Soil is in the process of becoming fully compatible with MESA.
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
This is a non-exhaustive list of tasks to achieve compatibility:
- [ ] Integrate `soil.Simulation` with mesa's runners:
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
- [ ] Integrate `soil.Environment` with `mesa.Model`:
- [x] `Soil.Environment` inherits from `mesa.Model`
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
- [ ] Allow for `mesa.Model` to be used in a simulation.
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
- [x] Rename agent.id to unique_id?
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
- [ ] Provide examples
- [ ] Using mesa modules in a soil simulation
- [ ] Using soil modules in a mesa simulation
- [ ] Document the new APIs and usage

View File

@@ -1,197 +1,93 @@
Quickstart
----------
This section shows how to run simulations from simulation configuration files.
First of all, you need to install the package (See :doc:`installation`)
This section shows how to run your first simulation with Soil.
For installation instructions, see :doc:`installation`.
Simulation configuration files are ``json`` or ``yaml`` files that define all the parameters of a simulation.
Here's an example (``example.yml``).
.. code:: yaml
---
name: MyExampleSimulation
max_time: 50
num_trials: 3
interval: 2
network_params:
network_type: barabasi_albert_graph
n: 100
m: 2
agent_distribution:
- agent_type: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
weight: 1
state:
id: discontent
- agent_type: SISaModel
weight: 8
state:
id: neutral
environment_params:
prob_infect: 0.075
There are mainly two parts in a simulation: agent classes and simulation configuration.
An agent class defines how the agent will behave throughout the simulation.
The configuration includes things such as number of agents to use and their type, network topology to use, etc.
This example configuration will run three trials of a simulation containing a randomly generated network.
The 100 nodes in the network will be SISaModel agents, 10% of them will start in the content state, 10% in the discontent state, and the remaining 80% in the neutral state.
All agents will have access to the environment, which only contains one variable, ``prob_infected``.
The state of the agents will be updated every 2 seconds (``interval``).
Now run the simulation with the command line tool:
.. code:: bash
soil example.yml
Once the simulation finishes, its results will be stored in a folder named ``MyExampleSimulation``.
Four types of objects are saved by default: a pickle of the simulation; a ``YAML`` representation of the simulation (which can be used to re-launch it); and for every trial, a csv file with the content of the state of every network node and the environment parameters at every step of the simulation, as well as the network in gephi format (``gexf``).
.. image:: soil.png
:width: 80%
:align: center
.. code::
Soil includes several agent classes in the ``soil.agents`` module, and we will use them in this quickstart.
If you are interested in developing your own agents classes, see :doc:`soil_tutorial`.
soil_output
├── Sim_prob_0
│   ├── Sim_prob_0.dumped.yml
│   ├── Sim_prob_0.simulation.pickle
│   ├── Sim_prob_0_trial_0.environment.csv
│   └── Sim_prob_0_trial_0.gexf
Configuration
=============
To get you started, we will use this configuration (:download:`download the file <quickstart.yml>` directly):
Network
=======
The network topology for the simulation can be loaded from an existing network file or generated with one of the random network generation methods from networkx.
Loading a network
#################
To load an existing network, specify its path in the configuration:
.. code:: yaml
---
network_params:
path: /tmp/mynetwork.gexf
Soil will try to guess what networkx method to use to read the file based on its extension.
However, we only test using ``gexf`` files.
Generating a random network
###########################
To generate a random network using one of networkx's built-in methods, specify the `graph generation algorithm <https://networkx.github.io/documentation/development/reference/generators.html>`_ and other parameters.
For example, the following configuration is equivalent to :code:`nx.complete_graph(100)`:
.. code:: yaml
network_params:
network_type: complete_graph
n: 100
Environment
============
The environment is the place where the shared state of the simulation is stored.
For instance, the probability of disease outbreak.
The configuration file may specify the initial value of the environment parameters:
.. code:: yaml
environment_params:
daily_probability_of_earthquake: 0.001
number_of_earthquakes: 0
Any agent has unrestricted access to the environment.
However, for the sake of simplicity, we recommend limiting environment updates to environment agents.
Agents
======
Agents are a way of modelling behavior.
Agents can be characterized with two variables: an agent type (``agent_type``) and its state.
Only one agent is executed at a time (generally, every ``interval`` seconds), and it has access to its state and the environment parameters.
Through the environment, it can access the network topology and the state of other agents.
There are three three types of agents according to how they are added to the simulation: network agents and environment agent.
Network Agents
##############
Network agents are attached to a node in the topology.
The configuration file allows you to specify how agents will be mapped to topology nodes.
The simplest way is to specify a single type of agent.
Hence, every node in the network will be associated to an agent of that type.
.. code:: yaml
agent_type: SISaModel
It is also possible to add more than one type of agent to the simulation, and to control the ratio of each type (using the ``weight`` property).
For instance, with following configuration, it is five times more likely for a node to be assigned a CounterModel type than a SISaModel type.
.. code:: yaml
agent_distribution:
- agent_type: SISaModel
weight: 1
- agent_type: CounterModel
weight: 5
In addition to agent type, you may also add a custom initial state to the distribution.
This is very useful to add the same agent type with different states.
e.g., to populate the network with SISaModel, roughly 10% of them with a discontent state:
.. code:: yaml
agent_distribution:
- agent_type: SISaModel
weight: 9
state:
id: neutral
- agent_type: SISaModel
weight: 1
state:
id: discontent
Lastly, the configuration may include initial state for one or more nodes.
For instance, to add a state for the two nodes in this configuration:
.. code:: yaml
agent_type: SISaModel
network:
network_type: complete_graph
n: 2
states:
- id: content
- id: discontent
Or to add state only to specific nodes (by ``id``).
For example, to apply special skills to Linux Torvalds in a simulation:
.. literalinclude:: ../examples/torvalds.yml
.. literalinclude:: quickstart.yml
:language: yaml
The agent type used, SISa, is a very simple model.
It only has three states (neutral, content and discontent),
Its parameters are the probabilities to change from one state to another, either spontaneously or because of contagion from neighboring agents.
Environment Agents
##################
In addition to network agents, more agents can be added to the simulation.
These agens are programmed in much the same way as network agents, the only difference is that they will not be assigned to network nodes.
Running the simulation
======================
To see the simulation in action, simply point soil to the configuration, and tell it to store the graph and the history of agent states and environment parameters at every point.
.. code::
environment_agents:
- agent_type: MyAgent
state:
mood: happy
- agent_type: DummyAgent
soil --graph --csv quickstart.yml [13:35:29]
INFO:soil:Using config(s): quickstart
INFO:soil:Dumping results to soil_output/quickstart : ['csv', 'gexf']
INFO:soil:Starting simulation quickstart at 13:35:30.
INFO:soil:Starting Simulation quickstart trial 0 at 13:35:30.
INFO:soil:Finished Simulation quickstart trial 0 at 13:35:49 in 19.43677067756653 seconds
INFO:soil:Starting Dumping simulation quickstart trial 0 at 13:35:49.
INFO:soil:Finished Dumping simulation quickstart trial 0 at 13:35:51 in 1.7733407020568848 seconds
INFO:soil:Dumping results to soil_output/quickstart
INFO:soil:Finished simulation quickstart at 13:35:51 in 21.29862952232361 seconds
Visualizing the results
=======================
The ``CSV`` file should look like this:
The simulation will return a dynamic graph .gexf file which could be visualized with
.. code::
agent_id,t_step,key,value
env,0,neutral_discontent_spon_prob,0.05
env,0,neutral_discontent_infected_prob,0.1
env,0,neutral_content_spon_prob,0.2
env,0,neutral_content_infected_prob,0.4
env,0,discontent_neutral,0.2
env,0,discontent_content,0.05
env,0,content_discontent,0.05
env,0,variance_d_c,0.05
env,0,variance_c_d,0.1
Results and visualization
=========================
The environment variables are marked as ``agent_id`` env.
Th exported values are only stored when they change.
To find out how to get every key and value at every point in the simulation, check out the :doc:`soil_tutorial`.
The dynamic graph is exported as a .gexf file which could be visualized with
`Gephi <https://gephi.org/users/download/>`__.
Now it is your turn to experiment with the simulation.
Change some of the parameters, such as the number of agents, the probability of becoming content, or the type of network, and see how the results change.
Soil also includes a web server that allows you to upload your simulations, change parameters, and visualize the results, including a timeline of the network.
To make it work, you have to install soil like this:
.. code::
pip install soil[web]
Once installed, the soil web UI can be run in two ways:
.. code::
soil-web
# OR
python -m soil.web

33
docs/quickstart.yml Normal file
View File

@@ -0,0 +1,33 @@
---
name: quickstart
num_trials: 1
max_time: 1000
model_params:
agents:
- agent_class: SISaModel
topology: true
state:
id: neutral
weight: 1
- agent_class: SISaModel
topology: true
state:
id: content
weight: 2
topology:
params:
n: 100
k: 5
p: 0.2
generator: newman_watts_strogatz_graph
neutral_discontent_spon_prob: 0.05
neutral_discontent_infected_prob: 0.1
neutral_content_spon_prob: 0.2
neutral_content_infected_prob: 0.4
discontent_neutral: 0.2
discontent_content: 0.05
content_discontent: 0.05
variance_d_c: 0.05
variance_c_d: 0.1
content_neutral: 0.1
standard_variance: 0.1

1
docs/requirements.txt Normal file
View File

@@ -0,0 +1 @@
ipython>=7.31.1

12
docs/soil-vs.rst Normal file
View File

@@ -0,0 +1,12 @@
### MESA
Starting with version 0.3, Soil has been redesigned to complement Mesa, while remaining compatible with it.
That means that every component in Soil (i.e., Models, Environments, etc.) can be mixed with existing mesa components.
In fact, there are examples that show how that integration may be used, in the `examples/mesa` folder in the repository.
Here are some reasons to use Soil instead of plain mesa:
- Less boilerplate for common scenarios (by some definitions of common)
- Functions to automatically populate a topology with an agent distribution (i.e., different ratios of agent class and state)
- The `soil.Simulation` class allows you to run multiple instances of the same experiment (i.e., multiple trials with the same parameters but a different randomness seed)
- Reporting functions that aggregate multiple

BIN
docs/soil.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

View File

@@ -26,7 +26,7 @@ But before that, let's import the soil module and networkx.
%autoreload 2
%pylab inline
# To display plots in the notebooed_
# To display plots in the notebook_
.. parsed-literal::
@@ -47,12 +47,6 @@ There are three main elements in a soil simulation:
- The environment. It assigns agents to nodes in the network, and
stores the environment parameters (shared state for all agents).
Soil is based on ``simpy``, which is an event-based network simulation
library. Soil provides several abstractions over events to make
developing agents easier. This means you can use events (timeouts,
delays) in soil, but for the most part we will assume your models will
be step-based.
Modeling behaviour
------------------
@@ -121,13 +115,13 @@ Here's the code:
@soil.agents.state
def neutral(self):
r = random.random()
if self['has_tv'] and r < self.env['prob_tv_spread']:
if self['has_tv'] and r < self.model['prob_tv_spread']:
return self.infected
return
@soil.agents.state
def infected(self):
prob_infect = self.env['prob_neighbor_spread']
prob_infect = self.model['prob_neighbor_spread']
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
r = random.random()
if r < prob_infect:
@@ -152,11 +146,11 @@ spreading the rumor.
class NewsEnvironmentAgent(soil.agents.BaseAgent):
def step(self):
if self.now == self['event_time']:
self.env['prob_tv_spread'] = 1
self.env['prob_neighbor_spread'] = 1
self.model['prob_tv_spread'] = 1
self.model['prob_neighbor_spread'] = 1
elif self.now > self['event_time']:
self.env['prob_tv_spread'] = self.env['prob_tv_spread'] * TV_FACTOR
self.env['prob_neighbor_spread'] = self.env['prob_neighbor_spread'] * NEIGHBOR_FACTOR
self.model['prob_tv_spread'] = self.model['prob_tv_spread'] * TV_FACTOR
self.model['prob_neighbor_spread'] = self.model['prob_neighbor_spread'] * NEIGHBOR_FACTOR
Testing the agents
~~~~~~~~~~~~~~~~~~
@@ -214,14 +208,14 @@ nodes in that network. Notice how node 0 is the only one with a TV.
MAX_TIME = 100
EVENT_TIME = 10
sim = soil.simulation.SoilSimulation(topology=G,
sim = soil.Simulation(topology=G,
num_trials=1,
max_time=MAX_TIME,
environment_agents=[{'agent_type': NewsEnvironmentAgent,
environment_agents=[{'agent_class': NewsEnvironmentAgent,
'state': {
'event_time': EVENT_TIME
}}],
network_agents=[{'agent_type': NewsSpread,
network_agents=[{'agent_class': NewsSpread,
'weight': 1}],
states={0: {'has_tv': True}},
default_state={'has_tv': False},
@@ -291,14 +285,14 @@ For this demo, we will use a python dictionary:
},
'network_agents': [
{
'agent_type': NewsSpread,
'agent_class': NewsSpread,
'weight': 1,
'state': {
'has_tv': False
}
},
{
'agent_type': NewsSpread,
'agent_class': NewsSpread,
'weight': 2,
'state': {
'has_tv': True
@@ -306,7 +300,7 @@ For this demo, we will use a python dictionary:
}
],
'environment_agents':[
{'agent_type': NewsEnvironmentAgent,
{'agent_class': NewsEnvironmentAgent,
'state': {
'event_time': 10
}
@@ -323,7 +317,7 @@ Let's run our simulation:
.. code:: ipython3
soil.simulation.run_from_config(config, dump=False)
soil.simulation.run_from_config(config)
.. parsed-literal::

View File

@@ -2,14 +2,22 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"start_time": "2017-11-02T09:48:41.843Z"
},
"scrolled": false
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [
"import soil\n",
"import networkx as nx\n",
@@ -39,26 +47,216 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total 288K\r\n",
"drwxr-xr-x 7 j users 4.0K May 23 12:48 .\r\n",
"drwxr-xr-x 15 j users 20K May 7 18:59 ..\r\n",
"-rw-r--r-- 1 j users 451 Oct 17 2017 complete.yml\r\n",
"drwxr-xr-x 2 j users 4.0K Feb 18 11:22 .ipynb_checkpoints\r\n",
"drwxr-xr-x 2 j users 4.0K Oct 17 2017 long_running\r\n",
"-rw-r--r-- 1 j users 1.2K May 23 12:49 .nbgrader.log\r\n",
"drwxr-xr-x 4 j users 4.0K May 4 11:23 newsspread\r\n",
"-rw-r--r-- 1 j users 225K May 4 11:23 NewsSpread.ipynb\r\n",
"drwxr-xr-x 4 j users 4.0K May 4 11:21 rabbits\r\n",
"-rw-r--r-- 1 j users 42 Jul 3 2017 torvalds.edgelist\r\n",
"-rw-r--r-- 1 j users 245 Oct 13 2017 torvalds.yml\r\n",
"drwxr-xr-x 4 j users 4.0K May 4 11:23 tutorial\r\n"
]
}
],
"source": [
"!ls "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"start_time": "2017-11-02T09:48:43.440Z"
}
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"---\r\n",
"default_state: {}\r\n",
"load_module: newsspread\r\n",
"environment_agents: []\r\n",
"environment_params:\r\n",
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 30\r\n",
"name: Sim_all_dumb\r\n",
"network_agents:\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"num_trials: 50\r\n",
"---\r\n",
"default_state: {}\r\n",
"load_module: newsspread\r\n",
"environment_agents: []\r\n",
"environment_params:\r\n",
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 30\r\n",
"name: Sim_half_herd\r\n",
"network_agents:\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"num_trials: 50\r\n",
"---\r\n",
"default_state: {}\r\n",
"load_module: newsspread\r\n",
"environment_agents: []\r\n",
"environment_params:\r\n",
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 30\r\n",
"name: Sim_all_herd\r\n",
"network_agents:\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"num_trials: 50\r\n",
"---\r\n",
"default_state: {}\r\n",
"load_module: newsspread\r\n",
"environment_agents: []\r\n",
"environment_params:\r\n",
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
" prob_neighbor_cure: 0.1\r\n",
"interval: 1\r\n",
"max_time: 30\r\n",
"name: Sim_wise_herd\r\n",
"network_agents:\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"num_trials: 50\r\n",
"---\r\n",
"default_state: {}\r\n",
"load_module: newsspread\r\n",
"environment_agents: []\r\n",
"environment_params:\r\n",
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
" prob_neighbor_cure: 0.1\r\n",
"interval: 1\r\n",
"max_time: 30\r\n",
"name: Sim_all_wise\r\n",
"network_agents:\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
" n: 500\r\n",
" m: 5\r\n",
"num_trials: 50\r\n"
]
}
],
"source": [
"!cat NewsSpread.yml"
"!cat newsspread/NewsSpread.yml"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 10,
"metadata": {
"ExecuteTime": {
"start_time": "2017-11-02T09:48:43.879Z"
}
},
"outputs": [],
"outputs": [
{
"ename": "ValueError",
"evalue": "No objects to concatenate",
"output_type": "error",
"traceback": [
"\u001b[0;31m----------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-10-bae848826594>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mevodumb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0manalysis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'soil_output/Sim_all_dumb/'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgroup\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprocess\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0manalysis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_count\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'id'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m~/git/lab.gsi/soil/soil/soil/analysis.py\u001b[0m in \u001b[0;36mread_data\u001b[0;34m(group, *args, **kwargs)\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0miterable\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_read_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgroup\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mgroup_trials\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/git/lab.gsi/soil/soil/soil/analysis.py\u001b[0m in \u001b[0;36mgroup_trials\u001b[0;34m(trials, aggfunc)\u001b[0m\n\u001b[1;32m 159\u001b[0m \u001b[0mtrials\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrials\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[0mtrials\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrials\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 161\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrials\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0magg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maggfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreorder_levels\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m,\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 162\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.6/site-packages/pandas/core/reshape/concat.py\u001b[0m in \u001b[0;36mconcat\u001b[0;34m(objs, axis, join, join_axes, ignore_index, keys, levels, names, verify_integrity, copy)\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnames\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[0mverify_integrity\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverify_integrity\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 212\u001b[0;31m copy=copy)\n\u001b[0m\u001b[1;32m 213\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.6/site-packages/pandas/core/reshape/concat.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, objs, axis, join, join_axes, keys, levels, names, ignore_index, verify_integrity, copy)\u001b[0m\n\u001b[1;32m 243\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 244\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobjs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 245\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'No objects to concatenate'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 246\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 247\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkeys\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mValueError\u001b[0m: No objects to concatenate"
]
}
],
"source": [
"evodumb = analysis.read_data('soil_output/Sim_all_dumb/', group=True, process=analysis.get_count, keys=['id']);"
]
@@ -302,7 +500,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
"version": "3.8.5"
},
"toc": {
"colors": {

80808
examples/Untitled.ipynb Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,26 +1,54 @@
---
version: '2'
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
max_steps: 100
interval: 1
seed: "CompleteSeed!"
dump: false
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_type: CounterModel
weight: 1
state:
id: 0
- agent_type: AggregatedCounter
weight: 0.2
environment_agents: []
environment_params:
model_class: Environment
model_params:
am_i_complete: true
default_state:
incidents: 0
states:
- name: 'The first node'
- name: 'The second node'
topology:
params:
generator: complete_graph
n: 12
environment:
agents:
agent_class: CounterModel
topology: true
state:
times: 1
# In this group we are not specifying any topology
fixed:
- name: 'Environment Agent 1'
agent_class: BaseAgent
group: environment
topology: false
hidden: true
state:
times: 10
- agent_class: CounterModel
id: 0
group: fixed_counters
state:
times: 1
total: 0
- agent_class: CounterModel
group: fixed_counters
id: 1
distribution:
- agent_class: CounterModel
weight: 1
group: distro_counters
state:
times: 3
- agent_class: AggregatedCounter
weight: 0.2
override:
- filter:
agent_class: AggregatedCounter
n: 2
state:
times: 5

View File

@@ -0,0 +1,16 @@
---
name: custom-generator
description: Using a custom generator for the network
num_trials: 3
max_steps: 100
interval: 1
network_params:
generator: mymodule.mygenerator
# These are custom parameters
n: 10
n_edges: 5
network_agents:
- agent_class: CounterModel
weight: 1
state:
state_id: 0

View File

@@ -0,0 +1,22 @@
from networkx import Graph
import random
import networkx as nx
def mygenerator(n=5, n_edges=5):
"""
Just a simple generator that creates a network with n nodes and
n_edges edges. Edges are assigned randomly, only avoiding self loops.
"""
G = nx.Graph()
for i in range(n):
G.add_node(i)
for i in range(n_edges):
nodes = list(G.nodes)
n_in = random.choice(nodes)
nodes.remove(n_in) # Avoid loops
n_out = random.choice(nodes)
G.add_edge(n_in, n_out)
return G

View File

@@ -0,0 +1,47 @@
from soil.agents import FSM, state, default_state
from soil.time import Delta
class Fibonacci(FSM):
"""Agent that only executes in t_steps that are Fibonacci numbers"""
defaults = {"prev": 1}
@default_state
@state
def counting(self):
self.log("Stopping at {}".format(self.now))
prev, self["prev"] = self["prev"], max([self.now, self["prev"]])
return None, Delta(prev)
class Odds(FSM):
"""Agent that only executes in odd t_steps"""
@default_state
@state
def odds(self):
self.log("Stopping at {}".format(self.now))
return None, Delta(1 + self.now % 2)
from soil import Simulation
simulation = Simulation(
model_params={
'agents':[
{'agent_class': Fibonacci, 'node_id': 0},
{'agent_class': Odds, 'node_id': 1}
],
'topology': {
'params': {
'generator': 'complete_graph',
'n': 2
}
},
},
max_time=100,
)
if __name__ == "__main__":
simulation.run(dry_run=True)

View File

@@ -0,0 +1,7 @@
This example can be run like with command-line options, like this:
```bash
python cars.py --level DEBUG -e summary --csv
```
This will set the `CSV` (save the agent and model data to a CSV) and `summary` (print the a summary of the data to stdout) exporters, and set the log level to DEBUG.

View File

@@ -0,0 +1,243 @@
"""
This is an example of a simplified city, where there are Passengers and Drivers that can take those passengers
from their location to their desired location.
An example scenario could play like the following:
- Drivers start in the `wandering` state, where they wander around the city until they have been assigned a journey
- Passenger(1) tells every driver that it wants to request a Journey.
- Each driver receives the request.
If Driver(2) is interested in providing the Journey, it asks Passenger(1) to confirm that it accepts Driver(2)'s request
- When Passenger(1) accepts the request, two things happen:
- Passenger(1) changes its state to `driving_home`
- Driver(2) starts moving towards the origin of the Journey
- Once Driver(2) reaches the origin, it starts moving itself and Passenger(1) to the destination of the Journey
- When Driver(2) reaches the destination (carrying Passenger(1) along):
- Driver(2) starts wondering again
- Passenger(1) dies, and is removed from the simulation
- If there are no more passengers available in the simulation, Drivers die
"""
from __future__ import annotations
from typing import Optional
from soil import *
from soil import events
from mesa.space import MultiGrid
# More complex scenarios may use more than one type of message between objects.
# A common pattern is to use `enum.Enum` to represent state changes in a request.
@dataclass
class Journey:
"""
This represents a request for a journey. Passengers and drivers exchange this object.
A journey may have a driver assigned or not. If the driver has not been assigned, this
object is considered a "request for a journey".
"""
origin: (int, int)
destination: (int, int)
tip: float
passenger: Passenger
driver: Optional[Driver] = None
class City(EventedEnvironment):
"""
An environment with a grid where drivers and passengers will be placed.
The number of drivers and riders is configurable through its parameters:
:param str n_cars: The total number of drivers to add
:param str n_passengers: The number of passengers in the simulation
:param list agents: Specific agents to use in the simulation. It overrides the `n_passengers`
and `n_cars` params.
:param int height: Height of the internal grid
:param int width: Width of the internal grid
"""
def __init__(
self,
*args,
n_cars=1,
n_passengers=10,
height=100,
width=100,
agents=None,
model_reporters=None,
**kwargs,
):
self.grid = MultiGrid(width=width, height=height, torus=False)
if agents is None:
agents = []
for i in range(n_cars):
agents.append({"agent_class": Driver})
for i in range(n_passengers):
agents.append({"agent_class": Passenger})
model_reporters = model_reporters or {
"earnings": "total_earnings",
"n_passengers": "number_passengers",
}
print("REPORTERS", model_reporters)
super().__init__(
*args, agents=agents, model_reporters=model_reporters, **kwargs
)
for agent in self.agents:
self.grid.place_agent(agent, (0, 0))
self.grid.move_to_empty(agent)
@property
def total_earnings(self):
return sum(d.earnings for d in self.agents(agent_class=Driver))
@property
def number_passengers(self):
return self.count_agents(agent_class=Passenger)
class Driver(Evented, FSM):
pos = None
journey = None
earnings = 0
def on_receive(self, msg, sender):
"""This is not a state. It will run (and block) every time check_messages is invoked"""
if self.journey is None and isinstance(msg, Journey) and msg.driver is None:
msg.driver = self
self.journey = msg
def check_passengers(self):
"""If there are no more passengers, stop forever"""
c = self.count_agents(agent_class=Passenger)
self.info(f"Passengers left {c}")
if not c:
self.die()
@default_state
@state
def wandering(self):
"""Move around the city until a journey is accepted"""
target = None
self.check_passengers()
self.journey = None
while self.journey is None: # No potential journeys detected (see on_receive)
if target is None or not self.move_towards(target):
target = self.random.choice(
self.model.grid.get_neighborhood(self.pos, moore=False)
)
self.check_passengers()
# This will call on_receive behind the scenes, and the agent's status will be updated
self.check_messages()
yield Delta(30) # Wait at least 30 seconds before checking again
try:
# Re-send the journey to the passenger, to confirm that we have been selected
self.journey = yield self.journey.passenger.ask(self.journey, timeout=60)
except events.TimedOut:
# No journey has been accepted. Try again
self.journey = None
return
return self.driving
@state
def driving(self):
"""The journey has been accepted. Pick them up and take them to their destination"""
while self.move_towards(self.journey.origin):
yield
while self.move_towards(self.journey.destination, with_passenger=True):
yield
self.earnings += self.journey.tip
self.check_passengers()
return self.wandering
def move_towards(self, target, with_passenger=False):
"""Move one cell at a time towards a target"""
self.info(f"Moving { self.pos } -> { target }")
if target[0] == self.pos[0] and target[1] == self.pos[1]:
return False
next_pos = [self.pos[0], self.pos[1]]
for idx in [0, 1]:
if self.pos[idx] < target[idx]:
next_pos[idx] += 1
break
if self.pos[idx] > target[idx]:
next_pos[idx] -= 1
break
self.model.grid.move_agent(self, tuple(next_pos))
if with_passenger:
self.journey.passenger.pos = (
self.pos
) # This could be communicated through messages
return True
class Passenger(Evented, FSM):
pos = None
def on_receive(self, msg, sender):
"""This is not a state. It will be run synchronously every time `check_messages` is run"""
if isinstance(msg, Journey):
self.journey = msg
return msg
@default_state
@state
def asking(self):
destination = (
self.random.randint(0, self.model.grid.height),
self.random.randint(0, self.model.grid.width),
)
self.journey = None
journey = Journey(
origin=self.pos,
destination=destination,
tip=self.random.randint(10, 100),
passenger=self,
)
timeout = 60
expiration = self.now + timeout
self.model.broadcast(journey, ttl=timeout, sender=self, agent_class=Driver)
while not self.journey:
self.info(f"Passenger at: { self.pos }. Checking for responses.")
try:
# This will call check_messages behind the scenes, and the agent's status will be updated
# If you want to avoid that, you can call it with: check=False
yield self.received(expiration=expiration)
except events.TimedOut:
self.info(f"Passenger at: { self.pos }. Asking for journey.")
self.model.broadcast(
journey, ttl=timeout, sender=self, agent_class=Driver
)
expiration = self.now + timeout
return self.driving_home
@state
def driving_home(self):
while (
self.pos[0] != self.journey.destination[0]
or self.pos[1] != self.journey.destination[1]
):
try:
yield self.received(timeout=60)
except events.TimedOut:
pass
self.info("Got home safe!")
self.die()
simulation = Simulation(
name="RideHailing",
model_class=City,
model_params={"n_passengers": 2},
seed="carsSeed",
)
if __name__ == "__main__":
simulation.run()

19
examples/mesa/mesa.yml Normal file
View File

@@ -0,0 +1,19 @@
---
name: mesa_sim
group: tests
dir_path: "/tmp"
num_trials: 3
max_steps: 100
interval: 1
seed: '1'
model_class: social_wealth.MoneyEnv
model_params:
generator: social_wealth.graph_generator
agents:
topology: true
distribution:
- agent_class: social_wealth.SocialMoneyAgent
weight: 1
N: 10
width: 50
height: 50

115
examples/mesa/server.py Normal file
View File

@@ -0,0 +1,115 @@
from mesa.visualization.ModularVisualization import ModularServer
from soil.visualization import UserSettableParameter
from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid
from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent
import networkx as nx
class MyNetwork(NetworkModule):
def render(self, model):
return self.portrayal_method(model)
def network_portrayal(env):
# The model ensures there is 0 or 1 agent per node
portrayal = dict()
wealths = {
node_id: data["agent"].wealth for (node_id, data) in env.G.nodes(data=True)
}
portrayal["nodes"] = [
{
"id": node_id,
"size": 2 * (wealth + 1),
"color": "#CC0000" if wealth == 0 else "#007959",
# "color": "#CC0000",
"label": f"{node_id}: {wealth}",
}
for (node_id, wealth) in wealths.items()
]
portrayal["edges"] = [
{"id": edge_id, "source": source, "target": target, "color": "#000000"}
for edge_id, (source, target) in enumerate(env.G.edges)
]
return portrayal
def gridPortrayal(agent):
"""
This function is registered with the visualization server to be called
each tick to indicate how to draw the agent in its current state.
