Compare commits
48 Commits
81fafc2c35
...
003ab5be19
Author | SHA1 | Date | |
---|---|---|---|
|
003ab5be19 | ||
|
bf684d6e6e | ||
|
d935b85b26 | ||
|
1d8e777236 | ||
|
23ebe2f390 | ||
|
01eb89ada4 | ||
|
e4fdcd65a1 | ||
|
9f46c534f7 | ||
|
743c57691f | ||
|
2c53b81299 | ||
|
dd6c053109 | ||
|
e35e0a11e9 | ||
|
7315b681e4 | ||
|
3fac9c6f78 | ||
|
21819abeae | ||
|
0d4c0c706d | ||
|
8de629b495 | ||
|
86114b4a56 | ||
|
1a3f618995 | ||
|
a1121c03a5 | ||
|
715d0cb77f | ||
|
0150ce7cf7 | ||
|
08dfe5c147 | ||
|
78e62af098 | ||
|
3f5eba3e84 | ||
|
2de1cda8f1 | ||
|
cc442c35f3 | ||
|
1100c352fa | ||
|
9b573d292d | ||
|
dd8a4f50d8 | ||
|
47148f2ccc | ||
|
8ffda8123a | ||
|
6629837e7d | ||
|
ba08a9a264 | ||
|
4b8fd30f42 | ||
|
d879369930 | ||
|
4da01f3ae6 | ||
|
da9a01e26b | ||
|
dc23b178d7 | ||
|
5410d6115d | ||
|
6749aa5deb | ||
|
c31e6c1676 | ||
|
1c7496c8ac | ||
|
35b1ae4ec8 | ||
|
58fc6f5e9c | ||
|
91147becee | ||
|
1530995243 | ||
|
0c0960cec7 |
@ -1,7 +1,7 @@
|
||||
# sitc
|
||||
Exercises for Intelligent Systems Course at Universidad Politécnica de Madrid, Telecommunication Engineering School. This material is used in the subjects
|
||||
- SITC (Sistemas Inteligentes y Tecnologías del Conocimiento) - Master Universitario de Ingeniería de Telecomunicación (MUIT)
|
||||
- TIAD (Tecnologías Inteligentes de Análisis de Datos) - Master Universitario en Ingeniera de Redes y Servicios Telemáticos)
|
||||
- CDAW (Ciencia de datos y aprendizaje en automático en la web de datos) - Master Universitario de Ingeniería de Telecomunicación (MUIT)
|
||||
- ABID (Analítica de Big Data) - Master Universitario en Ingeniera de Redes y Servicios Telemáticos)
|
||||
|
||||
For following this course:
|
||||
- Follow the instructions to install the environment: https://github.com/gsi-upm/sitc/blob/master/python/1_1_Notebooks.ipynb (Just install 'conda')
|
||||
@ -9,11 +9,13 @@ For following this course:
|
||||
- Run in a terminal in the folder sitc: jupyter notebook (and enjoy)
|
||||
|
||||
Topics
|
||||
* Python: quick introduction to Python
|
||||
* Python: a quick introduction to Python
|
||||
* ML-1: introduction to machine learning with scikit-learn
|
||||
* ML-2: introduction to machine learning with pandas and scikit-learn
|
||||
* ML-21: preprocessing and visualizatoin
|
||||
* ML-3: introduction to machine learning. Neural Computing
|
||||
* ML-4: introduction to Evolutionary Computing
|
||||
* ML-5: introduction to Reinforcement Learning
|
||||
* NLP: introduction to NLP
|
||||
* LOD: Linked Open Data, exercises and example code
|
||||
* SNA: Social Network Analysis
|
||||
|
BIN
images/EscUpmPolit_p.gif
Normal file
After Width: | Height: | Size: 3.1 KiB |
BIN
images/cart.png
Normal file
After Width: | Height: | Size: 95 KiB |
BIN
images/data-chart-type.png
Normal file
After Width: | Height: | Size: 34 KiB |
BIN
images/frozenlake-problem.png
Normal file
After Width: | Height: | Size: 54 KiB |
BIN
images/frozenlake-world.png
Normal file
After Width: | Height: | Size: 67 KiB |
BIN
images/gym-maze.gif
Normal file
After Width: | Height: | Size: 222 KiB |
BIN
images/iris-dataset.jpg
Normal file
After Width: | Height: | Size: 44 KiB |
BIN
images/machine-learning-process.jpg
Normal file
After Width: | Height: | Size: 237 KiB |
BIN
images/multilayerperceptron_network.png
Normal file
After Width: | Height: | Size: 87 KiB |
BIN
images/plot_ML_flow_chart_1.png
Normal file
After Width: | Height: | Size: 56 KiB |
BIN
images/plot_ML_flow_chart_2.png
Normal file
After Width: | Height: | Size: 87 KiB |
BIN
images/plot_ML_flow_chart_3.png
Normal file
After Width: | Height: | Size: 58 KiB |
BIN
images/qlearning-algo.png
Normal file
After Width: | Height: | Size: 85 KiB |
BIN
images/recording.gif
Normal file
After Width: | Height: | Size: 1.8 MiB |
BIN
images/titanic.jpg
Normal file
After Width: | Height: | Size: 152 KiB |
@ -71,7 +71,6 @@
|
||||
"source": [
|
||||
"* [Scikit-learn web page](http://scikit-learn.org/stable/)\n",
|
||||
"* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n",
|
||||
"* [scikit-learn : Machine Learning Simplified](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), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
|
||||
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019."
|
||||
]
|
||||
},
|
||||
|
@ -63,9 +63,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [Scikit-learn web page](http://scikit-learn.org/stable/)\n",
|
||||
"* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n",
|
||||
"* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
|
||||
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019."
|
||||
"* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -228,7 +228,6 @@
|
||||
"source": [
|
||||
"* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n",
|
||||
"* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n",
|
||||
"* [Mastering Pandas](https://learning.oreilly.com/library/view/mastering-pandas/9781789343236/), Femi Anthony, Packt Publishing, 2015.\n",
|
||||
"* [Matplotlib web page](http://matplotlib.org/index.html)\n",
|
||||
"* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n",
|
||||
"* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)\n",
|
||||
|
@ -408,7 +408,6 @@
|
||||
"source": [
|
||||
"* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n",
|
||||
"* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n",
|
||||
"* [Mastering Pandas](https://learning.oreilly.com/library/view/mastering-pandas/9781789343236/), Femi Anthony, Packt Publishing, 2015.\n",
|
||||
"* [Matplotlib web page](http://matplotlib.org/index.html)\n",
|
||||
"* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n",
|
||||
"* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)\n",
|
||||
|
@ -163,7 +163,6 @@
|
||||
"source": [
|
||||
"* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n",
|
||||
"* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n",
|
||||
"* [Mastering Pandas](https://learning.oreilly.com/library/view/mastering-pandas/9781789343236/), Femi Anthony, Packt Publishing, 2015.\n",
|
||||
"* [Matplotlib web page](http://matplotlib.org/index.html)\n",
|
||||
"* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n",
|
||||
"* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)"
|
||||
|
@ -154,7 +154,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [General concepts of machine learning with scikit-learn](https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/auto_examples/tutorial/plot_ML_flow_chart.html)\n",
|
||||
"* [Python Data Science Handbook](https://jakevdp.github.io/PythonDataScienceHandbook/index.html)\n",
|
||||
"* [A Tour of Machine Learning Algorithms](http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/)"
|
||||
]
|
||||
},
|
||||
|
@ -379,8 +379,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [KNeighborsClassifier API scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)\n",
|
||||
"* [Learning scikit-learn: Machine Learning in Python](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2013.\n"
|
||||
"* [KNeighborsClassifier API scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -509,8 +509,6 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [Plot the decision surface of a decision tree on the iris dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)\n",
|
||||
"* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
|
||||
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019.\n",
|
||||
"* [Parameter estimation using grid search with cross-validation](https://scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_digits.html)\n",
|
||||
"* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)"
|
||||
]
|
||||
|
@ -518,8 +518,6 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [Plot the decision surface of a decision tree on the iris dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)\n",
|
||||
"* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
|
||||
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019.\n",
|
||||
"* [Hyperparameter estimation using grid search with cross-validation](http://scikit-learn.org/stable/auto_examples/model_selection/grid_search_digits.html)\n",
|
||||
"* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)"
|
||||
]
|
||||
|
@ -47,7 +47,7 @@ def get_code(tree, feature_names, target_names,
|
||||
|
||||
recurse(left, right, threshold, features, 0, 0)
|
||||
|
||||
# Taken from http://scikit-learn.org/stable/auto_examples/tree/plot_iris.html#example-tree-plot-iris-py
|
||||
# Taken from https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
@ -74,9 +74,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [IPython Notebook Tutorial for Titanic: Machine Learning from Disaster](https://www.kaggle.com/c/titanic/forums/t/5105/ipython-notebook-tutorial-for-titanic-machine-learning-from-disaster)\n",
|
||||
"* [Scikit-learn videos and notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n",
|
||||
"* [Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits](https://learning.oreilly.com/library/view/hands-on-machine-learning/9781838826048/), Tarek Amr, Packt Publishing, 2020.\n",
|
||||
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka and Vahid Mirjalili, Packt Publishing, 2019."
