1
0
mirror of https://github.com/gsi-upm/soil synced 2025-10-27 13:48:17 +00:00

Compare commits

..

11 Commits

Author SHA1 Message Date
J. Fernando Sánchez
a2fb25c160 Version 0.30.0rc2
* Fix CLI arguments not being used when easy is passed a simulation instance
* Docs for `examples/events_and_messages/cars.py`
2022-10-18 17:02:12 +02:00
J. Fernando Sánchez
5fcf610108 Version 0.30.0rc1 2022-10-18 15:02:05 +02:00
J. Fernando Sánchez
159c9a9077 Add events 2022-10-18 13:11:01 +02:00
J. Fernando Sánchez
3776c4e5c5 Refactor
* Removed references to `set_state`
* Split some functionality from `agents` into separate files (`fsm` and
`network_agents`)
* Rename `neighboring_agents` to `neighbors`
* Delete some spurious functions
2022-10-17 21:49:31 +02:00
J. Fernando Sánchez
880a9f2a1c black formatting 2022-10-17 20:23:57 +02:00
J. Fernando Sánchez
227fdf050e Fix conditionals 2022-10-17 19:29:39 +02:00
J. Fernando Sánchez
5d759d0072 Add conditional time values 2022-10-17 13:58:14 +02:00
J. Fernando Sánchez
77d08fc592 Agent step can be a generator 2022-10-17 08:58:51 +02:00
J. Fernando Sánchez
0efcd24d90 Improve exporters 2022-10-16 21:57:30 +02:00
J. Fernando Sánchez
78833a9e08 Formatted with black 2022-10-16 17:58:19 +02:00
J. Fernando Sánchez
d9947c2c52 WIP: all tests pass
Documentation needs some improvement

The API has been simplified to only allow for ONE topology per
NetworkEnvironment.
This covers the main use case, and simplifies the code.
2022-10-16 17:56:23 +02:00
63 changed files with 3273 additions and 2329 deletions

View File

@@ -3,16 +3,22 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.3 UNRELEASED]
## [0.30 UNRELEASED]
### Added
* Simple debugging capabilities, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents)
* Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>`
* Ability to run
* Ability to
* The `soil.exporters` module to export the results of datacollectors (model.datacollector) into files at the end of trials/simulations
* A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology).
* FSM agents can now have generators as states. They work similar to normal states, with one caveat. Only `time` values can be yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. The return value *can* be a state, or a `(state, time)` tuple, just like in normal states.
### Changed
* Configuration schema is very different now. Check `soil.config` for more information. We are also using Pydantic for (de)serialization.
* There may be more than one topology/network in the simulation
* Agents are split into groups now. Each group may be assigned a given set of agents or an agent distribution, and a network topology to be assigned to.
* Ability
### Removed
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.
## [0.20.7]
### Changed
* Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument)

View File

@@ -10,19 +10,14 @@ seed: "CompleteSeed!"
model_class: Environment
model_params:
am_i_complete: true
topologies:
default:
params:
generator: complete_graph
n: 10
another_graph:
params:
generator: complete_graph
n: 2
topology:
params:
generator: complete_graph
n: 12
environment:
agents:
agent_class: CounterModel
topology: default
topology: true
state:
times: 1
# In this group we are not specifying any topology
@@ -30,25 +25,23 @@ model_params:
- name: 'Environment Agent 1'
agent_class: BaseAgent
group: environment
topology: null
topology: false
hidden: true
state:
times: 10
- agent_class: CounterModel
id: 0
group: other_counters
topology: another_graph
group: fixed_counters
state:
times: 1
total: 0
- agent_class: CounterModel
topology: another_graph
group: other_counters
group: fixed_counters
id: 1
distribution:
- agent_class: CounterModel
weight: 1
group: general_counters
group: distro_counters
state:
times: 3
- agent_class: AggregatedCounter

View File

@@ -1,63 +0,0 @@
---
version: '2'
id: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_steps: 100
interval: 1
seed: "CompleteSeed!"
model_class: "soil.Environment"
model_params:
topologies:
default:
params:
generator: complete_graph
n: 10
another_graph:
params:
generator: complete_graph
n: 2
agents:
# The values here will be used as default values for any agent
agent_class: CounterModel
topology: default
state:
times: 1
# This specifies a distribution of agents, each with a `weight` or an explicit number of agents
distribution:
- agent_class: CounterModel
weight: 1
# This is inherited from the default settings
#topology: default
state:
times: 3
- agent_class: AggregatedCounter
topology: default
weight: 0.2
fixed:
- name: 'Environment Agent 1'
# All the other agents will assigned to the 'default' group
group: environment
# Do not count this agent towards total limits
hidden: true
agent_class: soil.BaseAgent
topology: null
state:
times: 10
- agent_class: CounterModel
topology: another_graph
id: 0
state:
times: 1
total: 0
- agent_class: CounterModel
topology: another_graph
id: 1
override:
# 2 agents that match this filter will be updated to match the state {times: 5}
- filter:
agent_class: AggregatedCounter
n: 2
state:
times: 5

View File

@@ -2,11 +2,12 @@ from networkx import Graph
import random
import networkx as nx
def mygenerator(n=5, n_edges=5):
'''
"""
Just a simple generator that creates a network with n nodes and
n_edges edges. Edges are assigned randomly, only avoiding self loops.
'''
"""
G = nx.Graph()
for i in range(n):
@@ -19,9 +20,3 @@ def mygenerator(n=5, n_edges=5):
n_out = random.choice(nodes)
G.add_edge(n_in, n_out)
return G

View File

@@ -2,34 +2,37 @@ from soil.agents import FSM, state, default_state
class Fibonacci(FSM):
'''Agent that only executes in t_steps that are Fibonacci numbers'''
"""Agent that only executes in t_steps that are Fibonacci numbers"""
defaults = {
'prev': 1
}
defaults = {"prev": 1}
@default_state
@state
def counting(self):
self.log('Stopping at {}'.format(self.now))
prev, self['prev'] = self['prev'], max([self.now, self['prev']])
self.log("Stopping at {}".format(self.now))
prev, self["prev"] = self["prev"], max([self.now, self["prev"]])
return None, self.env.timeout(prev)
class Odds(FSM):
'''Agent that only executes in odd t_steps'''
"""Agent that only executes in odd t_steps"""
@default_state
@state
def odds(self):
self.log('Stopping at {}'.format(self.now))
return None, self.env.timeout(1+self.now%2)
self.log("Stopping at {}".format(self.now))
return None, self.env.timeout(1 + self.now % 2)
if __name__ == '__main__':
import logging
logging.basicConfig(level=logging.INFO)
if __name__ == "__main__":
from soil import Simulation
s = Simulation(network_agents=[{'ids': [0], 'agent_class': Fibonacci},
{'ids': [1], 'agent_class': Odds}],
network_params={"generator": "complete_graph", "n": 2},
max_time=100,
)
s = Simulation(
network_agents=[
{"ids": [0], "agent_class": Fibonacci},
{"ids": [1], "agent_class": Odds},
],
network_params={"generator": "complete_graph", "n": 2},
max_time=100,
)
s.run(dry_run=True)

View File

@@ -0,0 +1,7 @@
This example can be run like with command-line options, like this:
```bash
python cars.py --level DEBUG -e summary --csv
```
This will set the `CSV` (save the agent and model data to a CSV) and `summary` (print the a summary of the data to stdout) exporters, and set the log level to DEBUG.

View File

@@ -0,0 +1,205 @@
"""
This is an example of a simplified city, where there are Passengers and Drivers that can take those passengers
from their location to their desired location.
An example scenario could play like the following:
- Drivers start in the `wandering` state, where they wander around the city until they have been assigned a journey
- Passenger(1) tells every driver that it wants to request a Journey.
- Each driver receives the request.
If Driver(2) is interested in providing the Journey, it asks Passenger(1) to confirm that it accepts Driver(2)'s request
- When Passenger(1) accepts the request, two things happen:
- Passenger(1) changes its state to `driving_home`
- Driver(2) starts moving towards the origin of the Journey
- Once Driver(2) reaches the origin, it starts moving itself and Passenger(1) to the destination of the Journey
- When Driver(2) reaches the destination (carrying Passenger(1) along):
- Driver(2) starts wondering again
- Passenger(1) dies, and is removed from the simulation
- If there are no more passengers available in the simulation, Drivers die
"""
from __future__ import annotations
from soil import *
from soil import events
from mesa.space import MultiGrid
# More complex scenarios may use more than one type of message between objects.
# A common pattern is to use `enum.Enum` to represent state changes in a request.
@dataclass
class Journey:
"""
This represents a request for a journey. Passengers and drivers exchange this object.
A journey may have a driver assigned or not. If the driver has not been assigned, this
object is considered a "request for a journey".
"""
origin: (int, int)
destination: (int, int)
tip: float
passenger: Passenger
driver: Driver = None
class City(EventedEnvironment):
"""
An environment with a grid where drivers and passengers will be placed.
The number of drivers and riders is configurable through its parameters:
:param str n_cars: The total number of drivers to add
:param str n_passengers: The number of passengers in the simulation
:param list agents: Specific agents to use in the simulation. It overrides the `n_passengers`
and `n_cars` params.
:param int height: Height of the internal grid
:param int width: Width of the internal grid
"""
def __init__(self, *args, n_cars=1, n_passengers=10,
height=100, width=100, agents=None,
model_reporters=None,
**kwargs):
self.grid = MultiGrid(width=width, height=height, torus=False)
if agents is None:
agents = []
for i in range(n_cars):
agents.append({'agent_class': Driver})
for i in range(n_passengers):
agents.append({'agent_class': Passenger})
model_reporters = model_reporters or {'earnings': 'total_earnings', 'n_passengers': 'number_passengers'}
print('REPORTERS', model_reporters)
super().__init__(*args, agents=agents, model_reporters=model_reporters, **kwargs)
for agent in self.agents:
self.grid.place_agent(agent, (0, 0))
self.grid.move_to_empty(agent)
@property
def total_earnings(self):
return sum(d.earnings for d in self.agents(agent_class=Driver))
@property
def number_passengers(self):
return self.count_agents(agent_class=Passenger)
class Driver(Evented, FSM):
pos = None
journey = None
earnings = 0
def on_receive(self, msg, sender):
'''This is not a state. It will run (and block) every time check_messages is invoked'''
if self.journey is None and isinstance(msg, Journey) and msg.driver is None:
msg.driver = self
self.journey = msg
def check_passengers(self):
'''If there are no more passengers, stop forever'''
c = self.count_agents(agent_class=Passenger)
self.info(f"Passengers left {c}")
if not c:
self.die()
@default_state
@state
def wandering(self):
'''Move around the city until a journey is accepted'''
target = None
self.check_passengers()
self.journey = None
while self.journey is None: # No potential journeys detected (see on_receive)
if target is None or not self.move_towards(target):
target = self.random.choice(self.model.grid.get_neighborhood(self.pos, moore=False))
self.check_passengers()
self.check_messages() # This will call on_receive behind the scenes, and the agent's status will be updated
yield Delta(30) # Wait at least 30 seconds before checking again
try:
# Re-send the journey to the passenger, to confirm that we have been selected
self.journey = yield self.journey.passenger.ask(self.journey, timeout=60)
except events.TimedOut:
# No journey has been accepted. Try again
self.journey = None
return
return self.driving
@state
def driving(self):
'''The journey has been accepted. Pick them up and take them to their destination'''
while self.move_towards(self.journey.origin):
yield
while self.move_towards(self.journey.destination, with_passenger=True):
yield
self.earnings += self.journey.tip
self.check_passengers()
return self.wandering
def move_towards(self, target, with_passenger=False):
'''Move one cell at a time towards a target'''
self.info(f"Moving { self.pos } -> { target }")
if target[0] == self.pos[0] and target[1] == self.pos[1]:
return False
next_pos = [self.pos[0], self.pos[1]]
for idx in [0, 1]:
if self.pos[idx] < target[idx]:
next_pos[idx] += 1
break
if self.pos[idx] > target[idx]:
next_pos[idx] -= 1
break
self.model.grid.move_agent(self, tuple(next_pos))
if with_passenger:
self.journey.passenger.pos = self.pos # This could be communicated through messages
return True
class Passenger(Evented, FSM):
pos = None
def on_receive(self, msg, sender):
'''This is not a state. It will be run synchronously every time `check_messages` is run'''
if isinstance(msg, Journey):
self.journey = msg
return msg
@default_state
@state
def asking(self):
destination = (self.random.randint(0, self.model.grid.height), self.random.randint(0, self.model.grid.width))
self.journey = None
journey = Journey(origin=self.pos,
destination=destination,
tip=self.random.randint(10, 100),
passenger=self)
timeout = 60
expiration = self.now + timeout
self.model.broadcast(journey, ttl=timeout, sender=self, agent_class=Driver)
while not self.journey:
self.info(f"Passenger at: { self.pos }. Checking for responses.")
try:
yield self.received(expiration=expiration)
except events.TimedOut:
self.info(f"Passenger at: { self.pos }. Asking for journey.")
self.model.broadcast(journey, ttl=timeout, sender=self, agent_class=Driver)
expiration = self.now + timeout
self.check_messages()
return self.driving_home
@state
def driving_home(self):
while self.pos[0] != self.journey.destination[0] or self.pos[1] != self.journey.destination[1]:
yield self.received(timeout=60)
self.info("Got home safe!")
self.die()
simulation = Simulation(name='RideHailing', model_class=City, model_params={'n_passengers': 2})
if __name__ == "__main__":
with easy(simulation) as s:
s.run()

View File

@@ -8,17 +8,12 @@ interval: 1
seed: '1'
model_class: social_wealth.MoneyEnv
model_params:
topologies:
default:
params:
generator: social_wealth.graph_generator
n: 5
generator: social_wealth.graph_generator
agents:
topology: true
distribution:
- agent_class: social_wealth.SocialMoneyAgent
topology: default
weight: 1
mesa_agent_class: social_wealth.MoneyAgent
N: 10
width: 50
height: 50

View File

@@ -2,6 +2,7 @@ from mesa.visualization.ModularVisualization import ModularServer
from soil.visualization import UserSettableParameter
from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid
from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent
import networkx as nx
class MyNetwork(NetworkModule):
@@ -13,15 +14,18 @@ def network_portrayal(env):
# The model ensures there is 0 or 1 agent per node
portrayal = dict()
wealths = {
node_id: data["agent"].wealth for (node_id, data) in env.G.nodes(data=True)
}
portrayal["nodes"] = [
{
"id": agent_id,
"size": env.get_agent(agent_id).wealth,
# "color": "#CC0000" if not agents or agents[0].wealth == 0 else "#007959",
"color": "#CC0000",
"label": f"{agent_id}: {env.get_agent(agent_id).wealth}",
"id": node_id,
"size": 2 * (wealth + 1),
"color": "#CC0000" if wealth == 0 else "#007959",
# "color": "#CC0000",
"label": f"{node_id}: {wealth}",
}
for (agent_id) in env.G.nodes
for (node_id, wealth) in wealths.items()
]
portrayal["edges"] = [
@@ -29,7 +33,6 @@ def network_portrayal(env):
for edge_id, (source, target) in enumerate(env.G.edges)
]
return portrayal
@@ -40,7 +43,7 @@ def gridPortrayal(agent):
:param agent: the agent in the simulation
:return: the portrayal dictionary
"""
color = max(10, min(agent.wealth*10, 100))
color = max(10, min(agent.wealth * 10, 100))
return {
"Shape": "rect",
"w": 1,
@@ -51,11 +54,11 @@ def gridPortrayal(agent):
"Text": agent.unique_id,
"x": agent.pos[0],
"y": agent.pos[1],
"Color": f"rgba(31, 10, 255, 0.{color})"
"Color": f"rgba(31, 10, 255, 0.{color})",
}
grid = MyNetwork(network_portrayal, 500, 500, library="sigma")
grid = MyNetwork(network_portrayal, 500, 500)
chart = ChartModule(
[{"Label": "Gini", "Color": "Black"}], data_collector_name="datacollector"
)
@@ -70,7 +73,6 @@ model_params = {
1,
description="Choose how many agents to include in the model",
),
"network_agents": [{"agent_class": SocialMoneyAgent}],
"height": UserSettableParameter(
"slider",
"height",
@@ -79,7 +81,7 @@ model_params = {
10,
1,
description="Grid height",
),
),
"width": UserSettableParameter(
"slider",
"width",
@@ -88,13 +90,20 @@ model_params = {
10,
1,
description="Grid width",
),
"network_params": {
'generator': graph_generator
},
),
"agent_class": UserSettableParameter(
"choice",
"Agent class",
value="MoneyAgent",
choices=["MoneyAgent", "SocialMoneyAgent"],
),
"generator": graph_generator,
}
canvas_element = CanvasGrid(gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500)
canvas_element = CanvasGrid(
gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500
)
server = ModularServer(

View File

@@ -1,23 +1,26 @@
'''
"""
This is an example that adds soil agents and environment in a normal
mesa workflow.
'''
"""
from mesa import Agent as MesaAgent
from mesa.space import MultiGrid
# from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
import networkx as nx
from soil import NetworkAgent, Environment
from soil import NetworkAgent, Environment, serialization
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.agents]
x = sorted(agent_wealths)
N = len(list(model.agents))
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
return (1 + (1/N) - 2*B)
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
class MoneyAgent(MesaAgent):
"""
@@ -25,15 +28,14 @@ class MoneyAgent(MesaAgent):
It will only share wealth with neighbors based on grid proximity
"""
def __init__(self, unique_id, model):
def __init__(self, unique_id, model, wealth=1):
super().__init__(unique_id=unique_id, model=model)
self.wealth = 1
self.wealth = wealth
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
@@ -45,7 +47,7 @@ class MoneyAgent(MesaAgent):
self.wealth -= 1
def step(self):
self.info("Crying wolf", self.pos)
print("Crying wolf", self.pos)
self.move()
if self.wealth > 0:
self.give_money()
@@ -56,10 +58,10 @@ class SocialMoneyAgent(NetworkAgent, MoneyAgent):
def give_money(self):
cellmates = set(self.model.grid.get_cell_list_contents([self.pos]))
friends = set(self.get_neighboring_agents())
friends = set(self.get_neighbors())
self.info("Trying to give money")
self.debug("Cellmates: ", cellmates)
self.debug("Friends: ", friends)
self.info("Cellmates: ", cellmates)
self.info("Friends: ", friends)
nearby_friends = list(cellmates & friends)
@@ -69,13 +71,35 @@ class SocialMoneyAgent(NetworkAgent, MoneyAgent):
self.wealth -= 1
def graph_generator(n=5):
G = nx.Graph()
for ix in range(n):
G.add_edge(0, ix)
return G
class MoneyEnv(Environment):
"""A model with some number of agents."""
def __init__(self, width, height, *args, topologies, **kwargs):
super().__init__(*args, topologies=topologies, **kwargs)
def __init__(
self,
width,
height,
N,
generator=graph_generator,
agent_class=SocialMoneyAgent,
topology=None,
**kwargs
):
generator = serialization.deserialize(generator)
agent_class = serialization.deserialize(agent_class, globs=globals())
topology = generator(n=N)
super().__init__(topology=topology, N=N, **kwargs)
self.grid = MultiGrid(width, height, False)
self.populate_network(agent_class=agent_class)
# Create agents
for agent in self.agents:
x = self.random.randrange(self.grid.width)
@@ -83,37 +107,31 @@ class MoneyEnv(Environment):
self.grid.place_agent(agent, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": "wealth"})
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
def graph_generator(n=5):
G = nx.Graph()
for ix in range(n):
G.add_edge(0, ix)
return G
if __name__ == "__main__":
if __name__ == '__main__':
G = graph_generator()
fixed_params = {"topology": G,
"width": 10,
"network_agents": [{"agent_class": SocialMoneyAgent,
'weight': 1}],
"height": 10}
fixed_params = {
"generator": nx.complete_graph,
"width": 10,
"network_agents": [{"agent_class": SocialMoneyAgent, "weight": 1}],
"height": 10,
}
variable_params = {"N": range(10, 100, 10)}
batch_run = BatchRunner(MoneyEnv,
variable_parameters=variable_params,
fixed_parameters=fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini})
batch_run = BatchRunner(
MoneyEnv,
variable_parameters=variable_params,
fixed_parameters=fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini},
)
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)