:param agent: the agent in the simulation
:return: the portrayal dictionary
"""
color = max(10, min(agent.wealth * 10, 100))
return {
"Shape": "rect",
"w": 1,
"h": 1,
"Filled": "true",
"Layer": 0,
"Label": agent.unique_id,
"Text": agent.unique_id,
"x": agent.pos[0],
"y": agent.pos[1],
"Color": f"rgba(31, 10, 255, 0.{color})",
}
grid = MyNetwork(network_portrayal, 500, 500)
chart = ChartModule(
[{"Label": "Gini", "Color": "Black"}], data_collector_name="datacollector"
)
model_params = {
"N": UserSettableParameter(
"slider",
"N",
5,
1,
10,
1,
description="Choose how many agents to include in the model",
),
"height": UserSettableParameter(
"slider",
"height",
5,
5,
10,
1,
description="Grid height",
),
"width": UserSettableParameter(
"slider",
"width",
5,
5,
10,
1,
description="Grid width",
),
"agent_class": UserSettableParameter(
"choice",
"Agent class",
value="MoneyAgent",
choices=["MoneyAgent", "SocialMoneyAgent"],
),
"generator": graph_generator,
}
canvas_element = CanvasGrid(
gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500
)
server = ModularServer(
MoneyEnv, [grid, chart, canvas_element], "Money Model", model_params
)
server.port = 8521
if __name__ == '__main__':
server.launch(open_browser=False)

View File

@@ -0,0 +1,137 @@
"""
This is an example that adds soil agents and environment in a normal
mesa workflow.
"""
from mesa import Agent as MesaAgent
from mesa.space import MultiGrid
# from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
import networkx as nx
from soil import NetworkAgent, Environment, serialization
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.agents]
x = sorted(agent_wealths)
N = len(list(model.agents))
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
class MoneyAgent(MesaAgent):
"""
A MESA agent with fixed initial wealth.
It will only share wealth with neighbors based on grid proximity
"""
def __init__(self, unique_id, model, wealth=1, **kwargs):
super().__init__(unique_id=unique_id, model=model)
self.wealth = wealth
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:
other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1
def step(self):
print("Crying wolf", self.pos)
self.move()
if self.wealth > 0:
self.give_money()
class SocialMoneyAgent(NetworkAgent, MoneyAgent):
wealth = 1
def give_money(self):
cellmates = set(self.model.grid.get_cell_list_contents([self.pos]))
friends = set(self.get_neighbors())
self.info("Trying to give money")
self.info("Cellmates: ", cellmates)
self.info("Friends: ", friends)
nearby_friends = list(cellmates & friends)
if len(nearby_friends):
other = self.random.choice(nearby_friends)
other.wealth += 1
self.wealth -= 1
def graph_generator(n=5):
G = nx.Graph()
for ix in range(n):
G.add_edge(0, ix)
return G
class MoneyEnv(Environment):
"""A model with some number of agents."""
def __init__(
self,
width,
height,
N,
generator=graph_generator,
agent_class=SocialMoneyAgent,
topology=None,
**kwargs
):
generator = serialization.deserialize(generator)
agent_class = serialization.deserialize(agent_class, globs=globals())
topology = generator(n=N)
super().__init__(topology=topology, N=N, **kwargs)
self.grid = MultiGrid(width, height, False)
self.populate_network(agent_class=agent_class)
# Create agents
for agent in self.agents:
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(agent, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
if __name__ == "__main__":
fixed_params = {
"generator": nx.complete_graph,
"width": 10,
"network_agents": [{"agent_class": SocialMoneyAgent, "weight": 1}],
"height": 10,
}
variable_params = {"N": range(10, 100, 10)}
batch_run = BatchRunner(
MoneyEnv,
variable_parameters=variable_params,
fixed_parameters=fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini},
)
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)

87
examples/mesa/wealth.py Normal file
View File

@@ -0,0 +1,87 @@
from mesa import Agent, Model
from mesa.space import MultiGrid
from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.schedule.agents]
x = sorted(agent_wealths)
N = model.num_agents
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
class MoneyAgent(Agent):
"""An agent with fixed initial wealth."""
def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:
other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1
def step(self):
self.move()
if self.wealth > 0:
self.give_money()
class MoneyModel(Model):
"""A model with some number of agents."""
def __init__(self, N, width, height):
self.num_agents = N
self.grid = MultiGrid(width, height, True)
self.schedule = RandomActivation(self)
self.running = True
# Create agents
for i in range(self.num_agents):
a = MoneyAgent(i, self)
self.schedule.add(a)
# Add the agent to a random grid cell
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
def step(self):
self.datacollector.collect(self)
self.schedule.step()
if __name__ == "__main__":
fixed_params = {"width": 10, "height": 10}
variable_params = {"N": range(10, 500, 10)}
batch_run = BatchRunner(
MoneyModel,
variable_params,
fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini},
)
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)

View File

@@ -89,11 +89,11 @@
"max_time: 30\r\n",
"name: Sim_all_dumb\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@@ -113,19 +113,19 @@
"max_time: 30\r\n",
"name: Sim_half_herd\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@@ -145,12 +145,12 @@
"max_time: 30\r\n",
"name: Sim_all_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
@@ -172,12 +172,12 @@
"max_time: 30\r\n",
"name: Sim_wise_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@@ -198,12 +198,12 @@
"max_time: 30\r\n",
"name: Sim_all_wise\r\n",
"network_agents:\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",

View File

@@ -1,19 +1,18 @@
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 30
max_steps: 300
name: Sim_all_dumb
network_agents:
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: false
weight: 1
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: true
weight: 1
@@ -24,28 +23,27 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 30
max_steps: 300
name: Sim_half_herd
network_agents:
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: false
weight: 1
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: true
weight: 1
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: false
weight: 1
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
weight: 1
@@ -56,24 +54,23 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 30
max_steps: 300
name: Sim_all_herd
network_agents:
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
id: neutral
state_id: neutral
weight: 1
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
id: neutral
state_id: neutral
weight: 1
network_params:
generator: barabasi_albert_graph
@@ -82,22 +79,21 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 30
max_steps: 300
name: Sim_wise_herd
network_agents:
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
id: neutral
state_id: neutral
weight: 1
- agent_type: WiseViewer
- agent_class: newsspread.WiseViewer
state:
has_tv: true
weight: 1
@@ -108,22 +104,21 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 30
max_steps: 300
name: Sim_all_wise
network_agents:
- agent_type: WiseViewer
- agent_class: newsspread.WiseViewer
state:
has_tv: true
id: neutral
state_id: neutral
weight: 1
- agent_type: WiseViewer
- agent_class: newsspread.WiseViewer
state:
has_tv: true
weight: 1

View File

@@ -1,81 +1,87 @@
from soil.agents import FSM, state, default_state, prob
from soil.agents import FSM, NetworkAgent, state, default_state, prob
import logging
class DumbViewer(FSM):
'''
class DumbViewer(FSM, NetworkAgent):
"""
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
'''
defaults = {
'prob_neighbor_spread': 0.5,
'prob_tv_spread': 0.1,
}
"""
prob_neighbor_spread = 0.5
prob_tv_spread = 0.1
has_been_infected = False
@default_state
@state
def neutral(self):
if self['has_tv']:
if prob(self.env['prob_tv_spread']):
self.set_state(self.infected)
if self["has_tv"]:
if self.prob(self.model["prob_tv_spread"]):
return self.infected
if self.has_been_infected:
return self.infected
@state
def infected(self):
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
if prob(self.env['prob_neighbor_spread']):
for neighbor in self.get_neighbors(state_id=self.neutral.id):
if self.prob(self.model["prob_neighbor_spread"]):
neighbor.infect()
def infect(self):
self.set_state(self.infected)
"""
This is not a state. It is a function that other agents can use to try to
infect this agent. DumbViewer always gets infected, but other agents like
HerdViewer might not become infected right away
"""
self.has_been_infected = True
class HerdViewer(DumbViewer):
'''
"""
A viewer whose probability of infection depends on the state of its neighbors.
'''
level = logging.DEBUG
"""
def infect(self):
infected = self.count_neighboring_agents(state_id=self.infected.id)
total = self.count_neighboring_agents()
prob_infect = self.env['prob_neighbor_spread'] * infected/total
self.debug('prob_infect', prob_infect)
if prob(prob_infect):
self.set_state(self.infected.id)
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
infected = self.count_neighbors(state_id=self.infected.id)
total = self.count_neighbors()
prob_infect = self.model["prob_neighbor_spread"] * infected / total
self.debug("prob_infect", prob_infect)
if self.prob(prob_infect):
self.has_been_infected = True
class WiseViewer(HerdViewer):
'''
"""
A viewer that can change its mind.
'''
"""
defaults = {
'prob_neighbor_spread': 0.5,
'prob_neighbor_cure': 0.25,
'prob_tv_spread': 0.1,
"prob_neighbor_spread": 0.5,
"prob_neighbor_cure": 0.25,
"prob_tv_spread": 0.1,
}
@state
def cured(self):
prob_cure = self.env['prob_neighbor_cure']
for neighbor in self.get_neighboring_agents(state_id=self.infected.id):
if prob(prob_cure):
prob_cure = self.model["prob_neighbor_cure"]
for neighbor in self.get_neighbors(state_id=self.infected.id):
if self.prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
self.debug('Viewer {} cannot be cured'.format(neighbor.id))
self.debug("Viewer {} cannot be cured".format(neighbor.id))
def cure(self):
self.set_state(self.cured.id)
self.has_been_cured = True
@state
def infected(self):
cured = max(self.count_neighboring_agents(self.cured.id),
1.0)
infected = max(self.count_neighboring_agents(self.infected.id),
1.0)
prob_cure = self.env['prob_neighbor_cure'] * (cured/infected)
if prob(prob_cure):
return self.cure()
return self.set_state(super().infected)
if self.has_been_cured:
return self.cured
cured = max(self.count_neighbors(self.cured.id), 1.0)
infected = max(self.count_neighbors(self.infected.id), 1.0)
prob_cure = self.model["prob_neighbor_cure"] * (cured / infected)
if self.prob(prob_cure):
return self.cured

1
examples/programmatic/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
Programmatic*

View File

@@ -0,0 +1,57 @@
"""
Example of a fully programmatic simulation, without definition files.
"""
from soil import Simulation, agents
from networkx import Graph
import logging
def mygenerator():
# Add only a node
G = Graph()
G.add_node(1)
G.add_node(2)
return G
class MyAgent(agents.FSM):
times_run = 0
@agents.default_state
@agents.state
def neutral(self):
self.debug("I am running")
if self.prob(0.2):
self.times_run += 1
self.info("This runs 2/10 times on average")
simulation = Simulation(
name="Programmatic",
model_params={
'topology': {
'params': {
'generator': mygenerator
},
},
'agents': {
'distribution': [{
'agent_class': MyAgent,
'topology': True,
}]
}
},
seed='Program',
agent_reporters={'times_run': 'times_run'},
num_trials=1,
max_time=100,
dry_run=True,
)
if __name__ == "__main__":
# By default, logging will only print WARNING logs (and above).
# You need to choose a lower logging level to get INFO/DEBUG traces
logging.basicConfig(level=logging.INFO)
envs = simulation.run()
for agent in envs[0].agents:
print(agent.times_run)

View File

@@ -0,0 +1,10 @@
Simulation of pubs and drinking pals that go from pub to pub.
Th custom environment includes a list of pubs and methods to allow agents to discover and enter pubs.
There are two types of agents:
* Patron. A patron will do three things, in this order:
* Look for other patrons to drink with
* Look for a pub where the agent and other agents in the same group can get in.
* While in the pub, patrons only drink, until they get drunk and taken home.
* Police. There is only one police agent that will take any drunk patrons home (kick them out of the pub).

View File

@@ -0,0 +1,175 @@
from soil.agents import FSM, NetworkAgent, state, default_state
from soil import Environment
from itertools import islice
import logging
class CityPubs(Environment):
"""Environment with Pubs"""
level = logging.INFO
def __init__(self, *args, number_of_pubs=3, pub_capacity=10, **kwargs):
super(CityPubs, self).__init__(*args, **kwargs)
pubs = {}
for i in range(number_of_pubs):
newpub = {
"name": "The awesome pub #{}".format(i),
"open": True,
"capacity": pub_capacity,
"occupancy": 0,
}
pubs[newpub["name"]] = newpub
self["pubs"] = pubs
def enter(self, pub_id, *nodes):
"""Agents will try to enter. The pub checks if it is possible"""
try:
pub = self["pubs"][pub_id]
except KeyError:
raise ValueError("Pub {} is not available".format(pub_id))
if not pub["open"] or (pub["capacity"] < (len(nodes) + pub["occupancy"])):
return False
pub["occupancy"] += len(nodes)
for node in nodes:
node["pub"] = pub_id
return True
def available_pubs(self):
for pub in self["pubs"].values():
if pub["open"] and (pub["occupancy"] < pub["capacity"]):
yield pub["name"]
def exit(self, pub_id, *node_ids):
"""Agents will notify the pub they want to leave"""
try:
pub = self["pubs"][pub_id]
except KeyError:
raise ValueError("Pub {} is not available".format(pub_id))
for node_id in node_ids:
node = self.get_agent(node_id)
if pub_id == node["pub"]:
del node["pub"]
pub["occupancy"] -= 1
class Patron(FSM, NetworkAgent):
"""Agent that looks for friends to drink with. It will do three things:
1) Look for other patrons to drink with
2) Look for a bar where the agent and other agents in the same group can get in.
3) While in the bar, patrons only drink, until they get drunk and taken home.
"""
level = logging.DEBUG
pub = None
drunk = False
pints = 0
max_pints = 3
kicked_out = False
@default_state
@state
def looking_for_friends(self):
"""Look for friends to drink with"""
self.info("I am looking for friends")
available_friends = list(
self.get_agents(drunk=False, pub=None, state_id=self.looking_for_friends.id)
)
if not available_friends:
self.info("Life sucks and I'm alone!")
return self.at_home
befriended = self.try_friends(available_friends)
if befriended:
return self.looking_for_pub
@state
def looking_for_pub(self):
"""Look for a pub that accepts me and my friends"""
if self["pub"] != None:
return self.sober_in_pub
self.debug("I am looking for a pub")
group = list(self.get_neighbors())
for pub in self.model.available_pubs():
self.debug("We're trying to get into {}: total: {}".format(pub, len(group)))
if self.model.enter(pub, self, *group):
self.info("We're all {} getting in {}!".format(len(group), pub))
return self.sober_in_pub
@state
def sober_in_pub(self):
"""Drink up."""
self.drink()
if self["pints"] > self["max_pints"]:
return self.drunk_in_pub
@state
def drunk_in_pub(self):
"""I'm out. Take me home!"""
self.info("I'm so drunk. Take me home!")
self["drunk"] = True
if self.kicked_out:
return self.at_home
pass # out drun
@state
def at_home(self):
"""The end"""
others = self.get_agents(state_id=Patron.at_home.id, limit_neighbors=True)
self.debug("I'm home. Just like {} of my friends".format(len(others)))
def drink(self):
self["pints"] += 1
self.debug("Cheers to that")
def kick_out(self):
self.kicked_out = True
def befriend(self, other_agent, force=False):
"""
Try to become friends with another agent. The chances of
success depend on both agents' openness.
"""
if force or self["openness"] > self.random.random():
self.add_edge(self, other_agent)
self.info("Made some friend {}".format(other_agent))
return True
return False
def try_friends(self, others):
"""Look for random agents around me and try to befriend them"""
befriended = False
k = int(10 * self["openness"])
self.random.shuffle(others)
for friend in islice(others, k): # random.choice >= 3.7
if friend == self:
continue
if friend.befriend(self):
self.befriend(friend, force=True)
self.debug("Hooray! new friend: {}".format(friend.id))
befriended = True
else:
self.debug("{} does not want to be friends".format(friend.id))
return befriended
class Police(FSM):
"""Simple agent to take drunk people out of pubs."""
level = logging.INFO
@default_state
@state
def patrol(self):
drunksters = list(self.get_agents(drunk=True, state_id=Patron.drunk_in_pub.id))
for drunk in drunksters:
self.info("Kicking out the trash: {}".format(drunk.id))
drunk.kick_out()
else:
self.info("No trash to take out. Too bad.")
if __name__ == "__main__":
from soil import run_from_config
run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)

View File

@@ -0,0 +1,26 @@
---
name: pubcrawl
num_trials: 3
max_steps: 10
dump: false
network_params:
# Generate 100 empty nodes. They will be assigned a network agent
generator: empty_graph
n: 30
network_agents:
- agent_class: pubcrawl.Patron
description: Extroverted patron
state:
openness: 1.0
weight: 9
- agent_class: pubcrawl.Patron
description: Introverted patron
state:
openness: 0.1
weight: 1
environment_agents:
- agent_class: pubcrawl.Police
environment_class: pubcrawl.CityPubs
environment_params:
altercations: 0
number_of_pubs: 3

View File

@@ -0,0 +1,14 @@
There are two similar implementations of this simulation.
- `basic`. Using simple primites
- `improved`. Using more advanced features such as the `time` module to avoid unnecessary computations (i.e., skip steps), and generator functions.
The examples can be run directly in the terminal, and they accept command like arguments.
For example, to enable the CSV exporter and the Summary exporter, while setting `max_time` to `100` and `seed` to `CustomSeed`:
```
python rabbit_agents.py --set max_time=100 --csv -e summary --set 'seed="CustomSeed"'
```
To learn more about how this functionality works, check out the `soil.easy` function.

View File

@@ -0,0 +1,152 @@
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
from collections import Counter
import logging
import math
class RabbitEnv(Environment):
prob_death = 1e-100
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
@property
def num_males(self):
return self.count_agents(agent_class=Male)
@property
def num_females(self):
return self.count_agents(agent_class=Female)
class Rabbit(NetworkAgent, FSM):
sexual_maturity = 30
life_expectancy = 300
@default_state
@state
def newborn(self):
self.info("I am a newborn.")
self.age = 0
self.offspring = 0
return self.youngling
@state
def youngling(self):
self.age += 1
if self.age >= self.sexual_maturity:
self.info(f"I am fertile! My age is {self.age}")
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
@state
def dead(self):
self.die()
class Male(Rabbit):
max_females = 5
mating_prob = 0.001
@state
def fertile(self):
self.age += 1
if self.age > self.life_expectancy:
return self.dead
# Males try to mate
for f in self.model.agents(
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
):
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
if self.prob(self["mating_prob"]):
f.impregnate(self)
break # Take a break
class Female(Rabbit):
gestation = 10
pregnancy = -1
@state
def fertile(self):
# Just wait for a Male
self.age += 1
if self.age > self.life_expectancy:
return self.dead
if self.pregnancy >= 0:
return self.pregnant
def impregnate(self, male):
self.info(f"impregnated by {repr(male)}")
self.mate = male
self.pregnancy = 0
self.number_of_babies = int(8 + 4 * self.random.random())
@state
def pregnant(self):
self.info("I am pregnant")
self.age += 1
if self.age >= self.life_expectancy:
return self.die()
if self.pregnancy < self.gestation:
self.pregnancy += 1
return
self.info("Having {} babies".format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class, **state)
child.add_edge(self)
try:
child.add_edge(self.mate)
self.model.agents[self.mate].offspring += 1
except ValueError:
self.debug("The father has passed away")
self.offspring += 1
self.mate = None
self.pregnancy = -1
return self.fertile
def die(self):
if "pregnancy" in self and self["pregnancy"] > -1:
self.info("A mother has died carrying a baby!!")
return super().die()
class RandomAccident(BaseAgent):
def step(self):
rabbits_alive = self.model.G.number_of_nodes()
if not rabbits_alive:
return self.die()
prob_death = self.model.prob_death * math.floor(
math.log10(max(1, rabbits_alive))
)
self.debug("Killing some rabbits with prob={}!".format(prob_death))
for i in self.get_agents(agent_class=Rabbit):
if i.state_id == i.dead.id:
continue
if self.prob(prob_death):
self.info("I killed a rabbit: {}".format(i.id))
rabbits_alive -= 1
i.die()
self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__":
from soil import easy
with easy("rabbits.yml") as sim:
sim.run()

View File

@@ -0,0 +1,42 @@
---
version: '2'
name: rabbits_basic
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: true
distribution:
- agent_class: rabbit_agents.Male
weight: 1
- agent_class: rabbit_agents.Female
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: false
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topology:
fixed:
directed: true
links: []
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@@ -0,0 +1,157 @@
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
from soil.time import Delta
from enum import Enum
from collections import Counter
import logging
import math
class RabbitEnv(Environment):
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
@property
def num_males(self):
return self.count_agents(agent_class=Male)
@property
def num_females(self):
return self.count_agents(agent_class=Female)
class Rabbit(FSM, NetworkAgent):
sexual_maturity = 30
life_expectancy = 300
birth = None
@property
def age(self):
if self.birth is None:
return None
return self.now - self.birth
@default_state
@state
def newborn(self):
self.info("I am a newborn.")
self.birth = self.now
self.offspring = 0
return self.youngling, Delta(self.sexual_maturity - self.age)
@state
def youngling(self):
if self.age >= self.sexual_maturity:
self.info(f"I am fertile! My age is {self.age}")
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
@state
def dead(self):
self.die()
class Male(Rabbit):
max_females = 5
mating_prob = 0.001
@state
def fertile(self):
if self.age > self.life_expectancy:
return self.dead
# Males try to mate
for f in self.model.agents(
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
):
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
if self.prob(self["mating_prob"]):
f.impregnate(self)
break # Do not try to impregnate other females
class Female(Rabbit):
gestation = 10
conception = None
@state
def fertile(self):
# Just wait for a Male
if self.age > self.life_expectancy:
return self.dead
if self.conception is not None:
return self.pregnant
@property
def pregnancy(self):
if self.conception is None:
return None
return self.now - self.conception
def impregnate(self, male):
self.info(f"impregnated by {repr(male)}")
self.mate = male
self.conception = self.now
self.number_of_babies = int(8 + 4 * self.random.random())
@state
def pregnant(self):
self.debug("I am pregnant")
if self.age > self.life_expectancy:
self.info("Dying before giving birth")
return self.die()
if self.pregnancy >= self.gestation:
self.info("Having {} babies".format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class, **state)
child.add_edge(self)
if self.mate:
child.add_edge(self.mate)
self.mate.offspring += 1
else:
self.debug("The father has passed away")
self.offspring += 1
self.mate = None
return self.fertile
def die(self):
if self.pregnancy is not None:
self.info("A mother has died carrying a baby!!")
return super().die()
class RandomAccident(BaseAgent):
def step(self):
rabbits_alive = self.model.G.number_of_nodes()
if not rabbits_alive:
return self.die()
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
math.log10(max(1, rabbits_alive))
)
self.debug("Killing some rabbits with prob={}!".format(prob_death))
for i in self.iter_agents(agent_class=Rabbit):
if i.state_id == i.dead.id:
continue
if self.prob(prob_death):
self.info("I killed a rabbit: {}".format(i.id))
rabbits_alive -= 1
i.die()
self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__":
from soil import easy
with easy("rabbits.yml") as sim:
sim.run()

View File

@@ -0,0 +1,42 @@
---
version: '2'
name: rabbits_improved
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: true
distribution:
- agent_class: rabbit_agents.Male
weight: 1
- agent_class: rabbit_agents.Female
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: false
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topology:
fixed:
directed: true
links: []
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@@ -1,120 +0,0 @@
from soil.agents import FSM, state, default_state, BaseAgent
from enum import Enum
from random import random, choice
from itertools import islice
import logging
import math
class Genders(Enum):
male = 'male'
female = 'female'
class RabbitModel(FSM):
level = logging.INFO
defaults = {
'age': 0,
'gender': Genders.male.value,
'mating_prob': 0.001,
'offspring': 0,
}
sexual_maturity = 4*30
life_expectancy = 365 * 3
gestation = 33
pregnancy = -1
max_females = 5
@default_state
@state
def newborn(self):
self['age'] += 1
if self['age'] >= self.sexual_maturity:
return self.fertile
@state
def fertile(self):
self['age'] += 1
if self['age'] > self.life_expectancy:
return self.dead
if self['gender'] == Genders.female.value:
return
# Males try to mate
females = self.get_agents(state_id=self.fertile.id, gender=Genders.female.value, limit_neighbors=False)
for f in islice(females, self.max_females):
r = random()
if r < self['mating_prob']:
self.impregnate(f)
break # Take a break
def impregnate(self, whom):
if self['gender'] == Genders.female.value:
raise NotImplementedError('Females cannot impregnate')
whom['pregnancy'] = 0
whom['mate'] = self.id
whom.set_state(whom.pregnant)
self.debug('{} impregnating: {}. {}'.format(self.id, whom.id, whom.state))
@state
def pregnant(self):
self['age'] += 1
if self['age'] > self.life_expectancy:
return self.dead
self['pregnancy'] += 1
self.debug('Pregnancy: {}'.format(self['pregnancy']))
if self['pregnancy'] >= self.gestation:
number_of_babies = int(8+4*random())
self.info('Having {} babies'.format(number_of_babies))
for i in range(number_of_babies):
state = {}
state['gender'] = choice(list(Genders)).value
child = self.env.add_node(self.__class__, state)
self.env.add_edge(self.id, child.id)
self.env.add_edge(self['mate'], child.id)
# self.add_edge()
self.debug('A BABY IS COMING TO LIFE')
self.env['rabbits_alive'] = self.env.get('rabbits_alive', self.global_topology.number_of_nodes())+1
self.debug('Rabbits alive: {}'.format(self.env['rabbits_alive']))
self['offspring'] += 1
self.env.get_agent(self['mate'])['offspring'] += 1
del self['mate']
self['pregnancy'] = -1
return self.fertile
@state
def dead(self):
self.info('Agent {} is dying'.format(self.id))
if 'pregnancy' in self and self['pregnancy'] > -1:
self.info('A mother has died carrying a baby!!')
self.die()
return
class RandomAccident(BaseAgent):
level = logging.DEBUG
def step(self):
rabbits_total = self.global_topology.number_of_nodes()
rabbits_alive = self.env.get('rabbits_alive', rabbits_total)
prob_death = self.env.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.env.network_agents:
if i.state['id'] == i.dead.id:
continue
r = random()
if r < prob_death:
self.debug('I killed a rabbit: {}'.format(i.id))
rabbits_alive = self.env['rabbits_alive'] = rabbits_alive -1
self.log('Rabbits alive: {}'.format(self.env['rabbits_alive']))
i.set_state(i.dead)
self.log('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
if self.count_agents(state_id=RabbitModel.dead.id) == self.global_topology.number_of_nodes():
self.die()

View File

@@ -1,23 +0,0 @@
---
load_module: rabbit_agents
name: rabbits_example
max_time: 1200
interval: 1
seed: MySeed
agent_type: RabbitModel
environment_agents:
- agent_type: RandomAccident
environment_params:
prob_death: 0.001
default_state:
mating_prob: 0.01
topology:
nodes:
- id: 1
state:
gender: female
- id: 0
state:
gender: male
directed: true
links: []

View File

@@ -0,0 +1,43 @@
"""
Example of setting a
Example of a fully programmatic simulation, without definition files.
