mirror of
https://github.com/gsi-upm/soil
synced 2024-11-14 15:32:29 +00:00
2869b1e1e6
* Removed old/unnecessary models * Added a `simulation.{iter_}from_py` method to load simulations from python files * Changed tests of examples to run programmatic simulations * Fixed programmatic examples
290 lines
10 KiB
Python
290 lines
10 KiB
Python
import networkx as nx
|
|
from soil.agents import Geo, NetworkAgent, FSM, state, default_state
|
|
from soil import Environment
|
|
|
|
|
|
class TerroristSpreadModel(FSM, Geo):
|
|
"""
|
|
Settings:
|
|
information_spread_intensity
|
|
|
|
terrorist_additional_influence
|
|
|
|
min_vulnerability (optional else zero)
|
|
|
|
max_vulnerability
|
|
|
|
prob_interaction
|
|
"""
|
|
|
|
def __init__(self, model=None, unique_id=0, state=()):
|
|
super().__init__(model=model, unique_id=unique_id, state=state)
|
|
|
|
self.information_spread_intensity = model.environment_params[
|
|
"information_spread_intensity"
|
|
]
|
|
self.terrorist_additional_influence = model.environment_params[
|
|
"terrorist_additional_influence"
|
|
]
|
|
self.prob_interaction = model.environment_params["prob_interaction"]
|
|
|
|
if self["id"] == self.civilian.id: # Civilian
|
|
self.mean_belief = self.random.uniform(0.00, 0.5)
|
|
elif self["id"] == self.terrorist.id: # Terrorist
|
|
self.mean_belief = self.random.uniform(0.8, 1.00)
|
|
elif self["id"] == self.leader.id: # Leader
|
|
self.mean_belief = 1.00
|
|
else:
|
|
raise Exception("Invalid state id: {}".format(self["id"]))
|
|
|
|
if "min_vulnerability" in model.environment_params:
|
|
self.vulnerability = self.random.uniform(
|
|
model.environment_params["min_vulnerability"],
|
|
model.environment_params["max_vulnerability"],
|
|
)
|
|
else:
|
|
self.vulnerability = self.random.uniform(
|
|
0, model.environment_params["max_vulnerability"]
|
|
)
|
|
|
|
@state
|
|
def civilian(self):
|
|
neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel))
|
|
if len(neighbours) > 0:
|
|
# Only interact with some of the neighbors
|
|
interactions = list(
|
|
n for n in neighbours if self.random.random() <= self.prob_interaction
|
|
)
|
|
influence = sum(self.degree(i) for i in interactions)
|
|
mean_belief = sum(
|
|
i.mean_belief * self.degree(i) / influence for i in interactions
|
|
)
|
|
mean_belief = (
|
|
mean_belief * self.information_spread_intensity
|
|
+ self.mean_belief * (1 - self.information_spread_intensity)
|
|
)
|
|
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
|
|
1 - self.vulnerability
|
|
)
|
|
|
|
if self.mean_belief >= 0.8:
|
|
return self.terrorist
|
|
|
|
@state
|
|
def leader(self):
|
|
self.mean_belief = self.mean_belief ** (1 - self.terrorist_additional_influence)
|
|
for neighbour in self.get_neighbors(
|
|
state_id=[self.terrorist.id, self.leader.id]
|
|
):
|
|
if self.betweenness(neighbour) > self.betweenness(self):
|
|
return self.terrorist
|
|
|
|
@state
|
|
def terrorist(self):
|
|
neighbours = self.get_agents(
|
|
state_id=[self.terrorist.id, self.leader.id],
|
|
agent_class=TerroristSpreadModel,
|
|
limit_neighbors=True,
|
|
)
|
|
if len(neighbours) > 0:
|
|
influence = sum(self.degree(n) for n in neighbours)
|
|
mean_belief = sum(
|
|
n.mean_belief * self.degree(n) / influence for n in neighbours
|
|
)
|
|
mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
|
|
1 - self.vulnerability
|
|
)
|
|
self.mean_belief = self.mean_belief ** (
|
|
1 - self.terrorist_additional_influence
|
|
)
|
|
|
|
# Check if there are any leaders in the group
|
|
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours))
|
|
if not leaders:
|
|
# Check if this is the potential leader
|
|
# Stop once it's found. Otherwise, set self as leader
|
|
for neighbour in neighbours:
|
|
if self.betweenness(self) < self.betweenness(neighbour):
|
|
return
|
|
return self.leader
|
|
|
|
def ego_search(self, steps=1, center=False, agent=None, **kwargs):
|
|
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
|
|
node = agent.node
|
|
G = self.subgraph(**kwargs)
|
|
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
|
|
|
|
def degree(self, agent, force=False):
|
|
node = agent.node
|
|
if (
|
|
force
|
|
or (not hasattr(self.model, "_degree"))
|
|
or getattr(self.model, "_last_step", 0) < self.now
|
|
):
|
|
self.model._degree = nx.degree_centrality(self.G)
|
|
self.model._last_step = self.now
|
|
return self.model._degree[node]
|
|
|
|
def betweenness(self, agent, force=False):
|
|
node = agent.node
|
|
if (
|
|
force
|
|
or (not hasattr(self.model, "_betweenness"))
|
|
or getattr(self.model, "_last_step", 0) < self.now
|
|
):
|
|
self.model._betweenness = nx.betweenness_centrality(self.G)
|
|
self.model._last_step = self.now
|
|
return self.model._betweenness[node]
|
|
|
|
|
|
class TrainingAreaModel(FSM, Geo):
|
|
"""
|
|
Settings:
|
|
training_influence
|
|
|
|
min_vulnerability
|
|
|
|
Requires TerroristSpreadModel.
