You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
Go to file
Carlos A. Iglesias bf684d6e6e
Updated index
2 weeks ago
images Add files via upload 3 weeks ago
lod Fix typos 1 year ago
ml1 Update 2_6_Model_Tuning.ipynb 4 months ago
ml2 Update 3_1_Read_Data.ipynb 1 month ago
ml3 description about parameter h added 5 years ago
ml4 Update 2_5_1_Exercise.ipynb 2 months ago
ml5 Update 2_6_1_Q-Learning_Basic.ipynb 2 months ago
ml21 Add files via upload 3 months ago
nlp Updated index 2 weeks ago
python Delete python/plurals.py 5 months ago
rdf fix typo 4 years ago
sna Delete sna/t.txt 2 months ago
.gitignore Added gitignore 8 years ago
CONTRIBUTING.md Add Makefile 5 years ago
Makefile Makefile updated 5 years ago
README.md Update README.md 2 months ago
logo.jpg Add SPARQL notebooks 6 years ago
requirements.txt Add requirements 3 years ago

README.md

sitc

Exercises for Intelligent Systems Course at Universidad Politécnica de Madrid, Telecommunication Engineering School. This material is used in the subjects

  • CDAW (Ciencia de datos y aprendizaje en automático en la web de datos) - Master Universitario de Ingeniería de Telecomunicación (MUIT)
  • ABID (Analítica de Big Data) - Master Universitario en Ingeniera de Redes y Servicios Telemáticos)

For following this course:

Topics

  • Python: a quick introduction to Python
  • ML-1: introduction to machine learning with scikit-learn
  • ML-2: introduction to machine learning with pandas and scikit-learn
  • ML-21: preprocessing and visualizatoin
  • ML-3: introduction to machine learning. Neural Computing
  • ML-4: introduction to Evolutionary Computing
  • ML-5: introduction to Reinforcement Learning
  • NLP: introduction to NLP
  • LOD: Linked Open Data, exercises and example code
  • SNA: Social Network Analysis