|
||||
"* [Scikit-learn videos and notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -50,30 +50,30 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In this session we will work with the Titanic dataset. This dataset is provided by [Kaggle](http://www.kaggle.com). Kaggle is a crowdsourcing platform that organizes competitions where researchers and companies post their data and users compete to obtain the best models.\n",
|
||||
"In this session, we will work with the Titanic dataset. This dataset is provided by [Kaggle](http://www.kaggle.com). Kaggle is a crowdsourcing platform that organizes competitions where researchers and companies post their data and users compete to obtain the best models.\n",
|
||||
"\n",
|
||||
"![Titanic](images/titanic.jpg)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"The main objective is predicting which passengers survived the sinking of the Titanic.\n",
|
||||
"The main objective is to predict which passengers survived the sinking of the Titanic.\n",
|
||||
"\n",
|
||||
"The data is available [here](https://www.kaggle.com/c/titanic/data). There are two files, one for training ([train.csv](files/data-titanic/train.csv)) and another file for testing [test.csv](files/data-titanic/test.csv). A local copy has been included in this notebook under the folder *data-titanic*.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Here follows a description of the variables.\n",
|
||||
"\n",
|
||||
"|Variable | Description| Values|\n",
|
||||
"|-------------------------------|\n",
|
||||
"| survival| Survival| (0 = No; 1 = Yes)|\n",
|
||||
"|Pclass |Name | |\n",
|
||||
"|Sex |Sex | male, female|\n",
|
||||
"|Age |Age|\n",
|
||||
"|SibSp |Number of Siblings/Spouses Aboard||\n",
|
||||
"|Parch |Number of Parents/Children Aboard||\n",
|
||||
"|Ticket|Ticket Number||\n",
|
||||
"|Fare |Passenger Fare||\n",
|
||||
"|Cabin |Cabin||\n",
|
||||
"|Embarked |Port of Embarkation| (C = Cherbourg; Q = Queenstown; S = Southampton)|\n",
|
||||
"| Variable | Description | Values |\n",
|
||||
"|------------|---------------------------------|-----------------|\n",
|
||||
"| survival | Survival |(0 = No; 1 = Yes)|\n",
|
||||
"| Pclass | Name | |\n",
|
||||
"| Sex | Sex | male, female |\n",
|
||||
"| Age | Age | |\n",
|
||||
"| SibSp |Number of Siblings/Spouses Aboard| |\n",
|
||||
"| Parch |Number of Parents/Children Aboard| |\n",
|
||||
"| Ticket | Ticket Number | |\n",
|
||||
"| Fare | Passenger Fare | |\n",
|
||||
"| Cabin | Cabin | |\n",
|
||||
"| Embarked | Port of Embarkation | (C = Cherbourg; Q = Queenstown; S = Southampton)|\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"The definitions used for SibSp and Parch are:\n",
|
||||
@ -213,8 +213,7 @@
|
||||
"* [Pandas API input-output](http://pandas.pydata.org/pandas-docs/stable/api.html#input-output)\n",
|
||||
"* [Pandas API - pandas.read_csv](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html)\n",
|
||||
"* [DataFrame](http://pandas.pydata.org/pandas-docs/stable/dsintro.html)\n",
|
||||
"* [An introduction to NumPy and Scipy](https://sites.engineering.ucsb.edu/~shell/che210d/numpy.pdf)\n",
|
||||
"* [NumPy tutorial](https://numpy.org/doc/stable/)"
|
||||
"* [An introduction to NumPy and Scipy](https://sites.engineering.ucsb.edu/~shell/che210d/numpy.pdf)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -433,7 +433,6 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [Pandas](http://pandas.pydata.org/)\n",
|
||||
"* [Learning Pandas, Michael Heydt, Packt Publishing, 2017](https://learning.oreilly.com/library/view/learning-pandas/9781787123137/)\n",
|
||||
"* [Pandas. Introduction to Data Structures](https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html)\n",
|
||||
"* [Introducing Pandas Objects](https://www.oreilly.com/learning/introducing-pandas-objects)\n",
|
||||
"* [Boolean Operators in Pandas](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-operators)"
|
||||
|
@ -373,8 +373,8 @@
|
||||
"source": [
|
||||
"#Mean age of passengers per Passenger class\n",
|
||||
"\n",
|
||||
"#First we calculate the mean\n",
|
||||
"df.groupby('Pclass').mean()"
|
||||
"#First we calculate the mean for the numeric columns\n",
|
||||
"df.select_dtypes(np.number).groupby('Pclass').mean()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -220,7 +220,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Analise distributon\n",
|
||||
"# Analise distribution\n",
|
||||
"df.hist(figsize=(10,10))\n",
|
||||
"plt.show()"
|
||||
]
|
||||
@ -233,7 +233,7 @@
|
||||
"source": [
|
||||
"# We can see the pairwise correlation between variables. A value near 0 means low correlation\n",
|
||||
"# while a value near -1 or 1 indicates strong correlation.\n",
|
||||
"df.corr()"
|
||||
"df.corr(numeric_only = True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -249,11 +249,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# General description of relationship betweek variables uwing Seaborn PairGrid\n",
|
||||
"# General description of relationship between variables uwing Seaborn PairGrid\n",
|
||||
"# We use df_clean, since the null values of df would gives us an error, you can check it.\n",
|
||||
"g = sns.PairGrid(df_clean, hue=\"Survived\")\n",
|
||||
"g.map_diag(plt.hist)\n",
|
||||
"g.map_offdiag(plt.scatter)\n",
|
||||
"g.map(sns.scatterplot)\n",
|
||||
"g.add_legend()"
|
||||
]
|
||||
},
|
||||
|
@ -351,10 +351,10 @@
|
||||
"We can obtain more information from the confussion matrix and the metric F1-score.\n",
|
||||
"In a confussion matrix, we can see:\n",
|
||||
"\n",
|
||||
"||**Predicted**: 0| **Predicted: 1**|\n",
|
||||
"|---------------------------|\n",
|
||||
"| |**Predicted**: 0| **Predicted: 1**|\n",
|
||||
"|-------------|----------------|-----------------|\n",
|
||||
"|**Actual: 0**| TN | FP |\n",
|
||||
"|**Actual: 1**| FN|TP|\n",
|
||||
"|**Actual: 1**| FN | TP |\n",
|
||||
"\n",
|
||||
"* **True negatives (TN)**: actual negatives that were predicted as negatives\n",
|
||||
"* **False positives (FP)**: actual negatives that were predicted as positives\n",
|
||||
|
1
ml21/.gitkeep
Normal file
@ -0,0 +1 @@
|
||||
|
1
ml21/preprocessing/.gitkeep
Normal file
@ -0,0 +1 @@
|
||||
|
157
ml21/preprocessing/00_Intro_Preprocessing.ipynb
Normal file
@ -0,0 +1,157 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Introduction to Preprocessing\n",
|
||||
"In this session, we will get more insight regarding how to preprocess data.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Objectives\n",
|
||||
"The main objectives of this session are:\n",
|
||||
"* Understanding the need for preprocessing\n",
|
||||
"* Understanding different preprocessing techniques\n",
|
||||
"* Experimenting with several environments for preprocessing"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Table of Contents"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"1. [Home](00_Intro_Preprocessing.ipynb)\n",
|
||||
"3. [Initial Check](02_Initial_Check.ipynb)\n",
|
||||
"4. [Filter Data](03_Filter_Data.ipynb)\n",
|
||||
"5. [Unknown values](04_Unknown_Values.ipynb)\n",
|
||||
"6. [Duplicated values](05_Duplicated_Values.ipynb)\n",
|
||||
"7. [Rescaling Data](06_Rescaling_Data.ipynb)\n",
|
||||
"8. [Binarize Data](07_Binarize_Data.ipynb)\n",
|
||||
"9. [Categorial features](08_Categorical.ipynb)\n",
|
||||
"10. [String Data](09_String_Data.ipynb)\n",
|
||||
"12. [Handy libraries for preprocessing](11_0_Handy.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": false
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
714
ml21/preprocessing/02_Initial_Check.ipynb
Normal file
@ -0,0 +1,714 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Initial Check with Pandas\n",
|
||||
"\n",
|
||||
"We can start with a quick quality check."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Load and check data\n",
|
||||
"Check which data you are loading."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>PassengerId</th>\n",
|
||||
" <th>Survived</th>\n",
|
||||
" <th>Pclass</th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Sex</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>SibSp</th>\n",
|
||||
" <th>Parch</th>\n",
|
||||
" <th>Ticket</th>\n",
|
||||
" <th>Fare</th>\n",
|
||||
" <th>Cabin</th>\n",
|
||||
" <th>Embarked</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Braund, Mr. Owen Harris</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>22.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>A/5 21171</td>\n",
|
||||
" <td>7.2500</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>38.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>PC 17599</td>\n",
|
||||
" <td>71.2833</td>\n",
|
||||
" <td>C85</td>\n",
|
||||
" <td>C</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Heikkinen, Miss. Laina</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>26.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>STON/O2. 3101282</td>\n",
|
||||
" <td>7.9250</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>35.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>113803</td>\n",
|
||||
" <td>53.1000</td>\n",
|
||||
" <td>C123</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Allen, Mr. William Henry</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>35.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>373450</td>\n",
|
||||
" <td>8.0500</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>6</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Moran, Mr. James</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>330877</td>\n",
|
||||
" <td>8.4583</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>Q</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>7</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>McCarthy, Mr. Timothy J</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>54.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>17463</td>\n",
|
||||
" <td>51.8625</td>\n",
|
||||
" <td>E46</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7</th>\n",
|
||||
" <td>8</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Palsson, Master. Gosta Leonard</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>349909</td>\n",
|
||||
" <td>21.0750</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>8</th>\n",
|
||||
" <td>9</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>27.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>347742</td>\n",
|
||||
" <td>11.1333</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>9</th>\n",
|
||||
" <td>10</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>Nasser, Mrs. Nicholas (Adele Achem)</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>14.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>237736</td>\n",
|
||||
" <td>30.0708</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>C</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" PassengerId Survived Pclass \\\n",
|
||||
"0 1 0 3 \n",
|
||||
"1 2 1 1 \n",
|
||||
"2 3 1 3 \n",
|
||||
"3 4 1 1 \n",
|
||||
"4 5 0 3 \n",
|
||||
"5 6 0 3 \n",
|
||||
"6 7 0 1 \n",
|
||||
"7 8 0 3 \n",
|
||||
"8 9 1 3 \n",
|
||||
"9 10 1 2 \n",
|
||||
"\n",
|
||||
" Name Sex Age SibSp \\\n",
|
||||
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
|
||||
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
|
||||
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
|
||||
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
|
||||
"4 Allen, Mr. William Henry male 35.0 0 \n",
|
||||
"5 Moran, Mr. James male NaN 0 \n",
|
||||
"6 McCarthy, Mr. Timothy J male 54.0 0 \n",
|
||||
"7 Palsson, Master. Gosta Leonard male 2.0 3 \n",
|
||||
"8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 \n",
|
||||
"9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 \n",
|
||||
"\n",
|
||||
" Parch Ticket Fare Cabin Embarked \n",
|
||||
"0 0 A/5 21171 7.2500 NaN S \n",
|
||||
"1 0 PC 17599 71.2833 C85 C \n",
|
||||
"2 0 STON/O2. 3101282 7.9250 NaN S \n",
|
||||
"3 0 113803 53.1000 C123 S \n",
|
||||
"4 0 373450 8.0500 NaN S \n",
|
||||
"5 0 330877 8.4583 NaN Q \n",
|
||||
"6 0 17463 51.8625 E46 S \n",
|
||||
"7 1 349909 21.0750 NaN S \n",
|
||||
"8 2 347742 11.1333 NaN S \n",
|
||||
"9 0 237736 30.0708 NaN C "
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"df = pd.read_csv('https://raw.githubusercontent.com/gsi-upm/sitc/master/ml2/data-titanic/train.csv')\n",
|
||||
"df.head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Check number of columns and rows"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(891, 12)"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Check names and types of columns\n",
|
||||
"Check the data and type, for example if dates are of strings or what."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',\n",
|
||||
" 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],\n",
|
||||
" dtype='object')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"PassengerId int64\n",
|
||||
"Survived int64\n",
|
||||
"Pclass int64\n",
|
||||
"Name object\n",
|
||||
"Sex object\n",
|
||||
"Age float64\n",
|
||||
"SibSp int64\n",
|
||||
"Parch int64\n",
|
||||
"Ticket object\n",
|
||||
"Fare float64\n",
|
||||
"Cabin object\n",
|
||||
"Embarked object\n",
|
||||
"dtype: object"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Get column names\n",
|
||||
"print(df.columns)\n",
|
||||
"# Get column data types\n",
|
||||
"df.dtypes"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Check if the column is unique"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"PassengerId is unique: True\n",
|
||||
"Survived is unique: False\n",
|
||||
"Pclass is unique: False\n",
|
||||
"Name is unique: True\n",
|
||||
"Sex is unique: False\n",
|
||||
"Age is unique: False\n",
|
||||
"SibSp is unique: False\n",
|
||||
"Parch is unique: False\n",
|
||||
"Ticket is unique: False\n",
|
||||
"Fare is unique: False\n",
|
||||
"Cabin is unique: False\n",
|
||||
"Embarked is unique: False\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for i in column_names:\n",