|
|
"""
|
|
|
|
def __init__(self, model=None, unique_id=0, state=()):
|
|
super().__init__(model=model, unique_id=unique_id, state=state)
|
|
self.training_influence = model.environment_params["training_influence"]
|
|
if "min_vulnerability" in model.environment_params:
|
|
self.min_vulnerability = model.environment_params["min_vulnerability"]
|
|
else:
|
|
self.min_vulnerability = 0
|
|
|
|
@default_state
|
|
@state
|
|
def terrorist(self):
|
|
for neighbour in self.get_neighbors(agent_class=TerroristSpreadModel):
|
|
if neighbour.vulnerability > self.min_vulnerability:
|
|
neighbour.vulnerability = neighbour.vulnerability ** (
|
|
1 - self.training_influence
|
|
)
|
|
|
|
|
|
class HavenModel(FSM, Geo):
|
|
"""
|
|
Settings:
|
|
haven_influence
|
|
|
|
min_vulnerability
|
|
|
|
max_vulnerability
|
|
|
|
Requires TerroristSpreadModel.
|
|
"""
|
|
|
|
def __init__(self, model=None, unique_id=0, state=()):
|
|
super().__init__(model=model, unique_id=unique_id, state=state)
|
|
self.haven_influence = model.environment_params["haven_influence"]
|
|
if "min_vulnerability" in model.environment_params:
|
|
self.min_vulnerability = model.environment_params["min_vulnerability"]
|
|
else:
|
|
self.min_vulnerability = 0
|
|
self.max_vulnerability = model.environment_params["max_vulnerability"]
|
|
|
|
def get_occupants(self, **kwargs):
|
|
return self.get_neighbors(agent_class=TerroristSpreadModel, **kwargs)
|
|
|
|
@state
|
|
def civilian(self):
|
|
civilians = self.get_occupants(state_id=self.civilian.id)
|
|
if not civilians:
|
|
return self.terrorist
|
|
|
|
for neighbour in self.get_occupants():
|
|
if neighbour.vulnerability > self.min_vulnerability:
|
|
neighbour.vulnerability = neighbour.vulnerability * (
|
|
1 - self.haven_influence
|
|
)
|
|
return self.civilian
|
|
|
|
@state
|
|
def terrorist(self):
|
|
for neighbour in self.get_occupants():
|
|
if neighbour.vulnerability < self.max_vulnerability:
|
|
neighbour.vulnerability = neighbour.vulnerability ** (
|
|
1 - self.haven_influence
|
|
)
|
|
return self.terrorist
|
|
|
|
|
|
class TerroristNetworkModel(TerroristSpreadModel):
|
|
"""
|
|
Settings:
|
|
sphere_influence
|
|
|
|
vision_range
|
|
|
|
weight_social_distance
|
|
|
|
weight_link_distance
|
|
"""
|
|
|
|
def __init__(self, model=None, unique_id=0, state=()):
|
|
super().__init__(model=model, unique_id=unique_id, state=state)
|
|
|
|
self.vision_range = model.environment_params["vision_range"]
|
|
self.sphere_influence = model.environment_params["sphere_influence"]
|
|
self.weight_social_distance = model.environment_params["weight_social_distance"]
|
|
self.weight_link_distance = model.environment_params["weight_link_distance"]
|
|
|
|
@state
|
|
def terrorist(self):
|
|
self.update_relationships()
|
|
return super().terrorist()
|
|
|
|
@state
|
|
def leader(self):
|
|
self.update_relationships()
|
|
return super().leader()
|
|
|
|
def update_relationships(self):
|
|
if self.count_neighbors(state_id=self.civilian.id) == 0:
|
|
close_ups = set(
|
|
self.geo_search(
|
|
radius=self.vision_range, agent_class=TerroristNetworkModel
|
|
)
|
|
)
|
|
step_neighbours = set(
|
|
self.ego_search(
|
|
self.sphere_influence,
|
|
agent_class=TerroristNetworkModel,
|
|
center=False,
|
|
)
|
|
)
|
|
neighbours = set(
|
|
agent.id
|
|
for agent in self.get_neighbors(agent_class=TerroristNetworkModel)
|
|
)
|
|
search = (close_ups | step_neighbours) - neighbours
|
|
for agent in self.get_agents(search):
|
|
social_distance = 1 / self.shortest_path_length(agent.id)
|
|
spatial_proximity = 1 - self.get_distance(agent.id)
|
|
prob_new_interaction = (
|
|
self.weight_social_distance * social_distance
|
|
+ self.weight_link_distance * spatial_proximity
|
|
)
|
|
if (
|
|
agent["id"] == agent.civilian.id
|
|
and self.random.random() < prob_new_interaction
|
|
):
|
|
self.add_edge(agent)
|
|
break
|
|
|
|
def get_distance(self, target):
|
|
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.id]
|
|
target_x, target_y = nx.get_node_attributes(self.G, "pos")[target]
|
|
dx = abs(source_x - target_x)
|
|
dy = abs(source_y - target_y)
|
|
return (dx**2 + dy**2) ** (1 / 2)
|
|
|
|
def shortest_path_length(self, target):
|
|
try:
|
|
return nx.shortest_path_length(self.G, self.id, target)
|
|
except nx.NetworkXNoPath:
|
|
return float("inf")
|