"""
from soil import Simulation, agents
from soil.time import Delta
class MyAgent(agents.FSM):
"""
An agent that first does a ping
"""
defaults = {"pong_counts": 2}
@agents.default_state
@agents.state
def ping(self):
self.info("Ping")
return self.pong, Delta(self.random.expovariate(1 / 16))
@agents.state
def pong(self):
self.info("Pong")
self.pong_counts -= 1
self.info(str(self.pong_counts))
if self.pong_counts < 1:
return self.die()
return None, Delta(self.random.expovariate(1 / 16))
s = Simulation(
name="Programmatic",
model_params={
'agents': [{'agent_class': MyAgent}],
},
num_trials=1,
max_time=100,
dry_run=True,
)
envs = s.run()

30
examples/template.yml Normal file
View File

@@ -0,0 +1,30 @@
---
sampler:
method: "SALib.sample.morris.sample"
N: 10
template:
group: simple
num_trials: 1
interval: 1
max_steps: 2
seed: "CompleteSeed!"
dump: false
model_params:
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_class: CounterModel
weight: "{{ x1 }}"
state:
state_id: 0
- agent_class: AggregatedCounter
weight: "{{ 1 - x1 }}"
name: "{{ x3 }}"
skip_test: true
vars:
bounds:
x1: [0, 1]
x2: [1, 2]
fixed:
x3: ["a", "b", "c"]

View File

@@ -0,0 +1,289 @@
import networkx as nx
from soil.agents import Geo, NetworkAgent, FSM, state, default_state
from soil import Environment
class TerroristSpreadModel(FSM, Geo):
"""
Settings:
information_spread_intensity
terrorist_additional_influence
min_vulnerability (optional else zero)
max_vulnerability
prob_interaction
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.information_spread_intensity = model.environment_params[
"information_spread_intensity"
]
self.terrorist_additional_influence = model.environment_params[
"terrorist_additional_influence"
]
self.prob_interaction = model.environment_params["prob_interaction"]
if self["id"] == self.civilian.id: # Civilian
self.mean_belief = self.random.uniform(0.00, 0.5)
elif self["id"] == self.terrorist.id: # Terrorist
self.mean_belief = self.random.uniform(0.8, 1.00)
elif self["id"] == self.leader.id: # Leader
self.mean_belief = 1.00
else:
raise Exception("Invalid state id: {}".format(self["id"]))
if "min_vulnerability" in model.environment_params:
self.vulnerability = self.random.uniform(
model.environment_params["min_vulnerability"],
model.environment_params["max_vulnerability"],
)
else:
self.vulnerability = self.random.uniform(
0, model.environment_params["max_vulnerability"]
)
@state
def civilian(self):
neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel))
if len(neighbours) > 0:
# Only interact with some of the neighbors
interactions = list(
n for n in neighbours if self.random.random() <= self.prob_interaction
)
influence = sum(self.degree(i) for i in interactions)
mean_belief = sum(
i.mean_belief * self.degree(i) / influence for i in interactions
)
mean_belief = (
mean_belief * self.information_spread_intensity
+ self.mean_belief * (1 - self.information_spread_intensity)
)
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
1 - self.vulnerability
)
if self.mean_belief >= 0.8:
return self.terrorist
@state
def leader(self):
self.mean_belief = self.mean_belief ** (1 - self.terrorist_additional_influence)
for neighbour in self.get_neighbors(
state_id=[self.terrorist.id, self.leader.id]
):
if self.betweenness(neighbour) > self.betweenness(self):
return self.terrorist
@state
def terrorist(self):
neighbours = self.get_agents(
state_id=[self.terrorist.id, self.leader.id],
agent_class=TerroristSpreadModel,
limit_neighbors=True,
)
if len(neighbours) > 0:
influence = sum(self.degree(n) for n in neighbours)
mean_belief = sum(
n.mean_belief * self.degree(n) / influence for n in neighbours
)
mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
1 - self.vulnerability
)
self.mean_belief = self.mean_belief ** (
1 - self.terrorist_additional_influence
)
# Check if there are any leaders in the group
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours))
if not leaders:
# Check if this is the potential leader
# Stop once it's found. Otherwise, set self as leader
for neighbour in neighbours:
if self.betweenness(self) < self.betweenness(neighbour):
return
return self.leader
def ego_search(self, steps=1, center=False, agent=None, **kwargs):
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
node = agent.node
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, agent, force=False):
node = agent.node
if (
force
or (not hasattr(self.model, "_degree"))
or getattr(self.model, "_last_step", 0) < self.now
):
self.model._degree = nx.degree_centrality(self.G)
self.model._last_step = self.now
return self.model._degree[node]
def betweenness(self, agent, force=False):
node = agent.node
if (
force
or (not hasattr(self.model, "_betweenness"))
or getattr(self.model, "_last_step", 0) < self.now
):
self.model._betweenness = nx.betweenness_centrality(self.G)
self.model._last_step = self.now
return self.model._betweenness[node]
class TrainingAreaModel(FSM, Geo):
"""
Settings:
training_influence
min_vulnerability
Requires TerroristSpreadModel.
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.training_influence = model.environment_params["training_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
@default_state
@state
def terrorist(self):
for neighbour in self.get_neighbors(agent_class=TerroristSpreadModel):
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.training_influence
)
class HavenModel(FSM, Geo):
"""
Settings:
haven_influence
min_vulnerability
max_vulnerability
Requires TerroristSpreadModel.
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.haven_influence = model.environment_params["haven_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
self.max_vulnerability = model.environment_params["max_vulnerability"]
def get_occupants(self, **kwargs):
return self.get_neighbors(agent_class=TerroristSpreadModel, **kwargs)
@state
def civilian(self):
civilians = self.get_occupants(state_id=self.civilian.id)
if not civilians:
return self.terrorist
for neighbour in self.get_occupants():
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability * (
1 - self.haven_influence
)
return self.civilian
@state
def terrorist(self):
for neighbour in self.get_occupants():
if neighbour.vulnerability < self.max_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.haven_influence
)
return self.terrorist
class TerroristNetworkModel(TerroristSpreadModel):
"""
Settings:
sphere_influence
vision_range
weight_social_distance
weight_link_distance
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.vision_range = model.environment_params["vision_range"]
self.sphere_influence = model.environment_params["sphere_influence"]
self.weight_social_distance = model.environment_params["weight_social_distance"]
self.weight_link_distance = model.environment_params["weight_link_distance"]
@state
def terrorist(self):
self.update_relationships()
return super().terrorist()
@state
def leader(self):
self.update_relationships()
return super().leader()
def update_relationships(self):
if self.count_neighbors(state_id=self.civilian.id) == 0:
close_ups = set(
self.geo_search(
radius=self.vision_range, agent_class=TerroristNetworkModel
)
)
step_neighbours = set(
self.ego_search(
self.sphere_influence,
agent_class=TerroristNetworkModel,
center=False,
)
)
neighbours = set(
agent.id
for agent in self.get_neighbors(agent_class=TerroristNetworkModel)
)
search = (close_ups | step_neighbours) - neighbours
for agent in self.get_agents(search):
social_distance = 1 / self.shortest_path_length(agent.id)
spatial_proximity = 1 - self.get_distance(agent.id)
prob_new_interaction = (
self.weight_social_distance * social_distance
+ self.weight_link_distance * spatial_proximity
)
if (
agent["id"] == agent.civilian.id
and self.random.random() < prob_new_interaction
):
self.add_edge(agent)
break
def get_distance(self, target):
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.id]
target_x, target_y = nx.get_node_attributes(self.G, "pos")[target]
dx = abs(source_x - target_x)
dy = abs(source_y - target_y)
return (dx**2 + dy**2) ** (1 / 2)
def shortest_path_length(self, target):
try:
return nx.shortest_path_length(self.G, self.id, target)
except nx.NetworkXNoPath:
return float("inf")

View File

@@ -1,32 +1,31 @@
name: TerroristNetworkModel_sim
load_module: TerroristNetworkModel
max_time: 150
max_steps: 150
num_trials: 1
network_params:
generator: random_geometric_graph
radius: 0.2
# generator: geographical_threshold_graph
# theta: 20
n: 100
network_agents:
- agent_type: TerroristNetworkModel
weight: 0.8
state:
id: civilian # Civilians
- agent_type: TerroristNetworkModel
weight: 0.1
state:
id: leader # Leaders
- agent_type: TrainingAreaModel
weight: 0.05
state:
id: terrorist # Terrorism
- agent_type: HavenModel
weight: 0.05
state:
id: civilian # Civilian
model_params:
network_params:
generator: random_geometric_graph
radius: 0.2
# generator: geographical_threshold_graph
# theta: 20
n: 100
network_agents:
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.8
state:
id: civilian # Civilians
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.1
state:
id: leader # Leaders
- agent_class: TerroristNetworkModel.TrainingAreaModel
weight: 0.05
state:
id: terrorist # Terrorism
- agent_class: TerroristNetworkModel.HavenModel
weight: 0.05
state:
id: civilian # Civilian
environment_params:
# TerroristSpreadModel
information_spread_intensity: 0.7
terrorist_additional_influence: 0.035
@@ -60,3 +59,4 @@ visualization_params:
background_image: 'map_4800x2860.jpg'
background_opacity: '0.9'
background_filter_color: 'blue'
skip_test: true # This simulation takes too long for automated tests.

View File

@@ -1,14 +1,15 @@
---
name: torvalds_example
max_time: 10
max_steps: 10
interval: 2
agent_type: CounterModel
default_state:
skill_level: 'beginner'
network_params:
path: 'torvalds.edgelist'
states:
Torvalds:
skill_level: 'God'
balkian:
skill_level: 'developer'
model_params:
agent_class: CounterModel
default_state:
skill_level: 'beginner'
network_params:
path: 'torvalds.edgelist'
states:
Torvalds:
skill_level: 'God'
balkian:
skill_level: 'developer'

View File

@@ -12327,14 +12327,14 @@ Notice how node 0 is the only one with a TV.</p>
<span class="n">MAX_TIME</span> <span class="o">=</span> <span class="mi">100</span>
<span class="n">EVENT_TIME</span> <span class="o">=</span> <span class="mi">10</span>
<span class="n">sim</span> <span class="o">=</span> <span class="n">soil</span><span class="o">.</span><span class="n">simulation</span><span class="o">.</span><span class="n">SoilSimulation</span><span class="p">(</span><span class="n">topology</span><span class="o">=</span><span class="n">G</span><span class="p">,</span>
<span class="n">sim</span> <span class="o">=</span> <span class="n">soil</span><span class="o">.</span><span class="n">Simulation</span><span class="p">(</span><span class="n">topology</span><span class="o">=</span><span class="n">G</span><span class="p">,</span>
<span class="n">num_trials</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">max_time</span><span class="o">=</span><span class="n">MAX_TIME</span><span class="p">,</span>
<span class="n">environment_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="n">environment_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;event_time&#39;</span><span class="p">:</span> <span class="n">EVENT_TIME</span>
<span class="p">}}],</span>
<span class="n">network_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="n">network_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">}],</span>
<span class="n">states</span><span class="o">=</span><span class="p">{</span><span class="mi">0</span><span class="p">:</span> <span class="p">{</span><span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">True</span><span class="p">}},</span>
<span class="n">default_state</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">False</span><span class="p">},</span>
@@ -12468,14 +12468,14 @@ For this demo, we will use a python dictionary:</p>
<span class="p">},</span>
<span class="s1">&#39;network_agents&#39;</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">False</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="p">{</span>
<span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">True</span>
@@ -12483,7 +12483,7 @@ For this demo, we will use a python dictionary:</p>
<span class="p">}</span>
<span class="p">],</span>
<span class="s1">&#39;environment_agents&#39;</span><span class="p">:[</span>
<span class="p">{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="p">{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;event_time&#39;</span><span class="p">:</span> <span class="mi">10</span>
<span class="p">}</span>

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +1,10 @@
nxsim
simpy
networkx>=2.0
networkx>=2.5
numpy
matplotlib
pyyaml
pandas
pyyaml>=5.1
pandas>=1
SALib>=1.3
Jinja2
Mesa>=1.1
pydantic>=1.9
sqlalchemy>=1.4

4
setup.cfg Normal file
View File

@@ -0,0 +1,4 @@
[aliases]
test=pytest
[tool:pytest]
addopts = --verbose

View File

@@ -16,6 +16,12 @@ def parse_requirements(filename):
install_reqs = parse_requirements("requirements.txt")
test_reqs = parse_requirements("test-requirements.txt")
extras_require={
'mesa': ['mesa>=0.8.9'],
'geo': ['scipy>=1.3'],
'web': ['tornado']
}
extras_require['all'] = [dep for package in extras_require.values() for dep in package]
setup(
@@ -40,15 +46,13 @@ setup(
'Operating System :: POSIX',
'Programming Language :: Python :: 3'],
install_requires=install_reqs,
extras_require={
'web': ['tornado']
},
extras_require=extras_require,
tests_require=test_reqs,
setup_requires=['pytest-runner', ],
pytest_plugins = ['pytest_profiling'],
include_package_data=True,
entry_points={
'console_scripts':
['soil = soil.__init__:main',
['soil = soil.__main__:main',
'soil-web = soil.web.__init__:main']
})

View File

@@ -1 +1 @@
0.12.0
0.30.0rc4

View File

@@ -1,8 +1,12 @@
from __future__ import annotations
import importlib
from importlib.resources import path
import sys
import os
import pdb
import logging
import traceback
from contextlib import contextmanager
from .version import __version__
@@ -11,65 +15,242 @@ try:
except NameError:
basestring = str
logging.basicConfig()
from pathlib import Path
from .agents import *
from . import agents
from . import simulation
from . import environment
from . import utils
from . import analysis
from .simulation import *
from .environment import Environment, EventedEnvironment
from .datacollection import SoilCollector
from . import serialization
from .utils import logger
from .time import *
def main():
def main(
cfg="simulation.yml",
exporters=None,
parallel=None,
output="soil_output",
*,
do_run=False,
debug=False,
pdb=False,
**kwargs,
):
sim = None
if isinstance(cfg, Simulation):
sim = cfg
import argparse
from . import simulation
parser = argparse.ArgumentParser(description='Run a SOIL simulation')
parser.add_argument('file', type=str,
nargs="?",
default='simulation.yml',
help='python module containing the simulation configuration.')
parser.add_argument('--module', '-m', type=str,
help='file containing the code of any custom agents.')
parser.add_argument('--dry-run', '--dry', action='store_true',
help='Do not store the results of the simulation.')
parser.add_argument('--pdb', action='store_true',
help='Use a pdb console in case of exception.')
parser.add_argument('--graph', '-g', action='store_true',
help='Dump GEXF graph. Defaults to false.')
parser.add_argument('--csv', action='store_true',
help='Dump history in CSV format. Defaults to false.')
parser.add_argument('--output', '-o', type=str, default="soil_output",
help='folder to write results to. It defaults to the current directory.')
parser.add_argument('--synchronous', action='store_true',
help='Run trials serially and synchronously instead of in parallel. Defaults to false.')
logger.info("Running SOIL version: {}".format(__version__))
parser = argparse.ArgumentParser(description="Run a SOIL simulation")
parser.add_argument(
"file",
type=str,
nargs="?",
default=cfg if sim is None else "",
help="Configuration file for the simulation (e.g., YAML or JSON)",
)
parser.add_argument(
"--version", action="store_true", help="Show version info and exit"
)
parser.add_argument(
"--module",
"-m",
type=str,
help="file containing the code of any custom agents.",
)
parser.add_argument(
"--dry-run",
"--dry",
action="store_true",
help="Do not store the results of the simulation to disk, show in terminal instead.",
)
parser.add_argument(
"--pdb", action="store_true", help="Use a pdb console in case of exception."
)
parser.add_argument(
"--debug",
action="store_true",
help="Run a customized version of a pdb console to debug a simulation.",
)
parser.add_argument(
"--graph",
"-g",
action="store_true",
help="Dump each trial's network topology as a GEXF graph. Defaults to false.",
)
parser.add_argument(
"--csv",
action="store_true",
help="Dump all data collected in CSV format. Defaults to false.",
)
parser.add_argument("--level", type=str, help="Logging level")
parser.add_argument(
"--output",
"-o",
type=str,
default=output or "soil_output",
help="folder to write results to. It defaults to the current directory.",
)
if parallel is None:
parser.add_argument(
"--synchronous",
action="store_true",
help="Run trials serially and synchronously instead of in parallel. Defaults to false.",
)
parser.add_argument(
"-e",
"--exporter",
action="append",
default=[],
help="Export environment and/or simulations using this exporter",
)
parser.add_argument(
"--only-convert",
"--convert",
action="store_true",
help="Do not run the simulation, only convert the configuration file(s) and output them.",
)
parser.add_argument(
"--set",
metavar="KEY=VALUE",
action="append",
help="Set a number of parameters that will be passed to the simulation."
"(do not put spaces before or after the = sign). "
"If a value contains spaces, you should define "
"it with double quotes: "
'foo="this is a sentence". Note that '
"values are always treated as strings.",
)
args = parser.parse_args()
logger.setLevel(getattr(logging, (args.level or "INFO").upper()))
if args.module:
if args.version:
return
if parallel is None:
parallel = not args.synchronous
exporters = exporters or [
"default",
]
for exp in args.exporter:
if exp not in exporters:
exporters.append(exp)
if args.csv:
exporters.append("csv")
if args.graph:
exporters.append("gexf")
if os.getcwd() not in sys.path:
sys.path.append(os.getcwd())
if args.module:
importlib.import_module(args.module)
if output is None:
output = args.output
logging.info('Loading config file: {}'.format(args.file, args.output))
debug = debug or args.debug
if args.pdb or debug:
args.synchronous = True
os.environ["SOIL_POSTMORTEM"] = "true"
res = []
try:
dump = []
if not args.dry_run:
if args.csv:
dump.append('csv')
if args.graph:
dump.append('gexf')
simulation.run_from_config(args.file,
dry_run=args.dry_run,
dump=dump,
parallel=(not args.synchronous and not args.pdb),
results_dir=args.output)
exp_params = {}
if sim:
logger.info("Loading simulation instance")
sim.dry_run = args.dry_run
sim.exporters = exporters
sim.parallel = parallel
sim.outdir = output
sims = [
sim,
]
else:
logger.info("Loading config file: {}".format(args.file))
if not os.path.exists(args.file):
logger.error("Please, input a valid file")
return
sims = list(
simulation.iter_from_config(
args.file,
dry_run=args.dry_run,
exporters=exporters,
parallel=parallel,
outdir=output,
exporter_params=exp_params,
**kwargs,
)
)
for sim in sims:
if args.set:
for s in args.set:
k, v = s.split("=", 1)[:2]
v = eval(v)
tail, *head = k.rsplit(".", 1)[::-1]
target = sim
if head:
for part in head[0].split("."):
try:
target = getattr(target, part)
except AttributeError:
target = target[part]
try:
setattr(target, tail, v)
except AttributeError:
target[tail] = v
if args.only_convert:
print(sim.to_yaml())
continue
if do_run:
res.append(sim.run())
else:
print("not running")
res.append(sim)
except Exception as ex:
if args.pdb:
pdb.post_mortem()
from .debugging import post_mortem
print(traceback.format_exc())
post_mortem()
else:
raise
if debug:
from .debugging import set_trace
os.environ["SOIL_DEBUG"] = "true"
set_trace()
return res
if __name__ == '__main__':
main()
@contextmanager
def easy(cfg, pdb=False, debug=False, **kwargs):
try:
yield main(cfg, debug=debug, pdb=pdb, **kwargs)[0]
except Exception as e:
if os.environ.get("SOIL_POSTMORTEM"):
from .debugging import post_mortem
print(traceback.format_exc())
post_mortem()
raise
if __name__ == "__main__":
main(do_run=True)

View File

@@ -1,4 +1,9 @@
from . import main
from . import main as init_main
if __name__ == '__main__':
main()
def main():
init_main(do_run=True)
if __name__ == "__main__":
init_main(do_run=True)

View File

@@ -1,40 +1,31 @@
import random
from . import BaseAgent
from . import FSM, state, default_state
class BassModel(BaseAgent):
class BassModel(FSM):
"""
Settings:
innovation_prob
imitation_prob
"""
def __init__(self, environment, agent_id, state):
super().__init__(environment=environment, agent_id=agent_id, state=state)
env_params = environment.environment_params
self.state['sentimentCorrelation'] = 0
sentimentCorrelation = 0
def step(self):
self.behaviour()
def behaviour(self):
# Outside effects
if random.random() < self.state_params['innovation_prob']:
if self.state['id'] == 0:
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
else:
pass
return
# Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
@default_state
@state
def innovation(self):
if self.prob(self.innovation_prob):
self.sentimentCorrelation = 1
return self.aware
else:
aware_neighbors = self.get_neighbors(state_id=self.aware.id)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (self.state_params['imitation_prob']*num_neighbors_aware):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
if self.prob((self.imitation_prob * num_neighbors_aware)):
self.sentimentCorrelation = 1
return self.aware
else:
pass
@state
def aware(self):
self.die()

View File

@@ -1,102 +0,0 @@
import random
from . import BaseAgent
class BigMarketModel(BaseAgent):
"""
Settings:
Names:
enterprises [Array]
tweet_probability_enterprises [Array]
Users:
tweet_probability_users
tweet_relevant_probability
tweet_probability_about [Array]
sentiment_about [Array]
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.enterprises = environment.environment_params['enterprises']
self.type = ""
self.number_of_enterprises = len(environment.environment_params['enterprises'])
if self.id < self.number_of_enterprises: # Enterprises
self.state['id'] = self.id
self.type = "Enterprise"
self.tweet_probability = environment.environment_params['tweet_probability_enterprises'][self.id]
else: # normal users
self.state['id'] = self.number_of_enterprises
self.type = "User"
self.tweet_probability = environment.environment_params['tweet_probability_users']
self.tweet_relevant_probability = environment.environment_params['tweet_relevant_probability']
self.tweet_probability_about = environment.environment_params['tweet_probability_about'] # List
self.sentiment_about = environment.environment_params['sentiment_about'] # List
def step(self):
if self.id < self.number_of_enterprises: # Enterprise
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
for i in range(self.number_of_enterprises): # So that it never is set to 0 if there are not changes (logs)
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
def enterpriseBehaviour(self):
if random.random() < self.tweet_probability: # Tweets
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbour users
for x in aware_neighbors:
if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 # Increments for enterprise
else:
x.sentiment_about[self.id] -= 0.1 # Decrements for enterprise
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id]< -1:
x.sentiment_about[self.id] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
def userBehaviour(self):
if random.random() < self.tweet_probability: # Tweets
if random.random() < self.tweet_relevant_probability: # Tweets something relevant
# Tweet probability per enterprise
for i in range(self.number_of_enterprises):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
# The condition is fulfilled, sentiments are evaluated towards that enterprise
if self.sentiment_about[i] < 0:
# NEGATIVO
self.userTweets("negative",i)
elif self.sentiment_about[i] == 0:
# NEUTRO
pass
else:
# POSITIVO
self.userTweets("positive",i)
def userTweets(self,sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbours users
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[enterprise]] = x.sentiment_about[enterprise]

View File

@@ -1,32 +1,40 @@
from . import BaseAgent
from . import NetworkAgent
class CounterModel(BaseAgent):
class CounterModel(NetworkAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
"""
times = 0
neighbors = 0
total = 0
def step(self):
# Outside effects
total = len(list(self.get_all_agents()))
neighbors = len(list(self.get_neighboring_agents()))
self['times'] = self.get('times', 0) + 1
self['neighbors'] = neighbors
self['total'] = total
total = len(list(self.model.schedule._agents))
neighbors = len(list(self.get_neighbors()))
self["times"] = self.get("times", 0) + 1
self["neighbors"] = neighbors
self["total"] = total
class AggregatedCounter(BaseAgent):
class AggregatedCounter(NetworkAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
"""
times = 0
neighbors = 0
total = 0
def step(self):
# Outside effects
total = len(list(self.get_all_agents()))
neighbors = len(list(self.get_neighboring_agents()))
self['times'] = self.get('times', 0) + 1
self['neighbors'] = self.get('neighbors', 0) + neighbors
self['total'] = total = self.get('total', 0) + total
self.debug('Running for step: {}. Total: {}'.format(self.now, total))
self["times"] += 1
neighbors = len(list(self.get_neighbors()))
self["neighbors"] += neighbors
total = len(list(self.model.schedule.agents))
self["total"] += total
self.debug("Running for step: {}. Total: {}".format(self.now, total))

View File

@@ -1,18 +0,0 @@
from . import BaseAgent
import os.path
import matplotlib
import matplotlib.pyplot as plt
import networkx as nx
class DrawingAgent(BaseAgent):
"""
Agent that draws the state of the network.
"""
def step(self):
# Outside effects
f = plt.figure()
nx.draw(self.env.G, node_size=10, width=0.2, pos=nx.spring_layout(self.env.G, scale=100), ax=f.add_subplot(111))
f.savefig(os.path.join(self.env.get_path(), "graph-"+str(self.env.now)+".png"))

21
soil/agents/Geo.py Normal file
View File

@@ -0,0 +1,21 @@
from scipy.spatial import cKDTree as KDTree
import networkx as nx
from . import NetworkAgent
class Geo(NetworkAgent):
"""In this type of network, nodes have a "pos" attribute."""
def geo_search(self, radius, agent=None, center=False, **kwargs):
"""Get a list of nodes whose coordinates are closer than *radius* to *node*."""
node = agent.node
G = self.subgraph(**kwargs)
pos = nx.get_node_attributes(G, "pos")
if not pos:
return []
nodes, coords = list(zip(*pos.items()))
kdtree = KDTree(coords) # Cannot provide generator.