View File

@@ -4,24 +4,26 @@ from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.schedule.agents]
x = sorted(agent_wealths)
N = model.num_agents
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
return (1 + (1/N) - 2*B)
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
class MoneyAgent(Agent):
""" An agent with fixed initial wealth."""
"""An agent with fixed initial wealth."""
def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
@@ -37,8 +39,10 @@ class MoneyAgent(Agent):
if self.wealth > 0:
self.give_money()
class MoneyModel(Model):
"""A model with some number of agents."""
def __init__(self, N, width, height):
self.num_agents = N
self.grid = MultiGrid(width, height, True)
@@ -55,29 +59,29 @@ class MoneyModel(Model):
self.grid.place_agent(a, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": "wealth"})
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
def step(self):
self.datacollector.collect(self)
self.schedule.step()
if __name__ == '__main__':
if __name__ == "__main__":
fixed_params = {"width": 10,
"height": 10}
fixed_params = {"width": 10, "height": 10}
variable_params = {"N": range(10, 500, 10)}
batch_run = BatchRunner(MoneyModel,
variable_params,
fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini})
batch_run = BatchRunner(
MoneyModel,
variable_params,
fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini},
)
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)

View File

@@ -3,84 +3,85 @@ import logging
class DumbViewer(FSM, NetworkAgent):
'''
"""
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
'''
defaults = {
'prob_neighbor_spread': 0.5,
'prob_tv_spread': 0.1,
}
"""
prob_neighbor_spread = 0.5
prob_tv_spread = 0.1
has_been_infected = False
@default_state
@state
def neutral(self):
if self['has_tv']:
if self.prob(self.model['prob_tv_spread']):
if self["has_tv"]:
if self.prob(self.model["prob_tv_spread"]):
return self.infected
if self.has_been_infected:
return self.infected
@state
def infected(self):
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
if self.prob(self.model['prob_neighbor_spread']):
for neighbor in self.get_neighbors(state_id=self.neutral.id):
if self.prob(self.model["prob_neighbor_spread"]):
neighbor.infect()
def infect(self):
'''
"""
This is not a state. It is a function that other agents can use to try to
infect this agent. DumbViewer always gets infected, but other agents like
HerdViewer might not become infected right away
'''
"""
self.set_state(self.infected)
self.has_been_infected = True
class HerdViewer(DumbViewer):
'''
"""
A viewer whose probability of infection depends on the state of its neighbors.
'''
"""
def infect(self):
'''Notice again that this is NOT a state. See DumbViewer.infect for reference'''
infected = self.count_neighboring_agents(state_id=self.infected.id)
total = self.count_neighboring_agents()
prob_infect = self.model['prob_neighbor_spread'] * infected/total
self.debug('prob_infect', prob_infect)
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
infected = self.count_neighbors(state_id=self.infected.id)
total = self.count_neighbors()
prob_infect = self.model["prob_neighbor_spread"] * infected / total
self.debug("prob_infect", prob_infect)
if self.prob(prob_infect):
self.set_state(self.infected)
self.has_been_infected = True
class WiseViewer(HerdViewer):
'''
"""
A viewer that can change its mind.
'''
"""
defaults = {
'prob_neighbor_spread': 0.5,
'prob_neighbor_cure': 0.25,
'prob_tv_spread': 0.1,
"prob_neighbor_spread": 0.5,
"prob_neighbor_cure": 0.25,
"prob_tv_spread": 0.1,
}
@state
def cured(self):
prob_cure = self.model['prob_neighbor_cure']
for neighbor in self.get_neighboring_agents(state_id=self.infected.id):
prob_cure = self.model["prob_neighbor_cure"]
for neighbor in self.get_neighbors(state_id=self.infected.id):
if self.prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
self.debug('Viewer {} cannot be cured'.format(neighbor.id))
self.debug("Viewer {} cannot be cured".format(neighbor.id))
def cure(self):
self.set_state(self.cured.id)
self.has_been_cured = True
@state
def infected(self):
cured = max(self.count_neighboring_agents(self.cured.id),
1.0)
infected = max(self.count_neighboring_agents(self.infected.id),
1.0)
prob_cure = self.model['prob_neighbor_cure'] * (cured/infected)
if self.has_been_cured:
return self.cured
cured = max(self.count_neighbors(self.cured.id), 1.0)
infected = max(self.count_neighbors(self.infected.id), 1.0)
prob_cure = self.model["prob_neighbor_cure"] * (cured / infected)
if self.prob(prob_cure):
return self.cured
return self.set_state(super().infected)

View File

@@ -1,6 +1,6 @@
'''
"""
Example of a fully programmatic simulation, without definition files.
'''
"""
from soil import Simulation, agents
from networkx import Graph
import logging
@@ -14,21 +14,22 @@ def mygenerator():
class MyAgent(agents.FSM):
@agents.default_state
@agents.state
def neutral(self):
self.debug('I am running')
self.debug("I am running")
if agents.prob(0.2):
self.info('This runs 2/10 times on average')
self.info("This runs 2/10 times on average")
s = Simulation(name='Programmatic',
network_params={'generator': mygenerator},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True)
s = Simulation(
name="Programmatic",
network_params={"generator": mygenerator},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True,
)
# By default, logging will only print WARNING logs (and above).

View File

@@ -5,7 +5,8 @@ import logging
class CityPubs(Environment):
'''Environment with Pubs'''
"""Environment with Pubs"""
level = logging.INFO
def __init__(self, *args, number_of_pubs=3, pub_capacity=10, **kwargs):
@@ -13,68 +14,70 @@ class CityPubs(Environment):
pubs = {}
for i in range(number_of_pubs):
newpub = {
'name': 'The awesome pub #{}'.format(i),
'open': True,
'capacity': pub_capacity,
'occupancy': 0,
"name": "The awesome pub #{}".format(i),
"open": True,
"capacity": pub_capacity,
"occupancy": 0,
}
pubs[newpub['name']] = newpub
self['pubs'] = pubs
pubs[newpub["name"]] = newpub
self["pubs"] = pubs
def enter(self, pub_id, *nodes):
'''Agents will try to enter. The pub checks if it is possible'''
"""Agents will try to enter. The pub checks if it is possible"""
try:
pub = self['pubs'][pub_id]
pub = self["pubs"][pub_id]
except KeyError:
raise ValueError('Pub {} is not available'.format(pub_id))
if not pub['open'] or (pub['capacity'] < (len(nodes) + pub['occupancy'])):
raise ValueError("Pub {} is not available".format(pub_id))
if not pub["open"] or (pub["capacity"] < (len(nodes) + pub["occupancy"])):
return False
pub['occupancy'] += len(nodes)
pub["occupancy"] += len(nodes)
for node in nodes:
node['pub'] = pub_id
node["pub"] = pub_id
return True
def available_pubs(self):
for pub in self['pubs'].values():
if pub['open'] and (pub['occupancy'] < pub['capacity']):
yield pub['name']
for pub in self["pubs"].values():
if pub["open"] and (pub["occupancy"] < pub["capacity"]):
yield pub["name"]
def exit(self, pub_id, *node_ids):
'''Agents will notify the pub they want to leave'''
"""Agents will notify the pub they want to leave"""
try:
pub = self['pubs'][pub_id]
pub = self["pubs"][pub_id]
except KeyError:
raise ValueError('Pub {} is not available'.format(pub_id))
raise ValueError("Pub {} is not available".format(pub_id))
for node_id in node_ids:
node = self.get_agent(node_id)
if pub_id == node['pub']:
del node['pub']
pub['occupancy'] -= 1
if pub_id == node["pub"]:
del node["pub"]
pub["occupancy"] -= 1
class Patron(FSM, NetworkAgent):
'''Agent that looks for friends to drink with. It will do three things:
1) Look for other patrons to drink with
2) Look for a bar where the agent and other agents in the same group can get in.
3) While in the bar, patrons only drink, until they get drunk and taken home.
'''
"""Agent that looks for friends to drink with. It will do three things:
1) Look for other patrons to drink with
2) Look for a bar where the agent and other agents in the same group can get in.
3) While in the bar, patrons only drink, until they get drunk and taken home.
"""
level = logging.DEBUG
pub = None
drunk = False
pints = 0
max_pints = 3
kicked_out = False
@default_state
@state
def looking_for_friends(self):
'''Look for friends to drink with'''
self.info('I am looking for friends')
available_friends = list(self.get_agents(drunk=False,
pub=None,
state_id=self.looking_for_friends.id))
"""Look for friends to drink with"""
self.info("I am looking for friends")
available_friends = list(
self.get_agents(drunk=False, pub=None, state_id=self.looking_for_friends.id)
)
if not available_friends:
self.info('Life sucks and I\'m alone!')
self.info("Life sucks and I'm alone!")
return self.at_home
befriended = self.try_friends(available_friends)
if befriended:
@@ -82,91 +85,91 @@ class Patron(FSM, NetworkAgent):
@state
def looking_for_pub(self):
'''Look for a pub that accepts me and my friends'''
if self['pub'] != None:
"""Look for a pub that accepts me and my friends"""
if self["pub"] != None:
return self.sober_in_pub
self.debug('I am looking for a pub')
group = list(self.get_neighboring_agents())
self.debug("I am looking for a pub")
group = list(self.get_neighbors())
for pub in self.model.available_pubs():
self.debug('We\'re trying to get into {}: total: {}'.format(pub, len(group)))
self.debug("We're trying to get into {}: total: {}".format(pub, len(group)))
if self.model.enter(pub, self, *group):
self.info('We\'re all {} getting in {}!'.format(len(group), pub))
self.info("We're all {} getting in {}!".format(len(group), pub))
return self.sober_in_pub
@state
def sober_in_pub(self):
'''Drink up.'''
"""Drink up."""
self.drink()
if self['pints'] > self['max_pints']:
if self["pints"] > self["max_pints"]:
return self.drunk_in_pub
@state
def drunk_in_pub(self):
'''I'm out. Take me home!'''
self.info('I\'m so drunk. Take me home!')
self['drunk'] = True
pass # out drunk
"""I'm out. Take me home!"""
self.info("I'm so drunk. Take me home!")
self["drunk"] = True
if self.kicked_out:
return self.at_home
pass # out drun
@state
def at_home(self):
'''The end'''
"""The end"""
others = self.get_agents(state_id=Patron.at_home.id, limit_neighbors=True)
self.debug('I\'m home. Just like {} of my friends'.format(len(others)))
self.debug("I'm home. Just like {} of my friends".format(len(others)))
def drink(self):
self['pints'] += 1
self.debug('Cheers to that')
self["pints"] += 1
self.debug("Cheers to that")
def kick_out(self):
self.set_state(self.at_home)
self.kicked_out = True
def befriend(self, other_agent, force=False):
'''
"""
Try to become friends with another agent. The chances of
success depend on both agents' openness.
'''
if force or self['openness'] > self.random.random():
self.model.add_edge(self, other_agent)
self.info('Made some friend {}'.format(other_agent))
"""
if force or self["openness"] > self.random.random():
self.add_edge(self, other_agent)
self.info("Made some friend {}".format(other_agent))
return True
return False
def try_friends(self, others):
''' Look for random agents around me and try to befriend them'''
"""Look for random agents around me and try to befriend them"""
befriended = False
k = int(10*self['openness'])
k = int(10 * self["openness"])
self.random.shuffle(others)
for friend in islice(others, k): # random.choice >= 3.7
if friend == self:
continue
if friend.befriend(self):
self.befriend(friend, force=True)
self.debug('Hooray! new friend: {}'.format(friend.id))
self.debug("Hooray! new friend: {}".format(friend.id))
befriended = True
else:
self.debug('{} does not want to be friends'.format(friend.id))
self.debug("{} does not want to be friends".format(friend.id))
return befriended
class Police(FSM):
'''Simple agent to take drunk people out of pubs.'''
"""Simple agent to take drunk people out of pubs."""
level = logging.INFO
@default_state
@state
def patrol(self):
drunksters = list(self.get_agents(drunk=True,
state_id=Patron.drunk_in_pub.id))
drunksters = list(self.get_agents(drunk=True, state_id=Patron.drunk_in_pub.id))
for drunk in drunksters:
self.info('Kicking out the trash: {}'.format(drunk.id))
self.info("Kicking out the trash: {}".format(drunk.id))
drunk.kick_out()
else:
self.info('No trash to take out. Too bad.')
self.info("No trash to take out. Too bad.")
if __name__ == '__main__':
if __name__ == "__main__":
from soil import simulation
simulation.run_from_config('pubcrawl.yml',
dry_run=True,
dump=None,
parallel=False)
simulation.run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)

View File

@@ -2,3 +2,13 @@ There are two similar implementations of this simulation.
- `basic`. Using simple primites
- `improved`. Using more advanced features such as the `time` module to avoid unnecessary computations (i.e., skip steps), and generator functions.
The examples can be run directly in the terminal, and they accept command like arguments.
For example, to enable the CSV exporter and the Summary exporter, while setting `max_time` to `100` and `seed` to `CustomSeed`:
```
python rabbit_agents.py --set max_time=100 --csv -e summary --set 'seed="CustomSeed"'
```
To learn more about how this functionality works, check out the `soil.easy` function.

View File

@@ -1,12 +1,24 @@
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from soil.time import Delta
from enum import Enum
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
from collections import Counter
import logging
import math
class RabbitModel(FSM, NetworkAgent):
class RabbitEnv(Environment):
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
@property
def num_males(self):
return self.count_agents(agent_class=Male)
@property
def num_females(self):
return self.count_agents(agent_class=Female)
class Rabbit(NetworkAgent, FSM):
sexual_maturity = 30
life_expectancy = 300
@@ -14,7 +26,7 @@ class RabbitModel(FSM, NetworkAgent):
@default_state
@state
def newborn(self):
self.info('I am a newborn.')
self.info("I am a newborn.")
self.age = 0
self.offspring = 0
return self.youngling
@@ -23,7 +35,7 @@ class RabbitModel(FSM, NetworkAgent):
def youngling(self):
self.age += 1
if self.age >= self.sexual_maturity:
self.info(f'I am fertile! My age is {self.age}')
self.info(f"I am fertile! My age is {self.age}")
return self.fertile
@state
@@ -35,7 +47,7 @@ class RabbitModel(FSM, NetworkAgent):
self.die()
class Male(RabbitModel):
class Male(Rabbit):
max_females = 5
mating_prob = 0.001
@@ -47,17 +59,18 @@ class Male(RabbitModel):
return self.dead
# Males try to mate
for f in self.model.agents(agent_class=Female,
state_id=Female.fertile.id,
limit=self.max_females):
self.debug('FOUND A FEMALE: ', repr(f), self.mating_prob)
if self.prob(self['mating_prob']):
for f in self.model.agents(
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
):
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
if self.prob(self["mating_prob"]):
f.impregnate(self)
break # Take a break
class Female(RabbitModel):
gestation = 100
class Female(Rabbit):
gestation = 10
pregnancy = -1
@state
def fertile(self):
@@ -65,66 +78,73 @@ class Female(RabbitModel):
self.age += 1
if self.age > self.life_expectancy:
return self.dead
if self.pregnancy >= 0:
return self.pregnant
def impregnate(self, male):
self.info(f'{repr(male)} impregnating female {repr(self)}')
self.info(f"impregnated by {repr(male)}")
self.mate = male
self.pregnancy = -1
self.set_state(self.pregnant, when=self.now)
self.number_of_babies = int(8+4*self.random.random())
self.debug('I am pregnant')
self.pregnancy = 0
self.number_of_babies = int(8 + 4 * self.random.random())
@state
def pregnant(self):
self.info("I am pregnant")
self.age += 1
self.pregnancy += 1
if self.prob(self.age / self.life_expectancy):
if self.age >= self.life_expectancy:
return self.die()
if self.pregnancy >= self.gestation:
self.info('Having {} babies'.format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class,
topology=self.topology,
**state)
child.add_edge(self)
try:
child.add_edge(self.mate)
self.model.agents[self.mate].offspring += 1
except ValueError:
self.debug('The father has passed away')
if self.pregnancy < self.gestation:
self.pregnancy += 1
return
self.offspring += 1
self.mate = None
return self.fertile
self.info("Having {} babies".format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class, **state)
child.add_edge(self)
try:
child.add_edge(self.mate)
self.model.agents[self.mate].offspring += 1
except ValueError:
self.debug("The father has passed away")
@state
def dead(self):
super().dead()
if 'pregnancy' in self and self['pregnancy'] > -1:
self.info('A mother has died carrying a baby!!')
self.offspring += 1
self.mate = None
self.pregnancy = -1
return self.fertile
def die(self):
if "pregnancy" in self and self["pregnancy"] > -1:
self.info("A mother has died carrying a baby!!")
return super().die()
class RandomAccident(BaseAgent):
level = logging.INFO
def step(self):
rabbits_alive = self.model.topology.number_of_nodes()
rabbits_alive = self.model.G.number_of_nodes()
if not rabbits_alive:
return self.die()
prob_death = self.model.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.iter_agents(agent_class=RabbitModel):
if i.state.id == i.dead.id:
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
math.log10(max(1, rabbits_alive))
)
self.debug("Killing some rabbits with prob={}!".format(prob_death))
for i in self.iter_agents(agent_class=Rabbit):
if i.state_id == i.dead.id:
continue
if self.prob(prob_death):
self.info('I killed a rabbit: {}'.format(i.id))
self.info("I killed a rabbit: {}".format(i.id))
rabbits_alive -= 1
i.set_state(i.dead)
self.debug('Rabbits alive: {}'.format(rabbits_alive))
i.die()
self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__":
from soil import easy
with easy("rabbits.yml") as sim:
sim.run()

