1
0
mirror of https://github.com/gsi-upm/sitc synced 2024-11-17 20:12:28 +00:00
Go to file
Carlos A. Iglesias e4fdcd65a1
Update 2_6_1_Q-Learning_Basic.ipynb
Updated installation with new version of gymnasium
2024-04-24 18:46:54 +02:00
lod Fix typos 2023-02-20 19:43:36 +01:00
ml1 Update 2_6_Model_Tuning.ipynb 2024-02-21 11:47:34 +01:00
ml2 Update 3_7_SVM.ipynb 2024-02-22 12:23:08 +01:00
ml3 description about parameter h added 2019-03-21 19:35:50 +01:00
ml4 Update 2_5_1_Exercise.ipynb 2024-04-18 18:04:43 +02:00
ml5 Update 2_6_1_Q-Learning_Basic.ipynb 2024-04-24 18:46:54 +02:00
ml21 Add files via upload 2024-04-04 18:27:48 +02:00
nlp Updated 4_4 to use get_feature_names_out() instead of get_feature_names 2023-04-23 16:41:53 +02:00
python Delete python/plurals.py 2024-02-08 18:32:43 +01:00
rdf fix typo 2020-02-20 17:38:02 +01:00
sna Delete sna/t.txt 2024-04-17 17:24:12 +02:00
.gitignore Added gitignore 2016-03-28 12:34:10 +02:00
CONTRIBUTING.md Add Makefile 2019-03-06 12:08:34 +01:00
logo.jpg Add SPARQL notebooks 2018-03-13 13:32:29 +01:00
Makefile Makefile updated 2019-03-28 14:13:22 +01:00
README.md Update README.md 2024-04-17 17:21:21 +02:00
requirements.txt Add requirements 2021-11-10 08:48:54 +01:00

sitc

Exercises for Intelligent Systems Course at Universidad Politécnica de Madrid, Telecommunication Engineering School. This material is used in the subjects

  • CDAW (Ciencia de datos y aprendizaje en automático en la web de datos) - Master Universitario de Ingeniería de Telecomunicación (MUIT)
  • ABID (Analítica de Big Data) - Master Universitario en Ingeniera de Redes y Servicios Telemáticos)

For following this course:

Topics

  • Python: a quick introduction to Python
  • ML-1: introduction to machine learning with scikit-learn
  • ML-2: introduction to machine learning with pandas and scikit-learn
  • ML-21: preprocessing and visualizatoin
  • ML-3: introduction to machine learning. Neural Computing
  • ML-4: introduction to Evolutionary Computing
  • ML-5: introduction to Reinforcement Learning
  • NLP: introduction to NLP
  • LOD: Linked Open Data, exercises and example code
  • SNA: Social Network Analysis