indices = kdtree.query_ball_point(pos[node], radius)
return [nodes[i] for i in indices if center or (nodes[i] != node)]

View File

@@ -1,8 +1,7 @@
import random
from . import BaseAgent
from . import Agent, state, default_state
class IndependentCascadeModel(BaseAgent):
class IndependentCascadeModel(Agent):
"""
Settings:
innovation_prob
@@ -10,40 +9,22 @@ class IndependentCascadeModel(BaseAgent):
imitation_prob
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = environment.environment_params['innovation_prob']
self.imitation_prob = environment.environment_params['imitation_prob']
self.state['time_awareness'] = 0
self.state['sentimentCorrelation'] = 0
time_awareness = 0
sentimentCorrelation = 0
def step(self):
self.behaviour()
# Outside effects
@default_state
@state
def outside(self):
if self.prob(self.model.innovation_prob):
self.sentimentCorrelation = 1
self.time_awareness = self.model.now # To know when they have been infected
return self.imitate
def behaviour(self):
aware_neighbors_1_time_step = []
# Outside effects
if random.random() < self.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
self.state['time_awareness'] = self.env.now # To know when they have been infected
else:
pass
@state
def imitate(self):
aware_neighbors = self.get_neighbors(state_id=1, time_awareness=self.now-1)
return
# Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
for x in aware_neighbors:
if x.state['time_awareness'] == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (self.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
else:
pass
return
if self.prob(self.model.imitation_prob * len(aware_neighbors)):
self.sentimentCorrelation = 1
return self.outside

View File

@@ -1,242 +0,0 @@
import random
import numpy as np
from . import BaseAgent
class SpreadModelM2(BaseAgent):
"""
Settings:
prob_neutral_making_denier
prob_infect
prob_cured_healing_infected
prob_cured_vaccinate_neutral
prob_vaccinated_healing_infected
prob_vaccinated_vaccinate_neutral
prob_generate_anti_rumor
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
self.prob_infect = np.random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
self.prob_cured_healing_infected = np.random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = np.random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_healing_infected = np.random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = np.random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = np.random.normal(environment.environment_params['prob_generate_anti_rumor'],
environment.environment_params['standard_variance'])
def step(self):
if self.state['id'] == 0: # Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: # Infected
self.infected_behaviour()
elif self.state['id'] == 2: # Cured
self.cured_behaviour()
elif self.state['id'] == 3: # Vaccinated
self.vaccinated_behaviour()
def neutral_behaviour(self):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
def cured_behaviour(self):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
class ControlModelM2(BaseAgent):
"""
Settings:
prob_neutral_making_denier
prob_infect
prob_cured_healing_infected
prob_cured_vaccinate_neutral
prob_vaccinated_healing_infected
prob_vaccinated_vaccinate_neutral
prob_generate_anti_rumor
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
self.prob_infect = np.random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
self.prob_cured_healing_infected = np.random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = np.random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_healing_infected = np.random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = np.random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = np.random.normal(environment.environment_params['prob_generate_anti_rumor'],
environment.environment_params['standard_variance'])
def step(self):
if self.state['id'] == 0: # Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: # Infected
self.infected_behaviour()
elif self.state['id'] == 2: # Cured
self.cured_behaviour()
elif self.state['id'] == 3: # Vaccinated
self.vaccinated_behaviour()
elif self.state['id'] == 4: # Beacon-off
self.beacon_off_behaviour()
elif self.state['id'] == 5: # Beacon-on
self.beacon_on_behaviour()
def neutral_behaviour(self):
self.state['visible'] = False
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
self.state['visible'] = False
def cured_behaviour(self):
self.state['visible'] = True
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
self.state['visible'] = True
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
def beacon_off_behaviour(self):
self.state['visible'] = False
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
self.state['id'] == 5 # Beacon on
def beacon_on_behaviour(self):
self.state['visible'] = False
# Cure (M2 feature added)
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated

View File

@@ -1,16 +1,16 @@
import random
import numpy as np
from . import FSM, state
from hashlib import sha512
from . import Agent, state, default_state
class SISaModel(FSM):
class SISaModel(Agent):
"""
Settings:
neutral_discontent_spon_prob
neutral_discontent_infected_prob
neutral_content_spong_prob
neutral_content_spon_prob
neutral_content_infected_prob
@@ -29,65 +29,82 @@ class SISaModel(FSM):
standard_variance
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.neutral_discontent_spon_prob = np.random.normal(environment.environment_params['neutral_discontent_spon_prob'],
environment.environment_params['standard_variance'])
self.neutral_discontent_infected_prob = np.random.normal(environment.environment_params['neutral_discontent_infected_prob'],
environment.environment_params['standard_variance'])
self.neutral_content_spon_prob = np.random.normal(environment.environment_params['neutral_content_spon_prob'],
environment.environment_params['standard_variance'])
self.neutral_content_infected_prob = np.random.normal(environment.environment_params['neutral_content_infected_prob'],
environment.environment_params['standard_variance'])
seed = self.model._seed
if isinstance(seed, (str, bytes, bytearray)):
if isinstance(seed, str):
seed = seed.encode()
seed = int.from_bytes(seed + sha512(seed).digest(), 'big')
self.discontent_neutral = np.random.normal(environment.environment_params['discontent_neutral'],
environment.environment_params['standard_variance'])
self.discontent_content = np.random.normal(environment.environment_params['discontent_content'],
environment.environment_params['variance_d_c'])
random = np.random.default_rng(seed=seed)
self.content_discontent = np.random.normal(environment.environment_params['content_discontent'],
environment.environment_params['variance_c_d'])
self.content_neutral = np.random.normal(environment.environment_params['content_neutral'],
environment.environment_params['standard_variance'])
self.neutral_discontent_spon_prob = random.normal(
self.model.neutral_discontent_spon_prob, self.model.standard_variance
)
self.neutral_discontent_infected_prob = random.normal(
self.model.neutral_discontent_infected_prob, self.model.standard_variance
)
self.neutral_content_spon_prob = random.normal(
self.model.neutral_content_spon_prob, self.model.standard_variance
)
self.neutral_content_infected_prob = random.normal(
self.model.neutral_content_infected_prob, self.model.standard_variance
)
self.discontent_neutral = random.normal(
self.model.discontent_neutral, self.model.standard_variance
)
self.discontent_content = random.normal(
self.model.discontent_content, self.model.variance_d_c
)
self.content_discontent = random.normal(
self.model.content_discontent, self.model.variance_c_d
)
self.content_neutral = random.normal(
self.model.discontent_neutral, self.model.standard_variance
)
@default_state
@state
def neutral(self):
# Spontaneous effects
if random.random() < self.neutral_discontent_spon_prob:
if self.prob(self.neutral_discontent_spon_prob):
return self.discontent
if random.random() < self.neutral_content_spon_prob:
if self.prob(self.neutral_content_spon_prob):
return self.content
# Infected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent)
if random.random() < discontent_neighbors * self.neutral_discontent_infected_prob:
discontent_neighbors = self.count_neighbors(state_id=self.discontent)
if self.prob(discontent_neighbors * self.neutral_discontent_infected_prob):
return self.discontent
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
if random.random() < content_neighbors * self.neutral_content_infected_prob:
content_neighbors = self.count_neighbors(state_id=self.content.id)
if self.prob(content_neighbors * self.neutral_content_infected_prob):
return self.content
return self.neutral
@state
def discontent(self):
# Healing
if random.random() < self.discontent_neutral:
if self.prob(self.discontent_neutral):
return self.neutral
# Superinfected
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
if random.random() < content_neighbors * self.discontent_content:
content_neighbors = self.count_neighbors(state_id=self.content.id)
if self.prob(content_neighbors * self.discontent_content):
return self.content
return self.discontent
@state
def content(self):
# Healing
if random.random() < self.content_neutral:
if self.prob(self.content_neutral):
return self.neutral
# Superinfected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent.id)
if random.random() < discontent_neighbors * self.content_discontent:
discontent_neighbors = self.count_neighbors(state_id=self.discontent.id)
if self.prob(discontent_neighbors * self.content_discontent):
self.discontent
return self.content

View File

@@ -1,102 +0,0 @@
import random
from . import BaseAgent
class SentimentCorrelationModel(BaseAgent):
"""
Settings:
outside_effects_prob
anger_prob
joy_prob
sadness_prob
disgust_prob
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
self.anger_prob = environment.environment_params['anger_prob']
self.joy_prob = environment.environment_params['joy_prob']
self.sadness_prob = environment.environment_params['sadness_prob']
self.disgust_prob = environment.environment_params['disgust_prob']
self.state['time_awareness'] = []
for i in range(4): # In this model we have 4 sentiments
self.state['time_awareness'].append(0) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
self.state['sentimentCorrelation'] = 0
def step(self):
self.behaviour()
def behaviour(self):
angry_neighbors_1_time_step = []
joyful_neighbors_1_time_step = []
sad_neighbors_1_time_step = []
disgusted_neighbors_1_time_step = []
angry_neighbors = self.get_neighboring_agents(state_id=1)
for x in angry_neighbors:
if x.state['time_awareness'][0] > (self.env.now-500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
for x in joyful_neighbors:
if x.state['time_awareness'][1] > (self.env.now-500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
for x in sad_neighbors:
if x.state['time_awareness'][2] > (self.env.now-500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
for x in disgusted_neighbors:
if x.state['time_awareness'][3] > (self.env.now-500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob = self.anger_prob+(len(angry_neighbors_1_time_step)*self.anger_prob)
joy_prob = self.joy_prob+(len(joyful_neighbors_1_time_step)*self.joy_prob)
sadness_prob = self.sadness_prob+(len(sad_neighbors_1_time_step)*self.sadness_prob)
disgust_prob = self.disgust_prob+(len(disgusted_neighbors_1_time_step)*self.disgust_prob)
outside_effects_prob = self.outside_effects_prob
num = random.random()
if num<outside_effects_prob:
self.state['id'] = random.randint(1, 4)
self.state['sentimentCorrelation'] = self.state['id'] # It is stored when it has been infected for the dynamic network
self.state['time_awareness'][self.state['id']-1] = self.env.now
self.state['sentiment'] = self.state['id']
if(num<anger_prob):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
self.state['id'] = 2
self.state['sentimentCorrelation'] = 2
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
self.state['id'] = 3
self.state['sentimentCorrelation'] = 3
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
self.state['id'] = 4
self.state['sentimentCorrelation'] = 4
self.state['time_awareness'][self.state['id']-1] = self.env.now
self.state['sentiment'] = self.state['id']

View File

@@ -1,108 +1,178 @@
# networkStatus = {} # Dict that will contain the status of every agent in the network
# sentimentCorrelationNodeArray = []
# for x in range(0, settings.network_params["number_of_nodes"]):
# sentimentCorrelationNodeArray.append({'id': x})
# Initialize agent states. Let's assume everyone is normal.
from __future__ import annotations
import nxsim
import logging
from collections import OrderedDict
from copy import deepcopy
from functools import partial
import json
from collections import OrderedDict, defaultdict
from collections.abc import MutableMapping, Mapping, Set
from abc import ABCMeta
from copy import deepcopy, copy
from functools import partial, wraps
from itertools import islice, chain
import inspect
import types
import textwrap
import networkx as nx
from functools import wraps
from typing import Any
from .. import utils, history
from mesa import Agent as MesaAgent
from typing import Dict, List
agent_types = {}
from .. import serialization, utils, time, config
class MetaAgent(type):
def __init__(cls, name, bases, nmspc):
super(MetaAgent, cls).__init__(name, bases, nmspc)
agent_types[name] = cls
IGNORED_FIELDS = ("model", "logger")
class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
class MetaAgent(ABCMeta):
def __new__(mcls, name, bases, namespace):
defaults = {}
# Re-use defaults from inherited classes
for i in bases:
if isinstance(i, MetaAgent):
defaults.update(i._defaults)
new_nmspc = {
"_defaults": defaults,
"_last_return": None,
"_last_except": None,
}
for attr, func in namespace.items():
if attr == "step" and inspect.isgeneratorfunction(func):
orig_func = func
new_nmspc["_coroutine"] = None
@wraps(func)
def func(self):
while True:
if not self._coroutine:
self._coroutine = orig_func(self)
try:
if self._last_except:
return self._coroutine.throw(self._last_except)
else:
return self._coroutine.send(self._last_return)
except StopIteration as ex:
self._coroutine = None
return ex.value
finally:
self._last_return = None
self._last_except = None
func.id = name or func.__name__
func.is_default = False
new_nmspc[attr] = func
elif (
isinstance(func, types.FunctionType)
or isinstance(func, property)
or isinstance(func, classmethod)
or attr[0] == "_"
):
new_nmspc[attr] = func
elif attr == "defaults":
defaults.update(func)
else:
defaults[attr] = copy(func)
return super().__new__(mcls=mcls, name=name, bases=bases, namespace=new_nmspc)
class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
"""
A special simpy BaseAgent that keeps track of its state history.
A special type of Mesa Agent that:
* Can be used as a dictionary to access its state.
* Has logging built-in
* Can be given default arguments through a defaults class attribute,
which will be used on construction to initialize each agent's state
Any attribute that is not preceded by an underscore (`_`) will also be added to its state.
"""
defaults = {}
def __init__(self, unique_id, model, name=None, interval=None, **kwargs):
assert isinstance(unique_id, int)
super().__init__(unique_id=unique_id, model=model)
def __init__(self, environment=None, agent_id=None, state=None,
name='network_process', interval=None, **state_params):
# Check for REQUIRED arguments
assert environment is not None, TypeError('__init__ missing 1 required keyword argument: \'environment\'. '
'Cannot be NoneType.')
# Initialize agent parameters
self.id = agent_id
self.name = name
self.state_params = state_params
self.name = (
str(name) if name else "{}[{}]".format(type(self).__name__, self.unique_id)
)
# Global parameters
self.global_topology = environment.G
self.environment_params = environment.environment_params
# Register agent to environment
self.env = environment
self._neighbors = None
self.alive = True
real_state = deepcopy(self.defaults)
real_state.update(state or {})
self.state = real_state
self.interval = interval
if not hasattr(self, 'level'):
self.level = logging.DEBUG
self.logger = logging.getLogger('{}-Agent-{}'.format(self.env.name,
self.id))
self.logger.setLevel(self.level)
self.interval = interval or self.get("interval", 1)
logger = utils.logger.getChild(getattr(self.model, "id", self.model)).getChild(
self.name
)
self.logger = logging.LoggerAdapter(logger, {"agent_name": self.name})
# initialize every time an instance of the agent is created
self.action = self.env.process(self.run())
if hasattr(self, "level"):
self.logger.setLevel(self.level)
for (k, v) in self._defaults.items():
if not hasattr(self, k) or getattr(self, k) is None:
setattr(self, k, deepcopy(v))
for (k, v) in kwargs.items():
setattr(self, k, v)
def __hash__(self):
return hash(self.unique_id)
def prob(self, probability):
return prob(probability, self.model.random)
# TODO: refactor to clean up mesa compatibility
@property
def state(self):
'''
Return the agent itself, which behaves as a dictionary.
Changes made to `agent.state` will be reflected in the history.
def id(self):
return self.unique_id
This method shouldn't be used, but is kept here for backwards compatibility.
'''
return self
@state.setter
def state(self, value):
self._state = {}
for k, v in value.items():
self[k] = v
@classmethod
def from_dict(cls, model, attrs, warn_extra=True):
ignored = {}
args = {}
for k, v in attrs.items():
if k in inspect.signature(cls).parameters:
args[k] = v
else:
ignored[k] = v
if ignored and warn_extra:
utils.logger.info(
f"Ignoring the following arguments for agent class { agent_class.__name__ }: { ignored }"
)
return cls(model=model, **args)
def __getitem__(self, key):
if isinstance(key, tuple):
key, t_step = key
k = history.Key(key=key, t_step=t_step, agent_id=self.id)
return self.env[k]
return self._state.get(key, None)
try:
return getattr(self, key)
except AttributeError:
raise KeyError(f"key {key} not found in agent")
def __delitem__(self, key):
self._state[key] = None
return delattr(self, key)
def __contains__(self, key):
return key in self._state
return hasattr(self, key)
def __setitem__(self, key, value):
self._state[key] = value
k = history.Key(t_step=self.now,
agent_id=self.id,
key=key)
self.env[k] = value
setattr(self, key, value)
def items(self):
return self._state.items()
def __len__(self):
return sum(1 for n in self.keys())
def __iter__(self):
return self.items()
def keys(self):
return (k for k in self.__dict__ if k[0] != "_" and k not in IGNORED_FIELDS)
def items(self, keys=None, skip=None):
keys = keys if keys is not None else self.keys()
it = ((k, self.get(k, None)) for k in keys)
if skip:
return filter(lambda x: x[0] not in skip, it)
return it
def get(self, key, default=None):
return self[key] if key in self else default
@@ -110,75 +180,37 @@ class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
@property
def now(self):
try:
return self.env.now
return self.model.now
except AttributeError:
# No environment
return None
def run(self):
if self.interval is not None:
interval = self.interval
elif 'interval' in self:
interval = self['interval']
else:
interval = self.env.interval
while self.alive:
res = self.step()
yield res or self.env.timeout(interval)
def die(self, remove=False):
def die(self):
self.info(f"agent dying")
self.alive = False
if remove:
super().die()
try:
self.model.schedule.remove(self)
except KeyError:
pass
return time.NEVER
def step(self):
pass
def to_json(self):
return json.dumps(self.state)
def count_agents(self, state_id=None, limit_neighbors=False):
if limit_neighbors:
agents = self.global_topology.neighbors(self.id)
else:
agents = self.global_topology.nodes()
count = 0
for agent in agents:
if state_id and state_id != self.global_topology.node[agent]['agent']['id']:
continue
count += 1
return count
def count_neighboring_agents(self, state_id=None):
return len(super().get_agents(state_id, limit_neighbors=True))
def get_agents(self, state_id=None, limit_neighbors=False, iterator=False, **kwargs):
if limit_neighbors:
agents = super().get_agents(state_id, limit_neighbors)
else:
agents = filter(lambda x: state_id is None or x.state.get('id', None) == state_id,
self.env.agents)
def matches_all(agent):
state = agent.state
for k, v in kwargs.items():
if state.get(k, None) != v:
return False
return True
f = filter(matches_all, agents)
if iterator:
return f
return list(f)
if not self.alive:
raise time.DeadAgent(self.unique_id)
super().step()
return time.Delta(self.interval)
def log(self, message, *args, level=logging.INFO, **kwargs):
if not self.logger.isEnabledFor(level):
return
message = message + " ".join(str(i) for i in args)
message = "\t@{:>5}:\t{}".format(self.now, message)
message = "[@{:>4}]\t{:>10}: {}".format(self.now, repr(self), message)
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
extra = {}
extra['now'] = self.now
extra['id'] = self.id
extra["now"] = self.now
extra["unique_id"] = self.unique_id
extra["agent_name"] = self.name
return self.logger.log(level, message, extra=extra)
def debug(self, *args, **kwargs):
@@ -187,91 +219,35 @@ class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
def info(self, *args, **kwargs):
return self.log(*args, level=logging.INFO, **kwargs)
def count_agents(self, **kwargs):
return len(list(self.get_agents(**kwargs)))
def state(func):
'''
A state function should return either a state id, or a tuple (state_id, when)
The default value for state_id is the current state id.
The default value for when is the interval defined in the nevironment.
'''
def get_agents(self, *args, **kwargs):
it = self.iter_agents(*args, **kwargs)
return list(it)
@wraps(func)
def func_wrapper(self):
next_state = func(self)
when = None
if next_state is None:
return when
try:
next_state, when = next_state
except (ValueError, TypeError):
pass
if next_state:
self.set_state(next_state)
return when
def iter_agents(self, *args, **kwargs):
yield from filter_agents(self.model.schedule._agents, *args, **kwargs)
func_wrapper.id = func.__name__
func_wrapper.is_default = False
return func_wrapper
def __str__(self):
return self.to_str()
def to_str(self, keys=None, skip=None, pretty=False):
content = dict(self.items(keys=keys))
if pretty and content:
d = content
content = "\n"
for k, v in d.items():
content += f"- {k}: {v}\n"
content = textwrap.indent(content, " ")
return f"{repr(self)}{content}"
def __repr__(self):
return f"{self.__class__.__name__}({self.unique_id})"
def default_state(func):
func.is_default = True
return func
class MetaFSM(MetaAgent):
def __init__(cls, name, bases, nmspc):
super(MetaFSM, cls).__init__(name, bases, nmspc)
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i.states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for name, func in nmspc.items():
if hasattr(func, 'id'):
if func.is_default:
default_state = func
states[func.id] = func
cls.default_state = default_state
cls.states = states
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
if 'id' not in self.state:
if not self.default_state:
raise ValueError('No default state specified for {}'.format(self.id))
self['id'] = self.default_state.id
def step(self):
if 'id' in self.state:
next_state = self['id']
elif self.default_state:
next_state = self.default_state.id
else:
raise Exception('{} has no valid state id or default state'.format(self))
if next_state not in self.states:
raise Exception('{} is not a valid id for {}'.format(next_state, self))
self.states[next_state](self)
def set_state(self, state):
if hasattr(state, 'id'):
state = state.id
if state not in self.states:
raise ValueError('{} is not a valid state'.format(state))
self['id'] = state
return state
def prob(prob=1):
'''
def prob(prob, random):
"""
A true/False uniform distribution with a given probability.
To be used like this:
@@ -280,27 +256,26 @@ def prob(prob=1):
if prob(0.3):
do_something()
'''
"""
r = random.random()
return r < prob
def calculate_distribution(network_agents=None,
agent_type=None):
'''
def calculate_distribution(network_agents=None, agent_class=None):
"""
Calculate the threshold values (thresholds for a uniform distribution)
of an agent distribution given the weights of each agent type.
The input has this form: ::
[
{'agent_type': 'agent_type_1',
{'agent_class': 'agent_class_1',
'weight': 0.2,
'state': {
'id': 0
}
},
{'agent_type': 'agent_type_2',
{'agent_class': 'agent_class_2',
'weight': 0.8,
'state': {
'id': 1
@@ -309,81 +284,359 @@ def calculate_distribution(network_agents=None,
]
In this example, 20% of the nodes will be marked as type
'agent_type_1'.
'''
'agent_class_1'.
"""
if network_agents:
network_agents = deepcopy(network_agents)
elif agent_type:
network_agents = [{'agent_type': agent_type}]
network_agents = [
deepcopy(agent) for agent in network_agents if not hasattr(agent, "id")
]
elif agent_class:
network_agents = [{"agent_class": agent_class}]
else:
return []
raise ValueError("Specify a distribution or a default agent type")
# Fix missing weights and incompatible types
for x in network_agents:
x["weight"] = float(x.get("weight", 1))
# Calculate the thresholds
total = sum(x.get('weight', 1) for x in network_agents)
total = sum(x["weight"] for x in network_agents)
acc = 0
for v in network_agents:
upper = acc + (v.get('weight', 1)/total)
v['threshold'] = [acc, upper]
if "ids" in v:
continue
upper = acc + (v["weight"] / total)
v["threshold"] = [acc, upper]
acc = upper
return network_agents
def _serialize_distribution(network_agents):
d = _convert_agent_types(network_agents,
to_string=True)
'''
When serializing an agent distribution, remove the thresholds, in order
to avoid cluttering the YAML definition file.
'''
for v in d:
if 'threshold' in v:
del v['threshold']
return d
def _serialize_type(agent_class, known_modules=[], **kwargs):
if isinstance(agent_class, str):
return agent_class
known_modules += ["soil.agents"]
return serialization.serialize(agent_class, known_modules=known_modules, **kwargs)[
1
] # Get the name of the class
def _validate_states(states, topology):
'''Validate states to avoid ignoring states during initialization'''
states = states or []
if isinstance(states, dict):
for x in states:
assert x in topology.node
def _deserialize_type(agent_class, known_modules=[]):
if not isinstance(agent_class, str):
return agent_class
known = known_modules + ["soil.agents", "soil.agents.custom"]
agent_class = serialization.deserializer(agent_class, known_modules=known)
return agent_class
class AgentView(Mapping, Set):
"""A lazy-loaded list of agents."""
__slots__ = ("_agents",)
def __init__(self, agents):
self._agents = agents
def __getstate__(self):
return {"_agents": self._agents}
def __setstate__(self, state):
self._agents = state["_agents"]
# Mapping methods
def __len__(self):
return len(self._agents)
def __iter__(self):
yield from self._agents.values()
def __getitem__(self, agent_id):
if isinstance(agent_id, slice):
raise ValueError(f"Slicing is not supported")
if agent_id in self._agents:
return self._agents[agent_id]
raise ValueError(f"Agent {agent_id} not found")
def filter(self, *args, **kwargs):
yield from filter_agents(self._agents, *args, **kwargs)
def one(self, *args, **kwargs):
return next(filter_agents(self._agents, *args, **kwargs))
def __call__(self, *args, **kwargs):
return list(self.filter(*args, **kwargs))
def __contains__(self, agent_id):
return agent_id in self._agents
def __str__(self):
return str(list(unique_id for unique_id in self.keys()))
def __repr__(self):
return f"{self.__class__.__name__}({self})"
def filter_agents(
agents,
*id_args,
unique_id=None,
state_id=None,
agent_class=None,
ignore=None,
state=None,
limit=None,
**kwargs,
):
"""
Filter agents given as a dict, by the criteria given as arguments (e.g., certain type or state id).
"""
assert isinstance(agents, dict)
ids = []
if unique_id is not None:
if isinstance(unique_id, list):
ids += unique_id
else:
ids.append(unique_id)
if id_args:
ids += id_args
if ids:
f = (agents[aid] for aid in ids if aid in agents)
else:
assert len(states) <= len(topology)
return states
f = agents.values()
if state_id is not None and not isinstance(state_id, (tuple, list)):
state_id = tuple([state_id])
if agent_class is not None:
agent_class = _deserialize_type(agent_class)
try:
agent_class = tuple(agent_class)
except TypeError:
agent_class = tuple([agent_class])
if ignore:
f = filter(lambda x: x not in ignore, f)
if state_id is not None:
f = filter(lambda agent: agent.get("state_id", None) in state_id, f)
if agent_class is not None:
f = filter(lambda agent: isinstance(agent, agent_class), f)
state = state or dict()
state.update(kwargs)
for k, v in state.items():
f = filter(lambda agent: getattr(agent, k, None) == v, f)
if limit is not None:
f = islice(f, limit)
yield from f
def _convert_agent_types(ind, to_string=False):
'''Convenience method to allow specifying agents by class or class name.'''
d = deepcopy(ind)
for v in d:
agent_type = v['agent_type']
if to_string and not isinstance(agent_type, str):
v['agent_type'] = str(agent_type.__name__)
elif not to_string and isinstance(agent_type, str):
v['agent_type'] = agent_types[agent_type]
return d
def from_config(
cfg: config.AgentConfig, random, topology: nx.Graph = None
) -> List[Dict[str, Any]]:
"""
This function turns an agentconfig into a list of individual "agent specifications", which are just a dictionary
with the parameters that the environment will use to construct each agent.
This function does NOT return a list of agents, mostly because some attributes to the agent are not known at the
time of calling this function, such as `unique_id`.
"""
default = cfg or config.AgentConfig()
if not isinstance(cfg, config.AgentConfig):
cfg = config.AgentConfig(**cfg)
agents = []
assigned_total = 0
assigned_network = 0
if cfg.fixed is not None:
agents, assigned_total, assigned_network = _from_fixed(
cfg.fixed, topology=cfg.topology, default=cfg
)
n = cfg.n
if cfg.distribution:
topo_size = len(topology) if topology else 0
networked = []
total = []
for d in cfg.distribution:
if d.strategy == config.Strategy.topology:
topo = d.topology if ("topology" in d.__fields_set__) else cfg.topology
if not topo:
raise ValueError(
'The "topology" strategy only works if the topology parameter is set to True'
)
if not topo_size:
raise ValueError(
f"Topology does not have enough free nodes to assign one to the agent"
)
networked.append(d)
if d.strategy == config.Strategy.total:
if not cfg.n:
raise ValueError(
'Cannot use the "total" strategy without providing the total number of agents'
)
total.append(d)
if networked:
new_agents = _from_distro(
networked,
n=topo_size - assigned_network,
topology=topo,
default=cfg,
random=random,
)
assigned_total += len(new_agents)
assigned_network += len(new_agents)
agents += new_agents
if total:
remaining = n - assigned_total
agents += _from_distro(total, n=remaining, default=cfg, random=random)
if assigned_network < topo_size:
utils.logger.warn(
f"The total number of agents does not match the total number of nodes in "
"every topology. This may be due to a definition error: assigned: "
f"{ assigned } total size: { topo_size }"
)
return agents
def _agent_from_distribution(distribution, value=-1):
"""Used in the initialization of agents given an agent distribution."""
if value < 0:
value = random.random()
for d in distribution:
threshold = d['threshold']
if value >= threshold[0] and value < threshold[1]:
state = {}
if 'state' in d:
state = deepcopy(d['state'])
return d['agent_type'], state
def _from_fixed(
lst: List[config.FixedAgentConfig],
topology: bool,
default: config.SingleAgentConfig,
) -> List[Dict[str, Any]]:
agents = []
raise Exception('Distribution for value {} not found in: {}'.format(value, distribution))
counts_total = 0
counts_network = 0
for fixed in lst:
agent = {}
if default:
agent = default.state.copy()
agent.update(fixed.state)
cls = serialization.deserialize(
fixed.agent_class or (default and default.agent_class)
)
agent["agent_class"] = cls
topo = (
fixed.topology
if ("topology" in fixed.__fields_set__)
else topology or default.topology
)
if topo:
agent["topology"] = True
counts_network += 1
if not fixed.hidden:
counts_total += 1
agents.append(agent)
return agents, counts_total, counts_network
def _from_distro(
distro: List[config.AgentDistro],
n: int,
default: config.SingleAgentConfig,
random,
topology: str = None
) -> List[Dict[str, Any]]:
agents = []
if n is None:
if any(lambda dist: dist.n is None, distro):
raise ValueError(
"You must provide a total number of agents, or the number of each type"
)
n = sum(dist.n for dist in distro)
weights = list(dist.weight if dist.weight is not None else 1 for dist in distro)
minw = min(weights)
norm = list(weight / minw for weight in weights)
total = sum(norm)
chunk = n // total
# random.choices would be enough to get a weighted distribution. But it can vary a lot for smaller k
# So instead we calculate our own distribution to make sure the actual ratios are close to what we would expect
# Calculate how many times each has to appear
indices = list(
chain.from_iterable([idx] * int(n * chunk) for (idx, n) in enumerate(norm))
)
# Complete with random agents following the original weight distribution
if len(indices) < n:
indices += random.choices(
list(range(len(distro))),
weights=[d.weight for d in distro],
k=n - len(indices),
)
# Deserialize classes for efficiency
classes = list(
serialization.deserialize(i.agent_class or default.agent_class) for i in distro
)
# Add them in random order
random.shuffle(indices)
for idx in indices:
d = distro[idx]
agent = d.state.copy()
cls = classes[idx]
agent["agent_class"] = cls
if default:
agent.update(default.state)
topology = (
d.topology
if ("topology" in d.__fields_set__)
else topology or default.topology
)
if topology:
agent["topology"] = topology
agents.append(agent)
return agents
from .network_agents import *
from .fsm import *
from .evented import *
class Agent(NetworkAgent, FSM, EventedAgent):
"""Default agent class, has both network and event capabilities"""
from .BassModel import *
from .BigMarketModel import *
from .IndependentCascadeModel import *
from .ModelM2 import *
from .SentimentCorrelationModel import *
from .SISaModel import *
from .CounterModel import *
from .DrawingAgent import *
try:
import scipy
from .Geo import Geo
except ImportError:
import sys
print("Could not load the Geo Agent, scipy is not installed", file=sys.stderr)

77
soil/agents/evented.py Normal file
View File

@@ -0,0 +1,77 @@
from . import BaseAgent
from ..events import Message, Tell, Ask, TimedOut
from ..time import BaseCond
from functools import partial
from collections import deque
class ReceivedOrTimeout(BaseCond):
def __init__(
self, agent, expiration=None, timeout=None, check=True, ignore=False, **kwargs
):
if expiration is None:
if timeout is not None:
expiration = agent.now + timeout
self.expiration = expiration
self.ignore = ignore
self.check = check
super().__init__(**kwargs)
def expired(self, time):
return self.expiration and self.expiration < time
def ready(self, agent, time):
return len(agent._inbox) or self.expired(time)
def return_value(self, agent):
if not self.ignore and self.expired(agent.now):
raise TimedOut("No messages received")
if self.check:
agent.check_messages()
return None
def schedule_next(self, time, delta, first=False):
if self._delta is not None:
delta = self._delta
return (time + delta, self)
def __repr__(self):
return f"ReceivedOrTimeout(expires={self.expiration})"
class EventedAgent(BaseAgent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._inbox = deque()
self._processed = 0
def on_receive(self, *args, **kwargs):
pass
def received(self, *args, **kwargs):
return ReceivedOrTimeout(self, *args, **kwargs)
def tell(self, msg, sender=None):
self._inbox.append(Tell(timestamp=self.now, payload=msg, sender=sender))
def ask(self, msg, timeout=None, **kwargs):
ask = Ask(timestamp=self.now, payload=msg, sender=self)
self._inbox.append(ask)
expiration = float("inf") if timeout is None else self.now + timeout
return ask.replied(expiration=expiration, **kwargs)
def check_messages(self):
changed = False
while self._inbox:
msg = self._inbox.popleft()
self._processed += 1
if msg.expired(self.now):
continue
changed = True
reply = self.on_receive(msg.payload, sender=msg.sender)
if isinstance(msg, Ask):
msg.reply = reply
return changed
Evented = EventedAgent

140
soil/agents/fsm.py Normal file
View File

@@ -0,0 +1,140 @@
from . import MetaAgent, BaseAgent
from functools import partial, wraps
import inspect
def state(name=None):
def decorator(func, name=None):
"""
A state function should return either a state id, or a tuple (state_id, when)
The default value for state_id is the current state id.
The default value for when is the interval defined in the environment.