View File

@@ -7,21 +7,18 @@ description: null
group: null
interval: 1.0
max_time: 100
model_class: soil.environment.Environment
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: default
agent_class: rabbit_agents.RabbitModel
topology: true
distribution:
- agent_class: rabbit_agents.Male
topology: default
weight: 1
- agent_class: rabbit_agents.Female
topology: default
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: null
topology: false
hidden: true
state:
group: environment
@@ -29,13 +26,17 @@ model_params:
group: network
mating_prob: 0.1
prob_death: 0.001
topologies:
default:
topology:
directed: true
links: []
nodes:
- id: 1
- id: 0
topology:
fixed:
directed: true
links: []
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@@ -1,130 +1,157 @@
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from soil.time import Delta, When, NEVER
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
from soil.time import Delta
from enum import Enum
from collections import Counter
import logging
import math
class RabbitModel(FSM, NetworkAgent):
class RabbitEnv(Environment):
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
mating_prob = 0.005
offspring = 0
@property
def num_males(self):
return self.count_agents(agent_class=Male)
@property
def num_females(self):
return self.count_agents(agent_class=Female)
class Rabbit(FSM, NetworkAgent):
sexual_maturity = 30
life_expectancy = 300
birth = None
sexual_maturity = 3
life_expectancy = 30
@property
def age(self):
if self.birth is None:
return None
return self.now - self.birth
@default_state
@state
def newborn(self):
self.info("I am a newborn.")
self.birth = self.now
self.info(f'I am a newborn.')
self.model['rabbits_alive'] = self.model.get('rabbits_alive', 0) + 1
self.offspring = 0
return self.youngling, Delta(self.sexual_maturity - self.age)
# Here we can skip the `youngling` state by using a coroutine/generator.
while self.age < self.sexual_maturity:
interval = self.sexual_maturity - self.age
yield Delta(interval)
self.info(f'I am fertile! My age is {self.age}')
return self.fertile
@property
def age(self):
return self.now - self.birth
@state
def youngling(self):
if self.age >= self.sexual_maturity:
self.info(f"I am fertile! My age is {self.age}")
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
def step(self):
super().step()
if self.prob(self.age / self.life_expectancy):
return self.die()
@state
def dead(self):
self.die()
class Male(RabbitModel):
class Male(Rabbit):
max_females = 5
mating_prob = 0.001
@state
def fertile(self):
# Males try to mate
for f in self.model.agents(agent_class=Female,
state_id=Female.fertile.id,
limit=self.max_females):
self.debug('Found a female:', repr(f))
if self.prob(self['mating_prob']):
f.impregnate(self)
break # Take a break, don't try to impregnate the rest
class Female(RabbitModel):
due_date = None
age_of_pregnancy = None
gestation = 10
mate = None
@state
def fertile(self):
return self.fertile, NEVER
@state
def pregnant(self):
self.info('I am pregnant')
if self.age > self.life_expectancy:
return self.dead
self.due_date = self.now + self.gestation
# Males try to mate
for f in self.model.agents(
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
):
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
if self.prob(self["mating_prob"]):
f.impregnate(self)
break # Do not try to impregnate other females
number_of_babies = int(8+4*self.random.random())
while self.now < self.due_date:
yield When(self.due_date)
self.info('Having {} babies'.format(number_of_babies))
for i in range(number_of_babies):
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class,
topology=self.topology)
self.model.add_edge(self, child)
self.model.add_edge(self.mate, child)
self.offspring += 1
self.model.agents[self.mate].offspring += 1
self.mate = None
self.due_date = None
return self.fertile
class Female(Rabbit):
gestation = 10
conception = None
@state
def dead(self):
super().dead()
if self.due_date is not None:
self.info('A mother has died carrying a baby!!')
def fertile(self):
# Just wait for a Male
if self.age > self.life_expectancy:
return self.dead
if self.conception is not None:
return self.pregnant
@property
def pregnancy(self):
if self.conception is None:
return None
return self.now - self.conception
def impregnate(self, male):
self.info(f'{repr(male)} impregnating female {repr(self)}')
self.info(f"impregnated by {repr(male)}")
self.mate = male
self.set_state(self.pregnant, when=self.now)
self.conception = self.now
self.number_of_babies = int(8 + 4 * self.random.random())
@state
def pregnant(self):
self.debug("I am pregnant")
if self.age > self.life_expectancy:
self.info("Dying before giving birth")
return self.die()
if self.pregnancy >= self.gestation:
self.info("Having {} babies".format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class, **state)
child.add_edge(self)
if self.mate:
child.add_edge(self.mate)
self.mate.offspring += 1
else:
self.debug("The father has passed away")
self.offspring += 1
self.mate = None
return self.fertile
def die(self):
if self.pregnancy is not None:
self.info("A mother has died carrying a baby!!")
return super().die()
class RandomAccident(BaseAgent):
level = logging.INFO
def step(self):
rabbits_total = self.model.topology.number_of_nodes()
if 'rabbits_alive' not in self.model:
self.model['rabbits_alive'] = 0
rabbits_alive = self.model.get('rabbits_alive', rabbits_total)
prob_death = self.model.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.model.network_agents:
if i.state.id == i.dead.id:
rabbits_alive = self.model.G.number_of_nodes()
if not rabbits_alive:
return self.die()
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
math.log10(max(1, rabbits_alive))
)
self.debug("Killing some rabbits with prob={}!".format(prob_death))
for i in self.iter_agents(agent_class=Rabbit):
if i.state_id == i.dead.id:
continue
if self.prob(prob_death):
self.info('I killed a rabbit: {}'.format(i.id))
rabbits_alive = self.model['rabbits_alive'] = rabbits_alive -1
i.set_state(i.dead)
self.debug('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
if self.model.count_agents(state_id=RabbitModel.dead.id) == self.model.topology.number_of_nodes():
self.die()
self.info("I killed a rabbit: {}".format(i.id))
rabbits_alive -= 1
i.die()
self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__":
from soil import easy
with easy("rabbits.yml") as sim:
sim.run()

View File

@@ -7,21 +7,18 @@ description: null
group: null
interval: 1.0
max_time: 100
model_class: soil.environment.Environment
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: default
agent_class: rabbit_agents.RabbitModel
topology: true
distribution:
- agent_class: rabbit_agents.Male
topology: default
weight: 1
- agent_class: rabbit_agents.Female
topology: default
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: null
topology: false
hidden: true
state:
group: environment
@@ -29,13 +26,17 @@ model_params:
group: network
mating_prob: 0.1
prob_death: 0.001
topologies:
default:
topology:
directed: true
links: []
nodes:
- id: 1
- id: 0
topology:
fixed:
directed: true
links: []
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@@ -1,44 +1,43 @@
'''
"""
Example of setting a
Example of a fully programmatic simulation, without definition files.
'''
"""
from soil import Simulation, agents
from soil.time import Delta
import logging
class MyAgent(agents.FSM):
'''
"""
An agent that first does a ping
'''
"""
defaults = {'pong_counts': 2}
defaults = {"pong_counts": 2}
@agents.default_state
@agents.state
def ping(self):
self.info('Ping')
return self.pong, Delta(self.random.expovariate(1/16))
self.info("Ping")
return self.pong, Delta(self.random.expovariate(1 / 16))
@agents.state
def pong(self):
self.info('Pong')
self.info("Pong")
self.pong_counts -= 1
self.info(str(self.pong_counts))
if self.pong_counts < 1:
return self.die()
return None, Delta(self.random.expovariate(1/16))
return None, Delta(self.random.expovariate(1 / 16))
s = Simulation(name='Programmatic',
network_agents=[{'agent_class': MyAgent, 'id': 0}],
topology={'nodes': [{'id': 0}], 'links': []},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True)
s = Simulation(
name="Programmatic",
network_agents=[{"agent_class": MyAgent, "id": 0}],
topology={"nodes": [{"id": 0}], "links": []},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True,
)
logging.basicConfig(level=logging.INFO)
envs = s.run()

View File

@@ -20,56 +20,83 @@ class TerroristSpreadModel(FSM, Geo):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.information_spread_intensity = model.environment_params['information_spread_intensity']
self.terrorist_additional_influence = model.environment_params['terrorist_additional_influence']
self.prob_interaction = model.environment_params['prob_interaction']
self.information_spread_intensity = model.environment_params[
"information_spread_intensity"
]
self.terrorist_additional_influence = model.environment_params[
"terrorist_additional_influence"
]
self.prob_interaction = model.environment_params["prob_interaction"]
if self['id'] == self.civilian.id: # Civilian
if self["id"] == self.civilian.id: # Civilian
self.mean_belief = self.random.uniform(0.00, 0.5)
elif self['id'] == self.terrorist.id: # Terrorist
elif self["id"] == self.terrorist.id: # Terrorist
self.mean_belief = self.random.uniform(0.8, 1.00)
elif self['id'] == self.leader.id: # Leader
elif self["id"] == self.leader.id: # Leader
self.mean_belief = 1.00
else:
raise Exception('Invalid state id: {}'.format(self['id']))
if 'min_vulnerability' in model.environment_params:
self.vulnerability = self.random.uniform( model.environment_params['min_vulnerability'], model.environment_params['max_vulnerability'] )
else :
self.vulnerability = self.random.uniform( 0, model.environment_params['max_vulnerability'] )
raise Exception("Invalid state id: {}".format(self["id"]))
if "min_vulnerability" in model.environment_params:
self.vulnerability = self.random.uniform(
model.environment_params["min_vulnerability"],
model.environment_params["max_vulnerability"],
)
else:
self.vulnerability = self.random.uniform(
0, model.environment_params["max_vulnerability"]
)
@state
def civilian(self):
neighbours = list(self.get_neighboring_agents(agent_class=TerroristSpreadModel))
neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel))
if len(neighbours) > 0:
# Only interact with some of the neighbors
interactions = list(n for n in neighbours if self.random.random() <= self.prob_interaction)
influence = sum( self.degree(i) for i in interactions )
mean_belief = sum( i.mean_belief * self.degree(i) / influence for i in interactions )
mean_belief = mean_belief * self.information_spread_intensity + self.mean_belief * ( 1 - self.information_spread_intensity )
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * ( 1 - self.vulnerability )
interactions = list(
n for n in neighbours if self.random.random() <= self.prob_interaction
)
influence = sum(self.degree(i) for i in interactions)
mean_belief = sum(
i.mean_belief * self.degree(i) / influence for i in interactions
)
mean_belief = (
mean_belief * self.information_spread_intensity
+ self.mean_belief * (1 - self.information_spread_intensity)
)
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
1 - self.vulnerability
)
if self.mean_belief >= 0.8:
return self.terrorist
@state
def leader(self):
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
for neighbour in self.get_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]):
self.mean_belief = self.mean_belief ** (1 - self.terrorist_additional_influence)
for neighbour in self.get_neighbors(
state_id=[self.terrorist.id, self.leader.id]
):
if self.betweenness(neighbour) > self.betweenness(self):
return self.terrorist
@state
def terrorist(self):
neighbours = self.get_agents(state_id=[self.terrorist.id, self.leader.id],
agent_class=TerroristSpreadModel,
limit_neighbors=True)
neighbours = self.get_agents(
state_id=[self.terrorist.id, self.leader.id],
agent_class=TerroristSpreadModel,
limit_neighbors=True,
)
if len(neighbours) > 0:
influence = sum( self.degree(n) for n in neighbours )
mean_belief = sum( n.mean_belief * self.degree(n) / influence for n in neighbours )
mean_belief = mean_belief * self.vulnerability + self.mean_belief * ( 1 - self.vulnerability )
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
influence = sum(self.degree(n) for n in neighbours)
mean_belief = sum(
n.mean_belief * self.degree(n) / influence for n in neighbours
)
mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
1 - self.vulnerability
)
self.mean_belief = self.mean_belief ** (
1 - self.terrorist_additional_influence
)
# Check if there are any leaders in the group
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours))
@@ -82,21 +109,29 @@ class TerroristSpreadModel(FSM, Geo):
return self.leader
def ego_search(self, steps=1, center=False, node=None, **kwargs):
'''Get a list of nodes in the ego network of *node* of radius *steps*'''
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
node = as_node(node if node is not None else self)
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_degree')) or getattr(self.model, '_last_step', 0) < self.now:
if (
force
or (not hasattr(self.model, "_degree"))
or getattr(self.model, "_last_step", 0) < self.now
):
self.model._degree = nx.degree_centrality(self.G)
self.model._last_step = self.now
return self.model._degree[node]
def betweenness(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_betweenness')) or getattr(self.model, '_last_step', 0) < self.now:
if (
force
or (not hasattr(self.model, "_betweenness"))
or getattr(self.model, "_last_step", 0) < self.now
):
self.model._betweenness = nx.betweenness_centrality(self.G)
self.model._last_step = self.now
return self.model._betweenness[node]
@@ -114,17 +149,20 @@ class TrainingAreaModel(FSM, Geo):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.training_influence = model.environment_params['training_influence']
if 'min_vulnerability' in model.environment_params:
self.min_vulnerability = model.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
self.training_influence = model.environment_params["training_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
@default_state
@state
def terrorist(self):
for neighbour in self.get_neighboring_agents(agent_class=TerroristSpreadModel):
for neighbour in self.get_neighbors(agent_class=TerroristSpreadModel):
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.training_influence )
neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.training_influence
)
class HavenModel(FSM, Geo):
@@ -141,14 +179,15 @@ class HavenModel(FSM, Geo):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.haven_influence = model.environment_params['haven_influence']
if 'min_vulnerability' in model.environment_params:
self.min_vulnerability = model.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
self.max_vulnerability = model.environment_params['max_vulnerability']
self.haven_influence = model.environment_params["haven_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
self.max_vulnerability = model.environment_params["max_vulnerability"]
def get_occupants(self, **kwargs):
return self.get_neighboring_agents(agent_class=TerroristSpreadModel, **kwargs)
return self.get_neighbors(agent_class=TerroristSpreadModel, **kwargs)
@state
def civilian(self):
@@ -158,14 +197,18 @@ class HavenModel(FSM, Geo):
for neighbour in self.get_occupants():
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability * ( 1 - self.haven_influence )
neighbour.vulnerability = neighbour.vulnerability * (
1 - self.haven_influence
)
return self.civilian
@state
def terrorist(self):
for neighbour in self.get_occupants():
if neighbour.vulnerability < self.max_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.haven_influence )
neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.haven_influence
)
return self.terrorist
@@ -184,10 +227,10 @@ class TerroristNetworkModel(TerroristSpreadModel):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.vision_range = model.environment_params['vision_range']
self.sphere_influence = model.environment_params['sphere_influence']
self.weight_social_distance = model.environment_params['weight_social_distance']
self.weight_link_distance = model.environment_params['weight_link_distance']
self.vision_range = model.environment_params["vision_range"]
self.sphere_influence = model.environment_params["sphere_influence"]
self.weight_social_distance = model.environment_params["weight_social_distance"]
self.weight_link_distance = model.environment_params["weight_link_distance"]
@state
def terrorist(self):
@@ -200,28 +243,49 @@ class TerroristNetworkModel(TerroristSpreadModel):
return super().leader()
def update_relationships(self):
if self.count_neighboring_agents(state_id=self.civilian.id) == 0:
close_ups = set(self.geo_search(radius=self.vision_range, agent_class=TerroristNetworkModel))
step_neighbours = set(self.ego_search(self.sphere_influence, agent_class=TerroristNetworkModel, center=False))
neighbours = set(agent.id for agent in self.get_neighboring_agents(agent_class=TerroristNetworkModel))
if self.count_neighbors(state_id=self.civilian.id) == 0:
close_ups = set(
self.geo_search(
radius=self.vision_range, agent_class=TerroristNetworkModel
)
)
step_neighbours = set(
self.ego_search(
self.sphere_influence,
agent_class=TerroristNetworkModel,
center=False,
)
)
neighbours = set(
agent.id
for agent in self.get_neighbors(
agent_class=TerroristNetworkModel
)
)
search = (close_ups | step_neighbours) - neighbours
for agent in self.get_agents(search):
social_distance = 1 / self.shortest_path_length(agent.id)
spatial_proximity = ( 1 - self.get_distance(agent.id) )
prob_new_interaction = self.weight_social_distance * social_distance + self.weight_link_distance * spatial_proximity
if agent['id'] == agent.civilian.id and self.random.random() < prob_new_interaction:
spatial_proximity = 1 - self.get_distance(agent.id)
prob_new_interaction = (
self.weight_social_distance * social_distance
+ self.weight_link_distance * spatial_proximity
)
if (
agent["id"] == agent.civilian.id
and self.random.random() < prob_new_interaction
):
self.add_edge(agent)
break
def get_distance(self, target):
source_x, source_y = nx.get_node_attributes(self.G, 'pos')[self.id]
target_x, target_y = nx.get_node_attributes(self.G, 'pos')[target]
dx = abs( source_x - target_x )
dy = abs( source_y - target_y )
return ( dx ** 2 + dy ** 2 ) ** ( 1 / 2 )
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.id]
target_x, target_y = nx.get_node_attributes(self.G, "pos")[target]
dx = abs(source_x - target_x)
dy = abs(source_y - target_y)
return (dx**2 + dy**2) ** (1 / 2)
def shortest_path_length(self, target):
try:
return nx.shortest_path_length(self.G, self.id, target)
except nx.NetworkXNoPath:
return float('inf')
return float("inf")

View File

@@ -5,6 +5,6 @@ pyyaml>=5.1
pandas>=1
SALib>=1.3
Jinja2
Mesa>=1
Mesa>=1.1
pydantic>=1.9
sqlalchemy>=1.4

View File

@@ -53,6 +53,6 @@ setup(
include_package_data=True,
entry_points={
'console_scripts':
['soil = soil.__init__:main',
['soil = soil.__main__:main',
'soil-web = soil.web.__init__:main']
})