|
||||
" print('{} is unique: {}'.format(i, df[i].is_unique))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Check if the dataframe has an index\n",
|
||||
"We will need it to do joins or merges."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"RangeIndex(start=0, stop=891, step=1)"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# check if there is an index. If not, you will get 'AtributeError: function object has no atribute index'\n",
|
||||
"df.index"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,\n",
|
||||
" 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,\n",
|
||||
" 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,\n",
|
||||
" 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n",
|
||||
" 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,\n",
|
||||
" 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,\n",
|
||||
" 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,\n",
|
||||
" 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,\n",
|
||||
" 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,\n",
|
||||
" 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,\n",
|
||||
" 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,\n",
|
||||
" 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,\n",
|
||||
" 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168,\n",
|
||||
" 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181,\n",
|
||||
" 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194,\n",
|
||||
" 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,\n",
|
||||
" 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,\n",
|
||||
" 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,\n",
|
||||
" 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,\n",
|
||||
" 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,\n",
|
||||
" 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272,\n",
|
||||
" 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285,\n",
|
||||
" 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298,\n",
|
||||
" 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311,\n",
|
||||
" 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324,\n",
|
||||
" 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337,\n",
|
||||
" 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350,\n",
|
||||
" 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363,\n",
|
||||
" 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376,\n",
|
||||
" 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389,\n",
|
||||
" 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402,\n",
|
||||
" 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415,\n",
|
||||
" 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428,\n",
|
||||
" 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441,\n",
|
||||
" 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454,\n",
|
||||
" 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467,\n",
|
||||
" 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480,\n",
|
||||
" 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493,\n",
|
||||
" 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506,\n",
|
||||
" 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519,\n",
|
||||
" 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532,\n",
|
||||
" 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545,\n",
|
||||
" 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558,\n",
|
||||
" 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571,\n",
|
||||
" 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584,\n",
|
||||
" 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597,\n",
|
||||
" 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610,\n",
|
||||
" 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623,\n",
|
||||
" 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636,\n",
|
||||
" 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649,\n",
|
||||
" 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662,\n",
|
||||
" 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675,\n",
|
||||
" 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688,\n",
|
||||
" 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701,\n",
|
||||
" 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714,\n",
|
||||
" 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727,\n",
|
||||
" 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740,\n",
|
||||
" 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753,\n",
|
||||
" 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766,\n",
|
||||
" 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779,\n",
|
||||
" 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792,\n",
|
||||
" 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805,\n",
|
||||
" 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818,\n",
|
||||
" 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831,\n",
|
||||
" 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844,\n",
|
||||
" 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857,\n",
|
||||
" 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870,\n",
|
||||
" 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883,\n",
|
||||
" 884, 885, 886, 887, 888, 889, 890])"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# # Check the index values\n",
|
||||
"df.index.values"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# If index does not exist\n",
|
||||
"df.set_index('column_name_to_use', inplace=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"PassengerId 0\n",
|
||||
"Survived 0\n",
|
||||
"Pclass 0\n",
|
||||
"Name 0\n",
|
||||
"Sex 0\n",
|
||||
"Age 177\n",
|
||||
"SibSp 0\n",
|
||||
"Parch 0\n",
|
||||
"Ticket 0\n",
|
||||
"Fare 0\n",
|
||||
"Cabin 687\n",
|
||||
"Embarked 2\n",
|
||||
"dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Count missing vales per column\n",
|
||||
"df.isnull().sum()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Data Preprocessing for Machine learning in Python, GeeksForGeeks](https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": false
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
150
ml21/preprocessing/03_Filter_Data.ipynb
Normal file
@ -0,0 +1,150 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Filter Data\n",
|
||||
"\n",
|
||||
"Select the columns you want and delete the others."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Create list comprehension of the columns you want to lose\n",
|
||||
"columns_to_drop = [column_names[i] for i in [1, 3, 5]]\n",
|
||||
"# Drop unwanted columns \n",
|
||||
"df.drop(columns_to_drop, inplace=True, axis=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Data Preprocessing for Machine learning in Python, GeeksForGeeks](https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": false
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
591
ml21/preprocessing/04_Unknown_Values.ipynb
Normal file
@ -0,0 +1,591 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Unknown values\n",
|
||||
"\n",
|
||||
"Two possible approaches are **remove** these rows or **fill** them. It depends on every case."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Filling NaN values\n",
|
||||
"If we need to fill errors or blanks, we can use the methods **fillna()** or **dropna()**.\n",
|
||||
"\n",
|
||||
"* For **string** fields, we can fill NaN with **' '**.\n",
|
||||
"\n",
|
||||
"* For **numbers**, we can fill with the **mean** or **median** value. \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Fill NaN with ' '\n",
|
||||
"df['col'] = df['col'].fillna(' ')\n",
|
||||
"# Fill NaN with 99\n",
|
||||
"df['col'] = df['col'].fillna(99)\n",
|
||||
"# Fill NaN with the mean of the column\n",
|
||||
"df['col'] = df['col'].fillna(df['col'].mean())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Propagate non-null values forward or backward\n",
|
||||
"You can also **propagate** non-null values with these methods:\n",
|
||||
"\n",
|
||||
"* **ffill**: Fill values by propagating the last valid observation to the next valid.\n",
|
||||
"* **bfill**: Fill values using the following valid observation to fill the gap.\n",
|
||||
"* **interpolate**: Fill NaN values using interpolation.\n",
|
||||
"\n",
|
||||
"It will fill the next value in the dataframe with the previous non-NaN value. \n",
|
||||
"\n",
|
||||
"You may want to fill in one value (**limit=1**) or all the values. You can also indicate inplace=True to fill in-place."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.DataFrame(data={'col1':[np.nan, np.nan, 2,3,4, np.nan, np.nan]})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1\n",
|
||||
"0 NaN\n",
|
||||
"1 NaN\n",
|
||||
"2 2.0\n",
|
||||
"3 3.0\n",
|
||||
"4 4.0\n",
|
||||
"5 NaN\n",
|
||||
"6 NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We fill forward the value 4.0 and fill the next one (limit = 1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1\n",
|
||||
"0 NaN\n",
|
||||
"1 NaN\n",
|
||||
"2 2.0\n",
|
||||
"3 3.0\n",
|
||||
"4 4.0\n",
|
||||
"5 4.0\n",
|
||||
"6 NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
" df.ffill(limit = 1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df.ffill()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"We can also backfilling with **bfill**. Since we do not include *limit*, we fill all the values."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1\n",
|
||||
"0 2.0\n",
|
||||
"1 2.0\n",
|
||||
"2 2.0\n",
|
||||
"3 3.0\n",
|
||||
"4 4.0\n",
|
||||
"5 NaN\n",
|
||||
"6 NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df.bfill()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Removing NaN values\n",
|
||||
"We can remove them by row or column (use inplace=True if you want to modify the DataFrame)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1\n",
|
||||
"2 2.0\n",
|
||||
"3 3.0\n",
|
||||
"4 4.0"
|
||||
]
|
||||
},
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Drop any rows which have any nans\n",
|
||||
"df1 = df.dropna()\n",
|
||||
"# Drop columns that have any nans (axis = 1 -> drop columns, axis = 0 -> drop rows)\n",
|
||||
"df2 = df.dropna(axis=1)\n",
|
||||
"# Only drop columns which have at least 90% non-NaNs \n",
|
||||
"df3 = df.dropna(thresh=int(df.shape[0] * .9), axis=1)\n",
|
||||
"df1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Data Preprocessing for Machine learning in Python, GeeksForGeeks](https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": false
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
3535
ml21/preprocessing/05_Duplicated_Values.ipynb
Normal file
954
ml21/preprocessing/06_Rescaling_Data.ipynb
Normal file
198
ml21/preprocessing/07_Binarize_Data.ipynb
Normal file
@ -0,0 +1,198 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Binarize Data\n",
|
||||
"* We can transform our data using a binary threshold. All values above the threshold are marked 1, and all values equal to or below are marked 0.\n",
|
||||
"* This is called binarizing your data or thresholding your data. \n",
|
||||
"\n",
|
||||
"* It can be helpful when you have probabilities that you want to make crisp values."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Binarize Data with Scikit-Learn\n",
|
||||
"We can create new binary attributes in Python using Scikit-learn with the Binarizer class.\n",
|
||||
"I"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.preprocessing import Binarizer\n",
|
||||
"\n",
|
||||
"X = [[ 1., -1., 2.],\n",
|
||||
" [ 2., 0., 0.],\n",
|
||||
" [ 0., 1.1, -1.]]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"transformer = Binarizer(threshold=1.0).fit(X) # threshold 1.0"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"array([[0., 0., 1.],\n",
|
||||
" [1., 0., 0.],\n",
|
||||
" [0., 1., 0.]])"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"transformer.transform(X)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html), Scikit Learn"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
812
ml21/preprocessing/08_Categorical.ipynb
Normal file
@ -0,0 +1,812 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Categorical Data\n",
|
||||
"\n",
|
||||
"For many ML algorithms, we need to transform categorical data into numbers.\n",
|
||||
"\n",
|
||||
"For example:\n",
|
||||
"* **'Sex'** with values *'M'*, *'F'*, *'Unknown'*. \n",
|
||||
"* **'Position'** with values 'phD', *'Professor'*, *'TA'*, *'graduate'*.\n",
|
||||
"* **'Temperature'** with values *'low'*, *'medium'*, *'high'*.\n",
|
||||
"\n",
|
||||
"There are two main approaches:\n",
|
||||
"* Integer encoding\n",
|
||||
"* One hot encoding"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Integer Encoding\n",
|
||||
"We assign a number to every value:\n",
|
||||
"\n",
|
||||
"['M', 'F', 'Unknown', 'M'] --> [0, 1, 2, 0]\n",
|
||||
"\n",
|
||||
"['phD', 'Professor', 'TA','graduate', 'phD'] --> [0, 1, 2, 3, 0]\n",
|
||||
"\n",
|
||||
"['low', 'medium', 'high', 'low'] --> [0, 1, 2, 0]\n",
|
||||
"\n",
|
||||
"The main problem with this representation is integers have a natural order, and some ML algorithms can be confused. \n",
|
||||
"\n",
|
||||
"In our examples, this representation can be suitable for **temperature**, but not for the other two."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## One Hot Encoding\n",
|
||||
"A binary column is created for each value of the categorical variable."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Sex M F U\n",
|
||||
"----- ---------\n",
|
||||
"M 1 0 0\n",
|
||||
"F is transformed into 0 1 0\n",
|
||||
"Unknown 0 0 1\n",
|
||||
"M 1 0 0 "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Transforming categorical data with Scikit-Learn\n",
|
||||
"\n",
|
||||
"We can use:\n",
|
||||
"* **get_dummies()** (one hot encoding)\n",
|
||||
"* **LabelEncoder** (integer encoding) and **OneHotEncoder** (one hot encoding). \n",
|
||||
"\n",