"""
if inspect.isgeneratorfunction(func):
orig_func = func
@wraps(func)
def func(self):
while True:
if not self._coroutine:
self._coroutine = orig_func(self)
try:
if self._last_except:
n = self._coroutine.throw(self._last_except)
else:
n = self._coroutine.send(self._last_return)
if n:
return None, n
return n
except StopIteration as ex:
self._coroutine = None
next_state = ex.value
if next_state is not None:
self._set_state(next_state)
return next_state
finally:
self._last_return = None
self._last_except = None
func.id = name or func.__name__
func.is_default = False
return func
if callable(name):
return decorator(name)
else:
return partial(decorator, name=name)
def default_state(func):
func.is_default = True
return func
class MetaFSM(MetaAgent):
def __new__(mcls, name, bases, namespace):
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i._states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for attr, func in namespace.items():
if hasattr(func, "id"):
if func.is_default:
default_state = func
states[func.id] = func
namespace.update(
{
"_default_state": default_state,
"_states": states,
}
)
return super(MetaFSM, mcls).__new__(
mcls=mcls, name=name, bases=bases, namespace=namespace
)
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, **kwargs):
super(FSM, self).__init__(**kwargs)
if not hasattr(self, "state_id"):
if not self._default_state:
raise ValueError(
"No default state specified for {}".format(self.unique_id)
)
self.state_id = self._default_state.id
self._coroutine = None
self._set_state(self.state_id)
def step(self):
self.debug(f"Agent {self.unique_id} @ state {self.state_id}")
default_interval = super().step()
next_state = self._states[self.state_id](self)
when = None
try:
next_state, *when = next_state
if not when:
when = None
elif len(when) == 1:
when = when[0]
else:
raise ValueError(
"Too many values returned. Only state (and time) allowed"
)
except TypeError:
pass
if next_state is not None:
self._set_state(next_state)
return when or default_interval
def _set_state(self, state, when=None):
if hasattr(state, "id"):
state = state.id
if state not in self._states:
raise ValueError("{} is not a valid state".format(state))
self.state_id = state
if when is not None:
self.model.schedule.add(self, when=when)
return state
def die(self):
return self.dead, super().die()
@state
def dead(self):
return self.die()

View File

@@ -0,0 +1,88 @@
from . import BaseAgent
class NetworkAgent(BaseAgent):
def __init__(self, *args, topology, node_id, **kwargs):
super().__init__(*args, **kwargs)
assert topology is not None
assert node_id is not None
self.G = topology
assert self.G
self.node_id = node_id
def count_neighbors(self, state_id=None, **kwargs):
return len(self.get_neighbors(state_id=state_id, **kwargs))
def iter_neighbors(self, **kwargs):
return self.iter_agents(limit_neighbors=True, **kwargs)
def get_neighbors(self, **kwargs):
return list(self.iter_neighbors())
@property
def node(self):
return self.G.nodes[self.node_id]
def iter_agents(self, unique_id=None, *, limit_neighbors=False, **kwargs):
unique_ids = None
if isinstance(unique_id, list):
unique_ids = set(unique_id)
elif unique_id is not None:
unique_ids = set(
[
unique_id,
]
)
if limit_neighbors:
neighbor_ids = set()
for node_id in self.G.neighbors(self.node_id):
if self.G.nodes[node_id].get("agent") is not None:
neighbor_ids.add(node_id)
if unique_ids:
unique_ids = unique_ids & neighbor_ids
else:
unique_ids = neighbor_ids
if not unique_ids:
return
unique_ids = list(unique_ids)
yield from super().iter_agents(unique_id=unique_ids, **kwargs)
def subgraph(self, center=True, **kwargs):
include = [self] if center else []
G = self.G.subgraph(
n.node_id for n in list(self.get_agents(**kwargs) + include)
)
return G
def remove_node(self):
self.debug(f"Removing node for {self.unique_id}: {self.node_id}")
self.G.remove_node(self.node_id)
self.node_id = None
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
if self.node_id not in self.G.nodes(data=False):
raise ValueError(
"{} not in list of existing agents in the network".format(
self.unique_id
)
)
if other.node_id not in self.G.nodes(data=False):
raise ValueError(
"{} not in list of existing agents in the network".format(other)
)
self.G.add_edge(
self.node_id, other.node_id, edge_attr_dict=edge_attr_dict, *edge_attrs
)
def die(self, remove=True):
if not self.alive:
return None
if remove:
self.remove_node()
return super().die()
NetAgent = NetworkAgent

View File

@@ -1,166 +0,0 @@
import pandas as pd
import glob
import yaml
from os.path import join
from . import utils, history
def read_data(*args, group=False, **kwargs):
iterable = _read_data(*args, **kwargs)
if group:
return group_trials(iterable)
else:
return list(iterable)
def _read_data(pattern, *args, from_csv=False, process_args=None, **kwargs):
if not process_args:
process_args = {}
for folder in glob.glob(pattern):
config_file = glob.glob(join(folder, '*.yml'))[0]
config = yaml.load(open(config_file))
df = None
if from_csv:
for trial_data in sorted(glob.glob(join(folder,
'*.environment.csv'))):
df = read_csv(trial_data, **kwargs)
yield config_file, df, config
else:
for trial_data in sorted(glob.glob(join(folder, '*.db.sqlite'))):
df = read_sql(trial_data, **kwargs)
yield config_file, df, config
def read_sql(db, *args, **kwargs):
h = history.History(db, backup=False)
df = h.read_sql(*args, **kwargs)
return df
def read_csv(filename, keys=None, convert_types=False, **kwargs):
'''
Read a CSV in canonical form: ::
<agent_id, t_step, key, value, value_type>
'''
df = pd.read_csv(filename)
if convert_types:
df = convert_types_slow(df)
if keys:
df = df[df['key'].isin(keys)]
df = process_one(df)
return df
def convert_row(row):
row['value'] = utils.convert(row['value'], row['value_type'])
return row
def convert_types_slow(df):
'''This is a slow operation.'''
dtypes = get_types(df)
for k, v in dtypes.items():
t = df[df['key']==k]
t['value'] = t['value'].astype(v)
df = df.apply(convert_row, axis=1)
return df
def split_df(df):
'''
Split a dataframe in two dataframes: one with the history of agents,
and one with the environment history
'''
envmask = (df['agent_id'] == 'env')
n_env = envmask.sum()
if n_env == len(df):
return df, None
elif n_env == 0:
return None, df
agents, env = [x for _, x in df.groupby(envmask)]
return env, agents
def process(df, **kwargs):
'''
Process a dataframe in canonical form ``(t_step, agent_id, key, value, value_type)`` into
two dataframes with a column per key: one with the history of the agents, and one for the
history of the environment.
'''
env, agents = split_df(df)
return process_one(env, **kwargs), process_one(agents, **kwargs)
def get_types(df):
dtypes = df.groupby(by=['key'])['value_type'].unique()
return {k:v[0] for k,v in dtypes.iteritems()}
def process_one(df, *keys, columns=['key', 'agent_id'], values='value',
fill=True, index=['t_step',],
aggfunc='first', **kwargs):
'''
Process a dataframe in canonical form ``(t_step, agent_id, key, value, value_type)`` into
a dataframe with a column per key
'''
if df is None:
return df
if keys:
df = df[df['key'].isin(keys)]
df = df.pivot_table(values=values, index=index, columns=columns,
aggfunc=aggfunc, **kwargs)
if fill:
df = fillna(df)
return df
def get_count(df, *keys):
if keys:
df = df[list(keys)]
counts = pd.DataFrame()
for key in df.columns.levels[0]:
g = df[key].apply(pd.Series.value_counts, axis=1).fillna(0)
for value, series in g.iteritems():
counts[key, value] = series
counts.columns = pd.MultiIndex.from_tuples(counts.columns)
return counts
def get_value(df, *keys, aggfunc='sum'):
if keys:
df = df[list(keys)]
return df.groupby(axis=1, level=0).agg(aggfunc, axis=1)
def plot_all(*args, **kwargs):
'''
Read all the trial data and plot the result of applying a function on them.
'''
dfs = do_all(*args, **kwargs)
ps = []
for line in dfs:
f, df, config = line
df.plot(title=config['name'])
ps.append(df)
return ps
def do_all(pattern, func, *keys, include_env=False, **kwargs):
for config_file, df, config in read_data(pattern, keys=keys):
p = func(df, *keys, **kwargs)
p.plot(title=config['name'])
yield config_file, p, config
def group_trials(trials, aggfunc=['mean', 'min', 'max', 'std']):
trials = list(trials)
trials = list(map(lambda x: x[1] if isinstance(x, tuple) else x, trials))
return pd.concat(trials).groupby(level=0).agg(aggfunc).reorder_levels([2, 0,1] ,axis=1)
def fillna(df):
new_df = df.ffill(axis=0)
return new_df

267
soil/config.py Normal file
View File

@@ -0,0 +1,267 @@
from __future__ import annotations
from enum import Enum
from pydantic import BaseModel, ValidationError, validator, root_validator
import yaml
import os
import sys
from typing import Any, Callable, Dict, List, Optional, Union, Type
from pydantic import BaseModel, Extra
from . import environment, utils
import networkx as nx
# Could use TypeAlias in python >= 3.10
nodeId = int
class Node(BaseModel):
id: nodeId
state: Optional[Dict[str, Any]] = {}
class Edge(BaseModel):
source: nodeId
target: nodeId
value: Optional[float] = 1
class Topology(BaseModel):
nodes: List[Node]
directed: bool
links: List[Edge]
class NetConfig(BaseModel):
params: Optional[Dict[str, Any]]
fixed: Optional[Union[Topology, nx.Graph]]
path: Optional[str]
class Config:
arbitrary_types_allowed = True
@staticmethod
def default():
return NetConfig(topology=None, params=None)
@root_validator
def validate_all(cls, values):
if "params" not in values and "topology" not in values:
raise ValueError(
"You must specify either a topology or the parameters to generate a graph"
)
return values
class EnvConfig(BaseModel):
@staticmethod
def default():
return EnvConfig()
class SingleAgentConfig(BaseModel):
agent_class: Optional[Union[Type, str]] = None
unique_id: Optional[int] = None
topology: Optional[bool] = False
node_id: Optional[Union[int, str]] = None
state: Optional[Dict[str, Any]] = {}
class FixedAgentConfig(SingleAgentConfig):
n: Optional[int] = 1
hidden: Optional[bool] = False # Do not count this agent towards total agent count
@root_validator
def validate_all(cls, values):
if values.get("unique_id", None) is not None and values.get("n", 1) > 1:
raise ValueError(
f"An unique_id can only be provided when there is only one agent ({values.get('n')} given)"
)
return values
class OverrideAgentConfig(FixedAgentConfig):
filter: Optional[Dict[str, Any]] = None
class Strategy(Enum):
topology = "topology"
total = "total"
class AgentDistro(SingleAgentConfig):
weight: Optional[float] = 1
strategy: Strategy = Strategy.topology
class AgentConfig(SingleAgentConfig):
n: Optional[int] = None
distribution: Optional[List[AgentDistro]] = None
fixed: Optional[List[FixedAgentConfig]] = None
override: Optional[List[OverrideAgentConfig]] = None
@staticmethod
def default():
return AgentConfig()
@root_validator
def validate_all(cls, values):
if "distribution" in values and (
"n" not in values and "topology" not in values
):
raise ValueError(
"You need to provide the number of agents or a topology to extract the value from."
)
return values
class Config(BaseModel, extra=Extra.allow):
version: Optional[str] = "1"
name: str = "Unnamed Simulation"
description: Optional[str] = None
group: str = None
dir_path: Optional[str] = None
num_trials: int = 1
max_time: float = 100
max_steps: int = -1
num_processes: int = 1
interval: float = 1
seed: str = ""
dry_run: bool = False
skip_test: bool = False
model_class: Union[Type, str] = environment.Environment
model_params: Optional[Dict[str, Any]] = {}
visualization_params: Optional[Dict[str, Any]] = {}
@classmethod
def from_raw(cls, cfg):
if isinstance(cfg, Config):
return cfg
if cfg.get("version", "1") == "1" and any(
k in cfg for k in ["agents", "agent_class", "topology", "environment_class"]
):
return convert_old(cfg)
return Config(**cfg)
def convert_old(old, strict=True):
"""
Try to convert old style configs into the new format.
This is still a work in progress and might not work in many cases.
"""
utils.logger.warning(
"The old configuration format is deprecated. The converted file MAY NOT yield the right results"
)
new = old.copy()
network = {}
if "topology" in old:
del new["topology"]
network["topology"] = old["topology"]
if "network_params" in old and old["network_params"]:
del new["network_params"]
for (k, v) in old["network_params"].items():
if k == "path":
network["path"] = v
else:
network.setdefault("params", {})[k] = v
topology = None
if network:
topology = network
agents = {"fixed": [], "distribution": []}
def updated_agent(agent):
"""Convert an agent definition"""
newagent = dict(agent)
return newagent
by_weight = []
fixed = []
override = []
if "environment_agents" in new:
for agent in new["environment_agents"]:
agent.setdefault("state", {})["group"] = "environment"
if "agent_id" in agent:
agent["state"]["name"] = agent["agent_id"]
del agent["agent_id"]
agent["hidden"] = True
agent["topology"] = False
fixed.append(updated_agent(agent))
del new["environment_agents"]
if "agent_class" in old:
del new["agent_class"]
agents["agent_class"] = old["agent_class"]
if "default_state" in old:
del new["default_state"]
agents["state"] = old["default_state"]
if "network_agents" in old:
agents["topology"] = True
agents.setdefault("state", {})["group"] = "network"
for agent in new["network_agents"]:
agent = updated_agent(agent)
if "agent_id" in agent:
agent["state"]["name"] = agent["agent_id"]
del agent["agent_id"]
fixed.append(agent)
else:
by_weight.append(agent)
del new["network_agents"]
if "agent_class" in old and (not fixed and not by_weight):
agents["topology"] = True
by_weight = [{"agent_class": old["agent_class"], "weight": 1}]
# TODO: translate states properly
if "states" in old:
del new["states"]
states = old["states"]
if isinstance(states, dict):
states = states.items()
else:
states = enumerate(states)
for (k, v) in states:
override.append({"filter": {"node_id": k}, "state": v})
agents["override"] = override
agents["fixed"] = fixed
agents["distribution"] = by_weight
model_params = {}
if "environment_params" in new:
del new["environment_params"]
model_params = dict(old["environment_params"])
if "environment_class" in old:
del new["environment_class"]
new["model_class"] = old["environment_class"]
if "dump" in old:
del new["dump"]
new["dry_run"] = not old["dump"]
model_params["topology"] = topology
model_params["agents"] = agents
return Config(version="2", model_params=model_params, **new)

17
soil/datacollection.py Normal file
View File

@@ -0,0 +1,17 @@
from mesa import DataCollector as MDC
class SoilCollector(MDC):
def __init__(self, model_reporters=None, agent_reporters=None, tables=None, **kwargs):
model_reporters = model_reporters or {}
agent_reporters = agent_reporters or {}
tables = tables or {}
if 'agent_count' not in model_reporters:
model_reporters['agent_count'] = lambda m: m.schedule.get_agent_count()
if 'state_id' not in agent_reporters:
agent_reporters['agent_id'] = lambda agent: agent.get('state_id', None)
super().__init__(model_reporters=model_reporters,
agent_reporters=agent_reporters,
tables=tables,
**kwargs)

190
soil/debugging.py Normal file
View File

@@ -0,0 +1,190 @@
from __future__ import annotations
import pdb
import sys
import os
from textwrap import indent
from functools import wraps
from .agents import FSM, MetaFSM
def wrapcmd(func):
@wraps(func)
def wrapper(self, arg: str, temporary=False):
sys.settrace(self.trace_dispatch)
known = globals()
known.update(self.curframe.f_globals)
known.update(self.curframe.f_locals)
known["agent"] = known.get("self", None)
known["model"] = known.get("self", {}).get("model")
known["attrs"] = arg.strip().split()
exec(func.__code__, known, known)
return wrapper
class Debug(pdb.Pdb):
def __init__(self, *args, skip_soil=False, **kwargs):
skip = kwargs.get("skip", [])
if skip_soil:
skip.append("soil")
skip.append("contextlib")
skip.append("soil.*")
skip.append("mesa.*")
super(Debug, self).__init__(*args, skip=skip, **kwargs)
self.prompt = "[soil-pdb] "
@staticmethod
def _soil_agents(model, attrs=None, pretty=True, **kwargs):
for agent in model.agents(**kwargs):
d = agent
print(" - " + indent(agent.to_str(keys=attrs, pretty=pretty), " "))
@wrapcmd
def do_soil_agents():
return Debug._soil_agents(model, attrs=attrs or None)
do_sa = do_soil_agents
@wrapcmd
def do_soil_list():
return Debug._soil_agents(model, attrs=["state_id"], pretty=False)
do_sl = do_soil_list
def do_continue_state(self, arg):
self.do_break_state(arg, temporary=True)
return self.do_continue("")
do_cs = do_continue_state
@wrapcmd
def do_soil_agent():
if not agent:
print("No agent available")
return
keys = None
if attrs:
keys = []
for k in attrs:
for key in agent.keys():
if key.startswith(k):
keys.append(key)
print(agent.to_str(pretty=True, keys=keys))
do_aa = do_soil_agent
def do_break_state(self, arg: str, instances=None, temporary=False):
"""
Break before a specified state is stepped into.
"""
klass = None
state = arg
if not state:
self.error("Specify at least a state name")
return
state, *tokens = state.lstrip().split()
if tokens:
instances = list(eval(token) for token in tokens)
colon = state.find(":")
if colon > 0:
klass = state[:colon].rstrip()
state = state[colon + 1 :].strip()
print(klass, state, tokens)
klass = eval(klass, self.curframe.f_globals, self.curframe_locals)
if klass:
klasses = [klass]
else:
klasses = [
k
for k in self.curframe.f_globals.values()
if isinstance(k, type) and issubclass(k, FSM)
]
if not klasses:
self.error("No agent classes found")
for klass in klasses:
try:
func = getattr(klass, state)
except AttributeError:
self.error(f"State {state} not found in class {klass}")
continue
if hasattr(func, "__func__"):
func = func.__func__
code = func.__code__
# use co_name to identify the bkpt (function names
# could be aliased, but co_name is invariant)
funcname = code.co_name
lineno = code.co_firstlineno
filename = code.co_filename
# Check for reasonable breakpoint
line = self.checkline(filename, lineno)
if not line:
raise ValueError("no line found")
# now set the break point
cond = None
if instances:
cond = f"self.unique_id in { repr(instances) }"
existing = self.get_breaks(filename, line)
if existing:
self.message("Breakpoint already exists at %s:%d" % (filename, line))
continue
err = self.set_break(filename, line, temporary, cond, funcname)
if err:
self.error(err)
else:
bp = self.get_breaks(filename, line)[-1]
self.message("Breakpoint %d at %s:%d" % (bp.number, bp.file, bp.line))
do_bs = do_break_state
def do_break_state_self(self, arg: str, temporary=False):
"""
Break before a specified state is stepped into, for the current agent
"""
agent = self.curframe.f_locals.get("self")
if not agent:
self.error("No current agent.")
self.error("Try this again when the debugger is stopped inside an agent")
return
arg = f"{agent.__class__.__name__}:{ arg } {agent.unique_id}"
return self.do_break_state(arg)
do_bss = do_break_state_self
debugger = None
def set_trace(frame=None, **kwargs):
global debugger
if debugger is None:
debugger = Debug(**kwargs)
frame = frame or sys._getframe().f_back
debugger.set_trace(frame)
def post_mortem(traceback=None, **kwargs):
global debugger
if debugger is None:
debugger = Debug(**kwargs)
t = sys.exc_info()[2]
debugger.reset()
debugger.interaction(None, t)

View File

@@ -1,313 +1,349 @@
from __future__ import annotations
import os
import sqlite3
import time
import csv
import random
import simpy
import tempfile
import pandas as pd
import math
import logging
import inspect
from typing import Any, Dict, Optional, Union, List
from collections import namedtuple
from time import time as current_time
from copy import deepcopy
from networkx.readwrite import json_graph
import networkx as nx
import nxsim
from . import utils, agents, analysis, history
from mesa import Model
from . import agents as agentmod, config, datacollection, serialization, utils, time, network, events
class SoilEnvironment(nxsim.NetworkEnvironment):
class BaseEnvironment(Model):
"""
The environment is key in a simulation. It contains the network topology,
a reference to network and environment agents, as well as the environment
params, which are used as shared state between agents.
The environment is key in a simulation. It controls how agents interact,
and what information is available to them.
This is an opinionated version of `mesa.Model` class, which adds many
convenience methods and abstractions.
The environment parameters and the state of every agent can be accessed
both by using the environment as a dictionary or with the environment's
:meth:`soil.environment.SoilEnvironment.get` method.
both by using the environment as a dictionary and with the environment's
:meth:`soil.environment.Environment.get` method.
"""
def __init__(self, name=None,
network_agents=None,
environment_agents=None,
states=None,
default_state=None,
interval=1,
seed=None,
dry_run=False,
dir_path=None,
topology=None,
*args, **kwargs):
self.name = name or 'UnnamedEnvironment'
if isinstance(states, list):
states = dict(enumerate(states))
self.states = deepcopy(states) if states else {}
self.default_state = deepcopy(default_state) or {}
if not topology:
topology = nx.Graph()
super().__init__(*args, topology=topology, **kwargs)
self._env_agents = {}
self.dry_run = dry_run
def __init__(
self,
id="unnamed_env",
seed="default",
schedule_class=time.TimedActivation,
dir_path=None,
interval=1,
agent_class=None,
agents: List[tuple[type, Dict[str, Any]]] = {},
collector_class: type = datacollection.SoilCollector,
agent_reporters: Optional[Any] = None,
model_reporters: Optional[Any] = None,
tables: Optional[Any] = None,
**env_params,
):
super().__init__(seed=seed)
self.current_id = -1
self.id = id
self.dir_path = dir_path or os.getcwd()
if schedule_class is None:
schedule_class = time.TimedActivation
else:
schedule_class = serialization.deserialize(schedule_class)
self.schedule = schedule_class(self)
self.agent_class = agent_class or agentmod.BaseAgent
self.interval = interval
self.dir_path = dir_path or tempfile.mkdtemp('soil-env')
self.get_path()
self._history = history.History(name=self.name if not dry_run else None,
dir_path=self.dir_path)
# Add environment agents first, so their events get
# executed before network agents
self.environment_agents = environment_agents or []
self.network_agents = network_agents or []
self['SEED'] = seed or time.time()
random.seed(self['SEED'])
self.init_agents(agents)
self.logger = utils.logger.getChild(self.id)
collector_class = serialization.deserialize(collector_class)
self.datacollector = collector_class(
model_reporters=model_reporters,
agent_reporters=agent_reporters,
tables=tables,
)
for (k, v) in env_params.items():
self[k] = v
def _agent_from_dict(self, agent):
"""
Translate an agent dictionary into an agent
"""
agent = dict(**agent)
cls = agent.pop("agent_class", None) or self.agent_class
unique_id = agent.pop("unique_id", None)
if unique_id is None:
unique_id = self.next_id()
return serialization.deserialize(cls)(unique_id=unique_id, model=self, **agent)
def init_agents(self, agents: Union[config.AgentConfig, List[Dict[str, Any]]] = {}):
"""
Initialize the agents in the model from either a `soil.config.AgentConfig` or a list of
dictionaries that each describes an agent.
If given a list of dictionaries, an agent will be created for each dictionary. The agent
class can be specified through the `agent_class` key. The rest of the items will be used
as parameters to the agent.
"""
if not agents:
return
lst = agents
override = []
if not isinstance(lst, list):
if not isinstance(agents, config.AgentConfig):
lst = config.AgentConfig(**agents)
if lst.override:
override = lst.override
lst = self._agent_dict_from_config(lst)
# TODO: check override is working again. It cannot (easily) be part of agents.from_config anymore,
# because it needs attribute such as unique_id, which are only present after init
new_agents = [self._agent_from_dict(agent) for agent in lst]
for a in new_agents:
self.schedule.add(a)
for rule in override:
for agent in agentmod.filter_agents(self.schedule._agents, **rule.filter):
for attr, value in rule.state.items():
setattr(agent, attr, value)
def _agent_dict_from_config(self, cfg):
return agentmod.from_config(cfg, random=self.random)
@property
def agents(self):
yield from self.environment_agents
yield from self.network_agents
return agentmod.AgentView(self.schedule._agents)
def find_one(self, *args, **kwargs):
return agentmod.AgentView(self.schedule._agents).one(*args, **kwargs)
def count_agents(self, *args, **kwargs):
return sum(1 for i in self.agents(*args, **kwargs))
@property
def environment_agents(self):
for ref in self._env_agents.values():
yield ref
def now(self):
if self.schedule:
return self.schedule.time
raise Exception(
"The environment has not been scheduled, so it has no sense of time"
)
@environment_agents.setter
def environment_agents(self, environment_agents):
# Set up environmental agent
self._env_agents = {}
for item in environment_agents:
kwargs = deepcopy(item)
atype = kwargs.pop('agent_type')
kwargs['agent_id'] = kwargs.get('agent_id', atype.__name__)
kwargs['state'] = kwargs.get('state', {})
a = atype(environment=self, **kwargs)
self._env_agents[a.id] = a
def add_agent(self, unique_id=None, **kwargs):
if unique_id is None:
unique_id = self.next_id()
kwargs["unique_id"] = unique_id
a = self._agent_from_dict(kwargs)
self.schedule.add(a)
return a
def log(self, message, *args, level=logging.INFO, **kwargs):
if not self.logger.isEnabledFor(level):
return
message = message + " ".join(str(i) for i in args)
message = " @{:>3}: {}".format(self.now, message)
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
extra = {}
extra["now"] = self.now
extra["id"] = self.id
return self.logger.log(level, message, extra=extra)
def step(self):
"""
Advance one step in the simulation, and update the data collection and scheduler appropriately
"""
super().step()
# self.logger.info(
# "--- Step: {:^5} - Time: {now:^5} ---", steps=self.schedule.steps, now=self.now
# )
self.schedule.step()
self.datacollector.collect(self)
def __getitem__(self, key):
try:
return getattr(self, key)
except AttributeError:
raise KeyError(f"key {key} not found in environment")
def __delitem__(self, key):
return delattr(self, key)
def __contains__(self, key):
return hasattr(self, key)
def __setitem__(self, key, value):
setattr(self, key, value)
def __str__(self):
return str(dict(self))
def __len__(self):
return sum(1 for n in self.keys())
def __iter__(self):
return iter(self.agents())
def get(self, key, default=None):
return self[key] if key in self else default
def keys(self):
return (k for k in self.__dict__ if k[0] != "_")
class NetworkEnvironment(BaseEnvironment):
"""
The NetworkEnvironment is an environment that includes one or more networkx.Graph intances
and methods to associate agents to nodes and vice versa.
"""
def __init__(
self, *args, topology: Union[config.NetConfig, nx.Graph] = None, **kwargs
):
agents = kwargs.pop("agents", None)
super().__init__(*args, agents=None, **kwargs)
if topology is None:
topology = nx.Graph()
elif not isinstance(topology, nx.Graph):
topology = network.from_config(topology, dir_path=self.dir_path)
self.G = topology
self.init_agents(agents)
def init_agents(self, *args, **kwargs):
"""Initialize the agents from a"""
super().init_agents(*args, **kwargs)
for agent in self.schedule._agents.values():
self._init_node(agent)
def _init_node(self, agent):
"""
Make sure the node for a given agent has the proper attributes.
"""
if hasattr(agent, "node_id"):
self.G.nodes[agent.node_id]["agent"] = agent
def _agent_dict_from_config(self, cfg):
return agentmod.from_config(cfg, topology=self.G, random=self.random)
def _agent_from_dict(self, agent, unique_id=None):
agent = dict(agent)
if not agent.get("topology", False):
return super()._agent_from_dict(agent)
if unique_id is None:
unique_id = self.next_id()
node_id = agent.get("node_id", None)
if node_id is None:
node_id = network.find_unassigned(self.G, random=self.random)
self.G.nodes[node_id]["agent"] = None
agent["node_id"] = node_id
agent["unique_id"] = unique_id
agent["topology"] = self.G
node_attrs = self.G.nodes[node_id]
node_attrs.pop('agent', None)
node_attrs.update(agent)
agent = node_attrs
a = super()._agent_from_dict(agent)
self._init_node(a)
return a
@property
def network_agents(self):
for i in self.G.nodes():
node = self.G.node[i]
if 'agent' in node:
yield node['agent']
for a in self.schedule._agents.values():
if isinstance(a, agentmod.NetworkAgent):
yield a
@network_agents.setter
def network_agents(self, network_agents):
if not network_agents:
return
for ix in self.G.nodes():
agent, state = agents._agent_from_distribution(network_agents)
self.set_agent(ix, agent_type=agent, state=state)
def add_node(self, agent_class, unique_id=None, node_id=None, **kwargs):
if unique_id is None:
unique_id = self.next_id()
if node_id is None:
node_id = network.find_unassigned(
G=self.G, shuffle=True, random=self.random
)
if node_id is None:
node_id = f"node_for_{unique_id}"
def set_agent(self, agent_id, agent_type, state=None):
node = self.G.nodes[agent_id]
defstate = deepcopy(self.default_state)
defstate.update(self.states.get(agent_id, {}))
if state:
defstate.update(state)
state = defstate
state.update(node.get('state', {}))
a = agent_type(environment=self,
agent_id=agent_id,
state=state)
node['agent'] = a
if node_id not in self.G.nodes:
self.G.add_node(node_id)
assert "agent" not in self.G.nodes[node_id]
self.G.nodes[node_id]["agent"] = None # Reserve
a = self.add_agent(
unique_id=unique_id,
agent_class=agent_class,
topology=self.G,
node_id=node_id,
**kwargs,
)
a["visible"] = True
return a
def add_node(self, agent_type, state=None):
agent_id = int(len(self.G.nodes()))
self.G.add_node(agent_id)
a = self.set_agent(agent_id, agent_type, state)
a['visible'] = True
def add_agent(self, *args, **kwargs):
a = super().add_agent(*args, **kwargs)
if hasattr(a, "node_id"):
assert self.G.nodes[a.node_id]["agent"] == a
return a
def add_edge(self, agent1, agent2, attrs=None):
return self.G.add_edge(agent1, agent2)
def agent_for_node_id(self, node_id):
return self.G.nodes[node_id].get("agent")
def run(self, *args, **kwargs):
self._save_state()
super().run(*args, **kwargs)
self._history.flush_cache()
def _save_state(self, now=None):
# for agent in self.agents:
# agent.save_state()
utils.logger.debug('Saving state @{}'.format(self.now))
self._history.save_records(self.state_to_tuples(now=now))
def save_state(self):
'''
:DEPRECATED:
Periodically save the state of the environment and the agents.