View File

@@ -1 +1 @@
0.20.7
0.30.0rc2

View File

@@ -5,6 +5,7 @@ import sys
import os
import logging
import traceback
from contextlib import contextmanager
from .version import __version__
@@ -16,98 +17,185 @@ except NameError:
from .agents import *
from . import agents
from .simulation import *
from .environment import Environment
from .environment import Environment, EventedEnvironment
from . import serialization
from .utils import logger
from .time import *
def main(cfg='simulation.yml', **kwargs):
def main(
cfg="simulation.yml",
exporters=None,
parallel=None,
output="soil_output",
*,
do_run=False,
debug=False,
pdb=False,
**kwargs,
):
if isinstance(cfg, Simulation):
sim = cfg
import argparse
from . import simulation
logger.info('Running SOIL version: {}'.format(__version__))
logger.info("Running SOIL version: {}".format(__version__))
parser = argparse.ArgumentParser(description='Run a SOIL simulation')
parser.add_argument('file', type=str,
nargs="?",
default=cfg,
help='Configuration file for the simulation (e.g., YAML or JSON)')
parser.add_argument('--version', action='store_true',
help='Show version info and exit')
parser.add_argument('--module', '-m', type=str,
help='file containing the code of any custom agents.')
parser.add_argument('--dry-run', '--dry', action='store_true',
help='Do not store the results of the simulation to disk, show in terminal instead.')
parser.add_argument('--pdb', action='store_true',
help='Use a pdb console in case of exception.')
parser.add_argument('--debug', action='store_true',
help='Run a customized version of a pdb console to debug a simulation.')
parser.add_argument('--graph', '-g', action='store_true',
help='Dump each trial\'s network topology as a GEXF graph. Defaults to false.')
parser.add_argument('--csv', action='store_true',
help='Dump all data collected in CSV format. Defaults to false.')
parser.add_argument('--level', type=str,
help='Logging level')
parser.add_argument('--output', '-o', type=str, default="soil_output",
help='folder to write results to. It defaults to the current directory.')
parser.add_argument('--synchronous', action='store_true',
help='Run trials serially and synchronously instead of in parallel. Defaults to false.')
parser.add_argument('-e', '--exporter', action='append',
help='Export environment and/or simulations using this exporter')
parser.add_argument('--only-convert', '--convert', action='store_true',
help='Do not run the simulation, only convert the configuration file(s) and output them.')
parser = argparse.ArgumentParser(description="Run a SOIL simulation")
parser.add_argument(
"file",
type=str,
nargs="?",
default=cfg if sim is None else '',
help="Configuration file for the simulation (e.g., YAML or JSON)",
)
parser.add_argument(
"--version", action="store_true", help="Show version info and exit"
)
parser.add_argument(
"--module",
"-m",
type=str,
help="file containing the code of any custom agents.",
)
parser.add_argument(
"--dry-run",
"--dry",
action="store_true",
help="Do not store the results of the simulation to disk, show in terminal instead.",
)
parser.add_argument(
"--pdb", action="store_true", help="Use a pdb console in case of exception."
)
parser.add_argument(
"--debug",
action="store_true",
help="Run a customized version of a pdb console to debug a simulation.",
)
parser.add_argument(
"--graph",
"-g",
action="store_true",
help="Dump each trial's network topology as a GEXF graph. Defaults to false.",
)
parser.add_argument(
"--csv",
action="store_true",
help="Dump all data collected in CSV format. Defaults to false.",
)
parser.add_argument("--level", type=str, help="Logging level")
parser.add_argument(
"--output",
"-o",
type=str,
default=output or "soil_output",
help="folder to write results to. It defaults to the current directory.",
)
if parallel is None:
parser.add_argument(
"--synchronous",
action="store_true",
help="Run trials serially and synchronously instead of in parallel. Defaults to false.",
)
parser.add_argument(
"-e",
"--exporter",
action="append",
default=[],
help="Export environment and/or simulations using this exporter",
)
parser.add_argument("--set",
metavar="KEY=VALUE",
action='append',
help="Set a number of parameters that will be passed to the simulation."
"(do not put spaces before or after the = sign). "
"If a value contains spaces, you should define "
"it with double quotes: "
'foo="this is a sentence". Note that '
"values are always treated as strings.")
parser.add_argument(
"--only-convert",
"--convert",
action="store_true",
help="Do not run the simulation, only convert the configuration file(s) and output them.",
)
parser.add_argument(
"--set",
metavar="KEY=VALUE",
action="append",
help="Set a number of parameters that will be passed to the simulation."
"(do not put spaces before or after the = sign). "
"If a value contains spaces, you should define "
"it with double quotes: "
'foo="this is a sentence". Note that '
"values are always treated as strings.",
)
args = parser.parse_args()
logger.setLevel(getattr(logging, (args.level or 'INFO').upper()))
logger.setLevel(getattr(logging, (args.level or "INFO").upper()))
if args.version:
return
if parallel is None:
parallel = not args.synchronous
exporters = exporters or [
"default",
]
for exp in args.exporter:
if exp not in exporters:
exporters.append(exp)
if args.csv:
exporters.append("csv")
if args.graph:
exporters.append("gexf")
if os.getcwd() not in sys.path:
sys.path.append(os.getcwd())
if args.module:
importlib.import_module(args.module)
if output is None:
output = args.output
logger.info('Loading config file: {}'.format(args.file))
debug = debug or args.debug
if args.pdb or args.debug:
if args.pdb or debug:
args.synchronous = True
if args.debug:
os.environ['SOIL_DEBUG'] = 'true'
os.environ["SOIL_POSTMORTEM"] = "true"
res = []
try:
exporters = list(args.exporter or ['default', ])
if args.csv:
exporters.append('csv')
if args.graph:
exporters.append('gexf')
exp_params = {}
if args.dry_run:
exp_params['copy_to'] = sys.stdout
if not os.path.exists(args.file):
logger.error('Please, input a valid file')
return
for sim in simulation.iter_from_config(args.file):
if sim:
logger.info("Loading simulation instance")
sim.dry_run = args.dry_run
sim.exporters = exporters
sim.parallel = parallel
sim.outdir = output
sims = [sim, ]
else:
logger.info("Loading config file: {}".format(args.file))
if not os.path.exists(args.file):
logger.error("Please, input a valid file")
return
sims = list(simulation.iter_from_config(
args.file,
dry_run=args.dry_run,
exporters=exporters,
parallel=parallel,
outdir=output,
exporter_params=exp_params,
**kwargs,
))
for sim in sims:
if args.set:
for s in args.set:
k, v = s.split('=', 1)[:2]
k, v = s.split("=", 1)[:2]
v = eval(v)
tail, *head = k.rsplit('.', 1)[::-1]
tail, *head = k.rsplit(".", 1)[::-1]
target = sim
if head:
for part in head[0].split('.'):
for part in head[0].split("."):
try:
target = getattr(target, part)
except AttributeError:
@@ -117,30 +205,43 @@ def main(cfg='simulation.yml', **kwargs):
except AttributeError:
target[tail] = v
if args.only_convert:
print(sim.to_yaml())
continue
sim.run_simulation(dry_run=args.dry_run,
exporters=exporters,
parallel=(not args.synchronous),
outdir=args.output,
exporter_params=exp_params,
**kwargs)
if args.only_convert:
print(sim.to_yaml())
continue
if do_run:
res.append(sim.run())
else:
print("not running")
res.append(sim)
except Exception as ex:
if args.pdb:
from .debugging import post_mortem
print(traceback.format_exc())
post_mortem()
else:
raise
if debug:
from .debugging import set_trace
def easy(cfg, debug=False):
sim = simulation.from_config(cfg)
if debug or os.environ.get('SOIL_DEBUG'):
from .debugging import setup
setup(sys._getframe().f_back)
return sim
if __name__ == '__main__':
main()
os.environ["SOIL_DEBUG"] = "true"
set_trace()
return res
@contextmanager
def easy(cfg, pdb=False, debug=False, **kwargs):
try:
yield main(cfg, debug=debug, pdb=pdb, **kwargs)[0]
except Exception as e:
if os.environ.get("SOIL_POSTMORTEM"):
from .debugging import post_mortem
print(traceback.format_exc())
post_mortem()
raise
if __name__ == "__main__":
main(do_run=True)

View File

@@ -1,4 +1,9 @@
from . import main
from . import main as init_main
if __name__ == '__main__':
main()
def main():
init_main(do_run=True)
if __name__ == "__main__":
init_main(do_run=True)

View File

@@ -7,6 +7,7 @@ class BassModel(FSM):
innovation_prob
imitation_prob
"""
sentimentCorrelation = 0
def step(self):
@@ -19,9 +20,9 @@ class BassModel(FSM):
self.sentimentCorrelation = 1
return self.aware
else:
aware_neighbors = self.get_neighboring_agents(state_id=self.aware.id)
aware_neighbors = self.get_neighbors(state_id=self.aware.id)
num_neighbors_aware = len(aware_neighbors)
if self.prob((self['imitation_prob']*num_neighbors_aware)):
if self.prob((self["imitation_prob"] * num_neighbors_aware)):
self.sentimentCorrelation = 1
return self.aware

View File

@@ -20,28 +20,40 @@ class BigMarketModel(FSM):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.enterprises = self.env.environment_params['enterprises']
self.enterprises = self.env.environment_params["enterprises"]
self.type = ""
if self.id < len(self.enterprises): # Enterprises
self.set_state(self.enterprise.id)
self._set_state(self.enterprise.id)
self.type = "Enterprise"
self.tweet_probability = environment.environment_params['tweet_probability_enterprises'][self.id]
self.tweet_probability = environment.environment_params[
"tweet_probability_enterprises"
][self.id]
else: # normal users
self.type = "User"
self.set_state(self.user.id)
self.tweet_probability = environment.environment_params['tweet_probability_users']
self.tweet_relevant_probability = environment.environment_params['tweet_relevant_probability']
self.tweet_probability_about = environment.environment_params['tweet_probability_about'] # List
self.sentiment_about = environment.environment_params['sentiment_about'] # List
self._set_state(self.user.id)
self.tweet_probability = environment.environment_params[
"tweet_probability_users"
]
self.tweet_relevant_probability = environment.environment_params[
"tweet_relevant_probability"
]
self.tweet_probability_about = environment.environment_params[
"tweet_probability_about"
] # List
self.sentiment_about = environment.environment_params[
"sentiment_about"
] # List
@state
def enterprise(self):
if self.random.random() < self.tweet_probability: # Tweets
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbour users
aware_neighbors = self.get_neighbors(
state_id=self.number_of_enterprises
) # Nodes neighbour users
for x in aware_neighbors:
if self.random.uniform(0,10) < 5:
if self.random.uniform(0, 10) < 5:
x.sentiment_about[self.id] += 0.1 # Increments for enterprise
else:
x.sentiment_about[self.id] -= 0.1 # Decrements for enterprise
@@ -49,15 +61,19 @@ class BigMarketModel(FSM):
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id]< -1:
if x.sentiment_about[self.id] < -1:
x.sentiment_about[self.id] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
x.attrs[
"sentiment_enterprise_%s" % self.enterprises[self.id]
] = x.sentiment_about[self.id]
@state
def user(self):
if self.random.random() < self.tweet_probability: # Tweets
if self.random.random() < self.tweet_relevant_probability: # Tweets something relevant
if (
self.random.random() < self.tweet_relevant_probability
): # Tweets something relevant
# Tweet probability per enterprise
for i in range(len(self.enterprises)):
random_num = self.random.random()
@@ -65,23 +81,29 @@ class BigMarketModel(FSM):
# The condition is fulfilled, sentiments are evaluated towards that enterprise
if self.sentiment_about[i] < 0:
# NEGATIVO
self.userTweets("negative",i)
self.userTweets("negative", i)
elif self.sentiment_about[i] == 0:
# NEUTRO
pass
else:
# POSITIVO
self.userTweets("positive",i)
for i in range(len(self.enterprises)): # So that it never is set to 0 if there are not changes (logs)
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
self.userTweets("positive", i)
for i in range(
len(self.enterprises)
): # So that it never is set to 0 if there are not changes (logs)
self.attrs[
"sentiment_enterprise_%s" % self.enterprises[i]
] = self.sentiment_about[i]
def userTweets(self, sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbours users
def userTweets(self, sentiment, enterprise):
aware_neighbors = self.get_neighbors(
state_id=self.number_of_enterprises
) # Nodes neighbours users
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
x.sentiment_about[enterprise] += 0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
x.sentiment_about[enterprise] -= 0.003
else:
pass
@@ -91,4 +113,6 @@ class BigMarketModel(FSM):
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[enterprise]] = x.sentiment_about[enterprise]
x.attrs[
"sentiment_enterprise_%s" % self.enterprises[enterprise]
] = x.sentiment_about[enterprise]

View File

@@ -14,10 +14,10 @@ class CounterModel(NetworkAgent):
def step(self):
# Outside effects
total = len(list(self.model.schedule._agents))
neighbors = len(list(self.get_neighboring_agents()))
self['times'] = self.get('times', 0) + 1
self['neighbors'] = neighbors
self['total'] = total
neighbors = len(list(self.get_neighbors()))
self["times"] = self.get("times", 0) + 1
self["neighbors"] = neighbors
self["total"] = total
class AggregatedCounter(NetworkAgent):
@@ -32,9 +32,9 @@ class AggregatedCounter(NetworkAgent):
def step(self):
# Outside effects
self['times'] += 1
neighbors = len(list(self.get_neighboring_agents()))
self['neighbors'] += neighbors
self["times"] += 1
neighbors = len(list(self.get_neighbors()))
self["neighbors"] += neighbors
total = len(list(self.model.schedule.agents))
self['total'] += total
self.debug('Running for step: {}. Total: {}'.format(self.now, total))
self["total"] += total
self.debug("Running for step: {}. Total: {}".format(self.now, total))

View File

@@ -2,20 +2,20 @@ from scipy.spatial import cKDTree as KDTree
import networkx as nx
from . import NetworkAgent, as_node
class Geo(NetworkAgent):
'''In this type of network, nodes have a "pos" attribute.'''
"""In this type of network, nodes have a "pos" attribute."""
def geo_search(self, radius, node=None, center=False, **kwargs):
'''Get a list of nodes whose coordinates are closer than *radius* to *node*.'''
"""Get a list of nodes whose coordinates are closer than *radius* to *node*."""
node = as_node(node if node is not None else self)
G = self.subgraph(**kwargs)
pos = nx.get_node_attributes(G, 'pos')
pos = nx.get_node_attributes(G, "pos")
if not pos:
return []
nodes, coords = list(zip(*pos.items()))
kdtree = KDTree(coords) # Cannot provide generator.
indices = kdtree.query_ball_point(pos[node], radius)
return [nodes[i] for i in indices if center or (nodes[i] != node)]

View File

@@ -11,10 +11,10 @@ class IndependentCascadeModel(BaseAgent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.innovation_prob = self.env.environment_params['innovation_prob']
self.imitation_prob = self.env.environment_params['imitation_prob']
self.state['time_awareness'] = 0
self.state['sentimentCorrelation'] = 0
self.innovation_prob = self.env.environment_params["innovation_prob"]
self.imitation_prob = self.env.environment_params["imitation_prob"]
self.state["time_awareness"] = 0
self.state["sentimentCorrelation"] = 0
def step(self):
self.behaviour()
@@ -23,25 +23,27 @@ class IndependentCascadeModel(BaseAgent):
aware_neighbors_1_time_step = []
# Outside effects
if self.prob(self.innovation_prob):
if self.state['id'] == 0:
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
self.state['time_awareness'] = self.env.now # To know when they have been infected
if self.state["id"] == 0:
self.state["id"] = 1
self.state["sentimentCorrelation"] = 1
self.state[
"time_awareness"
] = self.env.now # To know when they have been infected
else:
pass
return
# Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
if self.state["id"] == 0:
aware_neighbors = self.get_neighbors(state_id=1)
for x in aware_neighbors:
if x.state['time_awareness'] == (self.env.now-1):
if x.state["time_awareness"] == (self.env.now - 1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if self.prob(self.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
if self.prob(self.imitation_prob * num_neighbors_aware):
self.state["id"] = 1
self.state["sentimentCorrelation"] = 1
else:
pass

View File

@@ -23,87 +23,100 @@ class SpreadModelM2(BaseAgent):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
# Use a single generator with the same seed as `self.random`
random = np.random.default_rng(seed=self._seed)
self.prob_neutral_making_denier = random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
self.prob_neutral_making_denier = random.normal(
environment.environment_params["prob_neutral_making_denier"],
environment.environment_params["standard_variance"],
)
self.prob_infect = random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
self.prob_infect = random.normal(
environment.environment_params["prob_infect"],
environment.environment_params["standard_variance"],
)
self.prob_cured_healing_infected = random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_cured_healing_infected = random.normal(
environment.environment_params["prob_cured_healing_infected"],
environment.environment_params["standard_variance"],
)
self.prob_cured_vaccinate_neutral = random.normal(
environment.environment_params["prob_cured_vaccinate_neutral"],
environment.environment_params["standard_variance"],
)
self.prob_vaccinated_healing_infected = random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = random.normal(environment.environment_params['prob_generate_anti_rumor'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_healing_infected = random.normal(
environment.environment_params["prob_vaccinated_healing_infected"],
environment.environment_params["standard_variance"],
)
self.prob_vaccinated_vaccinate_neutral = random.normal(
environment.environment_params["prob_vaccinated_vaccinate_neutral"],
environment.environment_params["standard_variance"],
)
self.prob_generate_anti_rumor = random.normal(
environment.environment_params["prob_generate_anti_rumor"],
environment.environment_params["standard_variance"],
)
def step(self):
if self.state['id'] == 0: # Neutral
if self.state["id"] == 0: # Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: # Infected
elif self.state["id"] == 1: # Infected
self.infected_behaviour()
elif self.state['id'] == 2: # Cured
elif self.state["id"] == 2: # Cured
self.cured_behaviour()
elif self.state['id'] == 3: # Vaccinated
elif self.state["id"] == 3: # Vaccinated
self.vaccinated_behaviour()
def neutral_behaviour(self):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
infected_neighbors = self.get_neighbors(state_id=1)
if len(infected_neighbors) > 0:
if self.prob(self.prob_neutral_making_denier):
self.state['id'] = 3 # Vaccinated making denier
self.state["id"] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_infect):
neighbor.state['id'] = 1 # Infected
neighbor.state["id"] = 1 # Infected
def cured_behaviour(self):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state['id'] = 3 # Vaccinated
neighbor.state["id"] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected):
neighbor.state['id'] = 2 # Cured
neighbor.state["id"] = 2 # Cured
def vaccinated_behaviour(self):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected):
neighbor.state['id'] = 2 # Cured
neighbor.state["id"] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state['id'] = 3 # Vaccinated
neighbor.state["id"] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
infected_neighbors_2 = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors_2:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state['id'] = 2 # Cured
neighbor.state["id"] = 2 # Cured
class ControlModelM2(BaseAgent):
@@ -124,121 +137,134 @@ class ControlModelM2(BaseAgent):
prob_generate_anti_rumor
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
self.prob_neutral_making_denier = np.random.normal(
environment.environment_params["prob_neutral_making_denier"],
environment.environment_params["standard_variance"],
)
self.prob_infect = np.random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
self.prob_infect = np.random.normal(
environment.environment_params["prob_infect"],
environment.environment_params["standard_variance"],
)
self.prob_cured_healing_infected = np.random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = np.random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_cured_healing_infected = np.random.normal(
environment.environment_params["prob_cured_healing_infected"],
environment.environment_params["standard_variance"],
)
self.prob_cured_vaccinate_neutral = np.random.normal(
environment.environment_params["prob_cured_vaccinate_neutral"],
environment.environment_params["standard_variance"],
)
self.prob_vaccinated_healing_infected = np.random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = np.random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = np.random.normal(environment.environment_params['prob_generate_anti_rumor'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_healing_infected = np.random.normal(
environment.environment_params["prob_vaccinated_healing_infected"],
environment.environment_params["standard_variance"],
)
self.prob_vaccinated_vaccinate_neutral = np.random.normal(
environment.environment_params["prob_vaccinated_vaccinate_neutral"],
environment.environment_params["standard_variance"],
)
self.prob_generate_anti_rumor = np.random.normal(
environment.environment_params["prob_generate_anti_rumor"],
environment.environment_params["standard_variance"],
)
def step(self):
if self.state['id'] == 0: # Neutral
if self.state["id"] == 0: # Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: # Infected
elif self.state["id"] == 1: # Infected
self.infected_behaviour()
elif self.state['id'] == 2: # Cured
elif self.state["id"] == 2: # Cured
self.cured_behaviour()
elif self.state['id'] == 3: # Vaccinated
elif self.state["id"] == 3: # Vaccinated
self.vaccinated_behaviour()
elif self.state['id'] == 4: # Beacon-off
elif self.state["id"] == 4: # Beacon-off
self.beacon_off_behaviour()
elif self.state['id'] == 5: # Beacon-on
elif self.state["id"] == 5: # Beacon-on
self.beacon_on_behaviour()
def neutral_behaviour(self):
self.state['visible'] = False
self.state["visible"] = False
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
infected_neighbors = self.get_neighbors(state_id=1)
if len(infected_neighbors) > 0:
if self.random(self.prob_neutral_making_denier):
self.state['id'] = 3 # Vaccinated making denier
self.state["id"] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_infect):
neighbor.state['id'] = 1 # Infected
self.state['visible'] = False
neighbor.state["id"] = 1 # Infected
self.state["visible"] = False
def cured_behaviour(self):
self.state['visible'] = True
self.state["visible"] = True
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state['id'] = 3 # Vaccinated
neighbor.state["id"] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected):
neighbor.state['id'] = 2 # Cured
neighbor.state["id"] = 2 # Cured
def vaccinated_behaviour(self):
self.state['visible'] = True
self.state["visible"] = True
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected):
neighbor.state['id'] = 2 # Cured
neighbor.state["id"] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state['id'] = 3 # Vaccinated
neighbor.state["id"] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
infected_neighbors_2 = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors_2:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state['id'] = 2 # Cured
neighbor.state["id"] = 2 # Cured
def beacon_off_behaviour(self):
self.state['visible'] = False
infected_neighbors = self.get_neighboring_agents(state_id=1)
self.state["visible"] = False
infected_neighbors = self.get_neighbors(state_id=1)
if len(infected_neighbors) > 0:
self.state['id'] == 5 # Beacon on
self.state["id"] == 5 # Beacon on
def beacon_on_behaviour(self):
self.state['visible'] = False
self.state["visible"] = False
# Cure (M2 feature added)
infected_neighbors = self.get_neighboring_agents(state_id=1)
infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state['id'] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighboring_agents(state_id=0)
neighbor.state["id"] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighbors(state_id=0)
for neighbor in neutral_neighbors_infected:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state['id'] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighboring_agents(state_id=1)
neighbor.state["id"] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighbors(state_id=1)
for neighbor in infected_neighbors_infected:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state['id'] = 2 # Cured
neighbor.state["id"] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state['id'] = 3 # Vaccinated
neighbor.state["id"] = 3 # Vaccinated