|
||||
"We are going to learn the first approach."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### One Hot Encoding\n",
|
||||
"We can use Pandas (*get_dummies*) or Scikit-Learn (*OneHotEncoder*)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" Name Age Sex Position\n",
|
||||
"0 Marius 18 Male graduate\n",
|
||||
"1 Maria 19 Female professor\n",
|
||||
"2 John 20 Male TA\n",
|
||||
"3 Carla 30 Female phD\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"data = {\"Name\": [\"Marius\", \"Maria\", \"John\", \"Carla\"],\n",
|
||||
" \"Age\": [18, 19, 20, 30],\n",
|
||||
"\t\t\"Sex\": [\"Male\", \"Female\", \"Male\", \"Female\"],\n",
|
||||
" \"Position\": [\"graduate\", \"professor\", \"TA\", \"phD\"]\n",
|
||||
" }\n",
|
||||
"df = pd.DataFrame(data)\n",
|
||||
"print(df)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>sex_encoded</th>\n",
|
||||
" <th>position_encoded</th>\n",
|
||||
" <th>Sex_Female</th>\n",
|
||||
" <th>Sex_Male</th>\n",
|
||||
" <th>Position_TA</th>\n",
|
||||
" <th>Position_graduate</th>\n",
|
||||
" <th>Position_phD</th>\n",
|
||||
" <th>Position_professor</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>Marius</td>\n",
|
||||
" <td>18</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>Maria</td>\n",
|
||||
" <td>19</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>John</td>\n",
|
||||
" <td>20</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>Carla</td>\n",
|
||||
" <td>30</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Name Age sex_encoded position_encoded Sex_Female Sex_Male \\\n",
|
||||
"0 Marius 18 1 1 False True \n",
|
||||
"1 Maria 19 0 3 True False \n",
|
||||
"2 John 20 1 0 False True \n",
|
||||
"3 Carla 30 0 2 True False \n",
|
||||
"\n",
|
||||
" Position_TA Position_graduate Position_phD Position_professor \n",
|
||||
"0 False True False False \n",
|
||||
"1 False False False True \n",
|
||||
"2 True False False False \n",
|
||||
"3 False False True False "
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The history saving thread hit an unexpected error (OperationalError('attempt to write a readonly database')).History will not be written to the database.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df_onehot = pd.get_dummies(df, columns=['Sex', 'Position'])\n",
|
||||
"df_onehot"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can also use *OneHotEncoder* from Scikit."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Sex_Female</th>\n",
|
||||
" <th>Sex_Male</th>\n",
|
||||
" <th>Position_TA</th>\n",
|
||||
" <th>Position_graduate</th>\n",
|
||||
" <th>Position_phD</th>\n",
|
||||
" <th>Position_professor</th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>sex_encoded</th>\n",
|
||||
" <th>position_encoded</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>Marius</td>\n",
|
||||
" <td>18</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>Maria</td>\n",
|
||||
" <td>19</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>John</td>\n",
|
||||
" <td>20</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>0.0</td>\n",
|
||||
" <td>Carla</td>\n",
|
||||
" <td>30</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Sex_Female Sex_Male Position_TA Position_graduate Position_phD \\\n",
|
||||
"0 0.0 1.0 0.0 1.0 0.0 \n",
|
||||
"1 1.0 0.0 0.0 0.0 0.0 \n",
|
||||
"2 0.0 1.0 1.0 0.0 0.0 \n",
|
||||
"3 1.0 0.0 0.0 0.0 1.0 \n",
|
||||
"\n",
|
||||
" Position_professor Name Age sex_encoded position_encoded \n",
|
||||
"0 0.0 Marius 18 1 1 \n",
|
||||
"1 1.0 Maria 19 0 3 \n",
|
||||
"2 0.0 John 20 1 0 \n",
|
||||
"3 0.0 Carla 30 0 2 "
|
||||
]
|
||||
},
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn.preprocessing import OneHotEncoder\n",
|
||||
"from sklearn.compose import make_column_transformer\n",
|
||||
"\n",
|
||||
"df_onehotencoder = df\n",
|
||||
"# create OneHotEncoder object\n",
|
||||
"encoder = OneHotEncoder()\n",
|
||||
"\n",
|
||||
"# Transformer for several columns\n",
|
||||
"transformer = make_column_transformer(\n",
|
||||
" (OneHotEncoder(), ['Sex', 'Position']),\n",
|
||||
" remainder='passthrough',\n",
|
||||
" verbose_feature_names_out=False)\n",
|
||||
"\n",
|
||||
"# transform\n",
|
||||
"transformed = transformer.fit_transform(df_onehotencoder)\n",
|
||||
"\n",
|
||||
"df_onehotencoder = pd.DataFrame(\n",
|
||||
" transformed,\n",
|
||||
" columns=transformer.get_feature_names_out())\n",
|
||||
"df_onehotencoder"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Pandas' get_dummy is easier for transforming DataFrames. OneHotEncoder is more efficient and can be good for integrating the step in a machine learning pipeline."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Integer encoding\n",
|
||||
"We will use **LabelEncoder**. It is possible to get the original values with *inverse_transform*. See [LabelEncoder](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>Sex</th>\n",
|
||||
" <th>Position</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>Marius</td>\n",
|
||||
" <td>18</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>graduate</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>Maria</td>\n",
|
||||
" <td>19</td>\n",
|
||||
" <td>Female</td>\n",
|
||||
" <td>professor</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>John</td>\n",
|
||||
" <td>20</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>TA</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>Carla</td>\n",
|
||||
" <td>30</td>\n",
|
||||
" <td>Female</td>\n",
|
||||
" <td>phD</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Name Age Sex Position\n",
|
||||
"0 Marius 18 Male graduate\n",
|
||||
"1 Maria 19 Female professor\n",
|
||||
"2 John 20 Male TA\n",
|
||||
"3 Carla 30 Female phD"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn.preprocessing import LabelEncoder\n",
|
||||
"# creating instance of labelencoder\n",
|
||||
"labelencoder = LabelEncoder()\n",
|
||||
"df_encoded = df\n",
|
||||
"# Assigning numerical values and storing in another column\n",
|
||||
"sex_values = ('Male', 'Female')\n",
|
||||
"position_values = ('graduate', 'professor', 'TA', 'phD')\n",
|
||||
"df_encoded"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>Sex</th>\n",
|
||||
" <th>Position</th>\n",
|
||||
" <th>sex_encoded</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>Marius</td>\n",
|
||||
" <td>18</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>graduate</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>Maria</td>\n",
|
||||
" <td>19</td>\n",
|
||||
" <td>Female</td>\n",
|
||||
" <td>professor</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>John</td>\n",
|
||||
" <td>20</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>TA</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>Carla</td>\n",
|
||||
" <td>30</td>\n",
|
||||
" <td>Female</td>\n",
|
||||
" <td>phD</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Name Age Sex Position sex_encoded\n",
|
||||
"0 Marius 18 Male graduate 1\n",
|
||||
"1 Maria 19 Female professor 0\n",
|
||||
"2 John 20 Male TA 1\n",
|
||||
"3 Carla 30 Female phD 0"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df_encoded['sex_encoded'] = labelencoder.fit_transform(df_encoded['Sex'])\n",
|
||||
"df_encoded"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>Sex</th>\n",
|
||||
" <th>Position</th>\n",
|
||||
" <th>sex_encoded</th>\n",
|
||||
" <th>position_encoded</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>Marius</td>\n",
|
||||
" <td>18</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>graduate</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>Maria</td>\n",
|
||||
" <td>19</td>\n",
|
||||
" <td>Female</td>\n",
|
||||
" <td>professor</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>John</td>\n",
|
||||
" <td>20</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>TA</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>Carla</td>\n",
|
||||
" <td>30</td>\n",
|
||||
" <td>Female</td>\n",
|
||||
" <td>phD</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Name Age Sex Position sex_encoded position_encoded\n",
|
||||
"0 Marius 18 Male graduate 1 1\n",
|
||||
"1 Maria 19 Female professor 0 3\n",
|
||||
"2 John 20 Male TA 1 0\n",
|
||||
"3 Carla 30 Female phD 0 2"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df_encoded['position_encoded'] = labelencoder.fit_transform(df_encoded['Position'])\n",
|
||||
"df_encoded"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Binarizer](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html), Scikit Learn"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": false
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
652
ml21/preprocessing/09_String_Data.ipynb
Normal file
@ -0,0 +1,652 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# String Data\n",
|
||||
"It is widespread to clean string columns to follow a predefined format (e.g., emails, URLs, ...).\n",
|
||||
"\n",
|
||||
"We can do it using regular expressions or specific libraries."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Beautifier\n",
|
||||
"A simple [library](https://github.com/labtocat/beautifier) to cleanup and prettify URL patterns, domains, and so on. The library helps to clean Unicode, special characters, and unnecessary redirection patterns from the URLs and gives you a clean date.\n",
|
||||
"\n",
|
||||
"Install with **'pip install beautifier'**."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Email cleanup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from beautifier import Email\n",
|
||||
"email = Email('me@imsach.in')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'imsach.in'"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email.domain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'me'"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email.username"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"False"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email.is_free_email"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"email2 = Email('This my address')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"False"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email2.is_valid"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"email3 = Email('pepe@gmail.com')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"True"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email3.is_valid"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"True"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email3.is_free_email"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## URL cleanup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from beautifier import Url\n",
|
||||
"url = Url('https://in.linkedin.com/in/sachinphilip?authtoken=887nasdadasd6hasdtg21&secret=98jy766yhhuhnjk')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'https://in.linkedin.com/in/sachinphilip'"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"url.cleanup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'in.linkedin.com'"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"url.domain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['authtoken=887nasdadasd6hasdtg21', 'secret=98jy766yhhuhnjk']"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"url.param"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'authtoken=887nasdadasd6hasdtg21&secret=98jy766yhhuhnjk'"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"url.parameters"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'sachinphilip'"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"url.username"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Unicode\n",
|
||||
"Problem: Some unicode code has been broken. We see the character in a different character dataset.\n",
|
||||
"\n",
|
||||
"A **mojibake** is a character displayed in an unintended character encoding. Example: \"<22>\").\n",
|
||||
"\n",
|
||||
"We will use the library **ftfy** (fixed text for you) to fix it.\n",
|
||||
"\n",
|
||||
"First, you should install the library: **conda install ftfy** (or **pip install ftfy**)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"¯\\_(ツ)_/¯\n",
|
||||
"Party\n",
|
||||
"I'm\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import ftfy\n",
|
||||
"foo = '¯\\\\_(ã\\x83\\x84)_/¯'\n",
|
||||
"bar = '\\ufeffParty'\n",
|
||||
"baz = '\\001\\033[36;44mI’m'\n",
|
||||
"print(ftfy.fix_text(foo))\n",
|
||||
"print(ftfy.fix_text(bar))\n",
|
||||
"print(ftfy.fix_text(baz))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"We can understand which heuristics ftfy is using."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"U+0026 & [Po] AMPERSAND\n",
|
||||
"U+006D m [Ll] LATIN SMALL LETTER M\n",
|
||||
"U+0061 a [Ll] LATIN SMALL LETTER A\n",
|
||||
"U+0063 c [Ll] LATIN SMALL LETTER C\n",
|
||||
"U+0072 r [Ll] LATIN SMALL LETTER R\n",
|
||||
"U+003B ; [Po] SEMICOLON\n",
|
||||
"U+005C \\ [Po] REVERSE SOLIDUS\n",
|
||||
"U+005F _ [Pc] LOW LINE\n",
|
||||
"U+0028 ( [Ps] LEFT PARENTHESIS\n",
|
||||
"U+00E3 ã [Ll] LATIN SMALL LETTER A WITH TILDE\n",
|
||||
"U+0083 \\x83 [Cc] <unknown>\n",
|
||||
"U+0084 \\x84 [Cc] <unknown>\n",
|
||||
"U+0029 ) [Pe] RIGHT PARENTHESIS\n",
|
||||
"U+005F _ [Pc] LOW LINE\n",
|
||||
"U+002F / [Po] SOLIDUS\n",
|
||||
"U+0026 & [Po] AMPERSAND\n",
|
||||
"U+006D m [Ll] LATIN SMALL LETTER M\n",
|
||||
"U+0061 a [Ll] LATIN SMALL LETTER A\n",
|
||||
"U+0063 c [Ll] LATIN SMALL LETTER C\n",
|
||||
"U+0072 r [Ll] LATIN SMALL LETTER R\n",
|
||||
"U+003B ; [Po] SEMICOLON\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ftfy.explain_unicode(foo)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Dates\n",
|
||||
"Sometimes we want to extract date from text. We can use regular expressions or handy packages, such as [**python-dateutil**](https://dateutil.readthedocs.io/en/stable/). An alternative is [arrow](https://arrow.readthedocs.io/en/latest/).\n",
|
||||
"\n",
|
||||