'''
self._save_state()
while self.peek() != simpy.core.Infinity:
delay = max(self.peek() - self.now, self.interval)
utils.logger.debug('Step: {}'.format(self.now))
ev = self.event()
ev._ok = True
# Schedule the event with minimum priority so
# that it executes before all agents
self.schedule(ev, -999, delay)
yield ev
self._save_state()
def __getitem__(self, key):
if isinstance(key, tuple):
self._history.flush_cache()
return self._history[key]
return self.environment_params[key]
def __setitem__(self, key, value):
if isinstance(key, tuple):
k = history.Key(*key)
self._history.save_record(*k,
value=value)
return
self.environment_params[key] = value
self._history.save_record(agent_id='env',
t_step=self.now,
key=key,
value=value)
def __contains__(self, key):
return key in self.environment_params
def get(self, key, default=None):
'''
Get the value of an environment attribute in a
given point in the simulation (history).
If key is an attribute name, this method returns
the current value.
To get values at other times, use a
:meth: `soil.history.Key` tuple.
'''
return self[key] if key in self else default
def get_path(self, dir_path=None):
dir_path = dir_path or self.dir_path
if not os.path.exists(dir_path):
try:
os.makedirs(dir_path)
except FileExistsError:
pass
return dir_path
def get_agent(self, agent_id):
return self.G.node[agent_id]['agent']
def get_agents(self):
return list(self.agents)
def dump_csv(self, dir_path=None):
csv_name = os.path.join(self.get_path(dir_path),
'{}.environment.csv'.format(self.name))
with open(csv_name, 'w') as f:
cr = csv.writer(f)
cr.writerow(('agent_id', 't_step', 'key', 'value', 'value_type'))
for i in self.history_to_tuples():
cr.writerow(i)
def dump_gexf(self, dir_path=None):
G = self.history_to_graph()
graph_path = os.path.join(self.get_path(dir_path),
self.name+".gexf")
# Workaround for geometric models
# See soil/soil#4
for node in G.nodes():
if 'pos' in G.node[node]:
G.node[node]['viz'] = {"position": {"x": G.node[node]['pos'][0], "y": G.node[node]['pos'][1], "z": 0.0}}
del (G.node[node]['pos'])
nx.write_gexf(G, graph_path, version="1.2draft")
def dump(self, dir_path=None, formats=None):
if not formats:
return
functions = {
'csv': self.dump_csv,
'gexf': self.dump_gexf
}
for f in formats:
if f in functions:
functions[f](dir_path)
else:
raise ValueError('Unknown format: {}'.format(f))
def state_to_tuples(self, now=None):
if now is None:
now = self.now
for k, v in self.environment_params.items():
yield history.Record(agent_id='env',
t_step=now,
key=k,
value=v)
for agent in self.agents:
for k, v in agent.state.items():
yield history.Record(agent_id=agent.id,
t_step=now,
key=k,
value=v)
def history_to_tuples(self):
return self._history.to_tuples()
def history_to_graph(self):
G = nx.Graph(self.G)
for agent in self.network_agents:
attributes = {'agent': str(agent.__class__)}
lastattributes = {}
spells = []
lastvisible = False
laststep = None
history = self[agent.id, None, None]
if not history:
def populate_network(self, agent_class, weights=None, **agent_params):
if not hasattr(agent_class, "len"):
agent_class = [agent_class]
weights = None
for (node_id, node) in self.G.nodes(data=True):
if "agent" in node:
continue
for t_step, attribute, value in sorted(list(history)):
if attribute == 'visible':
nowvisible = value
if nowvisible and not lastvisible:
laststep = t_step
if not nowvisible and lastvisible:
spells.append((laststep, t_step))
a_class = self.random.choices(agent_class, weights)[0]
self.add_agent(node_id=node_id, topology=self.G, agent_class=a_class, **agent_params)
lastvisible = nowvisible
continue
key = 'attr_' + attribute
if key not in attributes:
attributes[key] = list()
if key not in lastattributes:
lastattributes[key] = (value, t_step)
elif lastattributes[key][0] != value:
last_value, laststep = lastattributes[key]
commit_value = (last_value, laststep, t_step)
if key not in attributes:
attributes[key] = list()
attributes[key].append(commit_value)
lastattributes[key] = (value, t_step)
for k, v in lastattributes.items():
attributes[k].append((v[0], v[1], None))
if lastvisible:
spells.append((laststep, None))
if spells:
G.add_node(agent.id, spells=spells, **attributes)
else:
G.add_node(agent.id, **attributes)
return G
class EventedEnvironment(BaseEnvironment):
def broadcast(self, msg, sender=None, expiration=None, ttl=None, **kwargs):
for agent in self.agents(**kwargs):
if agent == sender:
continue
self.logger.info(f"Telling {repr(agent)}: {msg} ttl={ttl}")
try:
inbox = agent._inbox
except AttributeError:
self.logger.info(
f"Agent {agent.unique_id} cannot receive events because it does not have an inbox"
)
continue
# Allow for AttributeError exceptions in this part of the code
inbox.append(
events.Tell(
payload=msg,
sender=sender,
expiration=expiration if ttl is None else self.now + ttl,
)
)
def __getstate__(self):
state = self.__dict__.copy()
state['G'] = json_graph.node_link_data(self.G)
state['network_agents'] = agents._serialize_distribution(self.network_agents)
state['environment_agents'] = agents._convert_agent_types(self.environment_agents,
to_string=True)
del state['_queue']
return state
def __setstate__(self, state):
self.__dict__ = state
self.G = json_graph.node_link_graph(state['G'])
self.network_agents = self.calculate_distribution(self._convert_agent_types(self.network_agents))
self.environment_agents = self._convert_agent_types(self.environment_agents)
return state
class Environment(NetworkEnvironment, EventedEnvironment):
"""Default environment class, has both network and event capabilities"""

56
soil/events.py Normal file
View File

@@ -0,0 +1,56 @@
from .time import BaseCond
from dataclasses import dataclass, field
from typing import Any
from uuid import uuid4
class Event:
pass
@dataclass
class Message:
payload: Any
sender: Any = None
expiration: float = None
timestamp: float = None
id: int = field(default_factory=uuid4)
def expired(self, when):
return self.expiration is not None and self.expiration < when
class Reply(Message):
source: Message
class ReplyCond(BaseCond):
def __init__(self, ask, *args, **kwargs):
self._ask = ask
super().__init__(*args, **kwargs)
def ready(self, agent, time):
return self._ask.reply is not None or self._ask.expired(time)
def return_value(self, agent):
if self._ask.expired(agent.now):
raise TimedOut()
return self._ask.reply
def __repr__(self):
return f"ReplyCond({self._ask.id})"
class Ask(Message):
reply: Message = None
def replied(self, expiration=None):
return ReplyCond(self)
class Tell(Message):
pass
class TimedOut(Exception):
pass

256
soil/exporters.py Normal file
View File

@@ -0,0 +1,256 @@
import os
import sys
from time import time as current_time
from io import BytesIO
from sqlalchemy import create_engine
from textwrap import dedent, indent
import matplotlib.pyplot as plt
import networkx as nx
from .serialization import deserialize
from .utils import try_backup, open_or_reuse, logger, timer
from . import utils, network
class DryRunner(BytesIO):
def __init__(self, fname, *args, copy_to=None, **kwargs):
super().__init__(*args, **kwargs)
self.__fname = fname
self.__copy_to = copy_to
def write(self, txt):
if self.__copy_to:
self.__copy_to.write("{}:::{}".format(self.__fname, txt))
try:
super().write(txt)
except TypeError:
super().write(bytes(txt, "utf-8"))
def close(self):
content = "(binary data not shown)"
try:
content = self.getvalue().decode()
except UnicodeDecodeError:
pass
logger.info(
"**Not** written to {} (dry run mode):\n\n{}\n\n".format(
self.__fname, content
)
)
super().close()
class Exporter:
"""
Interface for all exporters. It is not necessary, but it is useful
if you don't plan to implement all the methods.
"""
def __init__(self, simulation, outdir=None, dry_run=None, copy_to=None):
self.simulation = simulation
outdir = outdir or os.path.join(os.getcwd(), "soil_output")
self.outdir = os.path.join(outdir, simulation.group or "", simulation.name)
self.dry_run = dry_run
if copy_to is None and dry_run:
copy_to = sys.stdout
self.copy_to = copy_to
def sim_start(self):
"""Method to call when the simulation starts"""
pass
def sim_end(self):
"""Method to call when the simulation ends"""
pass
def trial_start(self, env):
"""Method to call when a trial start"""
pass
def trial_end(self, env):
"""Method to call when a trial ends"""
pass
def output(self, f, mode="w", **kwargs):
if self.dry_run:
f = DryRunner(f, copy_to=self.copy_to)
else:
try:
if not os.path.isabs(f):
f = os.path.join(self.outdir, f)
except TypeError:
pass
return open_or_reuse(f, mode=mode, **kwargs)
def get_dfs(self, env):
yield from get_dc_dfs(env.datacollector, trial_id=env.id)
def get_dc_dfs(dc, trial_id=None):
dfs = {
"env": dc.get_model_vars_dataframe(),
"agents": dc.get_agent_vars_dataframe(),
}
for table_name in dc.tables:
dfs[table_name] = dc.get_table_dataframe(table_name)
if trial_id:
for (name, df) in dfs.items():
df["trial_id"] = trial_id
yield from dfs.items()
class SQLite(Exporter):
"""Writes sqlite results"""
def sim_start(self):
if self.dry_run:
logger.info("NOT dumping results")
return
self.dbpath = os.path.join(self.outdir, f"{self.simulation.name}.sqlite")
logger.info("Dumping results to %s", self.dbpath)
try_backup(self.dbpath, remove=True)
def trial_end(self, env):
if self.dry_run:
logger.info("Running in DRY_RUN mode, the database will NOT be created")
return
with timer(
"Dumping simulation {} trial {}".format(self.simulation.name, env.id)
):
engine = create_engine(f"sqlite:///{self.dbpath}", echo=False)
for (t, df) in self.get_dfs(env):
df.to_sql(t, con=engine, if_exists="append")
class csv(Exporter):
"""Export the state of each environment (and its agents) in a separate CSV file"""
def trial_end(self, env):
with timer(
"[CSV] Dumping simulation {} trial {} @ dir {}".format(
self.simulation.name, env.id, self.outdir
)
):
for (df_name, df) in self.get_dfs(env):
with self.output("{}.{}.csv".format(env.id, df_name)) as f:
df.to_csv(f)
# TODO: reimplement GEXF exporting without history
class gexf(Exporter):
def trial_end(self, env):
if self.dry_run:
logger.info("Not dumping GEXF in dry_run mode")
return
with timer(
"[GEXF] Dumping simulation {} trial {}".format(self.simulation.name, env.id)
):
with self.output("{}.gexf".format(env.id), mode="wb") as f:
network.dump_gexf(env.history_to_graph(), f)
self.dump_gexf(env, f)
class dummy(Exporter):
def sim_start(self):
with self.output("dummy", "w") as f:
f.write("simulation started @ {}\n".format(current_time()))
def trial_start(self, env):
with self.output("dummy", "w") as f:
f.write("trial started@ {}\n".format(current_time()))
def trial_end(self, env):
with self.output("dummy", "w") as f:
f.write("trial ended@ {}\n".format(current_time()))
def sim_end(self):
with self.output("dummy", "a") as f:
f.write("simulation ended @ {}\n".format(current_time()))
class graphdrawing(Exporter):
def trial_end(self, env):
# Outside effects
f = plt.figure()
nx.draw(
env.G,
node_size=10,
width=0.2,
pos=nx.spring_layout(env.G, scale=100),
ax=f.add_subplot(111),
)
with open("graph-{}.png".format(env.id)) as f:
f.savefig(f)
class summary(Exporter):
"""Print a summary of each trial to sys.stdout"""
def trial_end(self, env):
msg = ""
for (t, df) in self.get_dfs(env):
if not len(df):
continue
tabs = "\t" * 2
description = indent(str(df.describe()), tabs)
last_line = indent(str(df.iloc[-1:]), tabs)
# value_counts = indent(str(df.value_counts()), tabs)
value_counts = indent(str(df.apply(lambda x: x.value_counts()).T.stack()), tabs)
msg += dedent("""
Dataframe {t}:
Last line: :
{last_line}
Description:
{description}
Value counts:
{value_counts}
""").format(**locals())
logger.info(msg)
class YAML(Exporter):
"""Writes the configuration of the simulation to a YAML file"""
def sim_start(self):
if self.dry_run:
logger.info("NOT dumping results")
return
with self.output(self.simulation.name + ".dumped.yml") as f:
logger.info(f"Dumping simulation configuration to {self.outdir}")
f.write(self.simulation.to_yaml())
class default(Exporter):
"""Default exporter. Writes sqlite results, as well as the simulation YAML"""
def __init__(self, *args, exporter_cls=[], **kwargs):
exporter_cls = exporter_cls or [YAML, SQLite, summary]
self.inner = [cls(*args, **kwargs) for cls in exporter_cls]
def sim_start(self):
for exporter in self.inner:
exporter.sim_start()
def sim_end(self):
for exporter in self.inner:
exporter.sim_end()
def trial_start(self, env):
for exporter in self.inner:
exporter.trial_start(env)
def trial_end(self, env):
for exporter in self.inner:
exporter.trial_end(env)

View File

@@ -1,254 +0,0 @@
import time
import os
import pandas as pd
import sqlite3
import copy
from collections import UserDict, Iterable, namedtuple
from . import utils
class History:
"""
Store and retrieve values from a sqlite database.
"""
def __init__(self, db_path=None, name=None, dir_path=None, backup=True):
if db_path is None and name:
db_path = os.path.join(dir_path or os.getcwd(),
'{}.db.sqlite'.format(name))
if db_path is None:
db_path = ":memory:"
else:
if backup and os.path.exists(db_path):
newname = db_path + '.backup{}.sqlite'.format(time.time())
os.rename(db_path, newname)
self.db_path = db_path
self.db = db_path
with self.db:
self.db.execute('''CREATE TABLE IF NOT EXISTS history (agent_id text, t_step int, key text, value text text)''')
self.db.execute('''CREATE TABLE IF NOT EXISTS value_types (key text, value_type text)''')
self.db.execute('''CREATE UNIQUE INDEX IF NOT EXISTS idx_history ON history (agent_id, t_step, key);''')
self._dtypes = {}
self._tups = []
def conversors(self, key):
"""Get the serializer and deserializer for a given key."""
if key not in self._dtypes:
self.read_types()
return self._dtypes[key]
@property
def db(self):
try:
self._db.cursor()
except sqlite3.ProgrammingError:
self.db = None # Reset the database
return self._db
@db.setter
def db(self, db_path=None):
db_path = db_path or self.db_path
if isinstance(db_path, str):
self._db = sqlite3.connect(db_path)
else:
self._db = db_path
@property
def dtypes(self):
return {k:v[0] for k, v in self._dtypes.items()}
def save_tuples(self, tuples):
self.save_records(Record(*tup) for tup in tuples)
def save_records(self, records):
with self.db:
for rec in records:
if not isinstance(rec, Record):
rec = Record(*rec)
if rec.key not in self._dtypes:
name = utils.name(rec.value)
serializer = utils.serializer(name)
deserializer = utils.deserializer(name)
self._dtypes[rec.key] = (name, serializer, deserializer)
self.db.execute("replace into value_types (key, value_type) values (?, ?)", (rec.key, name))
self.db.execute("replace into history(agent_id, t_step, key, value) values (?, ?, ?, ?)", (rec.agent_id, rec.t_step, rec.key, rec.value))
def save_record(self, *args, **kwargs):
self._tups.append(Record(*args, **kwargs))
if len(self._tups) > 100:
self.flush_cache()
def flush_cache(self):
'''
Use a cache to save state changes to avoid opening a session for every change.
The cache will be flushed at the end of the simulation, and when history is accessed.
'''
self.save_records(self._tups)
self._tups = list()
def to_tuples(self):
self.flush_cache()
with self.db:
res = self.db.execute("select agent_id, t_step, key, value from history ").fetchall()
for r in res:
agent_id, t_step, key, value = r
_, _ , des = self.conversors(key)
yield agent_id, t_step, key, des(value)
def read_types(self):
with self.db:
res = self.db.execute("select key, value_type from value_types ").fetchall()
for k, v in res:
serializer = utils.serializer(v)
deserializer = utils.deserializer(v)
self._dtypes[k] = (v, serializer, deserializer)
def __getitem__(self, key):
key = Key(*key)
agent_ids = [key.agent_id] if key.agent_id is not None else []
t_steps = [key.t_step] if key.t_step is not None else []
keys = [key.key] if key.key is not None else []
df = self.read_sql(agent_ids=agent_ids,
t_steps=t_steps,
keys=keys)
r = Records(df, filter=key, dtypes=self._dtypes)
if r.resolved:
return r.value()
return r
def read_sql(self, keys=None, agent_ids=None, t_steps=None, convert_types=False, limit=-1):
self.read_types()
def escape_and_join(v):
if v is None:
return
return ",".join(map(lambda x: "\'{}\'".format(x), v))
filters = [("key in ({})".format(escape_and_join(keys)), keys),
("agent_id in ({})".format(escape_and_join(agent_ids)), agent_ids)
]
filters = list(k[0] for k in filters if k[1])
last_df = None
if t_steps:
# Look for the last value before the minimum step in the query
min_step = min(t_steps)
last_filters = ['t_step < {}'.format(min_step),]
last_filters = last_filters + filters
condition = ' and '.join(last_filters)
last_query = '''
select h1.*
from history h1
inner join (
select agent_id, key, max(t_step) as t_step
from history
where {condition}
group by agent_id, key
) h2
on h1.agent_id = h2.agent_id and
h1.key = h2.key and
h1.t_step = h2.t_step
'''.format(condition=condition)
last_df = pd.read_sql_query(last_query, self.db)
filters.append("t_step >= '{}' and t_step <= '{}'".format(min_step, max(t_steps)))
condition = ''
if filters:
condition = 'where {} '.format(' and '.join(filters))
query = 'select * from history {} limit {}'.format(condition, limit)
df = pd.read_sql_query(query, self.db)
if last_df is not None:
df = pd.concat([df, last_df])
df_p = df.pivot_table(values='value', index=['t_step'],
columns=['key', 'agent_id'],
aggfunc='first')
for k, v in self._dtypes.items():
if k in df_p:
dtype, _, deserial = v
df_p[k] = df_p[k].fillna(method='ffill').fillna(deserial()).astype(dtype)
if t_steps:
df_p = df_p.reindex(t_steps, method='ffill')
return df_p.ffill()
class Records():
def __init__(self, df, filter=None, dtypes=None):
if not filter:
filter = Key(agent_id=None,
t_step=None,
key=None)
self._df = df
self._filter = filter
self.dtypes = dtypes or {}
super().__init__()
def mask(self, tup):
res = ()
for i, k in zip(tup[:-1], self._filter):
if k is None:
res = res + (i,)
res = res + (tup[-1],)
return res
def filter(self, newKey):
f = list(self._filter)
for ix, i in enumerate(f):
if i is None:
f[ix] = newKey
self._filter = Key(*f)
@property
def resolved(self):
return sum(1 for i in self._filter if i is not None) == 3
def __iter__(self):
for column, series in self._df.iteritems():
key, agent_id = column
for t_step, value in series.iteritems():
r = Record(t_step=t_step,
agent_id=agent_id,
key=key,
value=value)
yield self.mask(r)
def value(self):
if self.resolved:
f = self._filter
try:
i = self._df[f.key][str(f.agent_id)]
ix = i.index.get_loc(f.t_step, method='ffill')
return i.iloc[ix]
except KeyError:
return self.dtypes[f.key][2]()
return list(self)
def __getitem__(self, k):
n = copy.copy(self)
n.filter(k)
if n.resolved:
return n.value()
return n
def __len__(self):
return len(self._df)
def __str__(self):
if self.resolved:
return str(self.value())
return '<Records for [{}]>'.format(self._filter)
Key = namedtuple('Key', ['agent_id', 't_step', 'key'])
Record = namedtuple('Record', 'agent_id t_step key value')

83
soil/network.py Normal file
View File

@@ -0,0 +1,83 @@
from __future__ import annotations
from typing import Dict
import os
import sys
import random
import networkx as nx
from . import config, serialization, basestring
def from_config(cfg: config.NetConfig, dir_path: str = None):
if not isinstance(cfg, config.NetConfig):
cfg = config.NetConfig(**cfg)
if cfg.path:
path = cfg.path
if dir_path and not os.path.isabs(path):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
kwargs = {}
if extension == "gexf":
kwargs["version"] = "1.2draft"
kwargs["node_type"] = int
try:
method = getattr(nx.readwrite, "read_" + extension)
except AttributeError:
raise AttributeError("Unknown format")
return method(path, **kwargs)
if cfg.params:
net_args = dict(cfg.params)
net_gen = net_args.pop("generator")
if dir_path not in sys.path:
sys.path.append(dir_path)
method = serialization.deserializer(
net_gen,
known_modules=[
"networkx.generators",
],
)
return method(**net_args)
if isinstance(cfg.fixed, config.Topology):
cfg = cfg.fixed.dict()
if isinstance(cfg, str) or isinstance(cfg, dict):
return nx.json_graph.node_link_graph(cfg)
return nx.Graph()
def find_unassigned(G, shuffle=False, random=random):
"""
Link an agent to a node in a topology.
If node_id is None, a node without an agent_id will be found.
"""
candidates = list(G.nodes(data=True))
if shuffle:
random.shuffle(candidates)
for next_id, data in candidates:
if "agent" not in data:
return next_id
return None
def dump_gexf(G, f):
for node in G.nodes():
if "pos" in G.nodes[node]:
G.nodes[node]["viz"] = {
"position": {
"x": G.nodes[node]["pos"][0],
"y": G.nodes[node]["pos"][1],
"z": 0.0,
}
}
del G.nodes[node]["pos"]
nx.write_gexf(G, f, version="1.2draft")

231
soil/serialization.py Normal file
View File

@@ -0,0 +1,231 @@
import os
import logging
import ast
import sys
import re
import importlib
from glob import glob
from itertools import product, chain
from .config import Config
import yaml
import networkx as nx
from jinja2 import Template
logger = logging.getLogger("soil")
def load_file(infile):
folder = os.path.dirname(infile)
if folder not in sys.path:
sys.path.append(folder)
with open(infile, "r") as f:
return list(chain.from_iterable(map(expand_template, load_string(f))))
def load_string(string):
yield from yaml.load_all(string, Loader=yaml.FullLoader)
def expand_template(config):
if "template" not in config:
yield config
return
if "vars" not in config:
raise ValueError(
("You must provide a definition of variables" " for the template.")
)
template = config["template"]
if not isinstance(template, str):
template = yaml.dump(template)
template = Template(template)
params = params_for_template(config)
blank_str = template.render({k: 0 for k in params[0].keys()})
blank = list(load_string(blank_str))
if len(blank) > 1:
raise ValueError("Templates must not return more than one configuration")
if "name" in blank[0]:
raise ValueError("Templates cannot be named, use group instead")
for ps in params:
string = template.render(ps)
for c in load_string(string):
yield c
def params_for_template(config):
sampler_config = config.get("sampler", {"N": 100})
sampler = sampler_config.pop("method", "SALib.sample.morris.sample")
sampler = deserializer(sampler)
bounds = config["vars"]["bounds"]
problem = {
"num_vars": len(bounds),
"names": list(bounds.keys()),
"bounds": list(v for v in bounds.values()),
}
samples = sampler(problem, **sampler_config)
lists = config["vars"].get("lists", {})
names = list(lists.keys())
values = list(lists.values())
combs = list(product(*values))
allnames = names + problem["names"]
allvalues = [(list(i[0]) + list(i[1])) for i in product(combs, samples)]
params = list(map(lambda x: dict(zip(allnames, x)), allvalues))
return params
def load_files(*patterns, **kwargs):
for pattern in patterns:
for i in glob(pattern, **kwargs, recursive=True):
for cfg in load_file(i):
path = os.path.abspath(i)
yield Config.from_raw(cfg), path
def load_config(cfg):
if isinstance(cfg, Config):
yield cfg, os.getcwd()
elif isinstance(cfg, dict):
yield Config.from_raw(cfg), os.getcwd()
else:
yield from load_files(cfg)
builtins = importlib.import_module("builtins")
KNOWN_MODULES = [
"soil",
]
def name(value, known_modules=KNOWN_MODULES):
"""Return a name that can be imported, to serialize/deserialize an object"""
if value is None:
return "None"
if not isinstance(value, type): # Get the class name first
value = type(value)
tname = value.__name__
if hasattr(builtins, tname):
return tname
modname = value.__module__
if modname == "__main__":
return tname
if known_modules and modname in known_modules:
return tname
for kmod in known_modules:
if not kmod:
continue
module = importlib.import_module(kmod)
if hasattr(module, tname):
return tname
return "{}.{}".format(modname, tname)
def serializer(type_):
if type_ != "str" and hasattr(builtins, type_):
return repr
return lambda x: x
def serialize(v, known_modules=KNOWN_MODULES):
"""Get a text representation of an object."""
tname = name(v, known_modules=known_modules)
func = serializer(tname)
return func(v), tname
def serialize_dict(d, known_modules=KNOWN_MODULES):
try:
d = dict(d)
except (ValueError, TypeError) as ex:
return serialize(d)[0]
for (k, v) in d.items():
if isinstance(v, dict):
d[k] = serialize_dict(v, known_modules=known_modules)
elif isinstance(v, list):
for ix in range(len(v)):
v[ix] = serialize_dict(v[ix], known_modules=known_modules)
elif isinstance(v, type):
d[k] = serialize(v, known_modules=known_modules)[1]
return d
IS_CLASS = re.compile(r"<class '(.*)'>")
def deserializer(type_, known_modules=KNOWN_MODULES):
if type(type_) != str: # Already deserialized
return type_
if type_ == "str":
return lambda x="": x
if type_ == "None":
return lambda x=None: None
if hasattr(builtins, type_): # Check if it's a builtin type
cls = getattr(builtins, type_)
return lambda x=None: ast.literal_eval(x) if x is not None else cls()
match = IS_CLASS.match(type_)
if match:
modname, tname = match.group(1).rsplit(".", 1)
module = importlib.import_module(modname)
cls = getattr(module, tname)
return getattr(cls, "deserialize", cls)
# Otherwise, see if we can find the module and the class
options = []
for mod in known_modules:
if mod:
options.append((mod, type_))
if "." in type_: # Fully qualified module
module, type_ = type_.rsplit(".", 1)
options.append((module, type_))
errors = []
for modname, tname in options:
try:
module = importlib.import_module(modname)
cls = getattr(module, tname)
return getattr(cls, "deserialize", cls)
except (ImportError, AttributeError) as ex:
errors.append((modname, tname, ex))
raise ValueError('Could not find type "{}". Tried: {}'.format(type_, errors))
def deserialize(type_, value=None, globs=None, **kwargs):
"""Get an object from a text representation"""
if not isinstance(type_, str):
return type_
if globs and type_ in globs:
des = globs[type_]
else:
try:
des = deserializer(type_, **kwargs)
except ValueError as ex:
try:
des = eval(type_)
except Exception:
raise ex
if value is None:
return des
return des(value)
def deserialize_all(names, *args, known_modules=KNOWN_MODULES, **kwargs):
"""Return the list of deserialized objects"""
objects = []
for name in names:
mod = deserialize(name, known_modules=known_modules)
objects.append(mod(*args, **kwargs))
return objects

View File

@@ -1,219 +1,291 @@
import os
import time
import imp
from time import time as current_time, strftime
import importlib
import sys
import yaml
import traceback
import inspect
import logging
import networkx as nx
from networkx.readwrite import json_graph
from multiprocessing import Pool
from functools import partial
from textwrap import dedent
from dataclasses import dataclass, field, asdict
from typing import Any, Dict, Union, Optional, List
from networkx.readwrite import json_graph
from functools import partial
import pickle
from nxsim import NetworkSimulation
from . import utils, environment, basestring, agents
from .utils import logger
from . import serialization, exporters, utils, basestring, agents
from .environment import Environment
from .utils import logger, run_and_return_exceptions
from .config import Config, convert_old
class SoilSimulation(NetworkSimulation):
# TODO: change documentation for simulation
@dataclass
class Simulation:
"""
Subclass of nsim.NetworkSimulation with three main differences:
1) agent type can be specified by name or by class.