View File

@@ -33,24 +33,32 @@ class SISaModel(FSM):
random = np.random.default_rng(seed=self._seed)
self.neutral_discontent_spon_prob = random.normal(self.env['neutral_discontent_spon_prob'],
self.env['standard_variance'])
self.neutral_discontent_infected_prob = random.normal(self.env['neutral_discontent_infected_prob'],
self.env['standard_variance'])
self.neutral_content_spon_prob = random.normal(self.env['neutral_content_spon_prob'],
self.env['standard_variance'])
self.neutral_content_infected_prob = random.normal(self.env['neutral_content_infected_prob'],
self.env['standard_variance'])
self.neutral_discontent_spon_prob = random.normal(
self.env["neutral_discontent_spon_prob"], self.env["standard_variance"]
)
self.neutral_discontent_infected_prob = random.normal(
self.env["neutral_discontent_infected_prob"], self.env["standard_variance"]
)
self.neutral_content_spon_prob = random.normal(
self.env["neutral_content_spon_prob"], self.env["standard_variance"]
)
self.neutral_content_infected_prob = random.normal(
self.env["neutral_content_infected_prob"], self.env["standard_variance"]
)
self.discontent_neutral = random.normal(self.env['discontent_neutral'],
self.env['standard_variance'])
self.discontent_content = random.normal(self.env['discontent_content'],
self.env['variance_d_c'])
self.discontent_neutral = random.normal(
self.env["discontent_neutral"], self.env["standard_variance"]
)
self.discontent_content = random.normal(
self.env["discontent_content"], self.env["variance_d_c"]
)
self.content_discontent = random.normal(self.env['content_discontent'],
self.env['variance_c_d'])
self.content_neutral = random.normal(self.env['content_neutral'],
self.env['standard_variance'])
self.content_discontent = random.normal(
self.env["content_discontent"], self.env["variance_c_d"]
)
self.content_neutral = random.normal(
self.env["content_neutral"], self.env["standard_variance"]
)
@state
def neutral(self):
@@ -61,10 +69,10 @@ class SISaModel(FSM):
return self.content
# Infected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent)
discontent_neighbors = self.count_neighbors(state_id=self.discontent)
if self.prob(scontent_neighbors * self.neutral_discontent_infected_prob):
return self.discontent
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
content_neighbors = self.count_neighbors(state_id=self.content.id)
if self.prob(s * self.neutral_content_infected_prob):
return self.content
return self.neutral
@@ -76,7 +84,7 @@ class SISaModel(FSM):
return self.neutral
# Superinfected
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
content_neighbors = self.count_neighbors(state_id=self.content.id)
if self.prob(s * self.discontent_content):
return self.content
return self.discontent
@@ -88,7 +96,7 @@ class SISaModel(FSM):
return self.neutral
# Superinfected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent.id)
discontent_neighbors = self.count_neighbors(state_id=self.discontent.id)
if self.prob(scontent_neighbors * self.content_discontent):
self.discontent
return self.content

View File

@@ -17,15 +17,19 @@ class SentimentCorrelationModel(BaseAgent):
def __init__(self, environment, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
self.anger_prob = environment.environment_params['anger_prob']
self.joy_prob = environment.environment_params['joy_prob']
self.sadness_prob = environment.environment_params['sadness_prob']
self.disgust_prob = environment.environment_params['disgust_prob']
self.state['time_awareness'] = []
self.outside_effects_prob = environment.environment_params[
"outside_effects_prob"
]
self.anger_prob = environment.environment_params["anger_prob"]
self.joy_prob = environment.environment_params["joy_prob"]
self.sadness_prob = environment.environment_params["sadness_prob"]
self.disgust_prob = environment.environment_params["disgust_prob"]
self.state["time_awareness"] = []
for i in range(4): # In this model we have 4 sentiments
self.state['time_awareness'].append(0) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
self.state['sentimentCorrelation'] = 0
self.state["time_awareness"].append(
0
) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
self.state["sentimentCorrelation"] = 0
def step(self):
self.behaviour()
@@ -37,65 +41,75 @@ class SentimentCorrelationModel(BaseAgent):
sad_neighbors_1_time_step = []
disgusted_neighbors_1_time_step = []
angry_neighbors = self.get_neighboring_agents(state_id=1)
angry_neighbors = self.get_neighbors(state_id=1)
for x in angry_neighbors:
if x.state['time_awareness'][0] > (self.env.now-500):
if x.state["time_awareness"][0] > (self.env.now - 500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
joyful_neighbors = self.get_neighbors(state_id=2)
for x in joyful_neighbors:
if x.state['time_awareness'][1] > (self.env.now-500):
if x.state["time_awareness"][1] > (self.env.now - 500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
sad_neighbors = self.get_neighbors(state_id=3)
for x in sad_neighbors:
if x.state['time_awareness'][2] > (self.env.now-500):
if x.state["time_awareness"][2] > (self.env.now - 500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
disgusted_neighbors = self.get_neighbors(state_id=4)
for x in disgusted_neighbors:
if x.state['time_awareness'][3] > (self.env.now-500):
if x.state["time_awareness"][3] > (self.env.now - 500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob = self.anger_prob+(len(angry_neighbors_1_time_step)*self.anger_prob)
joy_prob = self.joy_prob+(len(joyful_neighbors_1_time_step)*self.joy_prob)
sadness_prob = self.sadness_prob+(len(sad_neighbors_1_time_step)*self.sadness_prob)
disgust_prob = self.disgust_prob+(len(disgusted_neighbors_1_time_step)*self.disgust_prob)
anger_prob = self.anger_prob + (
len(angry_neighbors_1_time_step) * self.anger_prob
)
joy_prob = self.joy_prob + (len(joyful_neighbors_1_time_step) * self.joy_prob)
sadness_prob = self.sadness_prob + (
len(sad_neighbors_1_time_step) * self.sadness_prob
)
disgust_prob = self.disgust_prob + (
len(disgusted_neighbors_1_time_step) * self.disgust_prob
)
outside_effects_prob = self.outside_effects_prob
num = self.random.random()
if num<outside_effects_prob:
self.state['id'] = self.random.randint(1, 4)
if num < outside_effects_prob:
self.state["id"] = self.random.randint(1, 4)
self.state['sentimentCorrelation'] = self.state['id'] # It is stored when it has been infected for the dynamic network
self.state['time_awareness'][self.state['id']-1] = self.env.now
self.state['sentiment'] = self.state['id']
self.state["sentimentCorrelation"] = self.state[
"id"
] # It is stored when it has been infected for the dynamic network
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
self.state["sentiment"] = self.state["id"]
if num < anger_prob:
if(num<anger_prob):
self.state["id"] = 1
self.state["sentimentCorrelation"] = 1
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
elif num < joy_prob + anger_prob and num > anger_prob:
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
self.state["id"] = 2
self.state["sentimentCorrelation"] = 2
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
elif num < sadness_prob + anger_prob + joy_prob and num > joy_prob + anger_prob:
self.state['id'] = 2
self.state['sentimentCorrelation'] = 2
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
self.state["id"] = 3
self.state["sentimentCorrelation"] = 3
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
elif (
num < disgust_prob + sadness_prob + anger_prob + joy_prob
and num > sadness_prob + anger_prob + joy_prob
):
self.state['id'] = 3
self.state['sentimentCorrelation'] = 3
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
self.state["id"] = 4
self.state["sentimentCorrelation"] = 4
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
self.state['id'] = 4
self.state['sentimentCorrelation'] = 4
self.state['time_awareness'][self.state['id']-1] = self.env.now
self.state['sentiment'] = self.state['id']
self.state["sentiment"] = self.state["id"]

View File

@@ -20,17 +20,13 @@ from typing import Dict, List
from .. import serialization, utils, time, config
def as_node(agent):
if isinstance(agent, BaseAgent):
return agent.id
return agent
IGNORED_FIELDS = ('model', 'logger')
class DeadAgent(Exception):
pass
IGNORED_FIELDS = ("model", "logger")
class MetaAgent(ABCMeta):
@@ -43,13 +39,44 @@ class MetaAgent(ABCMeta):
defaults.update(i._defaults)
new_nmspc = {
'_defaults': defaults,
"_defaults": defaults,
"_last_return": None,
"_last_except": None,
}
for attr, func in namespace.items():
if isinstance(func, types.FunctionType) or isinstance(func, property) or attr[0] == '_':
if attr == "step" and inspect.isgeneratorfunction(func):
orig_func = func
new_nmspc["_coroutine"] = None
@wraps(func)
def func(self):
while True:
if not self._coroutine:
self._coroutine = orig_func(self)
try:
if self._last_except:
return self._coroutine.throw(self._last_except)
else:
return self._coroutine.send(self._last_return)
except StopIteration as ex:
self._coroutine = None
return ex.value
finally:
self._last_return = None
self._last_except = None
func.id = name or func.__name__
func.is_default = False
new_nmspc[attr] = func
elif attr == 'defaults':
elif (
isinstance(func, types.FunctionType)
or isinstance(func, property)
or isinstance(func, classmethod)
or attr[0] == "_"
):
new_nmspc[attr] = func
elif attr == "defaults":
defaults.update(func)
else:
defaults[attr] = copy(func)
@@ -69,12 +96,7 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
Any attribute that is not preceded by an underscore (`_`) will also be added to its state.
"""
def __init__(self,
unique_id,
model,
name=None,
interval=None,
**kwargs):
def __init__(self, unique_id, model, name=None, interval=None, **kwargs):
# Check for REQUIRED arguments
# Initialize agent parameters
if isinstance(unique_id, MesaAgent):
@@ -82,16 +104,19 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
assert isinstance(unique_id, int)
super().__init__(unique_id=unique_id, model=model)
self.name = str(name) if name else'{}[{}]'.format(type(self).__name__, self.unique_id)
self.name = (
str(name) if name else "{}[{}]".format(type(self).__name__, self.unique_id)
)
self.alive = True
self.interval = interval or self.get('interval', 1)
logger = utils.logger.getChild(getattr(self.model, 'id', self.model)).getChild(self.name)
self.logger = logging.LoggerAdapter(logger, {'agent_name': self.name})
self.interval = interval or self.get("interval", 1)
logger = utils.logger.getChild(getattr(self.model, "id", self.model)).getChild(
self.name
)
self.logger = logging.LoggerAdapter(logger, {"agent_name": self.name})
if hasattr(self, 'level'):
if hasattr(self, "level"):
self.logger.setLevel(self.level)
for (k, v) in self._defaults.items():
@@ -113,27 +138,26 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
def id(self):
return self.unique_id
@property
def state(self):
'''
Return the agent itself, which behaves as a dictionary.
This method shouldn't be used, but is kept here for backwards compatibility.
'''
return self
@state.setter
def state(self, value):
if not value:
return
for k, v in value.items():
self[k] = v
@classmethod
def from_dict(cls, model, attrs, warn_extra=True):
ignored = {}
args = {}
for k, v in attrs.items():
if k in inspect.signature(cls).parameters:
args[k] = v
else:
ignored[k] = v
if ignored and warn_extra:
utils.logger.info(
f"Ignoring the following arguments for agent class { agent_class.__name__ }: { ignored }"
)
return cls(model=model, **args)
def __getitem__(self, key):
try:
return getattr(self, key)
except AttributeError:
raise KeyError(f'key {key} not found in agent')
raise KeyError(f"key {key} not found in agent")
def __delitem__(self, key):
return delattr(self, key)
@@ -151,7 +175,7 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
return self.items()
def keys(self):
return (k for k in self.__dict__ if k[0] != '_' and k not in IGNORED_FIELDS)
return (k for k in self.__dict__ if k[0] != "_" and k not in IGNORED_FIELDS)
def items(self, keys=None, skip=None):
keys = keys if keys is not None else self.keys()
@@ -172,13 +196,17 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
return None
def die(self):
self.info(f'agent dying')
self.info(f"agent dying")
self.alive = False
try:
self.model.schedule.remove(self)
except KeyError:
pass
return time.NEVER
def step(self):
if not self.alive:
raise DeadAgent(self.unique_id)
raise time.DeadAgent(self.unique_id)
return super().step() or time.Delta(self.interval)
def log(self, message, *args, level=logging.INFO, **kwargs):
@@ -189,9 +217,9 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
extra = {}
extra['now'] = self.now
extra['unique_id'] = self.unique_id
extra['agent_name'] = self.name
extra["now"] = self.now
extra["unique_id"] = self.unique_id
extra["agent_name"] = self.name
return self.logger.log(level, message, extra=extra)
def debug(self, *args, **kwargs):
@@ -217,198 +245,18 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
content = dict(self.items(keys=keys))
if pretty and content:
d = content
content = '\n'
content = "\n"
for k, v in d.items():
content += f'- {k}: {v}\n'
content = textwrap.indent(content, ' ')
content += f"- {k}: {v}\n"
content = textwrap.indent(content, " ")
return f"{repr(self)}{content}"
def __repr__(self):
return f"{self.__class__.__name__}({self.unique_id})"
class NetworkAgent(BaseAgent):
def __init__(self, *args, topology, node_id, **kwargs):
super().__init__(*args, **kwargs)
self.topology = topology
self.node_id = node_id
self.G = self.model.topologies[topology]
assert self.G
def count_neighboring_agents(self, state_id=None, **kwargs):
return len(self.get_neighboring_agents(state_id=state_id, **kwargs))
def get_neighboring_agents(self, state_id=None, **kwargs):
return self.get_agents(limit_neighbors=True, state_id=state_id, **kwargs)
def iter_agents(self, unique_id=None, limit_neighbors=False, **kwargs):
unique_ids = None
if isinstance(unique_id, list):
unique_ids = set(unique_id)
elif unique_id is not None:
unique_ids = set([unique_id,])
if limit_neighbors:
neighbor_ids = set()
for node_id in self.G.neighbors(self.node_id):
if self.G.nodes[node_id].get('agent_id') is not None:
neighbor_ids.add(node_id)
if unique_ids:
unique_ids = unique_ids & neighbor_ids
else:
unique_ids = neighbor_ids
if not unique_ids:
return
unique_ids = list(unique_ids)
yield from super().iter_agents(unique_id=unique_ids, **kwargs)
def subgraph(self, center=True, **kwargs):
include = [self] if center else []
G = self.G.subgraph(n.node_id for n in list(self.get_agents(**kwargs)+include))
return G
def remove_node(self):
self.G.remove_node(self.node_id)
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
if self.node_id not in self.G.nodes(data=False):
raise ValueError('{} not in list of existing agents in the network'.format(self.unique_id))
if other.node_id not in self.G.nodes(data=False):
raise ValueError('{} not in list of existing agents in the network'.format(other))
self.G.add_edge(self.node_id, other.node_id, edge_attr_dict=edge_attr_dict, *edge_attrs)
def die(self, remove=True):
if remove:
self.remove_node()
return super().die()
def state(name=None):
def decorator(func, name=None):
'''
A state function should return either a state id, or a tuple (state_id, when)
The default value for state_id is the current state id.
The default value for when is the interval defined in the environment.
'''
if inspect.isgeneratorfunction(func):
orig_func = func
@wraps(func)
def func(self):
while True:
if not self._coroutine:
self._coroutine = orig_func(self)
try:
n = next(self._coroutine)
if n:
return None, n
return
except StopIteration as ex:
self._coroutine = None
next_state = ex.value
if next_state is not None:
self.set_state(next_state)
return next_state
func.id = name or func.__name__
func.is_default = False
return func
if callable(name):
return decorator(name)
else:
return partial(decorator, name=name)
def default_state(func):
func.is_default = True
return func
class MetaFSM(MetaAgent):
def __new__(mcls, name, bases, namespace):
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i._states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for attr, func in namespace.items():
if hasattr(func, 'id'):
if func.is_default:
default_state = func
states[func.id] = func
namespace.update({
'_default_state': default_state,
'_states': states,
})
return super(MetaFSM, mcls).__new__(mcls=mcls, name=name, bases=bases, namespace=namespace)
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
if not hasattr(self, 'state_id'):
if not self._default_state:
raise ValueError('No default state specified for {}'.format(self.unique_id))
self.state_id = self._default_state.id
self._coroutine = None
self.set_state(self.state_id)
def step(self):
self.debug(f'Agent {self.unique_id} @ state {self.state_id}')
default_interval = super().step()
next_state = self._states[self.state_id](self)
when = None
try:
next_state, *when = next_state
if not when:
when = None
elif len(when) == 1:
when = when[0]
else:
raise ValueError('Too many values returned. Only state (and time) allowed')
except TypeError:
pass
if next_state is not None:
self.set_state(next_state)
return when or default_interval
def set_state(self, state, when=None):
if hasattr(state, 'id'):
state = state.id
if state not in self._states:
raise ValueError('{} is not a valid state'.format(state))
self.state_id = state
if when is not None:
self.model.schedule.add(self, when=when)
return state
def die(self):
return self.dead, super().die()
@state
def dead(self):
return self.die()
def prob(prob, random):
'''
"""
A true/False uniform distribution with a given probability.
To be used like this:
@@ -417,14 +265,13 @@ def prob(prob, random):
if prob(0.3):
do_something()
'''
"""
r = random.random()
return r < prob
def calculate_distribution(network_agents=None,
agent_class=None):
'''
def calculate_distribution(network_agents=None, agent_class=None):
"""
Calculate the threshold values (thresholds for a uniform distribution)
of an agent distribution given the weights of each agent type.
@@ -447,168 +294,54 @@ def calculate_distribution(network_agents=None,
In this example, 20% of the nodes will be marked as type
'agent_class_1'.
'''
"""
if network_agents:
network_agents = [deepcopy(agent) for agent in network_agents if not hasattr(agent, 'id')]
network_agents = [
deepcopy(agent) for agent in network_agents if not hasattr(agent, "id")
]
elif agent_class:
network_agents = [{'agent_class': agent_class}]
network_agents = [{"agent_class": agent_class}]
else:
raise ValueError('Specify a distribution or a default agent type')
raise ValueError("Specify a distribution or a default agent type")
# Fix missing weights and incompatible types
for x in network_agents:
x['weight'] = float(x.get('weight', 1))
x["weight"] = float(x.get("weight", 1))
# Calculate the thresholds
total = sum(x['weight'] for x in network_agents)
total = sum(x["weight"] for x in network_agents)
acc = 0
for v in network_agents:
if 'ids' in v:
if "ids" in v:
continue
upper = acc + (v['weight']/total)
v['threshold'] = [acc, upper]
upper = acc + (v["weight"] / total)
v["threshold"] = [acc, upper]
acc = upper
return network_agents
def serialize_type(agent_class, known_modules=[], **kwargs):
def _serialize_type(agent_class, known_modules=[], **kwargs):
if isinstance(agent_class, str):
return agent_class
known_modules += ['soil.agents']
return serialization.serialize(agent_class, known_modules=known_modules, **kwargs)[1] # Get the name of the class
known_modules += ["soil.agents"]
return serialization.serialize(agent_class, known_modules=known_modules, **kwargs)[
1
] # Get the name of the class
def serialize_definition(network_agents, known_modules=[]):
'''
When serializing an agent distribution, remove the thresholds, in order
to avoid cluttering the YAML definition file.
'''
d = deepcopy(list(network_agents))
for v in d:
if 'threshold' in v:
del v['threshold']
v['agent_class'] = serialize_type(v['agent_class'],
known_modules=known_modules)
return d
def deserialize_type(agent_class, known_modules=[]):
def _deserialize_type(agent_class, known_modules=[]):
if not isinstance(agent_class, str):
return agent_class
known = known_modules + ['soil.agents', 'soil.agents.custom' ]
known = known_modules + ["soil.agents", "soil.agents.custom"]
agent_class = serialization.deserializer(agent_class, known_modules=known)
return agent_class
def deserialize_definition(ind, **kwargs):
d = deepcopy(ind)
for v in d:
v['agent_class'] = deserialize_type(v['agent_class'], **kwargs)
return d
def _validate_states(states, topology):
'''Validate states to avoid ignoring states during initialization'''
states = states or []
if isinstance(states, dict):
for x in states:
assert x in topology.nodes
else:
assert len(states) <= len(topology)
return states
def _convert_agent_classs(ind, to_string=False, **kwargs):
'''Convenience method to allow specifying agents by class or class name.'''
if to_string:
return serialize_definition(ind, **kwargs)
return deserialize_definition(ind, **kwargs)
# def _agent_from_definition(definition, random, value=-1, unique_id=None):
# """Used in the initialization of agents given an agent distribution."""
# if value < 0:
# value = random.random()
# for d in sorted(definition, key=lambda x: x.get('threshold')):
# threshold = d.get('threshold', (-1, -1))
# # Check if the definition matches by id (first) or by threshold
# if (unique_id is not None and unique_id in d.get('ids', [])) or \
# (value >= threshold[0] and value < threshold[1]):
# state = {}
# if 'state' in d:
# state = deepcopy(d['state'])
# return d['agent_class'], state
# raise Exception('Definition for value {} not found in: {}'.format(value, definition))
# def _definition_to_dict(definition, random, size=None, default_state=None):
# state = default_state or {}
# agents = {}
# remaining = {}
# if size:
# for ix in range(size):
# remaining[ix] = copy(state)
# else:
# remaining = defaultdict(lambda x: copy(state))
# distro = sorted([item for item in definition if 'weight' in item])
# id = 0
# def init_agent(item, id=ix):
# while id in agents:
# id += 1
# agent = remaining[id]
# agent['state'].update(copy(item.get('state', {})))
# agents[agent.unique_id] = agent
# del remaining[id]
# return agent
# for item in definition:
# if 'ids' in item:
# ids = item['ids']
# del item['ids']
# for id in ids:
# agent = init_agent(item, id)
# for item in definition:
# if 'number' in item:
# times = item['number']
# del item['number']
# for times in range(times):
# if size:
# ix = random.choice(remaining.keys())
# agent = init_agent(item, id)
# else:
# agent = init_agent(item)
# if not size:
# return agents
# if len(remaining) < 0:
# raise Exception('Invalid definition. Too many agents to add')
# total_weight = float(sum(s['weight'] for s in distro))
# unit = size / total_weight
# for item in distro:
# times = unit * item['weight']
# del item['weight']
# for times in range(times):
# ix = random.choice(remaining.keys())
# agent = init_agent(item, id)
# return agents
class AgentView(Mapping, Set):
"""A lazy-loaded list of agents.
"""
"""A lazy-loaded list of agents."""
__slots__ = ("_agents",)
def __init__(self, agents):
self._agents = agents
@@ -651,11 +384,20 @@ class AgentView(Mapping, Set):
return f"{self.__class__.__name__}({self})"
def filter_agents(agents, *id_args, unique_id=None, state_id=None, agent_class=None, ignore=None, state=None,
limit=None, **kwargs):
'''
def filter_agents(
agents,
*id_args,
unique_id=None,
state_id=None,
agent_class=None,
ignore=None,
state=None,
limit=None,
**kwargs,
):
"""
Filter agents given as a dict, by the criteria given as arguments (e.g., certain type or state id).
'''
"""
assert isinstance(agents, dict)
ids = []
@@ -678,7 +420,7 @@ def filter_agents(agents, *id_args, unique_id=None, state_id=None, agent_class=N
state_id = tuple([state_id])
if agent_class is not None:
agent_class = deserialize_type(agent_class)
agent_class = _deserialize_type(agent_class)
try:
agent_class = tuple(agent_class)
except TypeError:
@@ -688,7 +430,7 @@ def filter_agents(agents, *id_args, unique_id=None, state_id=None, agent_class=N
f = filter(lambda x: x not in ignore, f)
if state_id is not None:
f = filter(lambda agent: agent.get('state_id', None) in state_id, f)
f = filter(lambda agent: agent.get("state_id", None) in state_id, f)
if agent_class is not None:
f = filter(lambda agent: isinstance(agent, agent_class), f)
@@ -697,7 +439,7 @@ def filter_agents(agents, *id_args, unique_id=None, state_id=None, agent_class=N
state.update(kwargs)
for k, v in state.items():
f = filter(lambda agent: agent.state.get(k, None) == v, f)
f = filter(lambda agent: getattr(agent, k, None) == v, f)
if limit is not None:
f = islice(f, limit)
@@ -705,123 +447,135 @@ def filter_agents(agents, *id_args, unique_id=None, state_id=None, agent_class=N
yield from f
def from_config(cfg: config.AgentConfig, random, topologies: Dict[str, nx.Graph] = None) -> List[Dict[str, Any]]:
'''
def from_config(
cfg: config.AgentConfig, random, topology: nx.Graph = None
) -> List[Dict[str, Any]]:
"""
This function turns an agentconfig into a list of individual "agent specifications", which are just a dictionary
with the parameters that the environment will use to construct each agent.
This function does NOT return a list of agents, mostly because some attributes to the agent are not known at the
time of calling this function, such as `unique_id`.
'''
"""
default = cfg or config.AgentConfig()
if not isinstance(cfg, config.AgentConfig):
cfg = config.AgentConfig(**cfg)
return _agents_from_config(cfg, topologies=topologies, random=random)
def _agents_from_config(cfg: config.AgentConfig,
topologies: Dict[str, nx.Graph],
random) -> List[Dict[str, Any]]:
if cfg and not isinstance(cfg, config.AgentConfig):
cfg = config.AgentConfig(**cfg)
agents = []
assigned = defaultdict(int)
assigned_total = 0
assigned_network = 0
if cfg.fixed is not None:
agents, counts = _from_fixed(cfg.fixed, topology=cfg.topology, default=cfg)
assigned.update(counts)
agents, assigned_total, assigned_network = _from_fixed(
cfg.fixed, topology=cfg.topology, default=cfg
)
n = cfg.n
if cfg.distribution:
topo_size = {top: len(topologies[top]) for top in topologies}
topo_size = len(topology) if topology else 0
grouped = defaultdict(list)
networked = []
total = []
for d in cfg.distribution:
if d.strategy == config.Strategy.topology:
topology = d.topology if ('topology' in d.__fields_set__) else cfg.topology
if not topology:
raise ValueError('The "topology" strategy only works if the topology parameter is specified')
if topology not in topo_size:
raise ValueError(f'Unknown topology selected: { topology }. Make sure the topology has been defined')
topo = d.topology if ("topology" in d.__fields_set__) else cfg.topology
if not topo:
raise ValueError(
'The "topology" strategy only works if the topology parameter is set to True'
)
if not topo_size:
raise ValueError(
f"Topology does not have enough free nodes to assign one to the agent"
)
grouped[topology].append(d)
networked.append(d)
if d.strategy == config.Strategy.total:
if not cfg.n:
raise ValueError('Cannot use the "total" strategy without providing the total number of agents')
raise ValueError(
'Cannot use the "total" strategy without providing the total number of agents'
)
total.append(d)
for (topo, distro) in grouped.items():
if not topologies or topo not in topo_size:
raise ValueError(
'You need to specify a target number of agents for the distribution \
or a configuration with a topology, along with a dictionary with \
all the available topologies')
n = len(topologies[topo])
target = topo_size[topo] - assigned[topo]
new_agents = _from_distro(cfg.distribution, target,
topology=topo,
default=cfg,
random=random)
assigned[topo] += len(new_agents)
if networked:
new_agents = _from_distro(
networked,
n=topo_size - assigned_network,
topology=topo,
default=cfg,
random=random,
)
assigned_total += len(new_agents)
assigned_network += len(new_agents)
agents += new_agents
if total:
remaining = n - sum(assigned.values())
agents += _from_distro(total, remaining,
topology='', # DO NOT assign to any topology
default=cfg,
random=random)
remaining = n - assigned_total
agents += _from_distro(total, n=remaining, default=cfg, random=random)
if sum(assigned.values()) != sum(topo_size.values()):
utils.logger.warn(f'The total number of agents does not match the total number of nodes in '
'every topology. This may be due to a definition error: assigned: '
f'{ assigned } total sizes: { topo_size }')
if assigned_network < topo_size:
utils.logger.warn(
f"The total number of agents does not match the total number of nodes in "
"every topology. This may be due to a definition error: assigned: "
f"{ assigned } total size: { topo_size }"
)
return agents
def _from_fixed(lst: List[config.FixedAgentConfig], topology: str, default: config.SingleAgentConfig) -> List[Dict[str, Any]]:
def _from_fixed(
lst: List[config.FixedAgentConfig],
topology: bool,
default: config.SingleAgentConfig,
) -> List[Dict[str, Any]]:
agents = []
counts = {}
counts_total = 0
counts_network = 0
for fixed in lst:
agent = {}
if default:
agent = default.state.copy()
agent.update(fixed.state)
cls = serialization.deserialize(fixed.agent_class or (default and default.agent_class))
agent['agent_class'] = cls
topo = fixed.topology if ('topology' in fixed.__fields_set__) else topology or default.topology
cls = serialization.deserialize(
fixed.agent_class or (default and default.agent_class)
)
agent["agent_class"] = cls
topo = (
fixed.topology
if ("topology" in fixed.__fields_set__)
else topology or default.topology
)
if topo:
agent['topology'] = topo
agent["topology"] = True
counts_network += 1
if not fixed.hidden:
counts[topo] = counts.get(topo, 0) + 1
counts_total += 1
agents.append(agent)
return agents, counts
return agents, counts_total, counts_network
def _from_distro(distro: List[config.AgentDistro],
n: int,
topology: str,
default: config.SingleAgentConfig,
random) -> List[Dict[str, Any]]:
def _from_distro(
distro: List[config.AgentDistro],
n: int,
topology: str,
default: config.SingleAgentConfig,
random,
) -> List[Dict[str, Any]]:
agents = []
if n is None:
if any(lambda dist: dist.n is None, distro):
raise ValueError('You must provide a total number of agents, or the number of each type')
raise ValueError(
"You must provide a total number of agents, or the number of each type"
)
n = sum(dist.n for dist in distro)
weights = list(dist.weight if dist.weight is not None else 1 for dist in distro)
@@ -834,35 +588,48 @@ def _from_distro(distro: List[config.AgentDistro],
# So instead we calculate our own distribution to make sure the actual ratios are close to what we would expect
# Calculate how many times each has to appear
indices = list(chain.from_iterable([idx] * int(n*chunk) for (idx, n) in enumerate(norm)))
indices = list(
chain.from_iterable([idx] * int(n * chunk) for (idx, n) in enumerate(norm))
)
# Complete with random agents following the original weight distribution
if len(indices) < n:
indices += random.choices(list(range(len(distro))), weights=[d.weight for d in distro], k=n-len(indices))
indices += random.choices(
list(range(len(distro))),
weights=[d.weight for d in distro],
k=n - len(indices),
)
# Deserialize classes for efficiency
classes = list(serialization.deserialize(i.agent_class or default.agent_class) for i in distro)
classes = list(
serialization.deserialize(i.agent_class or default.agent_class) for i in distro
)
# Add them in random order
random.shuffle(indices)
for idx in indices:
d = distro[idx]
agent = d.state.copy()
cls = classes[idx]
agent['agent_class'] = cls
agent["agent_class"] = cls
if default:
agent.update(default.state)
# agent = cls(unique_id=agent_id, model=env, **state)
topology = d.topology if ('topology' in d.__fields_set__) else topology or default.topology
topology = (
d.topology
if ("topology" in d.__fields_set__)
else topology or default.topology
)
if topology:
agent['topology'] = topology
agent["topology"] = topology
agents.append(agent)
return agents
from .network_agents import *
from .fsm import *
from .evented import *
from .BassModel import *
from .BigMarketModel import *
from .IndependentCascadeModel import *
@@ -876,4 +643,5 @@ try:
from .Geo import Geo
except ImportError:
import sys
print('Could not load the Geo Agent, scipy is not installed', file=sys.stderr)
print("Could not load the Geo Agent, scipy is not installed", file=sys.stderr)