"Install the library: **pip install python-dateutil**."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2019-08-22 10:22:46+00:00\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from dateutil.parser import parse\n",
|
||||
"now = parse(\"Thu Aug 22 10:22:46 UTC 2019\")\n",
|
||||
"print(now)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2019-08-08 10:20:00\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dt = parse(\"Today is Thursday 8, 2019 at 10:20:00AM\", fuzzy=True)\n",
|
||||
"print(dt)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Data Preprocessing for Machine learning in Python, GeeksForGeeks](https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/), , A. Sharma, 2018.\n",
|
||||
"* [Beautifier](https://github.com/labtocat/beautifier) package\n",
|
||||
"* [Ftfy](https://ftfy.readthedocs.io/en/latest/) package\n",
|
||||
"* [python-dateutil](https://dateutil.readthedocs.io/en/stable/)package"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": false
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
139
ml21/preprocessing/11_0_Handy.ipynb
Normal file
@ -0,0 +1,139 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Handy libraries\n",
|
||||
"Libraries that help in several preprocessing tasks.\n",
|
||||
"\n",
|
||||
"* [datacleaner](11_1_datacleaner.ipynb)\n",
|
||||
"* [autoclean](11_3_autoclean.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Data Preprocessing for Machine learning in Python, GeeksForGeeks](https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/), A. Sharma, 2018.\n",
|
||||
"* [Handy Python Libraries for Formatting and Cleaning Data](https://mode.com/blog/python-data-cleaning-libraries), M. Bierly, 2016\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": false
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
673
ml21/preprocessing/11_1_datacleaner.ipynb
Normal file
@ -0,0 +1,673 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Datacleaner\n",
|
||||
"[Datacleaner](https://github.com/rhiever/datacleaner) supports:\n",
|
||||
"\n",
|
||||
"* drop rows with missing values\n",
|
||||
"* replace missing values with the mode or median on a column-by-column basis\n",
|
||||
"* encode non-numeric variables with numerical equivalents\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Install with\n",
|
||||
"\n",
|
||||
"**pip install datacleaner**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>PassengerId</th>\n",
|
||||
" <th>Survived</th>\n",
|
||||
" <th>Pclass</th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Sex</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>SibSp</th>\n",
|
||||
" <th>Parch</th>\n",
|
||||
" <th>Ticket</th>\n",
|
||||
" <th>Fare</th>\n",
|
||||
" <th>Cabin</th>\n",
|
||||
" <th>Embarked</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Braund, Mr. Owen Harris</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>22.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>A/5 21171</td>\n",
|
||||
" <td>7.2500</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>38.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>PC 17599</td>\n",
|
||||
" <td>71.2833</td>\n",
|
||||
" <td>C85</td>\n",
|
||||
" <td>C</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Heikkinen, Miss. Laina</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>26.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>STON/O2. 3101282</td>\n",
|
||||
" <td>7.9250</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>35.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>113803</td>\n",
|
||||
" <td>53.1000</td>\n",
|
||||
" <td>C123</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Allen, Mr. William Henry</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>35.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>373450</td>\n",
|
||||
" <td>8.0500</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>...</th>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>886</th>\n",
|
||||
" <td>887</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>Montvila, Rev. Juozas</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>27.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>211536</td>\n",
|
||||
" <td>13.0000</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>887</th>\n",
|
||||
" <td>888</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Graham, Miss. Margaret Edith</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>19.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>112053</td>\n",
|
||||
" <td>30.0000</td>\n",
|
||||
" <td>B42</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>888</th>\n",
|
||||
" <td>889</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Johnston, Miss. Catherine Helen \"Carrie\"</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>W./C. 6607</td>\n",
|
||||
" <td>23.4500</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>889</th>\n",
|
||||
" <td>890</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Behr, Mr. Karl Howell</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>26.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>111369</td>\n",
|
||||
" <td>30.0000</td>\n",
|
||||
" <td>C148</td>\n",
|
||||
" <td>C</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>890</th>\n",
|
||||
" <td>891</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Dooley, Mr. Patrick</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>32.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>370376</td>\n",
|
||||
" <td>7.7500</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>Q</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>891 rows × 12 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" PassengerId Survived Pclass \\\n",
|
||||
"0 1 0 3 \n",
|
||||
"1 2 1 1 \n",
|
||||
"2 3 1 3 \n",
|
||||
"3 4 1 1 \n",
|
||||
"4 5 0 3 \n",
|
||||
".. ... ... ... \n",
|
||||
"886 887 0 2 \n",
|
||||
"887 888 1 1 \n",
|
||||
"888 889 0 3 \n",
|
||||
"889 890 1 1 \n",
|
||||
"890 891 0 3 \n",
|
||||
"\n",
|
||||
" Name Sex Age SibSp \\\n",
|
||||
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
|
||||
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
|
||||
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
|
||||
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
|
||||
"4 Allen, Mr. William Henry male 35.0 0 \n",
|
||||
".. ... ... ... ... \n",
|
||||
"886 Montvila, Rev. Juozas male 27.0 0 \n",
|
||||
"887 Graham, Miss. Margaret Edith female 19.0 0 \n",
|
||||
"888 Johnston, Miss. Catherine Helen \"Carrie\" female NaN 1 \n",
|
||||
"889 Behr, Mr. Karl Howell male 26.0 0 \n",
|
||||
"890 Dooley, Mr. Patrick male 32.0 0 \n",
|
||||
"\n",
|
||||
" Parch Ticket Fare Cabin Embarked \n",
|
||||
"0 0 A/5 21171 7.2500 NaN S \n",
|
||||
"1 0 PC 17599 71.2833 C85 C \n",
|
||||
"2 0 STON/O2. 3101282 7.9250 NaN S \n",
|
||||
"3 0 113803 53.1000 C123 S \n",
|
||||
"4 0 373450 8.0500 NaN S \n",
|
||||
".. ... ... ... ... ... \n",
|
||||
"886 0 211536 13.0000 NaN S \n",
|
||||
"887 0 112053 30.0000 B42 S \n",
|
||||
"888 2 W./C. 6607 23.4500 NaN S \n",
|
||||
"889 0 111369 30.0000 C148 C \n",
|
||||
"890 0 370376 7.7500 NaN Q \n",
|
||||
"\n",
|
||||
"[891 rows x 12 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"from datacleaner import autoclean\n",
|
||||
"\n",
|
||||
"df = pd.read_csv('https://raw.githubusercontent.com/gsi-upm/sitc/master/ml2/data-titanic/train.csv')\n",
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>PassengerId</th>\n",
|
||||
" <th>Survived</th>\n",
|
||||
" <th>Pclass</th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Sex</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>SibSp</th>\n",
|
||||
" <th>Parch</th>\n",
|
||||
" <th>Ticket</th>\n",
|
||||
" <th>Fare</th>\n",
|
||||
" <th>Cabin</th>\n",
|
||||
" <th>Embarked</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>108</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>22.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>523</td>\n",
|
||||
" <td>7.2500</td>\n",
|
||||
" <td>47</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>190</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>38.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>596</td>\n",
|
||||
" <td>71.2833</td>\n",
|
||||
" <td>81</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>353</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>26.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>669</td>\n",
|
||||
" <td>7.9250</td>\n",
|
||||
" <td>47</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>272</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>35.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>49</td>\n",
|
||||
" <td>53.1000</td>\n",
|
||||
" <td>55</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>15</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>35.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>472</td>\n",
|
||||
" <td>8.0500</td>\n",
|
||||
" <td>47</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>...</th>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>886</th>\n",
|
||||
" <td>887</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>548</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>27.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>101</td>\n",
|
||||
" <td>13.0000</td>\n",
|
||||
" <td>47</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>887</th>\n",
|
||||
" <td>888</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>303</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>19.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>14</td>\n",
|
||||
" <td>30.0000</td>\n",
|
||||
" <td>30</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>888</th>\n",
|
||||
" <td>889</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>413</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>28.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>675</td>\n",
|
||||
" <td>23.4500</td>\n",
|
||||
" <td>47</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>889</th>\n",
|
||||
" <td>890</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>81</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>26.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>8</td>\n",
|
||||
" <td>30.0000</td>\n",
|
||||
" <td>60</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>890</th>\n",
|
||||
" <td>891</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>220</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>32.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>466</td>\n",
|
||||
" <td>7.7500</td>\n",
|
||||
" <td>47</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>891 rows × 12 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket \\\n",
|
||||
"0 1 0 3 108 1 22.0 1 0 523 \n",
|
||||
"1 2 1 1 190 0 38.0 1 0 596 \n",
|
||||
"2 3 1 3 353 0 26.0 0 0 669 \n",
|
||||
"3 4 1 1 272 0 35.0 1 0 49 \n",
|
||||
"4 5 0 3 15 1 35.0 0 0 472 \n",
|
||||
".. ... ... ... ... ... ... ... ... ... \n",
|
||||
"886 887 0 2 548 1 27.0 0 0 101 \n",
|
||||
"887 888 1 1 303 0 19.0 0 0 14 \n",
|
||||
"888 889 0 3 413 0 28.0 1 2 675 \n",
|
||||
"889 890 1 1 81 1 26.0 0 0 8 \n",
|
||||
"890 891 0 3 220 1 32.0 0 0 466 \n",
|
||||
"\n",
|
||||
" Fare Cabin Embarked \n",
|
||||
"0 7.2500 47 2 \n",
|
||||
"1 71.2833 81 0 \n",
|
||||
"2 7.9250 47 2 \n",
|
||||
"3 53.1000 55 2 \n",
|
||||
"4 8.0500 47 2 \n",
|
||||
".. ... ... ... \n",
|
||||
"886 13.0000 47 2 \n",
|
||||
"887 30.0000 30 2 \n",
|
||||
"888 23.4500 47 2 \n",
|
||||
"889 30.0000 60 0 \n",
|
||||
"890 7.7500 47 1 \n",
|
||||
"\n",
|
||||
"[891 rows x 12 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df_clean = autoclean(df, copy=True)\n",
|
||||
"df_clean"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Data Preprocessing for Machine learning in Python, GeeksForGeeks](https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/), A. Sharma, 2018.\n",
|
||||
"* [Handy Python Libraries for Formatting and Cleaning Data](https://mode.com/blog/python-data-cleaning-libraries), M. Bierly, 2016\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": true
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
578
ml21/preprocessing/11_3_autoclean.ipynb
Normal file
@ -0,0 +1,578 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "849ad57e-6adb-4c2e-afd6-73db37eef572",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "179cc802-9f1d-40b0-bf0c-9d4fb7ea1262",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9858d815-0390-4e77-a5ff-a8d2a1960981",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "238bab60-75f0-4d29-ab05-66afc463b506",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Autoclean\n",
|
||||
"A simple library to clean data. [Autoclean](https://github.com/elisemercury/AutoClean) supports:\n",
|
||||
"AutoClean supports:\n",
|
||||
"\n",
|
||||
"* Handling of duplicates\n",
|
||||
"* Various imputation methods for missing values\n",
|
||||
"* Handling of outliers\n",
|
||||
"* Encoding of categorical data (OneHot, Label)\n",
|
||||
"* Extraction of data time values\n",
|
||||
"\n",
|
||||
"Install the package: **pip install py-AutoClean**.\n",
|
||||
"\n",
|
||||
"Parameters:\n",
|
||||
"\n",
|
||||
"* **duplicates**\n",
|
||||
" * default: False,\n",
|
||||
" * other values: 'auto', True\n",
|
||||
"* **missing_num**\n",
|
||||
" * default:False,\n",
|
||||
" * other values:\t'auto', 'linreg', 'knn', 'mean', 'median', 'most_frequent', 'delete', False\n",
|
||||
"* **missing_categ**\n",
|
||||
" * default: False,\n",
|
||||
" * other values:\t'auto', 'logreg', 'knn', 'most_frequent', 'delete', False\n",
|
||||
"* **encode_categ**\n",
|
||||
" * default: False,\n",
|
||||
" * other values:\t'auto', ['onehot'], ['label'], False ; to encode only specific columns add a list of column names or indexes: ['auto', ['col1', 2]]\n",
|
||||
"* **extract_datetime**\n",
|
||||
" * default:\tFalse,\n",
|
||||
" * other values:\t'auto', 'D', 'M', 'Y', 'h', 'm', 's'\n",
|
||||
"* **outliers**\n",
|
||||
" * default:\tFalse,\n",
