1
0
mirror of https://github.com/gsi-upm/soil synced 2025-04-03 10:21:14 +00:00
J. Fernando Sánchez 2e28b36f6e Python3.7, testing and bug fixes
* Upgrade to python3.7 and pandas 0.3.4 because pandas has dropped support for
python 3.4 -> There are some API changes in pandas, and I've update the code
accordingly.
* Set pytest as the default test runner
2018-12-08 18:53:06 +01:00
2018-12-08 18:17:25 +01:00
2018-12-08 18:53:06 +01:00
2018-12-08 18:53:06 +01:00
2018-12-08 18:53:06 +01:00
2017-07-03 18:17:52 +02:00
2017-07-03 18:17:52 +02:00
2018-12-08 18:53:06 +01:00
2016-05-30 11:35:09 +02:00
2017-01-28 11:37:52 +01:00
2017-01-28 10:57:45 +01:00
2018-12-08 18:17:21 +01:00
2017-07-03 18:17:52 +02:00
2017-10-19 18:06:33 +02:00
2018-05-04 10:01:49 +02:00
2018-12-08 18:53:06 +01:00
2018-12-07 18:28:19 +01:00

SOIL

Soil is an extensible and user-friendly Agent-based Social Simulator for Social Networks. Learn how to run your own simulations with our documentation.

Follow our tutorial to develop your own agent models.

If you use Soil in your research, don't forget to cite this paper:

@inbook{soil-gsi-conference-2017,
    author = "S{\'a}nchez, Jes{\'u}s M. and Iglesias, Carlos A. and S{\'a}nchez-Rada, J. Fernando",
    booktitle = "Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The PAAMS Collection",
    doi = "10.1007/978-3-319-59930-4_19",
    editor = "Demazeau Y., Davidsson P., Bajo J., Vale Z.",
    isbn = "978-3-319-59929-8",
    keywords = "soil;social networks;agent based social simulation;python",
    month = "June",
    organization = "PAAMS 2017",
    pages = "234-245",
    publisher = "Springer Verlag",
    series = "LNAI",
    title = "{S}oil: {A}n {A}gent-{B}ased {S}ocial {S}imulator in {P}ython for {M}odelling and {S}imulation of {S}ocial {N}etworks",
    url = "https://link.springer.com/chapter/10.1007/978-3-319-59930-4_19",
    volume = "10349",
    year = "2017",
}

@Copyright GSI - Universidad Politécnica de Madrid 2017

SOIL

Description
No description provided
Readme Apache-2.0 24 MiB
Languages
Python 70.5%
JavaScript 20.3%
HTML 6%
CSS 3%