57
soil/agents/evented.py Normal file
View File

@@ -0,0 +1,57 @@
from . import BaseAgent
from ..events import Message, Tell, Ask, Reply, TimedOut
from ..time import Cond
from functools import partial
from collections import deque
class Evented(BaseAgent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._inbox = deque()
self._received = 0
self._processed = 0
def on_receive(self, *args, **kwargs):
pass
def received(self, expiration=None, timeout=None):
current = self._received
if expiration is None:
expiration = float('inf') if timeout is None else self.now + timeout
if expiration < self.now:
raise ValueError("Invalid expiration time")
def ready(agent):
return agent._received > current or agent.now >= expiration
def value(agent):
if agent.now > expiration:
raise TimedOut("No message received")
c = Cond(func=ready, return_func=value)
c._checked = True
return c
def tell(self, msg, sender):
self._received += 1
self._inbox.append(Tell(payload=msg, sender=sender))
def ask(self, msg, timeout=None):
self._received += 1
ask = Ask(payload=msg)
self._inbox.append(ask)
expiration = float('inf') if timeout is None else self.now + timeout
return ask.replied(expiration=expiration)
def check_messages(self):
while self._inbox:
msg = self._inbox.popleft()
self._processed += 1
if msg.expired(self.now):
continue
reply = self.on_receive(msg.payload, sender=msg.sender)
if isinstance(msg, Ask):
msg.reply = reply

142
soil/agents/fsm.py Normal file
View File

@@ -0,0 +1,142 @@
from . import MetaAgent, BaseAgent
from functools import partial, wraps
import inspect
def state(name=None):
def decorator(func, name=None):
"""
A state function should return either a state id, or a tuple (state_id, when)
The default value for state_id is the current state id.
The default value for when is the interval defined in the environment.
"""
if inspect.isgeneratorfunction(func):
orig_func = func
@wraps(func)
def func(self):
while True:
if not self._coroutine:
self._coroutine = orig_func(self)
try:
if self._last_except:
n = self._coroutine.throw(self._last_except)
else:
n = self._coroutine.send(self._last_return)
if n:
return None, n
return n
except StopIteration as ex:
self._coroutine = None
next_state = ex.value
if next_state is not None:
self._set_state(next_state)
return next_state
finally:
self._last_return = None
self._last_except = None
func.id = name or func.__name__
func.is_default = False
return func
if callable(name):
return decorator(name)
else:
return partial(decorator, name=name)
def default_state(func):
func.is_default = True
return func
class MetaFSM(MetaAgent):
def __new__(mcls, name, bases, namespace):
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i._states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for attr, func in namespace.items():
if hasattr(func, "id"):
if func.is_default:
default_state = func
states[func.id] = func
namespace.update(
{
"_default_state": default_state,
"_states": states,
}
)
return super(MetaFSM, mcls).__new__(
mcls=mcls, name=name, bases=bases, namespace=namespace
)
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, **kwargs):
super(FSM, self).__init__(**kwargs)
if not hasattr(self, "state_id"):
if not self._default_state:
raise ValueError(
"No default state specified for {}".format(self.unique_id)
)
self.state_id = self._default_state.id
self._coroutine = None
self._set_state(self.state_id)
def step(self):
self.debug(f"Agent {self.unique_id} @ state {self.state_id}")
default_interval = super().step()
next_state = self._states[self.state_id](self)
when = None
try:
next_state, *when = next_state
if not when:
when = None
elif len(when) == 1:
when = when[0]
else:
raise ValueError(
"Too many values returned. Only state (and time) allowed"
)
except TypeError:
pass
if next_state is not None:
self._set_state(next_state)
return when or default_interval
def _set_state(self, state, when=None):
if hasattr(state, "id"):
state = state.id
if state not in self._states:
raise ValueError("{} is not a valid state".format(state))
self.state_id = state
if when is not None:
self.model.schedule.add(self, when=when)
return state
def die(self):
return self.dead, super().die()
@state
def dead(self):
return self.die()

View File

@@ -0,0 +1,82 @@
from . import BaseAgent
class NetworkAgent(BaseAgent):
def __init__(self, *args, topology, node_id, **kwargs):
super().__init__(*args, **kwargs)
assert topology is not None
assert node_id is not None
self.G = topology
assert self.G
self.node_id = node_id
def count_neighbors(self, state_id=None, **kwargs):
return len(self.get_neighbors(state_id=state_id, **kwargs))
def get_neighbors(self, **kwargs):
return list(self.iter_agents(limit_neighbors=True, **kwargs))
@property
def node(self):
return self.G.nodes[self.node_id]
def iter_agents(self, unique_id=None, *, limit_neighbors=False, **kwargs):
unique_ids = None
if isinstance(unique_id, list):
unique_ids = set(unique_id)
elif unique_id is not None:
unique_ids = set(
[
unique_id,
]
)
if limit_neighbors:
neighbor_ids = set()
for node_id in self.G.neighbors(self.node_id):
if self.G.nodes[node_id].get("agent") is not None:
neighbor_ids.add(node_id)
if unique_ids:
unique_ids = unique_ids & neighbor_ids
else:
unique_ids = neighbor_ids
if not unique_ids:
return
unique_ids = list(unique_ids)
yield from super().iter_agents(unique_id=unique_ids, **kwargs)
def subgraph(self, center=True, **kwargs):
include = [self] if center else []
G = self.G.subgraph(
n.node_id for n in list(self.get_agents(**kwargs) + include)
)
return G
def remove_node(self):
print(f"Removing node for {self.unique_id}: {self.node_id}")
self.G.remove_node(self.node_id)
self.node_id = None
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
if self.node_id not in self.G.nodes(data=False):
raise ValueError(
"{} not in list of existing agents in the network".format(
self.unique_id
)
)
if other.node_id not in self.G.nodes(data=False):
raise ValueError(
"{} not in list of existing agents in the network".format(other)
)
self.G.add_edge(
self.node_id, other.node_id, edge_attr_dict=edge_attr_dict, *edge_attrs
)
def die(self, remove=True):
if not self.alive:
return None
if remove:
self.remove_node()
return super().die()