|
||||
" * other values:\t'auto', 'winz', 'delete'\n",
|
||||
"* **outlier_param**\tdefault:\t1.5, other values:\tany int or float, False\n",
|
||||
"* **logfile**\n",
|
||||
" * default: True,\n",
|
||||
" * other values:\tFalse\n",
|
||||
"* **verbose**\n",
|
||||
" * default: False,\n",
|
||||
" * other values:\tTrue"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"id": "491b034b-994e-4f06-b4bc-df0590a62aab",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>PassengerId</th>\n",
|
||||
" <th>Survived</th>\n",
|
||||
" <th>Pclass</th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Sex</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>SibSp</th>\n",
|
||||
" <th>Parch</th>\n",
|
||||
" <th>Ticket</th>\n",
|
||||
" <th>Fare</th>\n",
|
||||
" <th>Cabin</th>\n",
|
||||
" <th>Embarked</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Braund, Mr. Owen Harris</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>22.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>A/5 21171</td>\n",
|
||||
" <td>7.2500</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>38.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>PC 17599</td>\n",
|
||||
" <td>71.2833</td>\n",
|
||||
" <td>C85</td>\n",
|
||||
" <td>C</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Heikkinen, Miss. Laina</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>26.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>STON/O2. 3101282</td>\n",
|
||||
" <td>7.9250</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>35.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>113803</td>\n",
|
||||
" <td>53.1000</td>\n",
|
||||
" <td>C123</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Allen, Mr. William Henry</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>35.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>373450</td>\n",
|
||||
" <td>8.0500</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>...</th>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>886</th>\n",
|
||||
" <td>887</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>Montvila, Rev. Juozas</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>27.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>211536</td>\n",
|
||||
" <td>13.0000</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>887</th>\n",
|
||||
" <td>888</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Graham, Miss. Margaret Edith</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>19.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>112053</td>\n",
|
||||
" <td>30.0000</td>\n",
|
||||
" <td>B42</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>888</th>\n",
|
||||
" <td>889</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Johnston, Miss. Catherine Helen \"Carrie\"</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>W./C. 6607</td>\n",
|
||||
" <td>23.4500</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>889</th>\n",
|
||||
" <td>890</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Behr, Mr. Karl Howell</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>26.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>111369</td>\n",
|
||||
" <td>30.0000</td>\n",
|
||||
" <td>C148</td>\n",
|
||||
" <td>C</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>890</th>\n",
|
||||
" <td>891</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Dooley, Mr. Patrick</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>32.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>370376</td>\n",
|
||||
" <td>7.7500</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>Q</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>891 rows × 12 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" PassengerId Survived Pclass \\\n",
|
||||
"0 1 0 3 \n",
|
||||
"1 2 1 1 \n",
|
||||
"2 3 1 3 \n",
|
||||
"3 4 1 1 \n",
|
||||
"4 5 0 3 \n",
|
||||
".. ... ... ... \n",
|
||||
"886 887 0 2 \n",
|
||||
"887 888 1 1 \n",
|
||||
"888 889 0 3 \n",
|
||||
"889 890 1 1 \n",
|
||||
"890 891 0 3 \n",
|
||||
"\n",
|
||||
" Name Sex Age SibSp \\\n",
|
||||
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
|
||||
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
|
||||
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
|
||||
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
|
||||
"4 Allen, Mr. William Henry male 35.0 0 \n",
|
||||
".. ... ... ... ... \n",
|
||||
"886 Montvila, Rev. Juozas male 27.0 0 \n",
|
||||
"887 Graham, Miss. Margaret Edith female 19.0 0 \n",
|
||||
"888 Johnston, Miss. Catherine Helen \"Carrie\" female NaN 1 \n",
|
||||
"889 Behr, Mr. Karl Howell male 26.0 0 \n",
|
||||
"890 Dooley, Mr. Patrick male 32.0 0 \n",
|
||||
"\n",
|
||||
" Parch Ticket Fare Cabin Embarked \n",
|
||||
"0 0 A/5 21171 7.2500 NaN S \n",
|
||||
"1 0 PC 17599 71.2833 C85 C \n",
|
||||
"2 0 STON/O2. 3101282 7.9250 NaN S \n",
|
||||
"3 0 113803 53.1000 C123 S \n",
|
||||
"4 0 373450 8.0500 NaN S \n",
|
||||
".. ... ... ... ... ... \n",
|
||||
"886 0 211536 13.0000 NaN S \n",
|
||||
"887 0 112053 30.0000 B42 S \n",
|
||||
"888 2 W./C. 6607 23.4500 NaN S \n",
|
||||
"889 0 111369 30.0000 C148 C \n",
|
||||
"890 0 370376 7.7500 NaN Q \n",
|
||||
"\n",
|
||||
"[891 rows x 12 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"from AutoClean import AutoClean\n",
|
||||
"\n",
|
||||
"df = pd.read_csv('https://raw.githubusercontent.com/gsi-upm/sitc/master/ml2/data-titanic/train.csv')\n",
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"id": "d842eedf-3971-4966-a8b4-543bb56dd60d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"AutoClean process completed in 0.289385 seconds\n",
|
||||
"Logfile saved to: /home/cif/GoogleDrive/cursos/summer-school-romania/2019/notebooks/preprocessing/autoclean.log\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"autoclean = AutoClean(df, mode='auto')\n",
|
||||
"\n",
|
||||
"# We can control the preprocessing\n",
|
||||
"#autoclean = AutoClean(df, mode='auto', duplicates=False, missing_num=False, missing_categ=False, encode_categ=False, extract_datetime=False, outliers=False, outlier_param=1.5, logfile=True, verbose=False)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 38,
|
||||
"id": "4ede7c55-475a-4748-8cc4-788f46c88b26",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>PassengerId</th>\n",
|
||||
" <th>Survived</th>\n",
|
||||
" <th>Pclass</th>\n",
|
||||
" <th>Name</th>\n",
|
||||
" <th>Sex</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>SibSp</th>\n",
|
||||
" <th>Parch</th>\n",
|
||||
" <th>Ticket</th>\n",
|
||||
" <th>Fare</th>\n",
|
||||
" <th>Cabin</th>\n",
|
||||
" <th>Embarked</th>\n",
|
||||
" <th>Sex_female</th>\n",
|
||||
" <th>Sex_male</th>\n",
|
||||
" <th>Embarked_C</th>\n",
|
||||
" <th>Embarked_Q</th>\n",
|
||||
" <th>Embarked_S</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Braund, Mr. Owen Harris</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>22.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>A/5 21171</td>\n",
|
||||
" <td>7.2500</td>\n",
|
||||
" <td>C128</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>38.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>PC 17599</td>\n",
|
||||
" <td>65.6344</td>\n",
|
||||
" <td>C85</td>\n",
|
||||
" <td>C</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Heikkinen, Miss. Laina</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>26.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>STON/O2. 3101282</td>\n",
|
||||
" <td>7.9250</td>\n",
|
||||
" <td>C128</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
|
||||
" <td>female</td>\n",
|
||||
" <td>35.0</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>113803</td>\n",
|
||||
" <td>53.1000</td>\n",
|
||||
" <td>C123</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Allen, Mr. William Henry</td>\n",
|
||||
" <td>male</td>\n",
|
||||
" <td>35.0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>373450</td>\n",
|
||||
" <td>8.0500</td>\n",
|
||||
" <td>C128</td>\n",
|
||||
" <td>S</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>False</td>\n",
|
||||
" <td>True</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" PassengerId Survived Pclass \\\n",
|
||||
"0 1 0 3 \n",
|
||||
"1 2 1 1 \n",
|
||||
"2 3 1 3 \n",
|
||||
"3 4 1 1 \n",
|
||||
"4 5 0 3 \n",
|
||||
"\n",
|
||||
" Name Sex Age SibSp \\\n",
|
||||
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
|
||||
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
|
||||
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
|
||||
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
|
||||
"4 Allen, Mr. William Henry male 35.0 0 \n",
|
||||
"\n",
|
||||
" Parch Ticket Fare Cabin Embarked Sex_female Sex_male \\\n",
|
||||
"0 0 A/5 21171 7.2500 C128 S False True \n",
|
||||
"1 0 PC 17599 65.6344 C85 C True False \n",
|
||||
"2 0 STON/O2. 3101282 7.9250 C128 S True False \n",
|
||||
"3 0 113803 53.1000 C123 S True False \n",
|
||||
"4 0 373450 8.0500 C128 S False True \n",
|
||||
"\n",
|
||||
" Embarked_C Embarked_Q Embarked_S \n",
|
||||
"0 False False True \n",
|
||||
"1 True False False \n",
|
||||
"2 False False True \n",
|
||||
"3 False False True \n",
|
||||
"4 False False True "
|
||||
]
|
||||
},
|
||||
"execution_count": 38,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df_clean = autoclean.output\n",
|
||||
"df_clean[0:5]"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
502
ml21/preprocessing/5_Duplicated_Values.ipynb
Normal file
@ -0,0 +1,502 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Duplicated values\n",
|
||||
"\n",
|
||||
"There are two possible approaches: **remove** these rows or **filling** them. It depends on every case.\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Filling NaN values\n",
|
||||
"If we need to fill errors or blanks, we can use the methods **fillna()** or **dropna()**.\n",
|
||||
"\n",
|
||||
"* For **string** fields, we can fill NaN with **' '**.\n",
|
||||
"\n",
|
||||
"* For **numbers**, we can fill with the **mean** or **median** value. \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Fill NaN with ' '\n",
|
||||
"df['col'] = df['col'].fillna(' ')\n",
|
||||
"# Fill NaN with 99\n",
|
||||
"df['col'] = df['col'].fillna(99)\n",
|
||||
"# Fill NaN with the mean of the column\n",
|
||||
"df['col'] = df['col'].fillna(df['col'].mean())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Propagate non-null values forward or backwards\n",
|
||||
"You can also propagate non-null values forward or backwards by putting\n",
|
||||
"method=’pad’ as the method argument. It will fill the next value in the\n",
|
||||
"dataframe with the previous non-NaN value. Maybe you just want to fill one\n",
|
||||
"value ( limit=1 )or you want to fill all the values."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.DataFrame(data={'col1':[np.nan, np.nan, 2,3,4, np.nan, np.nan]})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1\n",
|
||||
"0 NaN\n",
|
||||
"1 NaN\n",
|
||||
"2 2.0\n",
|
||||
"3 3.0\n",
|
||||
"4 4.0\n",
|
||||
"5 NaN\n",
|
||||
"6 NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1\n",
|
||||
"0 NaN\n",
|
||||
"1 NaN\n",
|
||||
"2 2.0\n",
|
||||
"3 3.0\n",
|
||||
"4 4.0\n",
|
||||
"5 4.0\n",
|
||||
"6 NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# We fill forward the value 4.0 and fill the next one (limit = 1)\n",
|
||||
"df.fillna(method='pad', limit=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"We can also backfilling with **bfill**."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1\n",
|
||||
"0 2.0\n",
|
||||
"1 2.0\n",
|
||||
"2 2.0\n",
|
||||
"3 3.0\n",
|
||||
"4 4.0\n",
|
||||
"5 NaN\n",
|
||||
"6 NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Fill the first two NaN values with the first available value\n",
|
||||
"df.fillna(method='bfill')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Removing NaN values\n",
|
||||
"We can remove them by row or column."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"/# Drop any rows which have any nans\n",
|
||||
"df.dropna()\n",
|
||||
"/# Drop columns that have any nans\n",
|
||||
"df.dropna(axis=1)\n",
|
||||
"/# Only drop columns which have at least 90% non-NaNs\n",
|
||||
"df.dropna(thresh=int(df.shape[0] * .9), axis=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Data Preprocessing for Machine learning in Python, GeeksForGeeks](https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.4"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
619
ml21/preprocessing/9_String_Data.ipynb
Normal file
@ -0,0 +1,619 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# String Data\n",
|
||||
"It is common to clean string columns so that they follow a predefined format (e.g. emails, URLs, ...).\n",
|
||||
"\n",
|
||||
"We can do it using regular expressions or specific libraries."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Beautifier\n",
|
||||
"Simple [library](https://github.com/labtocat/beautifier) to cleanup and prettify url patterns, domains and so on. Library helps to clean unicodes, special characters and unnecessary redirection patterns from the urls and gives you clean date.\n",
|
||||
"\n",
|
||||
"Install with **'pip install beautifier'**."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Email cleanup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from beautifier import Email\n",
|
||||
"email = Email('me@imsach.in')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'imsach.in'"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email.domain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'me'"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email.username"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"False"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email.is_free_email"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"email2 = Email('This my address')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"False"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email2.is_valid"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"email3 = Email('pepe@gmail.com')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"True"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email3.is_valid"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"True"
