1
0
mirror of https://github.com/gsi-upm/sitc synced 2024-11-17 20:12:28 +00:00

Added visualization notebooks

This commit is contained in:
Carlos A. Iglesias 2024-04-03 22:53:02 +02:00 committed by GitHub
parent 0d4c0c706d
commit 21819abeae
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 9302 additions and 0 deletions

View File

@ -0,0 +1,185 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Introduction to Visualization\n",
" \n",
"In this session, we will get more insight regarding how to visualize data.\n",
"\n",
"# Objectives\n",
"\n",
"The main objectives of this session are:\n",
"* Understanding how to visualize data\n",
"* Understanding the purpose of different charts \n",
"* Experimenting with several environments for visualizing data\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Seaborn\n",
"\n",
"Seaborn is a library that visualizes data in Python. The main characteristics are:\n",
"\n",
"* A dataset-oriented API for examining relationships between multiple variables\n",
"* Specialized support for using categorical variables to show observations or aggregate statistics\n",
"* Options for visualizing univariate or bivariate distributions and for comparing them between subsets of data\n",
"* Automatic estimation and plotting of linear regression models for different kinds of dependent variables\n",
"* Convenient views of the overall structure of complex datasets\n",
"* High-level abstractions for structuring multi-plot grids that let you quickly build complex visualizations\n",
"* Concise control over matplotlib figure styling with several built-in themes\n",
"* Tools for choosing color palettes that faithfully reveal patterns in your data\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Install\n",
"Use:\n",
"\n",
"**conda install seaborn**\n",
"\n",
"or \n",
"\n",
"**pip install seaborn**"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Table of Contents"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"1. [Home](00_Intro_Visualization.ipynb)\n",
"2. [Dataset](01_Dataset.ipynb)\n",
"3. [Comparison Charts](02_Comparison_Charts.ipynb)\n",
" 1. [More Comparison Charts](02_01_More_Comparison_Charts.ipynb)\n",
"4. [Distribution Charts](03_Distribution_Charts.ipynb)\n",
"5. [Hierarchical charts](04_Hierarchical_Charts.ipynb)\n",
"6. [Relational charts](05_Relational_Charts.ipynb)\n",
"7. [Spatial charts](06_Spatial_Charts.ipynb)\n",
"8. [Temporal charts](07_Temporal_Charts.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Licence\n",
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,363 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"## [Introduction to Visualization](00_Intro_Visualization.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Dataset\n",
"Seaborn includes several datasets. We can consult the available datasets and load them. \n",
"\n",
"The datasets are also available at https://github.com/mwaskom/seaborn-data."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"from matplotlib import pyplot as plt\n",
"import seaborn as sns"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"['anagrams',\n",
" 'anscombe',\n",
" 'attention',\n",
" 'brain_networks',\n",
" 'car_crashes',\n",
" 'diamonds',\n",
" 'dots',\n",
" 'dowjones',\n",
" 'exercise',\n",
" 'flights',\n",
" 'fmri',\n",
" 'geyser',\n",
" 'glue',\n",
" 'healthexp',\n",
" 'iris',\n",
" 'mpg',\n",
" 'penguins',\n",
" 'planets',\n",
" 'seaice',\n",
" 'taxis',\n",
" 'tips',\n",
" 'titanic']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sns.get_dataset_names()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>total_bill</th>\n",
" <th>tip</th>\n",
" <th>sex</th>\n",
" <th>smoker</th>\n",
" <th>day</th>\n",
" <th>time</th>\n",
" <th>size</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>16.99</td>\n",
" <td>1.01</td>\n",
" <td>Female</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>10.34</td>\n",
" <td>1.66</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>21.01</td>\n",
" <td>3.50</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>23.68</td>\n",
" <td>3.31</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>24.59</td>\n",
" <td>3.61</td>\n",
" <td>Female</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>25.29</td>\n",
" <td>4.71</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>8.77</td>\n",
" <td>2.00</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>26.88</td>\n",
" <td>3.12</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>15.04</td>\n",
" <td>1.96</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>14.78</td>\n",
" <td>3.23</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>Sun</td>\n",
" <td>Dinner</td>\n",
" <td>2</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" total_bill tip sex smoker day time size\n",
"0 16.99 1.01 Female No Sun Dinner 2\n",
"1 10.34 1.66 Male No Sun Dinner 3\n",
"2 21.01 3.50 Male No Sun Dinner 3\n",
"3 23.68 3.31 Male No Sun Dinner 2\n",
"4 24.59 3.61 Female No Sun Dinner 4\n",
"5 25.29 4.71 Male No Sun Dinner 4\n",
"6 8.77 2.00 Male No Sun Dinner 2\n",
"7 26.88 3.12 Male No Sun Dinner 4\n",
"8 15.04 1.96 Male No Sun Dinner 2\n",
"9 14.78 3.23 Male No Sun Dinner 2"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = sns.load_dataset('tips')\n",
"df.head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"# References\n",
"* [Seaborn](http://seaborn.pydata.org/index.html) documentation"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"## Licence\n",
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long