1
0
mirror of https://github.com/gsi-upm/sitc synced 2025-01-08 20:11:27 +00:00
sitc/ml21/visualization/00_Intro_Visualization.ipynb
2024-04-03 22:53:02 +02:00

186 lines
4.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Introduction to Visualization\n",
" \n",
"In this session, we will get more insight regarding how to visualize data.\n",
"\n",
"# Objectives\n",
"\n",
"The main objectives of this session are:\n",
"* Understanding how to visualize data\n",
"* Understanding the purpose of different charts \n",
"* Experimenting with several environments for visualizing data\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Seaborn\n",
"\n",
"Seaborn is a library that visualizes data in Python. The main characteristics are:\n",
"\n",
"* A dataset-oriented API for examining relationships between multiple variables\n",
"* Specialized support for using categorical variables to show observations or aggregate statistics\n",
"* Options for visualizing univariate or bivariate distributions and for comparing them between subsets of data\n",
"* Automatic estimation and plotting of linear regression models for different kinds of dependent variables\n",
"* Convenient views of the overall structure of complex datasets\n",
"* High-level abstractions for structuring multi-plot grids that let you quickly build complex visualizations\n",
"* Concise control over matplotlib figure styling with several built-in themes\n",
"* Tools for choosing color palettes that faithfully reveal patterns in your data\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Install\n",
"Use:\n",
"\n",
"**conda install seaborn**\n",
"\n",
"or \n",
"\n",
"**pip install seaborn**"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Table of Contents"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"1. [Home](00_Intro_Visualization.ipynb)\n",
"2. [Dataset](01_Dataset.ipynb)\n",
"3. [Comparison Charts](02_Comparison_Charts.ipynb)\n",
" 1. [More Comparison Charts](02_01_More_Comparison_Charts.ipynb)\n",
"4. [Distribution Charts](03_Distribution_Charts.ipynb)\n",
"5. [Hierarchical charts](04_Hierarchical_Charts.ipynb)\n",
"6. [Relational charts](05_Relational_Charts.ipynb)\n",
"7. [Spatial charts](06_Spatial_Charts.ipynb)\n",
"8. [Temporal charts](07_Temporal_Charts.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Licence\n",
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}