View File

@@ -19,6 +19,7 @@ import networkx as nx
# Could use TypeAlias in python >= 3.10
nodeId = int
class Node(BaseModel):
id: nodeId
state: Optional[Dict[str, Any]] = {}
@@ -43,7 +44,7 @@ class NetParams(BaseModel, extra=Extra.allow):
class NetConfig(BaseModel):
params: Optional[NetParams]
topology: Optional[Union[Topology, nx.Graph]]
fixed: Optional[Union[Topology, nx.Graph]]
path: Optional[str]
class Config:
@@ -54,14 +55,15 @@ class NetConfig(BaseModel):
return NetConfig(topology=None, params=None)
@root_validator
def validate_all(cls, values):
if 'params' not in values and 'topology' not in values:
raise ValueError('You must specify either a topology or the parameters to generate a graph')
def validate_all(cls, values):
if "params" not in values and "topology" not in values:
raise ValueError(
"You must specify either a topology or the parameters to generate a graph"
)
return values
class EnvConfig(BaseModel):
@staticmethod
def default():
return EnvConfig()
@@ -70,7 +72,7 @@ class EnvConfig(BaseModel):
class SingleAgentConfig(BaseModel):
agent_class: Optional[Union[Type, str]] = None
unique_id: Optional[int] = None
topology: Optional[str] = None
topology: Optional[bool] = False
node_id: Optional[Union[int, str]] = None
state: Optional[Dict[str, Any]] = {}
@@ -80,9 +82,11 @@ class FixedAgentConfig(SingleAgentConfig):
hidden: Optional[bool] = False # Do not count this agent towards total agent count
@root_validator
def validate_all(cls, values):
if values.get('agent_id', None) is not None and values.get('n', 1) > 1:
raise ValueError(f"An agent_id can only be provided when there is only one agent ({values.get('n')} given)")
def validate_all(cls, values):
if values.get("unique_id", None) is not None and values.get("n", 1) > 1:
raise ValueError(
f"An unique_id can only be provided when there is only one agent ({values.get('n')} given)"
)
return values
@@ -91,8 +95,8 @@ class OverrideAgentConfig(FixedAgentConfig):
class Strategy(Enum):
topology = 'topology'
total = 'total'
topology = "topology"
total = "total"
class AgentDistro(SingleAgentConfig):
@@ -102,7 +106,6 @@ class AgentDistro(SingleAgentConfig):
class AgentConfig(SingleAgentConfig):
n: Optional[int] = None
topology: Optional[str]
distribution: Optional[List[AgentDistro]] = None
fixed: Optional[List[FixedAgentConfig]] = None
override: Optional[List[OverrideAgentConfig]] = None
@@ -112,16 +115,20 @@ class AgentConfig(SingleAgentConfig):
return AgentConfig()
@root_validator
def validate_all(cls, values):
if 'distribution' in values and ('n' not in values and 'topology' not in values):
raise ValueError("You need to provide the number of agents or a topology to extract the value from.")
def validate_all(cls, values):
if "distribution" in values and (
"n" not in values and "topology" not in values
):
raise ValueError(
"You need to provide the number of agents or a topology to extract the value from."
)
return values
class Config(BaseModel, extra=Extra.allow):
version: Optional[str] = '1'
version: Optional[str] = "1"
name: str = 'Unnamed Simulation'
name: str = "Unnamed Simulation"
description: Optional[str] = None
group: str = None
dir_path: Optional[str] = None
@@ -141,45 +148,48 @@ class Config(BaseModel, extra=Extra.allow):
def from_raw(cls, cfg):
if isinstance(cfg, Config):
return cfg
if cfg.get('version', '1') == '1' and any(k in cfg for k in ['agents', 'agent_class', 'topology', 'environment_class']):
if cfg.get("version", "1") == "1" and any(
k in cfg for k in ["agents", "agent_class", "topology", "environment_class"]
):
return convert_old(cfg)
return Config(**cfg)
def convert_old(old, strict=True):
'''
"""
Try to convert old style configs into the new format.
This is still a work in progress and might not work in many cases.
'''
"""
utils.logger.warning('The old configuration format is deprecated. The converted file MAY NOT yield the right results')
utils.logger.warning(
"The old configuration format is deprecated. The converted file MAY NOT yield the right results"
)
new = old.copy()
network = {}
if 'topology' in old:
del new['topology']
network['topology'] = old['topology']
if "topology" in old:
del new["topology"]
network["topology"] = old["topology"]
if 'network_params' in old and old['network_params']:
del new['network_params']
for (k, v) in old['network_params'].items():
if k == 'path':
network['path'] = v
if "network_params" in old and old["network_params"]:
del new["network_params"]
for (k, v) in old["network_params"].items():
if k == "path":
network["path"] = v
else:
network.setdefault('params', {})[k] = v
network.setdefault("params", {})[k] = v
topologies = {}
topology = None
if network:
topologies['default'] = network
topology = network
agents = {'fixed': [], 'distribution': []}
agents = {"fixed": [], "distribution": []}
def updated_agent(agent):
'''Convert an agent definition'''
"""Convert an agent definition"""
newagent = dict(agent)
return newagent
@@ -187,80 +197,74 @@ def convert_old(old, strict=True):
fixed = []
override = []
if 'environment_agents' in new:
if "environment_agents" in new:
for agent in new['environment_agents']:
agent.setdefault('state', {})['group'] = 'environment'
if 'agent_id' in agent:
agent['state']['name'] = agent['agent_id']
del agent['agent_id']
agent['hidden'] = True
agent['topology'] = None
for agent in new["environment_agents"]:
agent.setdefault("state", {})["group"] = "environment"
if "agent_id" in agent:
agent["state"]["name"] = agent["agent_id"]
del agent["agent_id"]
agent["hidden"] = True
agent["topology"] = False
fixed.append(updated_agent(agent))
del new['environment_agents']
del new["environment_agents"]
if "agent_class" in old:
del new["agent_class"]
agents["agent_class"] = old["agent_class"]
if 'agent_class' in old:
del new['agent_class']
agents['agent_class'] = old['agent_class']
if "default_state" in old:
del new["default_state"]
agents["state"] = old["default_state"]
if 'default_state' in old:
del new['default_state']
agents['state'] = old['default_state']
if "network_agents" in old:
agents["topology"] = True
if 'network_agents' in old:
agents['topology'] = 'default'
agents.setdefault("state", {})["group"] = "network"
agents.setdefault('state', {})['group'] = 'network'
for agent in new['network_agents']:
for agent in new["network_agents"]:
agent = updated_agent(agent)
if 'agent_id' in agent:
agent['state']['name'] = agent['agent_id']
del agent['agent_id']
if "agent_id" in agent:
agent["state"]["name"] = agent["agent_id"]
del agent["agent_id"]
fixed.append(agent)
else:
by_weight.append(agent)
del new['network_agents']
if 'agent_class' in old and (not fixed and not by_weight):
agents['topology'] = 'default'
by_weight = [{'agent_class': old['agent_class'], 'weight': 1}]
del new["network_agents"]
if "agent_class" in old and (not fixed and not by_weight):
agents["topology"] = True
by_weight = [{"agent_class": old["agent_class"], "weight": 1}]
# TODO: translate states properly
if 'states' in old:
del new['states']
states = old['states']
if "states" in old:
del new["states"]
states = old["states"]
if isinstance(states, dict):
states = states.items()
else:
states = enumerate(states)
for (k, v) in states:
override.append({'filter': {'node_id': k},
'state': v})
agents['override'] = override
agents['fixed'] = fixed
agents['distribution'] = by_weight
override.append({"filter": {"node_id": k}, "state": v})
agents["override"] = override
agents["fixed"] = fixed
agents["distribution"] = by_weight
model_params = {}
if 'environment_params' in new:
del new['environment_params']
model_params = dict(old['environment_params'])
if "environment_params" in new:
del new["environment_params"]
model_params = dict(old["environment_params"])
if 'environment_class' in old:
del new['environment_class']
new['model_class'] = old['environment_class']
if "environment_class" in old:
del new["environment_class"]
new["model_class"] = old["environment_class"]
if 'dump' in old:
del new['dump']
new['dry_run'] = not old['dump']
if "dump" in old:
del new["dump"]
new["dry_run"] = not old["dump"]
model_params['topologies'] = topologies
model_params['agents'] = agents
model_params["topology"] = topology
model_params["agents"] = agents
return Config(version='2',
model_params=model_params,
**new)
return Config(version="2", model_params=model_params, **new)

View File

@@ -1,6 +1,6 @@
from mesa import DataCollector as MDC
class SoilDataCollector(MDC):
class SoilDataCollector(MDC):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

View File

@@ -18,9 +18,9 @@ def wrapcmd(func):
known = globals()
known.update(self.curframe.f_globals)
known.update(self.curframe.f_locals)
known['agent'] = known.get('self', None)
known['model'] = known.get('self', {}).get('model')
known['attrs'] = arg.strip().split()
known["agent"] = known.get("self", None)
known["model"] = known.get("self", {}).get("model")
known["attrs"] = arg.strip().split()
exec(func.__code__, known, known)
@@ -29,10 +29,12 @@ def wrapcmd(func):
class Debug(pdb.Pdb):
def __init__(self, *args, skip_soil=False, **kwargs):
skip = kwargs.get('skip', [])
skip = kwargs.get("skip", [])
if skip_soil:
skip.append('soil.*')
skip.append('mesa.*')
skip.append("soil")
skip.append("contextlib")
skip.append("soil.*")
skip.append("mesa.*")
super(Debug, self).__init__(*args, skip=skip, **kwargs)
self.prompt = "[soil-pdb] "
@@ -40,7 +42,7 @@ class Debug(pdb.Pdb):
def _soil_agents(model, attrs=None, pretty=True, **kwargs):
for agent in model.agents(**kwargs):
d = agent
print(' - ' + indent(agent.to_str(keys=attrs, pretty=pretty), ' '))
print(" - " + indent(agent.to_str(keys=attrs, pretty=pretty), " "))
@wrapcmd
def do_soil_agents():
@@ -50,14 +52,20 @@ class Debug(pdb.Pdb):
@wrapcmd
def do_soil_list():
return Debug._soil_agents(model, attrs=['state_id'], pretty=False)
return Debug._soil_agents(model, attrs=["state_id"], pretty=False)
do_sl = do_soil_list
def do_continue_state(self, arg):
self.do_break_state(arg, temporary=True)
return self.do_continue("")
do_cs = do_continue_state
@wrapcmd
def do_soil_self():
def do_soil_agent():
if not agent:
print('No agent available')
print("No agent available")
return
keys = None
@@ -70,46 +78,56 @@ class Debug(pdb.Pdb):
print(agent.to_str(pretty=True, keys=keys))
do_ss = do_soil_self
do_aa = do_soil_agent
def do_break_state(self, arg: str, temporary=False):
'''
def do_break_state(self, arg: str, instances=None, temporary=False):
"""
Break before a specified state is stepped into.
'''
"""
klass = None
state = arg.strip()
state = arg
if not state:
self.error("Specify at least a state name")
return
comma = arg.find(':')
if comma > 0:
state = arg[comma+1:].lstrip()
klass = arg[:comma].rstrip()
klass = eval(klass,
self.curframe.f_globals,
self.curframe_locals)
state, *tokens = state.lstrip().split()
if tokens:
instances = list(eval(token) for token in tokens)
colon = state.find(":")
if colon > 0:
klass = state[:colon].rstrip()
state = state[colon + 1 :].strip()
print(klass, state, tokens)
klass = eval(klass, self.curframe.f_globals, self.curframe_locals)
if klass:
klasses = [klass]
else:
klasses = [k for k in self.curframe.f_globals.values() if isinstance(k, type) and issubclass(k, FSM)]
print(klasses)
if not klasses:
self.error('No agent classes found')
klasses = [
k
for k in self.curframe.f_globals.values()
if isinstance(k, type) and issubclass(k, FSM)
]
if not klasses:
self.error("No agent classes found")
for klass in klasses:
try:
func = getattr(klass, state)
except AttributeError:
self.error(f"State {state} not found in class {klass}")
continue
if hasattr(func, '__func__'):
if hasattr(func, "__func__"):
func = func.__func__
code = func.__code__
#use co_name to identify the bkpt (function names
#could be aliased, but co_name is invariant)
# use co_name to identify the bkpt (function names
# could be aliased, but co_name is invariant)
funcname = code.co_name
lineno = code.co_firstlineno
filename = code.co_filename
@@ -117,35 +135,56 @@ class Debug(pdb.Pdb):
# Check for reasonable breakpoint
line = self.checkline(filename, lineno)
if not line:
raise ValueError('no line found')
raise ValueError("no line found")
# now set the break point
cond = None
if instances:
cond = f"self.unique_id in { repr(instances) }"
existing = self.get_breaks(filename, line)
if existing:
self.message("Breakpoint already exists at %s:%d" %
(filename, line))
self.message("Breakpoint already exists at %s:%d" % (filename, line))
continue
err = self.set_break(filename, line, temporary, cond, funcname)
if err:
self.error(err)
else:
bp = self.get_breaks(filename, line)[-1]
self.message("Breakpoint %d at %s:%d" %
(bp.number, bp.file, bp.line))
self.message("Breakpoint %d at %s:%d" % (bp.number, bp.file, bp.line))
do_bs = do_break_state
def do_break_state_self(self, arg: str, temporary=False):
"""
Break before a specified state is stepped into, for the current agent
"""
agent = self.curframe.f_locals.get("self")
if not agent:
self.error("No current agent.")
self.error("Try this again when the debugger is stopped inside an agent")
return
def setup(frame=None):
debugger = Debug()
arg = f"{agent.__class__.__name__}:{ arg } {agent.unique_id}"
return self.do_break_state(arg)
do_bss = do_break_state_self
debugger = None
def set_trace(frame=None, **kwargs):
global debugger
if debugger is None:
debugger = Debug(**kwargs)
frame = frame or sys._getframe().f_back
debugger.set_trace(frame)
def debug_env():
if os.environ.get('SOIL_DEBUG'):
return setup(frame=sys._getframe().f_back)
def post_mortem(traceback=None):
p = Debug()
def post_mortem(traceback=None, **kwargs):
global debugger
if debugger is None:
debugger = Debug(**kwargs)
t = sys.exc_info()[2]
p.reset()
p.interaction(None, t)
debugger.reset()
debugger.interaction(None, t)

View File

@@ -3,8 +3,8 @@ from __future__ import annotations
import os
import sqlite3
import math
import random
import logging
import inspect
from typing import Any, Dict, Optional, Union
from collections import namedtuple
@@ -18,10 +18,7 @@ import networkx as nx
from mesa import Model
from mesa.datacollection import DataCollector
from . import agents as agentmod, config, serialization, utils, time, network
Record = namedtuple('Record', 'dict_id t_step key value')
from . import agents as agentmod, config, serialization, utils, time, network, events
class BaseEnvironment(Model):
@@ -37,20 +34,24 @@ class BaseEnvironment(Model):
:meth:`soil.environment.Environment.get` method.
"""
def __init__(self,
id='unnamed_env',
seed='default',
schedule=None,
dir_path=None,
interval=1,
agent_class=None,
agents: [tuple[type, Dict[str, Any]]] = {},
agent_reporters: Optional[Any] = None,
model_reporters: Optional[Any] = None,
tables: Optional[Any] = None,
**env_params):
def __init__(
self,
id="unnamed_env",
seed="default",
schedule=None,
dir_path=None,
interval=1,
agent_class=None,
agents: [tuple[type, Dict[str, Any]]] = {},
agent_reporters: Optional[Any] = None,
model_reporters: Optional[Any] = None,
tables: Optional[Any] = None,
**env_params,
):
super().__init__(seed=seed)
self.env_params = env_params or {}
self.current_id = -1
self.id = id
@@ -63,11 +64,8 @@ class BaseEnvironment(Model):
self.agent_class = agent_class or agentmod.BaseAgent
self.init_agents(agents)
self.env_params = env_params or {}
self.interval = interval
self.init_agents(agents)
self.logger = utils.logger.getChild(self.id)
@@ -77,17 +75,27 @@ class BaseEnvironment(Model):
tables=tables,
)
def _read_single_agent(self, agent):
def _agent_from_dict(self, agent):
"""
Translate an agent dictionary into an agent
"""
agent = dict(**agent)
cls = agent.pop('agent_class', None) or self.agent_class
unique_id = agent.pop('unique_id', None)
cls = agent.pop("agent_class", None) or self.agent_class
unique_id = agent.pop("unique_id", None)
if unique_id is None:
unique_id = self.next_id()
return serialization.deserialize(cls)(unique_id=unique_id,
model=self, **agent)
return serialization.deserialize(cls)(unique_id=unique_id, model=self, **agent)
def init_agents(self, agents: Union[config.AgentConfig, [Dict[str, Any]]] = {}):
"""
Initialize the agents in the model from either a `soil.config.AgentConfig` or a list of
dictionaries that each describes an agent.
If given a list of dictionaries, an agent will be created for each dictionary. The agent
class can be specified through the `agent_class` key. The rest of the items will be used
as parameters to the agent.
"""
if not agents:
return
@@ -98,14 +106,11 @@ class BaseEnvironment(Model):
lst = config.AgentConfig(**agents)
if lst.override:
override = lst.override
lst = agentmod.from_config(lst,
topologies=getattr(self, 'topologies', None),
random=self.random)
lst = self._agent_dict_from_config(lst)
#TODO: check override is working again. It cannot (easily) be part of agents.from_config anymore,
# TODO: check override is working again. It cannot (easily) be part of agents.from_config anymore,
# because it needs attribute such as unique_id, which are only present after init
new_agents = [self._read_single_agent(agent) for agent in lst]
new_agents = [self._agent_from_dict(agent) for agent in lst]
for a in new_agents:
self.schedule.add(a)
@@ -115,6 +120,8 @@ class BaseEnvironment(Model):
for attr, value in rule.state.items():
setattr(agent, attr, value)
def _agent_dict_from_config(self, cfg):
return agentmod.from_config(cfg, random=self.random)
@property
def agents(self):
@@ -130,15 +137,16 @@ class BaseEnvironment(Model):
def now(self):
if self.schedule:
return self.schedule.time
raise Exception('The environment has not been scheduled, so it has no sense of time')
raise Exception(
"The environment has not been scheduled, so it has no sense of time"
)
def add_agent(self, unique_id=None, **kwargs):
if unique_id is None:
unique_id = self.next_id()
def add_agent(self, agent_id, agent_class, **kwargs):
a = None
if agent_class:
a = agent_class(model=self,
unique_id=agent_id,
**kwargs)
kwargs["unique_id"] = unique_id
a = self._agent_from_dict(kwargs)
self.schedule.add(a)
return a
@@ -151,16 +159,18 @@ class BaseEnvironment(Model):
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
extra = {}
extra['now'] = self.now
extra['id'] = self.id
extra["now"] = self.now
extra["id"] = self.id
return self.logger.log(level, message, extra=extra)
def step(self):
'''
"""
Advance one step in the simulation, and update the data collection and scheduler appropriately
'''
"""
super().step()
self.logger.info(f'--- Step {self.now:^5} ---')
self.logger.info(
f"--- Step: {self.schedule.steps:^5} - Time: {self.now:^5} ---"
)
self.schedule.step()
self.datacollector.collect(self)
@@ -168,10 +178,10 @@ class BaseEnvironment(Model):
return key in self.env_params
def get(self, key, default=None):
'''
"""
Get the value of an environment attribute.
Return `default` if the value is not set.
'''
"""
return self.env_params.get(key, default)
def __getitem__(self, key):
@@ -180,123 +190,135 @@ class BaseEnvironment(Model):
def __setitem__(self, key, value):
return self.env_params.__setitem__(key, value)
def _agent_to_tuples(self, agent, now=None):
if now is None:
now = self.now
for k, v in agent.state.items():
yield Record(dict_id=agent.id,
t_step=now,
key=k,
value=v)
def state_to_tuples(self, agent_id=None, now=None):
if now is None:
now = self.now
if agent_id:
agent = self.agents[agent_id]
yield from self._agent_to_tuples(agent, now)
return
for k, v in self.env_params.items():
yield Record(dict_id='env',
t_step=now,
key=k,
value=v)
for agent in self.agents:
yield from self._agent_to_tuples(agent, now)
def __str__(self):
return str(self.env_params)
class NetworkEnvironment(BaseEnvironment):
"""
The NetworkEnvironment is an environment that includes one or more networkx.Graph intances
and methods to associate agents to nodes and vice versa.
"""
def __init__(self, *args, topology: nx.Graph = None, topologies: Dict[str, config.NetConfig] = {}, **kwargs):
agents = kwargs.pop('agents', None)
def __init__(
self, *args, topology: Union[config.NetConfig, nx.Graph] = None, **kwargs
):
agents = kwargs.pop("agents", None)
super().__init__(*args, agents=None, **kwargs)
self._node_ids = {}
assert not hasattr(self, 'topologies')
if topology is not None:
if topologies:
raise ValueError('Please, provide either a single topology or a dictionary of them')
topologies = {'default': topology}
self.topologies = {}
for (name, cfg) in topologies.items():
self.set_topology(cfg=cfg, graph=name)
self._set_topology(topology)
self.init_agents(agents)
def init_agents(self, *args, **kwargs):
"""Initialize the agents from a"""
super().init_agents(*args, **kwargs)
for agent in self.schedule._agents.values():
if hasattr(agent, "node_id"):
self._init_node(agent)
def _read_single_agent(self, agent, unique_id=None):
def _init_node(self, agent):
"""
Make sure the node for a given agent has the proper attributes.
"""
self.G.nodes[agent.node_id]["agent"] = agent
def _agent_dict_from_config(self, cfg):
return agentmod.from_config(cfg, topology=self.G, random=self.random)
def _agent_from_dict(self, agent, unique_id=None):
agent = dict(agent)
if agent.get('topology', None) is not None:
topology = agent.get('topology')
if unique_id is None:
unique_id = self.next_id()
if topology:
node_id = self.agent_to_node(unique_id, graph_name=topology, node_id=agent.get('node_id'))
agent['node_id'] = node_id
agent['topology'] = topology
agent['unique_id'] = unique_id
if not agent.get("topology", False):
return super()._agent_from_dict(agent)
return super()._read_single_agent(agent)
if unique_id is None:
unique_id = self.next_id()
node_id = agent.get("node_id", None)
if node_id is None:
node_id = network.find_unassigned(self.G, random=self.random)
self.G.nodes[node_id]["agent"] = None
agent["node_id"] = node_id
agent["unique_id"] = unique_id
agent["topology"] = self.G
node_attrs = self.G.nodes[node_id]
node_attrs.update(agent)
agent = node_attrs
a = super()._agent_from_dict(agent)
self._init_node(a)
@property
def topology(self):
return self.topologies['default']
return a
def set_topology(self, cfg=None, dir_path=None, graph='default'):
topology = cfg
if not isinstance(cfg, nx.Graph):
topology = network.from_config(cfg, dir_path=dir_path or self.dir_path)
def _set_topology(self, cfg=None, dir_path=None):
if cfg is None:
cfg = nx.Graph()
elif not isinstance(cfg, nx.Graph):
cfg = network.from_config(cfg, dir_path=dir_path or self.dir_path)
self.topologies[graph] = topology
def topology_for(self, unique_id):
return self.topologies[self._node_ids[unique_id][0]]
self.G = cfg
@property
def network_agents(self):
yield from self.agents(agent_class=agentmod.NetworkAgent)
for a in self.schedule._agents:
if isinstance(a, agentmod.NetworkAgent):
yield a
def agent_to_node(self, unique_id, graph_name='default',
node_id=None, shuffle=False):
node_id = network.agent_to_node(G=self.topologies[graph_name],
agent_id=unique_id,
node_id=node_id,
shuffle=shuffle,
random=self.random)
def add_node(self, agent_class, unique_id=None, node_id=None, **kwargs):
if unique_id is None:
unique_id = self.next_id()
if node_id is None:
node_id = network.find_unassigned(
G=self.G, shuffle=True, random=self.random
)
if node_id is None:
node_id = f"node_for_{unique_id}"
self._node_ids[unique_id] = (graph_name, node_id)
return node_id
if node_id not in self.G.nodes:
self.G.add_node(node_id)
def add_node(self, agent_class, topology, **kwargs):
unique_id = self.next_id()
self.topologies[topology].add_node(unique_id)
node_id = self.agent_to_node(unique_id=unique_id, node_id=unique_id, graph_name=topology)
assert "agent" not in self.G.nodes[node_id]
self.G.nodes[node_id]["agent"] = None # Reserve
a = self.add_agent(unique_id=unique_id, agent_class=agent_class, node_id=node_id, topology=topology, **kwargs)
a['visible'] = True
a = self.add_agent(
unique_id=unique_id,
agent_class=agent_class,
topology=self.G,
node_id=node_id,
**kwargs,
)
a["visible"] = True
return a
def add_edge(self, agent1, agent2, start=None, graph='default', **attrs):
agent1 = agent1.node_id
agent2 = agent2.node_id
return self.topologies[graph].add_edge(agent1, agent2, start=start)
def add_agent(self, unique_id, state=None, graph='default', **kwargs):
node = self.topologies[graph].nodes[unique_id]
node_state = node.get('state', {})
if node_state:
node_state.update(state or {})
state = node_state
a = super().add_agent(unique_id, state=state, **kwargs)
node['agent'] = a
def add_agent(self, *args, **kwargs):
a = super().add_agent(*args, **kwargs)
if "node_id" in a:
assert self.G.nodes[a.node_id]["agent"] == a
return a
def node_id_for(self, agent_id):
return self._node_ids[agent_id][1]
def agent_for_node_id(self, node_id):
return self.G.nodes[node_id].get("agent")
def populate_network(self, agent_class, weights=None, **agent_params):
if not hasattr(agent_class, "len"):
agent_class = [agent_class]
weights = None
for (node_id, node) in self.G.nodes(data=True):
if "agent" in node:
continue
a_class = self.random.choices(agent_class, weights)[0]
self.add_agent(node_id=node_id, agent_class=a_class, **agent_params)
Environment = NetworkEnvironment
class EventedEnvironment(Environment):
def broadcast(self, msg, sender, expiration=None, ttl=None, **kwargs):
for agent in self.agents(**kwargs):
self.logger.info(f'Telling {repr(agent)}: {msg} ttl={ttl}')
try:
agent._inbox.append(events.Tell(payload=msg, sender=sender, expiration=expiration if ttl is None else self.now+ttl))
except AttributeError:
self.info(f'Agent {agent.unique_id} cannot receive events')