2) instead of just one type, a network agents distribution can be used.
The distribution specifies the weight (or probability) of each
agent type in the topology. This is an example distribution: ::
Parameters
---------
config (optional): :class:`config.Config`
name of the Simulation
[
{'agent_type': 'agent_type_1',
'weight': 0.2,
'state': {
'id': 0
}
},
{'agent_type': 'agent_type_2',
'weight': 0.8,
'state': {
'id': 1
}
}
]
In this example, 20% of the nodes will be marked as type
'agent_type_1'.
3) if no initial state is given, each node's state will be set
to `{'id': 0}`.
kwargs: parameters to use to initialize a new configuration, if one not been provided.
"""
def __init__(self, name=None, topology=None, network_params=None,
network_agents=None, agent_type=None, states=None,
default_state=None, interval=1, dump=None, dry_run=False,
dir_path=None, num_trials=1, max_time=100,
agent_module=None, load_module=None, seed=None,
environment_agents=None, environment_params=None, **kwargs):
if topology is None:
topology = utils.load_network(network_params,
dir_path=dir_path)
elif isinstance(topology, basestring) or isinstance(topology, dict):
topology = json_graph.node_link_graph(topology)
version: str = "2"
name: str = "Unnamed simulation"
description: Optional[str] = ""
group: str = None
model_class: Union[str, type] = "soil.Environment"
model_params: dict = field(default_factory=dict)
seed: str = field(default_factory=lambda: current_time())
dir_path: str = field(default_factory=lambda: os.getcwd())
max_time: float = float("inf")
max_steps: int = -1
interval: int = 1
num_trials: int = 1
num_processes: Optional[int] = 1
parallel: Optional[bool] = False
exporters: Optional[List[str]] = field(default_factory=lambda: [exporters.default])
model_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
agent_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
tables: Optional[Dict[str, Any]] = field(default_factory=dict)
outdir: Optional[str] = None
exporter_params: Optional[Dict[str, Any]] = field(default_factory=dict)
dry_run: bool = False
extra: Dict[str, Any] = field(default_factory=dict)
skip_test: Optional[bool] = False
self.load_module = load_module
self.topology = nx.Graph(topology)
self.network_params = network_params
self.name = name or 'UnnamedSimulation'
self.num_trials = num_trials
self.max_time = max_time
self.default_state = default_state or {}
self.dir_path = dir_path or os.getcwd()
self.interval = interval
self.seed = str(seed) or str(time.time())
self.dump = dump
self.dry_run = dry_run
self.environment_params = environment_params or {}
@classmethod
def from_dict(cls, env, **kwargs):
if load_module:
path = sys.path + [self.dir_path, os.getcwd()]
f, fp, desc = imp.find_module(load_module, path)
imp.load_module('soil.agents.custom', f, fp, desc)
ignored = {
k: v for k, v in env.items() if k not in inspect.signature(cls).parameters
}
environment_agents = environment_agents or []
self.environment_agents = agents._convert_agent_types(environment_agents)
d = {k: v for k, v in env.items() if k not in ignored}
if ignored:
d.setdefault("extra", {}).update(ignored)
if ignored:
logger.warning(f'Ignoring these parameters (added to "extra"): { ignored }')
d.update(kwargs)
distro = agents.calculate_distribution(network_agents,
agent_type)
self.network_agents = agents._convert_agent_types(distro)
self.states = agents._validate_states(states,
self.topology)
return cls(**d)
def run_simulation(self, *args, **kwargs):
return self.run(*args, **kwargs)
def run(self, *args, **kwargs):
return list(self.run_simulation_gen(*args, **kwargs))
def run_simulation_gen(self, *args, parallel=False, dry_run=False,
**kwargs):
p = Pool()
with utils.timer('simulation {}'.format(self.name)):
if parallel:
func = partial(self.run_trial, dry_run=dry_run or self.dry_run,
return_env=not parallel, **kwargs)
for i in p.imap_unordered(func, range(self.num_trials)):
yield i
else:
for i in range(self.num_trials):
yield self.run_trial(i, dry_run=dry_run or self.dry_run, **kwargs)
if not (dry_run or self.dry_run):
logger.info('Dumping results to {}'.format(self.dir_path))
self.dump_pickle(self.dir_path)
self.dump_yaml(self.dir_path)
else:
logger.info('NOT dumping results')
def get_env(self, trial_id=0, **kwargs):
opts = self.environment_params.copy()
env_name = '{}_trial_{}'.format(self.name, trial_id)
opts.update({
'name': env_name,
'topology': self.topology.copy(),
'seed': self.seed+env_name,
'initial_time': 0,
'dry_run': self.dry_run,
'interval': self.interval,
'network_agents': self.network_agents,
'states': self.states,
'default_state': self.default_state,
'environment_agents': self.environment_agents,
'dir_path': self.dir_path,
})
opts.update(kwargs)
env = environment.SoilEnvironment(**opts)
return env
def run_trial(self, trial_id=0, until=None, return_env=True, **opts):
"""Run a single trial of the simulation
Parameters
----------
trial_id : int
"""Run the simulation and return the list of resulting environments"""
logger.info(
dedent(
"""
Simulation:
---
"""
)
+ self.to_yaml()
)
return list(self.run_gen(*args, **kwargs))
def run_gen(
self,
num_processes=1,
dry_run=None,
exporters=None,
outdir=None,
exporter_params={},
log_level=None,
**kwargs,
):
"""Run the simulation and yield the resulting environments."""
if log_level:
logger.setLevel(log_level)
outdir = outdir or self.outdir
logger.info("Using exporters: %s", exporters or [])
logger.info("Output directory: %s", outdir)
if dry_run is None:
dry_run = self.dry_run
if exporters is None:
exporters = self.exporters
if not exporter_params:
exporter_params = self.exporter_params
exporters = serialization.deserialize_all(
exporters,
simulation=self,
known_modules=[
"soil.exporters",
],
dry_run=dry_run,
outdir=outdir,
**exporter_params,
)
with utils.timer("simulation {}".format(self.name)):
for exporter in exporters:
exporter.sim_start()
for env in utils.run_parallel(
func=self.run_trial,
iterable=range(int(self.num_trials)),
num_processes=num_processes,
log_level=log_level,
**kwargs,
):
for exporter in exporters:
exporter.trial_start(env)
for exporter in exporters:
exporter.trial_end(env)
yield env
for exporter in exporters:
exporter.sim_end()
def get_env(self, trial_id=0, model_params=None, **kwargs):
"""Create an environment for a trial of the simulation"""
def deserialize_reporters(reporters):
for (k, v) in reporters.items():
if isinstance(v, str) and v.startswith("py:"):
reporters[k] = serialization.deserialize(v.split(":", 1)[1])
return reporters
params = self.model_params.copy()
if model_params:
params.update(model_params)
params.update(kwargs)
agent_reporters = self.agent_reporters.copy()
agent_reporters.update(deserialize_reporters(params.pop("agent_reporters", {})))
model_reporters = self.model_reporters.copy()
model_reporters.update(deserialize_reporters(params.pop("model_reporters", {})))
tables = self.tables.copy()
tables.update(deserialize_reporters(params.pop("tables", {})))
env = serialization.deserialize(self.model_class)
return env(
id=f"{self.name}_trial_{trial_id}",
seed=f"{self.seed}_trial_{trial_id}",
dir_path=self.dir_path,
agent_reporters=agent_reporters,
model_reporters=model_reporters,
tables=tables,
**params,
)
def run_trial(
self, trial_id=None, until=None, log_file=False, log_level=logging.INFO, **opts
):
"""
Run a single trial of the simulation
"""
if log_level:
logger.setLevel(log_level)
model = self.get_env(trial_id, **opts)
trial_id = trial_id if trial_id is not None else current_time()
with utils.timer("Simulation {} trial {}".format(self.name, trial_id)):
return self.run_model(
model=model, trial_id=trial_id, until=until, log_level=log_level
)
def run_model(self, model, until=None, **opts):
# Set-up trial environment and graph
until = until or self.max_time
env = self.get_env(trial_id=trial_id, **opts)
until = float(until or self.max_time or "inf")
# Set up agents on nodes
with utils.timer('Simulation {} trial {}'.format(self.name, trial_id)):
env.run(until)
if self.dump and not self.dry_run:
with utils.timer('Dumping simulation {} trial {}'.format(self.name, trial_id)):
env.dump(formats=self.dump)
if return_env:
return env
def is_done():
return not model.running
if until and hasattr(model.schedule, "time"):
prev = is_done
def is_done():
return prev() or model.schedule.time >= until
if self.max_steps and self.max_steps > 0 and hasattr(model.schedule, "steps"):
prev_steps = is_done
def is_done():
return prev_steps() or model.schedule.steps >= self.max_steps
newline = "\n"
logger.info(
dedent(
f"""
Model stats:
Agents (total: { model.schedule.get_agent_count() }):
- { (newline + ' - ').join(str(a) for a in model.schedule.agents) }
Topology size: { len(model.G) if hasattr(model, "G") else 0 }
"""
)
)
while not is_done():
utils.logger.debug(
f'Simulation time {model.schedule.time}/{until}. Next: {getattr(model.schedule, "next_time", model.schedule.time + self.interval)}'
)
model.step()
if (
model.schedule.time < until
): # Simulation ended (no more steps) before the expected time
model.schedule.time = until
return model
def to_dict(self):
return self.__getstate__()
d = asdict(self)
return serialization.serialize_dict(d)
def to_yaml(self):
return yaml.dump(self.to_dict())
def dump_yaml(self, dir_path=None, file_name=None):
dir_path = dir_path or self.dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
if not file_name:
file_name = os.path.join(dir_path,
'{}.dumped.yml'.format(self.name))
with open(file_name, 'w') as f:
f.write(self.to_yaml())
def dump_pickle(self, dir_path=None, pickle_name=None):
dir_path = dir_path or self.dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
if not pickle_name:
pickle_name = os.path.join(dir_path,
'{}.simulation.pickle'.format(self.name))
with open(pickle_name, 'wb') as f:
pickle.dump(self, f)
def __getstate__(self):
state = self.__dict__.copy()
state['topology'] = json_graph.node_link_data(self.topology)
state['network_agents'] = agents._serialize_distribution(self.network_agents)
state['environment_agents'] = agents._convert_agent_types(self.environment_agents,
to_string=True)
return state
def __setstate__(self, state):
self.__dict__ = state
self.topology = json_graph.node_link_graph(state['topology'])
self.network_agents = agents.calculate_distribution(agents._convert_agent_types(self.network_agents))
self.environment_agents = agents._convert_agent_types(self.environment_agents)
return state
def iter_from_config(*cfgs, **kwargs):
for config in cfgs:
configs = list(serialization.load_config(config))
for config, path in configs:
d = dict(config)
if "dir_path" not in d:
d["dir_path"] = os.path.dirname(path)
yield Simulation.from_dict(d, **kwargs)
def from_config(config):
config = list(utils.load_config(config))
if len(config) > 1:
raise AttributeError('Provide only one configuration')
config = config[0][0]
sim = SoilSimulation(**config)
return sim
def from_config(conf_or_path):
lst = list(iter_from_config(conf_or_path))
if len(lst) > 1:
raise AttributeError("Provide only one configuration")
return lst[0]
def iter_from_py(pyfile, module_name='custom_simulation'):
"""Try to load every Simulation instance in a given Python file"""
import importlib
import inspect
spec = importlib.util.spec_from_file_location(module_name, pyfile)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
# import pdb;pdb.set_trace()
for (_name, sim) in inspect.getmembers(module, lambda x: isinstance(x, Simulation)):
yield sim
del sys.modules[module_name]
def run_from_config(*configs, results_dir='soil_output', dry_run=False, dump=None, timestamp=False, **kwargs):
for config_def in configs:
# logger.info("Found {} config(s)".format(len(ls)))
for config, _ in utils.load_config(config_def):
name = config.get('name', 'unnamed')
logger.info("Using config(s): {name}".format(name=name))
def from_py(pyfile):
return next(iter_from_py(pyfile))
if timestamp:
sim_folder = '{}_{}'.format(name,
time.strftime("%Y-%m-%d_%H:%M:%S"))
else:
sim_folder = name
dir_path = os.path.join(results_dir, sim_folder)
sim = SoilSimulation(dir_path=dir_path, dump=dump, **config)
logger.info('Dumping results to {} : {}'.format(sim.dir_path, sim.dump))
sim.run_simulation(**kwargs)
def run_from_config(*configs, **kwargs):
for sim in iter_from_config(*configs):
logger.info(f"Using config(s): {sim.name}")
sim.run_simulation(**kwargs)

207
soil/time.py Normal file
View File

@@ -0,0 +1,207 @@
from mesa.time import BaseScheduler
from queue import Empty
from heapq import heappush, heappop
import math
from inspect import getsource
from numbers import Number
from textwrap import dedent
from .utils import logger
from mesa import Agent as MesaAgent
INFINITY = float("inf")
class DeadAgent(Exception):
pass
class When:
def __init__(self, time):
if isinstance(time, When):
return time
self._time = time
def abs(self, time):
return self._time
def schedule_next(self, time, delta, first=False):
return (self._time, None)
NEVER = When(INFINITY)
class Delta(When):
def __init__(self, delta):
self._delta = delta
def abs(self, time):
return self._time + self._delta
def __eq__(self, other):
if isinstance(other, Delta):
return self._delta == other._delta
return False
def schedule_next(self, time, delta, first=False):
return (time + self._delta, None)
def __repr__(self):
return str(f"Delta({self._delta})")
class BaseCond:
def __init__(self, msg=None, delta=None, eager=False):
self._msg = msg
self._delta = delta
self.eager = eager
def schedule_next(self, time, delta, first=False):
if first and self.eager:
return (time, self)
if self._delta:
delta = self._delta
return (time + delta, self)
def return_value(self, agent):
return None
def __repr__(self):
return self._msg or self.__class__.__name__
class Cond(BaseCond):
def __init__(self, func, *args, **kwargs):
self._func = func
super().__init__(*args, **kwargs)
def ready(self, agent, time):
return self._func(agent)
def __repr__(self):
if self._msg:
return self._msg
return str(f'Cond("{dedent(getsource(self._func)).strip()}")')
class TimedActivation(BaseScheduler):
"""A scheduler which activates each agent when the agent requests.
In each activation, each agent will update its 'next_time'.
"""
def __init__(self, *args, shuffle=True, **kwargs):
super().__init__(*args, **kwargs)
self._next = {}
self._queue = []
self._shuffle = shuffle
self.step_interval = 1
self.logger = logger.getChild(f"time_{ self.model }")
def add(self, agent: MesaAgent, when=None):
if when is None:
when = self.time
elif isinstance(when, When):
when = when.abs()
self._schedule(agent, None, when)
super().add(agent)
def _schedule(self, agent, condition=None, when=None):
if condition:
if not when:
when, condition = condition.schedule_next(
when or self.time, self.step_interval
)
else:
if when is None:
when = self.time + self.step_interval
condition = None
if self._shuffle:
key = (when, self.model.random.random(), condition)
else:
key = (when, agent.unique_id, condition)
self._next[agent.unique_id] = key
heappush(self._queue, (key, agent))
def step(self) -> None:
"""
Executes agents in order, one at a time. After each step,
an agent will signal when it wants to be scheduled next.
"""
self.logger.debug(f"Simulation step {self.time}")
if not self.model.running or self.time == INFINITY:
return
self.logger.debug("Queue length: {ql}", ql=len(self._queue))
while self._queue:
((when, _id, cond), agent) = self._queue[0]
if when > self.time:
break
heappop(self._queue)
if cond:
if not cond.ready(agent, self.time):
self._schedule(agent, cond)
continue
try:
agent._last_return = cond.return_value(agent)
except Exception as ex:
agent._last_except = ex
else:
agent._last_return = None
agent._last_except = None
self.logger.debug("Stepping agent {agent}", agent=agent)
self._next.pop(agent.unique_id, None)
try:
returned = agent.step()
except DeadAgent:
agent.alive = False
continue
# Check status for MESA agents
if not getattr(agent, "alive", True):
continue
if returned:
next_check = returned.schedule_next(
self.time, self.step_interval, first=True
)
self._schedule(agent, when=next_check[0], condition=next_check[1])
else:
next_check = (self.time + self.step_interval, None)
self._schedule(agent)
self.steps += 1
if not self._queue:
self.time = INFINITY
self.model.running = False
return self.time
next_time = self._queue[0][0][0]
if next_time < self.time:
raise Exception(
f"An agent has been scheduled for a time in the past, there is probably an error ({when} < {self.time})"
)
self.logger.debug(f"Updating time step: {self.time} -> {next_time}")
self.time = next_time
class ShuffledTimedActivation(TimedActivation):
def __init__(self, *args, **kwargs):
super().__init__(*args, shuffle=True, **kwargs)
class OrderedTimedActivation(TimedActivation):
def __init__(self, *args, **kwargs):
super().__init__(*args, shuffle=False, **kwargs)

View File

@@ -1,105 +1,156 @@
import os
import yaml
import logging
import importlib
from time import time
from glob import glob
from random import random
from copy import deepcopy
from time import time as current_time, strftime, gmtime, localtime
import os
import traceback
import networkx as nx
from functools import partial
from shutil import copyfile, move
from multiprocessing import Pool, cpu_count
from contextlib import contextmanager
logger = logging.getLogger('soil')
logger = logging.getLogger("soil")
logger.setLevel(logging.INFO)
timeformat = "%H:%M:%S"
def load_network(network_params, dir_path=None):
if network_params is None:
return nx.Graph()
path = network_params.get('path', None)
if path:
if dir_path and not os.path.isabs(path):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
kwargs = {}
if extension == 'gexf':
kwargs['version'] = '1.2draft'
kwargs['node_type'] = int
try:
method = getattr(nx.readwrite, 'read_' + extension)
except AttributeError:
raise AttributeError('Unknown format')
return method(path, **kwargs)
if os.environ.get("SOIL_VERBOSE", ""):
logformat = "[%(levelname)-5.5s][%(asctime)s][%(name)s]: %(message)s"
else:
logformat = "[%(levelname)-5.5s][%(asctime)s] %(message)s"
net_args = network_params.copy()
net_type = net_args.pop('generator')
logFormatter = logging.Formatter(logformat, timeformat)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
method = getattr(nx.generators, net_type)
return method(**net_args)
def load_file(infile):
with open(infile, 'r') as f:
return list(yaml.load_all(f))
def load_files(*patterns):
for pattern in patterns:
for i in glob(pattern):
for config in load_file(i):
yield config, os.path.abspath(i)
def load_config(config):
if isinstance(config, dict):
yield config, None
else:
yield from load_files(config)
logging.basicConfig(
level=logging.DEBUG,
handlers=[
consoleHandler,
],
)
@contextmanager
def timer(name='task', pre="", function=logger.info, to_object=None):
start = time()
function('{}Starting {} at {}.'.format(pre, name, start))
def timer(name="task", pre="", function=logger.info, to_object=None):
start = current_time()
function("{}Starting {} at {}.".format(pre, name, strftime("%X", gmtime(start))))
yield start
end = time()
function('{}Finished {} in {} seconds'.format(pre, name, str(end-start)))
end = current_time()
function(
"{}Finished {} at {} in {} seconds".format(
pre, name, strftime("%X", gmtime(end)), str(end - start)
)
)
if to_object:
to_object.start = start
to_object.end = end
def repr(v):
func = serializer(v)
tname = name(v)
return func(v), tname
def try_backup(path, remove=False):
if not os.path.exists(path):
return None
outdir = os.path.dirname(path)
if outdir and not os.path.exists(outdir):
os.makedirs(outdir)
creation = os.path.getctime(path)
stamp = strftime("%Y-%m-%d_%H.%M.%S", localtime(creation))
backup_dir = os.path.join(outdir, "backup")
if not os.path.exists(backup_dir):
os.makedirs(backup_dir)
newpath = os.path.join(backup_dir, "{}@{}".format(os.path.basename(path), stamp))
if move:
move(path, newpath)
else:
copyfile(path, newpath)
return newpath
def name(v):
return type(v).__name__
def safe_open(path, mode="r", backup=True, **kwargs):
outdir = os.path.dirname(path)
if outdir and not os.path.exists(outdir):
os.makedirs(outdir)
if backup and "w" in mode:
try_backup(path)
return open(path, mode=mode, **kwargs)
def serializer(type_):
if type_ == 'bool':
return lambda x: "true" if x else ""
return lambda x: x
def deserializer(type_):
@contextmanager
def open_or_reuse(f, *args, **kwargs):
try:
# Check if it's a builtin type
module = importlib.import_module('builtins')
cls = getattr(module, type_)
except AttributeError:
# if not, separate module and class
module, type_ = type_.rsplit(".", 1)
module = importlib.import_module(module)
cls = getattr(module, type_)
return cls
with safe_open(f, *args, **kwargs) as f:
yield f
except (AttributeError, TypeError) as ex:
yield f
def convert(value, type_):
return deserializer(type_)(value)
def flatten_dict(d):
if not isinstance(d, dict):
return d
return dict(_flatten_dict(d))
def _flatten_dict(d, prefix=""):
if not isinstance(d, dict):
# print('END:', prefix, d)
yield prefix, d
return
if prefix:
prefix = prefix + "."
for k, v in d.items():
# print(k, v)
res = list(_flatten_dict(v, prefix="{}{}".format(prefix, k)))
# print('RES:', res)
yield from res
def unflatten_dict(d):
out = {}
for k, v in d.items():
target = out
if not isinstance(k, str):
target[k] = v
continue
tokens = k.split(".")
if len(tokens) < 2:
target[k] = v
continue
for token in tokens[:-1]:
if token not in target:
target[token] = {}
target = target[token]
target[tokens[-1]] = v
return out
def run_and_return_exceptions(func, *args, **kwargs):
"""
A wrapper for run_trial that catches exceptions and returns them.
It is meant for async simulations.
"""
try:
return func(*args, **kwargs)
except Exception as ex:
if ex.__cause__ is not None:
ex = ex.__cause__
ex.message = "".join(
traceback.format_exception(type(ex), ex, ex.__traceback__)[:]
)
return ex
def run_parallel(func, iterable, num_processes=1, **kwargs):
if num_processes > 1 and not os.environ.get("SOIL_DEBUG", None):
if num_processes < 1:
num_processes = cpu_count() - num_processes
p = Pool(processes=num_processes)
wrapped_func = partial(run_and_return_exceptions, func, **kwargs)
for i in p.imap_unordered(wrapped_func, iterable):
if isinstance(i, Exception):
logger.error("Trial failed:\n\t%s", i.message)
continue
yield i
else:
for i in iterable:
yield func(i, **kwargs)

View File

@@ -4,7 +4,7 @@ import logging
logger = logging.getLogger(__name__)
ROOT = os.path.dirname(__file__)
DEFAULT_FILE = os.path.join(ROOT, 'VERSION')
DEFAULT_FILE = os.path.join(ROOT, "VERSION")
def read_version(versionfile=DEFAULT_FILE):
@@ -12,9 +12,10 @@ def read_version(versionfile=DEFAULT_FILE):
with open(versionfile) as f:
return f.read().strip()
except IOError: # pragma: no cover
logger.error(('Running an unknown version of {}.'
'Be careful!.').format(__name__))
return '0.0'
logger.error(
("Running an unknown version of {}." "Be careful!.").format(__name__)
)
return "0.0"
__version__ = read_version()

6
soil/visualization.py Normal file
View File

@@ -0,0 +1,6 @@
from mesa.visualization.UserParam import UserSettableParameter
class UserSettableParameter(UserSettableParameter):
def __str__(self):
return self.value

View File

@@ -1,255 +0,0 @@
import random
import networkx as nx
from soil.agents import BaseAgent, FSM, state, default_state
from scipy.spatial import cKDTree as KDTree
global betweenness_centrality_global
global degree_centrality_global
betweenness_centrality_global = None
degree_centrality_global = None
class TerroristSpreadModel(FSM):
"""
Settings:
information_spread_intensity
terrorist_additional_influence
min_vulnerability (optional else zero)
max_vulnerability
prob_interaction
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
global betweenness_centrality_global
global degree_centrality_global
if betweenness_centrality_global == None:
betweenness_centrality_global = nx.betweenness_centrality(self.global_topology)
if degree_centrality_global == None:
degree_centrality_global = nx.degree_centrality(self.global_topology)
self.information_spread_intensity = environment.environment_params['information_spread_intensity']
self.terrorist_additional_influence = environment.environment_params['terrorist_additional_influence']
self.prob_interaction = environment.environment_params['prob_interaction']
if self['id'] == self.civilian.id: # Civilian
self.initial_belief = random.uniform(0.00, 0.5)
elif self['id'] == self.terrorist.id: # Terrorist
self.initial_belief = random.uniform(0.8, 1.00)
elif self['id'] == self.leader.id: # Leader
self.initial_belief = 1.00
else:
raise Exception('Invalid state id: {}'.format(self['id']))
if 'min_vulnerability' in environment.environment_params:
self.vulnerability = random.uniform( environment.environment_params['min_vulnerability'], environment.environment_params['max_vulnerability'] )
else :
self.vulnerability = random.uniform( 0, environment.environment_params['max_vulnerability'] )
self.mean_belief = self.initial_belief
self.betweenness_centrality = betweenness_centrality_global[self.id]
self.degree_centrality = degree_centrality_global[self.id]
# self.state['radicalism'] = self.mean_belief
def count_neighboring_agents(self, state_id=None):
if isinstance(state_id, list):
return len(self.get_neighboring_agents(state_id))
else:
return len(super().get_agents(state_id, limit_neighbors=True))
def get_neighboring_agents(self, state_id=None):
if isinstance(state_id, list):
_list = []
for i in state_id:
_list += super().get_agents(i, limit_neighbors=True)
return [ neighbour for neighbour in _list if isinstance(neighbour, TerroristSpreadModel) ]
else:
_list = super().get_agents(state_id, limit_neighbors=True)
return [ neighbour for neighbour in _list if isinstance(neighbour, TerroristSpreadModel) ]
@state
def civilian(self):
if self.count_neighboring_agents() > 0:
neighbours = []
for neighbour in self.get_neighboring_agents():
if random.random() < self.prob_interaction:
neighbours.append(neighbour)
influence = sum( neighbour.degree_centrality for neighbour in neighbours )
mean_belief = sum( neighbour.mean_belief * neighbour.degree_centrality / influence for neighbour in neighbours )
self.initial_belief = self.mean_belief
mean_belief = mean_belief * self.information_spread_intensity + self.initial_belief * ( 1 - self.information_spread_intensity )
self.mean_belief = mean_belief * self.vulnerability + self.initial_belief * ( 1 - self.vulnerability )
if self.mean_belief >= 0.8:
return self.terrorist
@state
def leader(self):
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
if self.count_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]) > 0:
for neighbour in self.get_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]):
if neighbour.betweenness_centrality > self.betweenness_centrality:
return self.terrorist
@state
def terrorist(self):
if self.count_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]) > 0:
neighbours = self.get_neighboring_agents(state_id=[self.terrorist.id, self.leader.id])
influence = sum( neighbour.degree_centrality for neighbour in neighbours )
mean_belief = sum( neighbour.mean_belief * neighbour.degree_centrality / influence for neighbour in neighbours )
self.initial_belief = self.mean_belief
self.mean_belief = mean_belief * self.vulnerability + self.initial_belief * ( 1 - self.vulnerability )
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
if self.count_neighboring_agents(state_id=self.leader.id) == 0 and self.count_neighboring_agents(state_id=self.terrorist.id) > 0:
max_betweenness_centrality = self
for neighbour in self.get_neighboring_agents(state_id=self.terrorist.id):
if neighbour.betweenness_centrality > max_betweenness_centrality.betweenness_centrality:
max_betweenness_centrality = neighbour
if max_betweenness_centrality == self:
return self.leader
def add_edge(self, G, source, target):
G.add_edge(source.id, target.id, start=self.env._now)
def link_search(self, G, node, radius):
pos = nx.get_node_attributes(G, 'pos')
nodes, coords = list(zip(*pos.items()))
kdtree = KDTree(coords) # Cannot provide generator.
edge_indexes = kdtree.query_pairs(radius, 2)
_list = [ edge[int(not edge.index(node))] for edge in edge_indexes if node in edge ]
return [ G.nodes()[index]['agent'] for index in _list ]
def social_search(self, G, node, steps):
nodes = list(nx.ego_graph(G, node, radius=steps).nodes())
nodes.remove(node)
return [ G.nodes()[index]['agent'] for index in nodes ]
class TrainingAreaModel(FSM):
"""
Settings:
training_influence
min_vulnerability
Requires TerroristSpreadModel.
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.training_influence = environment.environment_params['training_influence']
if 'min_vulnerability' in environment.environment_params:
self.min_vulnerability = environment.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
@default_state
@state
def terrorist(self):
for neighbour in self.get_neighboring_agents():
if isinstance(neighbour, TerroristSpreadModel) and neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.training_influence )
class HavenModel(FSM):
"""
Settings:
haven_influence
min_vulnerability
max_vulnerability
Requires TerroristSpreadModel.