|
||||
]
|
||||
},
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"email3.is_free_email"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## URL cleanup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from beautifier import Url\n",
|
||||
"url = Url('https://in.linkedin.com/in/sachinphilip?authtoken=887nasdadasd6hasdtg21&secret=98jy766yhhuhnjk')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'https://in.linkedin.com/in/sachinphilip'"
|
||||
]
|
||||
},
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"url.cleanup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'in.linkedin.com'"
|
||||
]
|
||||
},
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"url.domain"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 35,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['authtoken=887nasdadasd6hasdtg21', 'secret=98jy766yhhuhnjk']"
|
||||
]
|
||||
},
|
||||
"execution_count": 35,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"url.param"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'authtoken=887nasdadasd6hasdtg21&secret=98jy766yhhuhnjk'"
|
||||
]
|
||||
},
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"url.parameters"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'sachinphilip'"
|
||||
]
|
||||
},
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"url.username"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Unicode\n",
|
||||
"Problem: Some unicode code has been broken. We see the character in a different character dataset.\n",
|
||||
"\n",
|
||||
"A **mojibake** is a character displayed in an unintended character enconding. Example: \"<22>\").\n",
|
||||
"\n",
|
||||
"We will use the library **ftfy** (fixed text for you) to fix it.\n",
|
||||
"\n",
|
||||
"First, you should install the library: ***conda install ftfy**. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"¯\\_(ツ)_/¯\n",
|
||||
"Party\n",
|
||||
"I'm\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import ftfy\n",
|
||||
"foo = '¯\\\\_(ã\\x83\\x84)_/¯'\n",
|
||||
"bar = '\\ufeffParty'\n",
|
||||
"baz = '\\001\\033[36;44mI’m'\n",
|
||||
"print(ftfy.fix_text(foo))\n",
|
||||
"print(ftfy.fix_text(bar))\n",
|
||||
"print(ftfy.fix_text(baz))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"We can understand which heuristics ftfy is using."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "NameError",
|
||||
"evalue": "name 'ftfy' is not defined",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-1-4030b963ff0a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mftfy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexplain_unicode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfoo\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[0;31mNameError\u001b[0m: name 'ftfy' is not defined"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ftfy.explain_unicode(foo)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Dates\n",
|
||||
"Sometimes we want to extract date from text. We can use regular expressions or handy packages, such as **python-dateutil**.\n",
|
||||
"\n",
|
||||
"Install the library: **pip install python-dateutil**."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2019-08-22 10:22:46+00:00\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from dateutil.parser import parse\n",
|
||||
"now = parse(\"Thu Aug 22 10:22:46 UTC 2019\")\n",
|
||||
"print(now)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"2019-08-22 10:20:00\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dt = parse(\"Today is Thursday 8, 2019 at 10:20:00AM\", fuzzy=True)\n",
|
||||
"print(dt)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Data Preprocessing for Machine learning in Python, GeeksForGeeks](https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/)\n",
|
||||
"* Beautifier https://github.com/labtocat/beautifier\n",
|
||||
"* Ftfy https://ftfy.readthedocs.io/en/latest/\n",
|
||||
"* python-dateutil https://dateutil.readthedocs.io/en/stable/"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.4"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
BIN
ml21/preprocessing/images/EscUpmPolit_p.gif
Normal file
After Width: | Height: | Size: 3.1 KiB |
BIN
ml21/preprocessing/images/titanic.jpg
Normal file
After Width: | Height: | Size: 152 KiB |
1
ml21/visualization/.gitkeep
Normal file
@ -0,0 +1 @@
|
||||
|
185
ml21/visualization/00_Intro_Visualization.ipynb
Normal file
@ -0,0 +1,185 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Introduction to Visualization\n",
|
||||
" \n",
|
||||
"In this session, we will get more insight regarding how to visualize data.\n",
|
||||
"\n",
|
||||
"# Objectives\n",
|
||||
"\n",
|
||||
"The main objectives of this session are:\n",
|
||||
"* Understanding how to visualize data\n",
|
||||
"* Understanding the purpose of different charts \n",
|
||||
"* Experimenting with several environments for visualizing data\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Seaborn\n",
|
||||
"\n",
|
||||
"Seaborn is a library that visualizes data in Python. The main characteristics are:\n",
|
||||
"\n",
|
||||
"* A dataset-oriented API for examining relationships between multiple variables\n",
|
||||
"* Specialized support for using categorical variables to show observations or aggregate statistics\n",
|
||||
"* Options for visualizing univariate or bivariate distributions and for comparing them between subsets of data\n",
|
||||
"* Automatic estimation and plotting of linear regression models for different kinds of dependent variables\n",
|
||||
"* Convenient views of the overall structure of complex datasets\n",
|
||||
"* High-level abstractions for structuring multi-plot grids that let you quickly build complex visualizations\n",
|
||||
"* Concise control over matplotlib figure styling with several built-in themes\n",
|
||||
"* Tools for choosing color palettes that faithfully reveal patterns in your data\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Install\n",
|
||||
"Use:\n",
|
||||
"\n",
|
||||
"**conda install seaborn**\n",
|
||||
"\n",
|
||||
"or \n",
|
||||
"\n",
|
||||
"**pip install seaborn**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Table of Contents"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"1. [Home](00_Intro_Visualization.ipynb)\n",
|
||||
"2. [Dataset](01_Dataset.ipynb)\n",
|
||||
"3. [Comparison Charts](02_Comparison_Charts.ipynb)\n",
|
||||
" 1. [More Comparison Charts](02_01_More_Comparison_Charts.ipynb)\n",
|
||||
"4. [Distribution Charts](03_Distribution_Charts.ipynb)\n",
|
||||
"5. [Hierarchical charts](04_Hierarchical_Charts.ipynb)\n",
|
||||
"6. [Relational charts](05_Relational_Charts.ipynb)\n",
|
||||
"7. [Spatial charts](06_Spatial_Charts.ipynb)\n",
|
||||
"8. [Temporal charts](07_Temporal_Charts.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": false
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
363
ml21/visualization/01_Dataset.ipynb
Normal file
@ -0,0 +1,363 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Visualization](00_Intro_Visualization.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Dataset\n",
|
||||
"Seaborn includes several datasets. We can consult the available datasets and load them. \n",
|
||||
"\n",
|
||||
"The datasets are also available at https://github.com/mwaskom/seaborn-data."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from matplotlib import pyplot as plt\n",
|
||||
"import seaborn as sns"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['anagrams',\n",
|
||||
" 'anscombe',\n",
|
||||
" 'attention',\n",
|
||||
" 'brain_networks',\n",
|
||||
" 'car_crashes',\n",
|
||||
" 'diamonds',\n",
|
||||
" 'dots',\n",
|
||||
" 'dowjones',\n",
|
||||
" 'exercise',\n",
|
||||
" 'flights',\n",
|
||||
" 'fmri',\n",
|
||||
" 'geyser',\n",
|
||||
" 'glue',\n",
|
||||
" 'healthexp',\n",
|
||||
" 'iris',\n",
|
||||
" 'mpg',\n",
|
||||
" 'penguins',\n",
|
||||
" 'planets',\n",
|
||||
" 'seaice',\n",
|
||||
" 'taxis',\n",
|
||||
" 'tips',\n",
|
||||
" 'titanic']"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sns.get_dataset_names()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>total_bill</th>\n",
|
||||
" <th>tip</th>\n",
|
||||
" <th>sex</th>\n",
|
||||
" <th>smoker</th>\n",
|
||||
" <th>day</th>\n",
|
||||
" <th>time</th>\n",
|
||||
" <th>size</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>16.99</td>\n",
|
||||
" <td>1.01</td>\n",
|
||||
" <td>Female</td>\n",
|
||||
" <td>No</td>\n",
|
||||
" <td>Sun</td>\n",
|
||||
" <td>Dinner</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>10.34</td>\n",
|
||||
" <td>1.66</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>No</td>\n",
|
||||
" <td>Sun</td>\n",
|
||||
" <td>Dinner</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>21.01</td>\n",
|
||||
" <td>3.50</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>No</td>\n",
|
||||
" <td>Sun</td>\n",
|
||||
" <td>Dinner</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>23.68</td>\n",
|
||||
" <td>3.31</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>No</td>\n",
|
||||
" <td>Sun</td>\n",
|
||||
" <td>Dinner</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>24.59</td>\n",
|
||||
" <td>3.61</td>\n",
|
||||
" <td>Female</td>\n",
|
||||
" <td>No</td>\n",
|
||||
" <td>Sun</td>\n",
|
||||
" <td>Dinner</td>\n",
|
||||
" <td>4</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>25.29</td>\n",
|
||||
" <td>4.71</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>No</td>\n",
|
||||
" <td>Sun</td>\n",
|
||||
" <td>Dinner</td>\n",
|
||||
" <td>4</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>8.77</td>\n",
|
||||
" <td>2.00</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>No</td>\n",
|
||||
" <td>Sun</td>\n",
|
||||
" <td>Dinner</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>7</th>\n",
|
||||
" <td>26.88</td>\n",
|
||||
" <td>3.12</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>No</td>\n",
|
||||
" <td>Sun</td>\n",
|
||||
" <td>Dinner</td>\n",
|
||||
" <td>4</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>8</th>\n",
|
||||
" <td>15.04</td>\n",
|
||||
" <td>1.96</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>No</td>\n",
|
||||
" <td>Sun</td>\n",
|
||||
" <td>Dinner</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>9</th>\n",
|
||||
" <td>14.78</td>\n",
|
||||
" <td>3.23</td>\n",
|
||||
" <td>Male</td>\n",
|
||||
" <td>No</td>\n",
|
||||
" <td>Sun</td>\n",
|
||||
" <td>Dinner</td>\n",
|
||||
" <td>2</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" total_bill tip sex smoker day time size\n",
|
||||
"0 16.99 1.01 Female No Sun Dinner 2\n",
|
||||
"1 10.34 1.66 Male No Sun Dinner 3\n",
|
||||
"2 21.01 3.50 Male No Sun Dinner 3\n",
|
||||
"3 23.68 3.31 Male No Sun Dinner 2\n",
|
||||
"4 24.59 3.61 Female No Sun Dinner 4\n",
|
||||
"5 25.29 4.71 Male No Sun Dinner 4\n",
|
||||
"6 8.77 2.00 Male No Sun Dinner 2\n",
|
||||
"7 26.88 3.12 Male No Sun Dinner 4\n",
|
||||
"8 15.04 1.96 Male No Sun Dinner 2\n",
|
||||
"9 14.78 3.23 Male No Sun Dinner 2"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df = sns.load_dataset('tips')\n",
|
||||
"df.head(10)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Seaborn](http://seaborn.pydata.org/index.html) documentation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": false
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
3192
ml21/visualization/02_01_More_Comparison_Charts.ipynb
Normal file
561
ml21/visualization/02_Comparison_Charts.ipynb
Normal file
1235
ml21/visualization/03_Distribution_Charts.ipynb
Normal file
2126
ml21/visualization/04_Hierarchical_Charts.ipynb
Normal file
500
ml21/visualization/05_Relational_Charts.ipynb
Normal file
689
ml21/visualization/06_Spatial_Charts.ipynb
Normal file
451
ml21/visualization/07_Temporal_Charts.ipynb
Normal file
BIN
ml21/visualization/images/EscUpmPolit_p.gif
Normal file
After Width: | Height: | Size: 3.1 KiB |
@ -187,9 +187,9 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Comparing\n",
|
||||
"Your task is modify the previous code to canonical GA configuration from Holland (look at the lesson's slides). In addition you should consult the [DEAP API](http://deap.readthedocs.io/en/master/api/tools.html#operators).\n",
|
||||
"Your task is to modify the previous code to canonical GA configuration from Holland (look at the lesson's slides). In addition you should consult the [DEAP API](http://deap.readthedocs.io/en/master/api/tools.html#operators).\n",
|
||||
"\n",
|
||||
"Submit your notebook and include a the modified code, and a comparison of the effects of these changes. \n",
|
||||
"Submit your notebook and include a modified code and a comparison of the effects of these changes. \n",
|
||||
"\n",
|
||||
"Discuss your findings."
|
||||
]
|
||||
@ -198,7 +198,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Optimizing ML hyperparameters\n",
|
||||
"## Optional. Optimizing ML hyperparameters\n",
|
||||
"\n",
|
||||
"One of the applications of Genetic Algorithms is the optimization of ML hyperparameters. Previously we have used GridSearch from Scikit. Using (sklearn-deap)[[References](#References)], optimize the Titatic hyperparameters using both GridSearch and Genetic Algorithms. \n",
|
||||
"\n",
|
||||
@ -206,7 +206,7 @@
|
||||
"\n",
|
||||
"Submit a notebook where you include well-crafted conclusions about the exercises, discussing the pros and cons of using genetic algorithms for this purpose.\n",
|
||||
"\n",
|
||||
"Note: There is a problem with the version 0.24 of scikit. Just comment the different approaches."
|
||||
"Note: There is a problem with Scikit version 0.24. Comment on the different approaches."
