1
0
mirror of https://github.com/gsi-upm/soil synced 2025-01-03 05:11:29 +00:00

Add generator and programmatic examples

This commit is contained in:
J. Fernando Sánchez 2018-12-20 19:25:33 +01:00
parent 8593ac999d
commit 09e14c6e84
8 changed files with 105 additions and 13 deletions

View File

@ -26,7 +26,7 @@ But before that, let's import the soil module and networkx.
%autoreload 2
%pylab inline
# To display plots in the notebooed_
# To display plots in the notebook_
.. parsed-literal::
@ -2531,7 +2531,7 @@ Dealing with bigger data
.. parsed-literal::
267M ../rabbits/soil_output/rabbits_example/
267M ../rabbits/soil_output/rabbits_example/
If we tried to load the entire history, we would probably run out of

View File

@ -0,0 +1,17 @@
---
name: custom-generator
description: Using a custom generator for the network
num_trials: 3
dry_run: True
max_time: 100
interval: 1
network_params:
generator: mymodule.mygenerator
# These are custom parameters
n: 10
n_edges: 5
network_agents:
- agent_type: CounterModel
weight: 1
state:
id: 0

View File

@ -0,0 +1,27 @@
from networkx import Graph
import networkx as nx
from random import choice
def mygenerator(n=5, n_edges=5):
'''
Just a simple generator that creates a network with n nodes and
n_edges edges. Edges are assigned randomly, only avoiding self loops.
'''
G = nx.Graph()
for i in range(n):
G.add_node(i)
for i in range(n_edges):
nodes = list(G.nodes)
n_in = choice(nodes)
nodes.remove(n_in) # Avoid loops
n_out = choice(nodes)
G.add_edge(n_in, n_out)
return G

1
examples/programmatic/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
Programmatic*

View File

@ -0,0 +1,38 @@
'''
Example of a fully programmatic simulation, without definition files.
'''
from soil import Simulation, agents
from networkx import Graph
import logging
def mygenerator():
# Add only a node
G = Graph()
G.add_node(1)
return G
class MyAgent(agents.FSM):
@agents.default_state
@agents.state
def neutral(self):
self.info('I am running')
s = Simulation(name='Programmatic',
network_params={'generator': mygenerator},
num_trials=1,
max_time=100,
agent_type=MyAgent,
dry_run=True)
logging.basicConfig(level=logging.INFO)
envs = s.run()
s.dump_yaml()
for env in envs:
env.dump_csv()

View File

@ -1 +1 @@
0.13.4
0.13.6

View File

@ -88,14 +88,8 @@ class Simulation(NetworkSimulation):
environment_agents=None, environment_params=None,
environment_class=None, **kwargs):
if topology is None:
topology = utils.load_network(network_params,
dir_path=dir_path)
elif isinstance(topology, basestring) or isinstance(topology, dict):
topology = json_graph.node_link_graph(topology)
self.seed = str(seed) or str(time.time())
self.load_module = load_module
self.topology = nx.Graph(topology)
self.network_params = network_params
self.name = name or 'UnnamedSimulation'
self.num_trials = num_trials
@ -103,12 +97,19 @@ class Simulation(NetworkSimulation):
self.default_state = default_state or {}
self.dir_path = dir_path or os.getcwd()
self.interval = interval
self.seed = str(seed) or str(time.time())
self.dump = dump
self.dry_run = dry_run
sys.path += [self.dir_path, os.getcwd()]
if topology is None:
topology = utils.load_network(network_params,
dir_path=self.dir_path)
elif isinstance(topology, basestring) or isinstance(topology, dict):
topology = json_graph.node_link_graph(topology)
self.topology = nx.Graph(topology)
self.environment_params = environment_params or {}
self.environment_class = utils.deserialize(environment_class,
known_modules=['soil.environment', ]) or Environment

View File

@ -1,5 +1,6 @@
import os
import ast
import sys
import yaml
import logging
import importlib
@ -36,9 +37,14 @@ def load_network(network_params, dir_path=None):
return method(path, **kwargs)
net_args = network_params.copy()
net_type = net_args.pop('generator')
net_gen = net_args.pop('generator')
if dir_path not in sys.path:
sys.path.append(dir_path)
method = deserializer(net_gen,
known_modules=['networkx.generators',])
method = getattr(nx.generators, net_type)
return method(**net_args)
@ -114,6 +120,8 @@ def serialize(v, known_modules=[]):
return func(v), tname
def deserializer(type_, known_modules=[]):
if type(type_) != str: # Already deserialized
return type_
if type_ == 'str':
return lambda x='': x
if type_ == 'None':