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.haven_influence = environment.environment_params['haven_influence']
if 'min_vulnerability' in environment.environment_params:
self.min_vulnerability = environment.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
self.max_vulnerability = environment.environment_params['max_vulnerability']
@state
def civilian(self):
for neighbour_agent in self.get_neighboring_agents():
if isinstance(neighbour_agent, TerroristSpreadModel) and neighbour_agent['id'] == neighbour_agent.civilian.id:
for neighbour in self.get_neighboring_agents():
if isinstance(neighbour, TerroristSpreadModel) and neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability * ( 1 - self.haven_influence )
return self.civilian
return self.terrorist
@state
def terrorist(self):
for neighbour in self.get_neighboring_agents():
if isinstance(neighbour, TerroristSpreadModel) and neighbour.vulnerability < self.max_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.haven_influence )
return self.terrorist
class TerroristNetworkModel(TerroristSpreadModel):
"""
Settings:
sphere_influence
vision_range
weight_social_distance
weight_link_distance
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.vision_range = environment.environment_params['vision_range']
self.sphere_influence = environment.environment_params['sphere_influence']
self.weight_social_distance = environment.environment_params['weight_social_distance']
self.weight_link_distance = environment.environment_params['weight_link_distance']
@state
def terrorist(self):
self.update_relationships()
return super().terrorist()
@state
def leader(self):
self.update_relationships()
return super().leader()
def update_relationships(self):
if self.count_neighboring_agents(state_id=self.civilian.id) == 0:
close_ups = self.link_search(self.global_topology, self.id, self.vision_range)
step_neighbours = self.social_search(self.global_topology, self.id, self.sphere_influence)
search = list(set(close_ups).union(step_neighbours))
neighbours = self.get_neighboring_agents()
search = [item for item in search if not item in neighbours and isinstance(item, TerroristNetworkModel)]
for agent in search:
social_distance = 1 / self.shortest_path_length(self.global_topology, self.id, agent.id)
spatial_proximity = ( 1 - self.get_distance(self.global_topology, self.id, agent.id) )
prob_new_interaction = self.weight_social_distance * social_distance + self.weight_link_distance * spatial_proximity
if agent['id'] == agent.civilian.id and random.random() < prob_new_interaction:
self.add_edge(self.global_topology, self, agent)
break
def get_distance(self, G, source, target):
source_x, source_y = nx.get_node_attributes(G, 'pos')[source]
target_x, target_y = nx.get_node_attributes(G, 'pos')[target]
dx = abs( source_x - target_x )
dy = abs( source_y - target_y )
return ( dx ** 2 + dy ** 2 ) ** ( 1 / 2 )
def shortest_path_length(self, G, source, target):
try:
return nx.shortest_path_length(G, source, target)
except nx.NetworkXNoPath:
return float('inf')

View File

@@ -19,7 +19,8 @@ from xml.etree.ElementTree import tostring
from tornado.concurrent import run_on_executor
from concurrent.futures import ThreadPoolExecutor
from ..simulation import SoilSimulation
from ..simulation import Simulation
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
@@ -31,171 +32,217 @@ LOGGING_INTERVAL = 0.5
# Workaround to let Soil load the required modules
sys.path.append(ROOT)
class PageHandler(tornado.web.RequestHandler):
""" Handler for the HTML template which holds the visualization. """
"""Handler for the HTML template which holds the visualization."""
def get(self):
self.render('index.html', port=self.application.port,
name=self.application.name)
self.render(
"index.html", port=self.application.port, name=self.application.name
)
class SocketHandler(tornado.websocket.WebSocketHandler):
""" Handler for websocket. """
"""Handler for websocket."""
executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
def open(self):
if self.application.verbose:
logger.info('Socket opened!')
logger.info("Socket opened!")
def check_origin(self, origin):
return True
def on_message(self, message):
""" Receiving a message from the websocket, parse, and act accordingly. """
"""Receiving a message from the websocket, parse, and act accordingly."""
msg = tornado.escape.json_decode(message)
if msg['type'] == 'config_file':
if msg["type"] == "config_file":
if self.application.verbose:
print(msg['data'])
print(msg["data"])
self.config = list(yaml.load_all(msg['data']))
self.config = list(yaml.load_all(msg["data"]))
if len(self.config) > 1:
error = 'Please, provide only one configuration.'
error = "Please, provide only one configuration."
if self.application.verbose:
logger.error(error)
self.write_message({'type': 'error',
'error': error})
self.write_message({"type": "error", "error": error})
return
self.config = self.config[0]
self.send_log('INFO.' + self.simulation_name,
'Using config: {name}'.format(name=self.config['name']))
self.send_log(
"INFO." + self.simulation_name,
"Using config: {name}".format(name=self.config["name"]),
)
if 'visualization_params' in self.config:
self.write_message({'type': 'visualization_params',
'data': self.config['visualization_params']})
self.name = self.config['name']
if "visualization_params" in self.config:
self.write_message(
{
"type": "visualization_params",
"data": self.config["visualization_params"],
}
)
self.name = self.config["name"]
self.run_simulation()
settings = []
for key in self.config['environment_params']:
if type(self.config['environment_params'][key]) == float or type(self.config['environment_params'][key]) == int:
if self.config['environment_params'][key] <= 1:
setting_type = 'number'
for key in self.config["environment_params"]:
if (
type(self.config["environment_params"][key]) == float
or type(self.config["environment_params"][key]) == int
):
if self.config["environment_params"][key] <= 1:
setting_type = "number"
else:
setting_type = 'great_number'
elif type(self.config['environment_params'][key]) == bool:
setting_type = 'boolean'
setting_type = "great_number"
elif type(self.config["environment_params"][key]) == bool:
setting_type = "boolean"
else:
setting_type = 'undefined'
setting_type = "undefined"
settings.append({
'label': key,
'type': setting_type,
'value': self.config['environment_params'][key]
})
settings.append(
{
"label": key,
"type": setting_type,
"value": self.config["environment_params"][key],
}
)
self.write_message({'type': 'settings',
'data': settings})
self.write_message({"type": "settings", "data": settings})
elif msg['type'] == 'get_trial':
elif msg["type"] == "get_trial":
if self.application.verbose:
logger.info('Trial {} requested!'.format(msg['data']))
self.send_log('INFO.' + __name__, 'Trial {} requested!'.format(msg['data']))
self.write_message({'type': 'get_trial',
'data': self.get_trial(int(msg['data']))})
logger.info("Trial {} requested!".format(msg["data"]))
self.send_log("INFO." + __name__, "Trial {} requested!".format(msg["data"]))
self.write_message(
{"type": "get_trial", "data": self.get_trial(int(msg["data"]))}
)
elif msg['type'] == 'run_simulation':
elif msg["type"] == "run_simulation":
if self.application.verbose:
logger.info('Running new simulation for {name}'.format(name=self.config['name']))
self.send_log('INFO.' + self.simulation_name, 'Running new simulation for {name}'.format(name=self.config['name']))
self.config['environment_params'] = msg['data']
logger.info(
"Running new simulation for {name}".format(name=self.config["name"])
)
self.send_log(
"INFO." + self.simulation_name,
"Running new simulation for {name}".format(name=self.config["name"]),
)
self.config["environment_params"] = msg["data"]
self.run_simulation()
elif msg['type'] == 'download_gexf':
G = self.trials[ int(msg['data']) ].history_to_graph()
elif msg["type"] == "download_gexf":
G = self.trials[int(msg["data"])].history_to_graph()
for node in G.nodes():
if 'pos' in G.node[node]:
G.node[node]['viz'] = {"position": {"x": G.node[node]['pos'][0], "y": G.node[node]['pos'][1], "z": 0.0}}
del (G.node[node]['pos'])
writer = nx.readwrite.gexf.GEXFWriter(version='1.2draft')
if "pos" in G.nodes[node]:
G.nodes[node]["viz"] = {
"position": {
"x": G.nodes[node]["pos"][0],
"y": G.nodes[node]["pos"][1],
"z": 0.0,
}
}
del G.nodes[node]["pos"]
writer = nx.readwrite.gexf.GEXFWriter(version="1.2draft")
writer.add_graph(G)
self.write_message({'type': 'download_gexf',
'filename': self.config['name'] + '_trial_' + str(msg['data']),
'data': tostring(writer.xml).decode(writer.encoding) })
self.write_message(
{
"type": "download_gexf",
"filename": self.config["name"] + "_trial_" + str(msg["data"]),
"data": tostring(writer.xml).decode(writer.encoding),
}
)
elif msg['type'] == 'download_json':
G = self.trials[ int(msg['data']) ].history_to_graph()
elif msg["type"] == "download_json":
G = self.trials[int(msg["data"])].history_to_graph()
for node in G.nodes():
if 'pos' in G.node[node]:
G.node[node]['viz'] = {"position": {"x": G.node[node]['pos'][0], "y": G.node[node]['pos'][1], "z": 0.0}}
del (G.node[node]['pos'])
self.write_message({'type': 'download_json',
'filename': self.config['name'] + '_trial_' + str(msg['data']),
'data': nx.node_link_data(G) })
if "pos" in G.nodes[node]:
G.nodes[node]["viz"] = {
"position": {
"x": G.nodes[node]["pos"][0],
"y": G.nodes[node]["pos"][1],
"z": 0.0,
}
}
del G.nodes[node]["pos"]
self.write_message(
{
"type": "download_json",
"filename": self.config["name"] + "_trial_" + str(msg["data"]),
"data": nx.node_link_data(G),
}
)
else:
if self.application.verbose:
logger.info('Unexpected message!')
logger.info("Unexpected message!")
def update_logging(self):
try:
if (not self.log_capture_string.closed and self.log_capture_string.getvalue()):
for i in range(len(self.log_capture_string.getvalue().split('\n')) - 1):
self.send_log('INFO.' + self.simulation_name, self.log_capture_string.getvalue().split('\n')[i])
if (
not self.log_capture_string.closed
and self.log_capture_string.getvalue()
):
for i in range(len(self.log_capture_string.getvalue().split("\n")) - 1):
self.send_log(
"INFO." + self.simulation_name,
self.log_capture_string.getvalue().split("\n")[i],
)
self.log_capture_string.truncate(0)
self.log_capture_string.seek(0)
finally:
if self.capture_logging:
tornado.ioloop.IOLoop.current().call_later(LOGGING_INTERVAL, self.update_logging)
tornado.ioloop.IOLoop.current().call_later(
LOGGING_INTERVAL, self.update_logging
)
def on_close(self):
if self.application.verbose:
logger.info('Socket closed!')
logger.info("Socket closed!")
def send_log(self, logger, logging):
self.write_message({'type': 'log',
'logger': logger,
'logging': logging})
self.write_message({"type": "log", "logger": logger, "logging": logging})
@property
def simulation_name(self):
return self.config.get('name', 'NoSimulationRunning')
return self.config.get("name", "NoSimulationRunning")
@run_on_executor
def nonblocking(self, config):
simulation = SoilSimulation(**config)
simulation = Simulation(**config)
return simulation.run()
@tornado.gen.coroutine
def run_simulation(self):
# Run simulation and capture logs
logger.info('Running simulation!')
if 'visualization_params' in self.config:
del self.config['visualization_params']
logger.info("Running simulation!")
if "visualization_params" in self.config:
del self.config["visualization_params"]
with self.logging(self.simulation_name):
try:
config = dict(**self.config)
config['dir_path'] = os.path.join(self.application.dir_path, config['name'])
config['dump'] = self.application.dump
config["outdir"] = os.path.join(self.application.outdir, config["name"])
config["dump"] = self.application.dump
self.trials = yield self.nonblocking(config)
self.write_message({'type': 'trials',
'data': list(trial.name for trial in self.trials) })
self.write_message(
{
"type": "trials",
"data": list(trial.name for trial in self.trials),
}
)
except Exception as ex:
error = 'Something went wrong:\n\t{}'.format(ex)
error = "Something went wrong:\n\t{}".format(ex)
logging.info(error)
self.write_message({'type': 'error',
'error': error})
self.send_log('ERROR.' + self.simulation_name, error)
self.write_message({"type": "error", "error": error})
self.send_log("ERROR." + self.simulation_name, error)
def get_trial(self, trial):
logger.info('Available trials: %s ' % len(self.trials))
logger.info('Ask for : %s' % trial)
logger.info("Available trials: %s " % len(self.trials))
logger.info("Ask for : %s" % trial)
trial = self.trials[trial]
G = trial.history_to_graph()
return nx.node_link_data(G)
@@ -218,37 +265,40 @@ class SocketHandler(tornado.websocket.WebSocketHandler):
class ModularServer(tornado.web.Application):
""" Main visualization application. """
"""Main visualization application."""
port = 8001
page_handler = (r'/', PageHandler)
socket_handler = (r'/ws', SocketHandler)
static_handler = (r'/(.*)', tornado.web.StaticFileHandler,
{'path': os.path.join(ROOT, 'static')})
local_handler = (r'/local/(.*)', tornado.web.StaticFileHandler,
{'path': ''})
page_handler = (r"/", PageHandler)
socket_handler = (r"/ws", SocketHandler)
static_handler = (
r"/(.*)",
tornado.web.StaticFileHandler,
{"path": os.path.join(ROOT, "static")},
)
local_handler = (r"/local/(.*)", tornado.web.StaticFileHandler, {"path": ""})
handlers = [page_handler, socket_handler, static_handler, local_handler]
settings = {'debug': True,
'template_path': ROOT + '/templates'}
settings = {"debug": True, "template_path": ROOT + "/templates"}
def __init__(self, dump=False, dir_path='output', name='SOIL', verbose=True, *args, **kwargs):
def __init__(
self, dump=False, outdir="output", name="SOIL", verbose=True, *args, **kwargs
):
self.verbose = verbose
self.name = name
self.dump = dump
self.dir_path = dir_path
self.outdir = outdir
# Initializing the application itself:
super().__init__(self.handlers, **self.settings)
def launch(self, port=None):
""" Run the app. """
"""Run the app."""
if port is not None:
self.port = port
url = 'http://127.0.0.1:{PORT}'.format(PORT=self.port)
print('Interface starting at {url}'.format(url=url))
url = "http://127.0.0.1:{PORT}".format(PORT=self.port)
print("Interface starting at {url}".format(url=url))
self.listen(self.port)
# webbrowser.open(url)
tornado.ioloop.IOLoop.instance().start()
@@ -263,12 +313,22 @@ def run(*args, **kwargs):
def main():
import argparse
parser = argparse.ArgumentParser(description='Visualization of a Graph Model')
parser = argparse.ArgumentParser(description="Visualization of a Graph Model")
parser.add_argument('--name', '-n', nargs=1, default='SOIL', help='name of the simulation')
parser.add_argument('--dump', '-d', help='dumping results in folder output', action='store_true')
parser.add_argument('--port', '-p', nargs=1, default=8001, help='port for launching the server')
parser.add_argument('--verbose', '-v', help='verbose mode', action='store_true')
parser.add_argument(
"--name", "-n", nargs=1, default="SOIL", help="name of the simulation"
)
parser.add_argument(
"--dump", "-d", help="dumping results in folder output", action="store_true"
)
parser.add_argument(
"--port", "-p", nargs=1, default=8001, help="port for launching the server"
)
parser.add_argument("--verbose", "-v", help="verbose mode", action="store_true")
args = parser.parse_args()
run(name=args.name, port=(args.port[0] if isinstance(args.port, list) else args.port), verbose=args.verbose)
run(
name=args.name,
port=(args.port[0] if isinstance(args.port, list) else args.port),
verbose=args.verbose,
)

View File

@@ -6,11 +6,11 @@ network_params:
n: 100
m: 2
network_agents:
- agent_type: ControlModelM2
- agent_class: ControlModelM2
weight: 0.1
state:
id: 1
- agent_type: ControlModelM2
- agent_class: ControlModelM2
weight: 0.9
state:
id: 0

View File

@@ -4,20 +4,33 @@ from simulator import Simulator
def run(simulator, name="SOIL", port=8001, verbose=False):
server = ModularServer(simulator, name=(name[0] if isinstance(name, list) else name), verbose=verbose)
server = ModularServer(
simulator, name=(name[0] if isinstance(name, list) else name), verbose=verbose
)
server.port = port
server.launch()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Visualization of a Graph Model')
parser = argparse.ArgumentParser(description="Visualization of a Graph Model")
parser.add_argument('--name', '-n', nargs=1, default='SOIL', help='name of the simulation')
parser.add_argument('--dump', '-d', help='dumping results in folder output', action='store_true')
parser.add_argument('--port', '-p', nargs=1, default=8001, help='port for launching the server')
parser.add_argument('--verbose', '-v', help='verbose mode', action='store_true')
parser.add_argument(
"--name", "-n", nargs=1, default="SOIL", help="name of the simulation"
)
parser.add_argument(
"--dump", "-d", help="dumping results in folder output", action="store_true"
)
parser.add_argument(
"--port", "-p", nargs=1, default=8001, help="port for launching the server"
)
parser.add_argument("--verbose", "-v", help="verbose mode", action="store_true")
args = parser.parse_args()
soil = Simulator(dump=args.dump)
run(soil, name=args.name, port=(args.port[0] if isinstance(args.port, list) else args.port), verbose=args.verbose)
run(
soil,
name=args.name,
port=(args.port[0] if isinstance(args.port, list) else args.port),
verbose=args.verbose,
)

View File

@@ -0,0 +1,4 @@
pytest
pytest-profiling
scipy>=1.3
tornado

View File

@@ -0,0 +1,49 @@
---
version: '2'
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
model_class: Environment
model_params:
topology:
params:
generator: complete_graph
n: 4
agents:
agent_class: CounterModel
state:
group: network
times: 1
topology: true
distribution:
- agent_class: CounterModel
weight: 0.25
state:
state_id: 0
times: 1
- agent_class: AggregatedCounter
weight: 0.5
state:
times: 2
override:
- filter:
node_id: 1
state:
name: 'Node 1'
- filter:
node_id: 2
state:
name: 'Node 2'
fixed:
- agent_class: BaseAgent
hidden: true
topology: false
state:
name: 'Environment Agent 1'
times: 10
group: environment
am_i_complete: true

37
tests/old_complete.yml Normal file
View File

@@ -0,0 +1,37 @@
---
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
network_params:
generator: complete_graph
n: 4
network_agents:
- agent_class: CounterModel
weight: 0.25
state:
state_id: 0
times: 1
- agent_class: AggregatedCounter
weight: 0.5
state:
times: 2
environment_agents:
- agent_id: 'Environment Agent 1'
agent_class: BaseAgent
state:
times: 10
environment_class: Environment
environment_params:
am_i_complete: true
agent_class: CounterModel
default_state:
times: 1
states:
1:
name: 'Node 1'
2:
name: 'Node 2'

12
tests/test.gexf Normal file
View File

@@ -0,0 +1,12 @@
<?xml version='1.0' encoding='utf-8'?>
<gexf version="1.2" xmlns="http://www.gexf.net/1.2draft" xmlns:viz="http://www.gexf.net/1.2draft/viz" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.w3.org/2001/XMLSchema-instance">
<graph defaultedgetype="undirected" mode="static">
<nodes>
<node id="0" label="0" />
<node id="1" label="1" />
</nodes>
<edges>
<edge id="0" source="0" target="1" />
</edges>
</graph>
</gexf>

163
tests/test_agents.py Normal file
View File

@@ -0,0 +1,163 @@
from unittest import TestCase
import pytest
from soil import agents, environment
from soil import time as stime
class Dead(agents.FSM):
@agents.default_state
@agents.state
def only(self):
return self.die()
class TestAgents(TestCase):
def test_die_returns_infinity(self):
"""The last step of a dead agent should return time.INFINITY"""
d = Dead(unique_id=0, model=environment.Environment())
ret = d.step()
assert ret == stime.NEVER
def test_die_raises_exception(self):
"""A dead agent should raise an exception if it is stepped after death"""
d = Dead(unique_id=0, model=environment.Environment())
d.step()
with pytest.raises(stime.DeadAgent):
d.step()
def test_agent_generator(self):
"""
The step function of an agent could be a generator. In that case, the state of the
agent will be resumed after every call to step.
"""
a = 0
class Gen(agents.BaseAgent):
def step(self):
nonlocal a
for i in range(5):
yield
a += 1
e = environment.Environment()
g = Gen(model=e, unique_id=e.next_id())
e.schedule.add(g)
for i in range(5):
e.step()
assert a == i
def test_state_decorator(self):
class MyAgent(agents.FSM):
run = 0
@agents.default_state
@agents.state("original")
def root(self):
self.run += 1
return self.other
@agents.state
def other(self):
self.run += 1
e = environment.Environment()
a = MyAgent(model=e, unique_id=e.next_id())
a.step()
assert a.run == 1
a.step()
def test_broadcast(self):
"""
An agent should be able to broadcast messages to every other agent, AND each receiver should be able
to process it
"""
class BCast(agents.Evented):
pings_received = 0
def step(self):
print(self.model.broadcast)
try:
self.model.broadcast("PING")
except Exception as ex:
print(ex)
while True:
self.check_messages()
yield
def on_receive(self, msg, sender=None):
self.pings_received += 1
e = environment.EventedEnvironment()
for i in range(10):
e.add_agent(agent_class=BCast)
e.step()
pings_received = lambda: [a.pings_received for a in e.agents]
assert sorted(pings_received()) == list(range(1, 11))
e.step()
assert all(x == 10 for x in pings_received())
def test_ask_messages(self):
"""
An agent should be able to ask another agent, and wait for a response.
"""
# There are two agents, they try to send pings
# This is arguably a very contrived example. In practice, the or
# There should be a delay of one step between agent 0 and 1
# On the first step:
# Agent 0 sends a PING, but blocks before a PONG
# Agent 1 detects the PING, responds with a PONG, and blocks after its own PING
# After that step, every agent can both receive (there are pending messages) and send.
# In each step, for each agent, one message is sent, and another one is received
# (although not necessarily in that order).
# Results depend on ordering (agents are normally shuffled)
# so we force the timedactivation not to be shuffled
pings = []
pongs = []
responses = []
class Ping(agents.EventedAgent):
def step(self):
target_id = (self.unique_id + 1) % self.count_agents()
target = self.model.agents[target_id]
print("starting")
while True:
if pongs or not pings: # First agent, or anyone after that
pings.append(self.now)
response = yield target.ask("PING")
responses.append(response)
else:
print("NOT sending ping")
print("Checking msgs")
# Do not block if we have already received a PING
if not self.check_messages():
yield self.received()
print("done")
def on_receive(self, msg, sender=None):
if msg == "PING":
pongs.append(self.now)
return "PONG"
raise Exception("This should never happen")
e = environment.EventedEnvironment(schedule_class=stime.OrderedTimedActivation)
for i in range(2):
e.add_agent(agent_class=Ping)
assert e.now == 0
for i in range(5):
e.step()
time = i + 1
assert e.now == time
assert len(pings) == 2 * time
assert len(pongs) == (2 * time) - 1
# Every step between 0 and t appears twice
assert sum(pings) == sum(range(time)) * 2
# It is the same as pings, without the leading 0
assert sum(pongs) == sum(range(time)) * 2

View File

@@ -1,90 +0,0 @@
from unittest import TestCase
import os
import pandas as pd
import yaml
from functools import partial
from os.path import join
from soil import simulation, analysis, agents
ROOT = os.path.abspath(os.path.dirname(__file__))
class Ping(agents.FSM):
defaults = {
'count': 0,
}
@agents.default_state
@agents.state
def even(self):
self['count'] += 1
return self.odd
@agents.state
def odd(self):
self['count'] += 1
return self.even
class TestAnalysis(TestCase):
# Code to generate a simple sqlite history
def setUp(self):
"""
The initial states should be applied to the agent and the
agent should be able to update its state."""
config = {
'name': 'analysis',
'dry_run': True,
'seed': 'seed',
'network_params': {
'generator': 'complete_graph',
'n': 2
},
'agent_type': Ping,
'states': [{'interval': 1}, {'interval': 2}],
'max_time': 30,
'num_trials': 1,
'environment_params': {
}
}
s = simulation.from_config(config)
self.env = s.run_simulation()[0]
def test_saved(self):
env = self.env
assert env.get_agent(0)['count', 0] == 1
assert env.get_agent(0)['count', 29] == 30
assert env.get_agent(1)['count', 0] == 1
assert env.get_agent(1)['count', 29] == 15
assert env['env', 29, None]['SEED'] == env['env', 29, 'SEED']
def test_count(self):
env = self.env
df = analysis.read_sql(env._history._db)
res = analysis.get_count(df, 'SEED', 'id')
assert res['SEED']['seedanalysis_trial_0'].iloc[0] == 1
assert res['SEED']['seedanalysis_trial_0'].iloc[-1] == 1
assert res['id']['odd'].iloc[0] == 2
assert res['id']['even'].iloc[0] == 0
assert res['id']['odd'].iloc[-1] == 1
assert res['id']['even'].iloc[-1] == 1
def test_value(self):
env = self.env
df = analysis.read_sql(env._history._db)
res_sum = analysis.get_value(df, 'count')
assert res_sum['count'].iloc[0] == 2
import numpy as np
res_mean = analysis.get_value(df, 'count', aggfunc=np.mean)
assert res_mean['count'].iloc[0] == 1
res_total = analysis.get_value(df)
res_total['SEED'].iloc[0] == 'seedanalysis_trial_0'

146
tests/test_config.py Normal file
View File

@@ -0,0 +1,146 @@
from unittest import TestCase
import os
import yaml
import copy
from os.path import join
from soil import simulation, serialization, config, network, agents, utils
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, "..", "examples")
FORCE_TESTS = os.environ.get("FORCE_TESTS", "")
def isequal(a, b):
if isinstance(a, dict):
for (k, v) in a.items():
if v:
isequal(a[k], b[k])
else:
assert not b.get(k, None)
return
assert a == b
class TestConfig(TestCase):
def test_conversion(self):
expected = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
old = serialization.load_file(join(ROOT, "old_complete.yml"))[0]
converted_defaults = config.convert_old(old, strict=False)
converted = converted_defaults.dict(exclude_unset=True)
isequal(converted, expected)
def test_configuration_changes(self):
"""
The configuration should not change after running
the simulation.
"""
config = serialization.load_file(join(EXAMPLES, "complete.yml"))[0]
s = simulation.from_config(config)
init_config = copy.copy(s.to_dict())
s.run_simulation(dry_run=True)
nconfig = s.to_dict()
# del nconfig['to
isequal(init_config, nconfig)
def test_topology_config(self):
netconfig = config.NetConfig(**{"path": join(ROOT, "test.gexf")})
net = network.from_config(netconfig, dir_path=ROOT)
assert len(net.nodes) == 2
assert len(net.edges) == 1
def test_env_from_config(self):
"""
Simple configuration that tests that the graph is loaded, and that
network agents are initialized properly.
"""
cfg = {
"name": "CounterAgent",
"network_params": {"path": join(ROOT, "test.gexf")},
"agent_class": "CounterModel",
# 'states': [{'times': 10}, {'times': 20}],
"max_time": 2,
"dry_run": True,
"num_trials": 1,
"environment_params": {},
}
conf = config.convert_old(cfg)
s = simulation.from_config(conf)
env = s.get_env()
assert len(env.G.nodes) == 2
assert len(env.G.edges) == 1
assert len(env.agents) == 2
assert env.agents[0].G == env.G
def test_agents_from_config(self):
"""We test that the known complete configuration produces
the right agents in the right groups"""
cfg = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
s = simulation.from_config(cfg)
env = s.get_env()
assert len(env.G.nodes) == 4
assert len(env.agents(group="network")) == 4
assert len(env.agents(group="environment")) == 1
def test_yaml(self):
"""
The YAML version of a newly created configuration should be equivalent
to the configuration file used.
Values not present in the original config file should have reasonable
defaults.
"""
with utils.timer("loading"):
config = serialization.load_file(join(EXAMPLES, "complete.yml"))[0]
s = simulation.from_config(config)
with utils.timer("serializing"):
serial = s.to_yaml()
with utils.timer("recovering"):
recovered = yaml.load(serial, Loader=yaml.FullLoader)
for (k, v) in config.items():
assert recovered[k] == v
def make_example_test(path, cfg):
def wrapped(self):
root = os.getcwd()
print(path)
s = simulation.from_config(cfg)
iterations = s.max_time * s.num_trials
if iterations > 1000:
s.max_time = 100
s.num_trials = 1
if cfg.skip_test and not FORCE_TESTS:
self.skipTest('Example ignored.')
envs = s.run_simulation(dry_run=True)
assert envs
for env in envs:
assert env
try:
n = cfg.model_params['topology']['params']['n']
assert len(list(env.network_agents)) == n
assert env.now > 0 # It has run
assert env.now <= cfg.max_time # But not further than allowed
except KeyError:
pass
return wrapped
def add_example_tests():
for config, path in serialization.load_files(
join(EXAMPLES, "*", "*.yml"),
join(EXAMPLES, "*.yml"),
):
p = make_example_test(path=path, cfg=config)
fname = os.path.basename(path)
p.__name__ = "test_example_file_%s" % fname
p.__doc__ = "%s should be a valid configuration" % fname
setattr(TestConfig, p.__name__, p)
del p
add_example_tests()

Some files were not shown because too many files have changed in this diff Show More