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -222,7 +222,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Optimizing a ML pipeline with a genetic algorithm\n",
|
||||
"## Optional. Optimizing an ML pipeline with a genetic algorithm\n",
|
||||
"\n",
|
||||
"The library [TPOT](#References) optimizes ML pipelines and comes with a lot of (examples)[https://epistasislab.github.io/tpot/examples/] and even notebooks, for example for the [iris dataset](https://github.com/EpistasisLab/tpot/blob/master/tutorials/IRIS.ipynb).\n",
|
||||
"\n",
|
||||
|
@ -44,7 +44,7 @@
|
||||
"First of all, install the Gymnasium library, which is a fork of the OpenAI Gym library:\n",
|
||||
"\n",
|
||||
"```console\n",
|
||||
"foo@bar:~$ conda install gymnasium\n",
|
||||
"foo@bar:~$ pip install gymnasium[classic-control]\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"If you get an error 'No module named 'Box2D', install 'pybox2d'.\n"
|
||||
|
769
nlp/0_1_LLM.ipynb
Normal file
@ -74,7 +74,6 @@
|
||||
"* [The Python tutorial](https://docs.python.org/3/tutorial/)\n",
|
||||
"* [Object-Oriented Programming in Python](http://python-textbok.readthedocs.org/en/latest/index.html)\n",
|
||||
"* [Python3 tutorial](http://www.python-course.eu/python3_course.php)\n",
|
||||
"* [Python for the Busy Java Developer, Deepak Sarda, 2014](http://antrix.net/static/pages/python-for-java/online/)\n",
|
||||
"* [Style Guide for Python Code (PEP-0008)](https://www.python.org/dev/peps/pep-0008/)\n",
|
||||
"* [Python Slides](http://tdc-www.harvard.edu/Python.pdf)\n",
|
||||
"* [Python for Programmers - 1 day course](http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/archived/archived-python-courses/PythonProgIntro/files/notes.pdf)\n",
|
||||
|
@ -85,7 +85,7 @@
|
||||
"In Python3, there are the following [numeric types](https://docs.python.org/3/library/stdtypes.html#typesnumeric):\n",
|
||||
"* integers (int): 1, -1, ...\n",
|
||||
"* floating point numbers (float): 0.1, 1E2\n",
|
||||
"* complex numbers (complex): 2 + 3j\n",
|
||||
"* complex numbers (complex): 2 + 3j\n.",
|
||||
"Let's play a bit"
|
||||
]
|
||||
},
|
||||
|
@ -377,7 +377,7 @@
|
||||
"\n",
|
||||
"Tuples are faster than lists. Its main usage is when the collection is constant, or you do not want it can be changed (write protected). \n",
|
||||
"\n",
|
||||
"Tuples can be converted into lists and vice-versa, with the methods list() and tuple()."
|
||||
"Tuples can be converted into lists and vice-versa, with the methods *list()* and *tuple()*."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -37,7 +37,7 @@
|
||||
"\n",
|
||||
"A set object is an unordered collection of distinct objects. There are two built-in set types: **set** (mutable) and **frozenset** (inmutable).\n",
|
||||
"\n",
|
||||
"A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is only one bultin mapping type: **dictionary**."
|
||||
"A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is only one builtin mapping type: **dictionary**."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -65,7 +65,7 @@
|
||||
"Python is a **strongly typed** language and **dynamically typed** language.\n",
|
||||
"\n",
|
||||
"This means:\n",
|
||||
"* ** dynamically typed**: variables do not declare a static type (as in Java int a = 2;). Variables have no type themselves, they are just names that hold a reference to some object. The type of the variable is changed dynamically when you change the type of the assigned data object. \n",
|
||||
"* **dynamically typed**: variables do not declare a static type (as in Java int a = 2;). Variables have no type themselves, they are just names that hold a reference to some object. The type of the variable is changed dynamically when you change the type of the assigned data object. \n",
|
||||
"* **strongly typed**: the interpreter tracks variable types. There is no implicit type conversion. This means that all the type variables should be converted manually, preventing from unexpected behaviour. "
|
||||
]
|
||||
},
|
||||
|
@ -41,7 +41,7 @@
|
||||
"The first argument of instance class method is self, that refers to the current instance of the class.\n",
|
||||
"There is a special method, __init__ that initializes the object. It is like a constructor, but the object is already created when __init__ is called.\n",
|
||||
"\n",
|
||||
"Instance attributes are define as self.variables. (self is the same than this in Java)."
|
||||
"Instance attributes are define as *self.variables*. (self is the same than this in Java)."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
154
sna/0_Intro_Network_Analysis.ipynb
Normal file
@ -0,0 +1,154 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Introduction to Network Analysis\n",
|
||||
" \n",
|
||||
"In this session, we are going to get more insight regarding how to analyze and visualize social networks.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Objectives\n",
|
||||
"\n",
|
||||
"The main objectives of this session are:\n",
|
||||
"* Understanding why networks are important in data science\n",
|
||||
"* Experimenting with network analysis with networkx."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Table of Contents"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"1. [Home](0_Intro_Network_Analysis.ipynb)\n",
|
||||
"2. [First Steps](1_First_Steps.ipynb)\n",
|
||||
"3. [Working_with_Graphs](2_Working_with_Graphs.ipynb)\n",
|
||||
"4. [Network Analysis](3_Network_Analysis.ipynb)\n",
|
||||
"5. [Social Networks](4_Social_Networks.ipynb)\n",
|
||||
"6. [Pandas integration](5_Pandas.ipynb)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"datacleaner": {
|
||||
"position": {
|
||||
"top": "50px"
|
||||
},
|
||||
"python": {
|
||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||
},
|
||||
"window_display": false
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
1301
sna/1_First_Steps.ipynb
Normal file
1013
sna/2_Working_with_Graphs.ipynb
Normal file
374
sna/2a_Florentine_Families_Star_Wars.ipynb
Normal file
@ -0,0 +1,374 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Network Analysis](0_Intro_Network_Analysis.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Exercise: Florentine families"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import networkx as nx\n",
|
||||
"import warnings\n",
|
||||
"warnings.simplefilter(action='ignore', category=FutureWarning)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"G_florentine = nx.florentine_families_graph()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Exercise: Star Wars"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import networkx as nx\n",
|
||||
"\n",
|
||||
"# Taken from https://gist.github.com/codingthat/be03565bd97e789a3835b50235ad562f\n",
|
||||
"# The original dataset is from:\n",
|
||||
"# Gabasova, E. (2016). Star Wars social network. DOI: https://doi.org/10.5281/zenodo.1411479\n",
|
||||
"# \n",
|
||||
"# Simplified by Federico Albanese.\n",
|
||||
"\n",
|
||||
"characters = [\"R2-D2\",\n",
|
||||
" \"CHEWBACCA\",\n",
|
||||
" \"C-3PO\",\n",
|
||||
" \"LUKE\",\n",
|
||||
" \"DARTH VADER\",\n",
|
||||
" \"CAMIE\",\n",
|
||||
" \"BIGGS\",\n",
|
||||
" \"LEIA\",\n",
|
||||
" \"BERU\",\n",
|
||||
" \"OWEN\",\n",
|
||||
" \"OBI-WAN\",\n",
|
||||
" \"MOTTI\",\n",
|
||||
" \"TARKIN\",\n",
|
||||
" \"HAN\",\n",
|
||||
" \"DODONNA\",\n",
|
||||
" \"GOLD LEADER\",\n",
|
||||
" \"WEDGE\",\n",
|
||||
" \"RED LEADER\",\n",
|
||||
" \"RED TEN\"]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"edges = [(\"CHEWBACCA\", \"R2-D2\"),\n",
|
||||
" (\"C-3PO\",\"R2-D2\"),\n",
|
||||
" (\"BERU\", \"R2-D2\"),\n",
|
||||
" (\"LUKE\", \"R2-D2\"),\n",
|
||||
" (\"OWEN\", \"R2-D2\"),\n",
|
||||
" (\"OBI-WAN\", \"R2-D2\"),\n",
|
||||
" (\"LEIA\", \"R2-D2\"),\n",
|
||||
" (\"BIGGS\", \"R2-D2\"),\n",
|
||||
" (\"HAN\", \"R2-D2\"),\n",
|
||||
" (\"CHEWBACCA\", \"OBI-WAN\"),\n",
|
||||
" (\"C-3PO\", \"CHEWBACCA\"),\n",
|
||||
" (\"CHEWBACCA\", \"LUKE\"),\n",
|
||||
" (\"CHEWBACCA\", \"HAN\"),\n",
|
||||
" (\"CHEWBACCA\", \"LEIA\"),\n",
|
||||
" (\"CAMIE\", \"LUKE\"),\n",
|
||||
" (\"BIGGS\", \"CAMIE\"),\n",
|
||||
" (\"BIGGS\", \"LUKE\"),\n",
|
||||
" (\"DARTH VADER\", \"LEIA\"),\n",
|
||||
" (\"BERU\", \"LUKE\"),\n",
|
||||
" (\"BERU\", \"OWEN\"),\n",
|
||||
" (\"BERU\", \"C-3PO\"),\n",
|
||||
" (\"LUKE\", \"OWEN\"),\n",
|
||||
" (\"C-3PO\", \"LUKE\"),\n",
|
||||
" (\"C-3PO\", \"OWEN\"),\n",
|
||||
" (\"C-3PO\", \"LEIA\"),\n",
|
||||
" (\"LEIA\", \"LUKE\"),\n",
|
||||
" (\"BERU\", \"LEIA\"),\n",
|
||||
" (\"LUKE\", \"OBI-WAN\"),\n",
|
||||
" (\"C-3PO\", \"OBI-WAN\"),\n",
|
||||
" (\"LEIA\", \"OBI-WAN\"),\n",
|
||||
" (\"MOTTI\", \"TARKIN\"),\n",
|
||||
" (\"DARTH VADER\", \"MOTTI\"),\n",
|
||||
" (\"DARTH VADER\", \"TARKIN\"),\n",
|
||||
" (\"HAN\", \"OBI-WAN\"),\n",
|
||||
" (\"HAN\", \"LUKE\"),\n",
|
||||
" (\"C-3PO\", \"HAN\"),\n",
|
||||
" (\"LEIA\", \"MOTT\"),\n",
|
||||
" (\"LEIA\", \"TARKIN\"),\n",
|
||||
" (\"HAN\", \"LEIA\"),\n",
|
||||
" (\"DARTH VADER\", \"OBI-WAN\"),\n",
|
||||
" (\"DODONNA\", \"GOLD LEADER\"),\n",
|
||||
" (\"DODONNA\", \"WEDGE\"),\n",
|
||||
" (\"DODONNA\", \"LUKE\"),\n",
|
||||
" (\"GOLD LEADER\", \"WEDGE\"),\n",
|
||||
" (\"GOLD LEADER\", \"LUKE\"),\n",
|
||||
" (\"LUKE\", \"WEDGE\"),\n",
|
||||
" (\"BIGGS\", \"LEIA\"),\n",
|
||||
" (\"LEIA\", \"RED LEADER\"),\n",
|
||||
" (\"LUKE\", \"RED LEADER\"),\n",
|
||||
" (\"BIGGS\", \"RED LEADER\"),\n",
|
||||
" (\"BIGGS\", \"C-3PO\"),\n",
|
||||
" (\"C-3PO\", \"RED LEADER\"),\n",
|
||||
" (\"RED LEADER\", \"WEDGE\"),\n",
|
||||
" (\"GOLD LEADER\", \"RED LEADER\"),\n",
|
||||
" (\"BIGGS\", \"WEDGE\"),\n",
|
||||
" (\"RED LEADER\", \"RED TEN\"),\n",
|
||||
" (\"BIGGS\", \"GOLD LEADER\"),\n",
|
||||
" (\"LUKE\", \"RED TEN\")]\n",
|
||||
"\n",
|
||||
"G_starWars = nx.Graph()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"G_starWars.add_nodes_from(characters)\n",
|
||||
"G_starWars.add_edges_from(edges)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Exercise\n",
|
||||
"In this exercise we are going to practice some of the concepts of the session.\n",
|
||||
"\n",
|
||||
"Answer the following questions using the object *G_starWars* and *G_florentine*."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Number of nodes"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Number of edges"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Get the list of nodes"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Get the list of edges"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Draw the graph\n",
|
||||
"\n",
|
||||
"Hint. Use different layouts (circular, spring, ...)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Think of interesting micro, meso and macro metrics"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Analyze ego networks of interesting nodes."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Analyze communities"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
2230
sna/3_Network_Analysis.ipynb
Normal file
865
sna/4_Social_Networks.ipynb
Normal file
472
sna/5_Pandas.ipynb
Normal file
BIN
sna/images/EscUpmPolit_p.gif
Normal file
After Width: | Height: | Size: 3.1 KiB |