43
soil/events.py Normal file
View File

@@ -0,0 +1,43 @@
from .time import Cond
from dataclasses import dataclass, field
from typing import Any
from uuid import uuid4
class Event:
pass
@dataclass
class Message:
payload: Any
sender: Any = None
expiration: float = None
id: int = field(default_factory=uuid4)
def expired(self, when):
return self.expiration is not None and self.expiration < when
class Reply(Message):
source: Message
class Ask(Message):
reply: Message = None
def replied(self, expiration=None):
def ready(agent):
return self.reply is not None or agent.now > expiration
def value(agent):
if agent.now > expiration:
raise TimedOut(f'No answer received for {self}')
return self.reply
return Cond(func=ready, return_func=value)
class Tell(Message):
pass
class TimedOut(Exception):
pass

View File

@@ -1,7 +1,9 @@
import os
import sys
from time import time as current_time
from io import BytesIO
from sqlalchemy import create_engine
from textwrap import dedent, indent
import matplotlib.pyplot as plt
@@ -9,7 +11,7 @@ import networkx as nx
from .serialization import deserialize
from .utils import open_or_reuse, logger, timer
from .utils import try_backup, open_or_reuse, logger, timer
from . import utils, network
@@ -23,54 +25,58 @@ class DryRunner(BytesIO):
def write(self, txt):
if self.__copy_to:
self.__copy_to.write('{}:::{}'.format(self.__fname, txt))
self.__copy_to.write("{}:::{}".format(self.__fname, txt))
try:
super().write(txt)
except TypeError:
super().write(bytes(txt, 'utf-8'))
super().write(bytes(txt, "utf-8"))
def close(self):
content = '(binary data not shown)'
content = "(binary data not shown)"
try:
content = self.getvalue().decode()
except UnicodeDecodeError:
pass
logger.info('**Not** written to {} (dry run mode):\n\n{}\n\n'.format(self.__fname, content))
logger.info(
"**Not** written to {} (dry run mode):\n\n{}\n\n".format(
self.__fname, content
)
)
super().close()
class Exporter:
'''
"""
Interface for all exporters. It is not necessary, but it is useful
if you don't plan to implement all the methods.
'''
"""
def __init__(self, simulation, outdir=None, dry_run=None, copy_to=None):
self.simulation = simulation
outdir = outdir or os.path.join(os.getcwd(), 'soil_output')
self.outdir = os.path.join(outdir,
simulation.group or '',
simulation.name)
outdir = outdir or os.path.join(os.getcwd(), "soil_output")
self.outdir = os.path.join(outdir, simulation.group or "", simulation.name)
self.dry_run = dry_run
if copy_to is None and dry_run:
copy_to = sys.stdout
self.copy_to = copy_to
def sim_start(self):
'''Method to call when the simulation starts'''
"""Method to call when the simulation starts"""
pass
def sim_end(self):
'''Method to call when the simulation ends'''
"""Method to call when the simulation ends"""
pass
def trial_start(self, env):
'''Method to call when a trial start'''
"""Method to call when a trial start"""
pass
def trial_end(self, env):
'''Method to call when a trial ends'''
"""Method to call when a trial ends"""
pass
def output(self, f, mode='w', **kwargs):
def output(self, f, mode="w", **kwargs):
if self.dry_run:
f = DryRunner(f, copy_to=self.copy_to)
else:
@@ -81,134 +87,127 @@ class Exporter:
pass
return open_or_reuse(f, mode=mode, **kwargs)
class default(Exporter):
'''Default exporter. Writes sqlite results, as well as the simulation YAML'''
def sim_start(self):
if not self.dry_run:
logger.info('Dumping results to %s', self.outdir)
with self.output(self.simulation.name + '.dumped.yml') as f:
f.write(self.simulation.to_yaml())
else:
logger.info('NOT dumping results')
def trial_end(self, env):
if not self.dry_run:
with timer('Dumping simulation {} trial {}'.format(self.simulation.name,
env.id)):
engine = create_engine('sqlite:///{}.sqlite'.format(env.id), echo=False)
dc = env.datacollector
for (t, df) in get_dc_dfs(dc):
df.to_sql(t, con=engine, if_exists='append')
def get_dfs(self, env):
yield from get_dc_dfs(env.datacollector, trial_id=env.id)
def get_dc_dfs(dc):
dfs = {'env': dc.get_model_vars_dataframe(),
'agents': dc.get_agent_vars_dataframe() }
def get_dc_dfs(dc, trial_id=None):
dfs = {
"env": dc.get_model_vars_dataframe(),
"agents": dc.get_agent_vars_dataframe(),
}
for table_name in dc.tables:
dfs[table_name] = dc.get_table_dataframe(table_name)
if trial_id:
for (name, df) in dfs.items():
df["trial_id"] = trial_id
yield from dfs.items()
class default(Exporter):
"""Default exporter. Writes sqlite results, as well as the simulation YAML"""
def sim_start(self):
if self.dry_run:
logger.info("NOT dumping results")
return
logger.info("Dumping results to %s", self.outdir)
with self.output(self.simulation.name + ".dumped.yml") as f:
f.write(self.simulation.to_yaml())
self.dbpath = os.path.join(self.outdir, f"{self.simulation.name}.sqlite")
try_backup(self.dbpath, remove=True)
def trial_end(self, env):
if self.dry_run:
logger.info("Running in DRY_RUN mode, the database will NOT be created")
return
with timer(
"Dumping simulation {} trial {}".format(self.simulation.name, env.id)
):
engine = create_engine(f"sqlite:///{self.dbpath}", echo=False)
for (t, df) in self.get_dfs(env):
df.to_sql(t, con=engine, if_exists="append")
class csv(Exporter):
'''Export the state of each environment (and its agents) in a separate CSV file'''
"""Export the state of each environment (and its agents) in a separate CSV file"""
def trial_end(self, env):
with timer('[CSV] Dumping simulation {} trial {} @ dir {}'.format(self.simulation.name,
env.id,
self.outdir)):
for (df_name, df) in get_dc_dfs(env.datacollector):
with self.output('{}.{}.csv'.format(env.id, df_name)) as f:
with timer(
"[CSV] Dumping simulation {} trial {} @ dir {}".format(
self.simulation.name, env.id, self.outdir
)
):
for (df_name, df) in self.get_dfs(env):
with self.output("{}.{}.csv".format(env.id, df_name)) as f:
df.to_csv(f)
#TODO: reimplement GEXF exporting without history
# TODO: reimplement GEXF exporting without history
class gexf(Exporter):
def trial_end(self, env):
if self.dry_run:
logger.info('Not dumping GEXF in dry_run mode')
logger.info("Not dumping GEXF in dry_run mode")
return
with timer('[GEXF] Dumping simulation {} trial {}'.format(self.simulation.name,
env.id)):
with self.output('{}.gexf'.format(env.id), mode='wb') as f:
with timer(
"[GEXF] Dumping simulation {} trial {}".format(self.simulation.name, env.id)
):
with self.output("{}.gexf".format(env.id), mode="wb") as f:
network.dump_gexf(env.history_to_graph(), f)
self.dump_gexf(env, f)
class dummy(Exporter):
def sim_start(self):
with self.output('dummy', 'w') as f:
f.write('simulation started @ {}\n'.format(current_time()))
with self.output("dummy", "w") as f:
f.write("simulation started @ {}\n".format(current_time()))
def trial_start(self, env):
with self.output('dummy', 'w') as f:
f.write('trial started@ {}\n'.format(current_time()))
with self.output("dummy", "w") as f:
f.write("trial started@ {}\n".format(current_time()))
def trial_end(self, env):
with self.output('dummy', 'w') as f:
f.write('trial ended@ {}\n'.format(current_time()))
with self.output("dummy", "w") as f:
f.write("trial ended@ {}\n".format(current_time()))
def sim_end(self):
with self.output('dummy', 'a') as f:
f.write('simulation ended @ {}\n'.format(current_time()))
with self.output("dummy", "a") as f:
f.write("simulation ended @ {}\n".format(current_time()))
class graphdrawing(Exporter):
def trial_end(self, env):
# Outside effects
f = plt.figure()
nx.draw(env.G, node_size=10, width=0.2, pos=nx.spring_layout(env.G, scale=100), ax=f.add_subplot(111))
with open('graph-{}.png'.format(env.id)) as f:
nx.draw(
env.G,
node_size=10,
width=0.2,
pos=nx.spring_layout(env.G, scale=100),
ax=f.add_subplot(111),
)
with open("graph-{}.png".format(env.id)) as f:
f.savefig(f)
'''
Convert an environment into a NetworkX graph
'''
def env_to_graph(env, history=None):
G = nx.Graph(env.G)
for agent in env.network_agents:
class summary(Exporter):
"""Print a summary of each trial to sys.stdout"""
attributes = {'agent': str(agent.__class__)}
lastattributes = {}
spells = []
lastvisible = False
laststep = None
if not history:
history = sorted(list(env.state_to_tuples()))
for _, t_step, attribute, value in history:
if attribute == 'visible':
nowvisible = value
if nowvisible and not lastvisible:
laststep = t_step
if not nowvisible and lastvisible:
spells.append((laststep, t_step))
lastvisible = nowvisible
def trial_end(self, env):
for (t, df) in self.get_dfs(env):
if not len(df):
continue
key = 'attr_' + attribute
if key not in attributes:
attributes[key] = list()
if key not in lastattributes:
lastattributes[key] = (value, t_step)
elif lastattributes[key][0] != value:
last_value, laststep = lastattributes[key]
commit_value = (last_value, laststep, t_step)
if key not in attributes:
attributes[key] = list()
attributes[key].append(commit_value)
lastattributes[key] = (value, t_step)
for k, v in lastattributes.items():
attributes[k].append((v[0], v[1], None))
if lastvisible:
spells.append((laststep, None))
if spells:
G.add_node(agent.id, spells=spells, **attributes)
else:
G.add_node(agent.id, **attributes)
return G
msg = indent(str(df.describe()), " ")
logger.info(
dedent(
f"""
Dataframe {t}:
"""
)
+ msg
)

View File

@@ -9,6 +9,7 @@ import networkx as nx
from . import config, serialization, basestring
def from_config(cfg: config.NetConfig, dir_path: str = None):
if not isinstance(cfg, config.NetConfig):
cfg = config.NetConfig(**cfg)
@@ -19,60 +20,65 @@ def from_config(cfg: config.NetConfig, dir_path: str = None):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
kwargs = {}
if extension == 'gexf':
kwargs['version'] = '1.2draft'
kwargs['node_type'] = int
if extension == "gexf":
kwargs["version"] = "1.2draft"
kwargs["node_type"] = int
try:
method = getattr(nx.readwrite, 'read_' + extension)
method = getattr(nx.readwrite, "read_" + extension)
except AttributeError:
raise AttributeError('Unknown format')
raise AttributeError("Unknown format")
return method(path, **kwargs)
if cfg.params:
net_args = cfg.params.dict()
net_gen = net_args.pop('generator')
net_gen = net_args.pop("generator")
if dir_path not in sys.path:
sys.path.append(dir_path)
method = serialization.deserializer(net_gen,
known_modules=['networkx.generators',])
method = serialization.deserializer(
net_gen,
known_modules=[
"networkx.generators",
],
)
return method(**net_args)
if isinstance(cfg.topology, config.Topology):
cfg = cfg.topology.dict()
if isinstance(cfg.fixed, config.Topology):
cfg = cfg.fixed.dict()
if isinstance(cfg, str) or isinstance(cfg, dict):
return nx.json_graph.node_link_graph(cfg)
return nx.Graph()
def agent_to_node(G, agent_id, node_id=None, shuffle=False, random=random):
'''
def find_unassigned(G, shuffle=False, random=random):
"""
Link an agent to a node in a topology.
If node_id is None, a node without an agent_id will be found.
'''
#TODO: test
if node_id is None:
candidates = list(G.nodes(data=True))
if shuffle:
random.shuffle(candidates)
for next_id, data in candidates:
if data.get('agent_id', None) is None:
node_id = next_id
break
if node_id is None:
raise ValueError(f"Not enough nodes in topology to assign one to agent {agent_id}")
G.nodes[node_id]['agent_id'] = agent_id
return node_id
"""
# TODO: test
candidates = list(G.nodes(data=True))
if shuffle:
random.shuffle(candidates)
for next_id, data in candidates:
if "agent" not in data:
return next_id
return None
def dump_gexf(G, f):
for node in G.nodes():
if 'pos' in G.nodes[node]:
G.nodes[node]['viz'] = {"position": {"x": G.nodes[node]['pos'][0], "y": G.nodes[node]['pos'][1], "z": 0.0}}
del (G.nodes[node]['pos'])
if "pos" in G.nodes[node]:
G.nodes[node]["viz"] = {
"position": {
"x": G.nodes[node]["pos"][0],
"y": G.nodes[node]["pos"][1],
"z": 0.0,
}
}
del G.nodes[node]["pos"]
nx.write_gexf(G, f, version="1.2draft")

View File

@@ -15,49 +15,14 @@ import networkx as nx
from jinja2 import Template
logger = logging.getLogger('soil')
# def load_network(network_params, dir_path=None):
# G = nx.Graph()
# if not network_params:
# return G
# if 'path' in network_params:
# path = network_params['path']
# if dir_path and not os.path.isabs(path):
# path = os.path.join(dir_path, path)
# extension = os.path.splitext(path)[1][1:]
# kwargs = {}
# if extension == 'gexf':
# kwargs['version'] = '1.2draft'
# kwargs['node_type'] = int
# try:
# method = getattr(nx.readwrite, 'read_' + extension)
# except AttributeError:
# raise AttributeError('Unknown format')
# G = method(path, **kwargs)
# elif 'generator' in network_params:
# net_args = network_params.copy()
# net_gen = net_args.pop('generator')
# if dir_path not in sys.path:
# sys.path.append(dir_path)
# method = deserializer(net_gen,
# known_modules=['networkx.generators',])
# G = method(**net_args)
# return G
logger = logging.getLogger("soil")
def load_file(infile):
folder = os.path.dirname(infile)
if folder not in sys.path:
sys.path.append(folder)
with open(infile, 'r') as f:
with open(infile, "r") as f:
return list(chain.from_iterable(map(expand_template, load_string(f))))
@@ -66,14 +31,15 @@ def load_string(string):
def expand_template(config):
if 'template' not in config:
if "template" not in config:
yield config
return
if 'vars' not in config:
raise ValueError(('You must provide a definition of variables'
' for the template.'))
if "vars" not in config:
raise ValueError(
("You must provide a definition of variables" " for the template.")
)
template = config['template']
template = config["template"]
if not isinstance(template, str):
template = yaml.dump(template)
@@ -85,9 +51,9 @@ def expand_template(config):
blank_str = template.render({k: 0 for k in params[0].keys()})
blank = list(load_string(blank_str))
if len(blank) > 1:
raise ValueError('Templates must not return more than one configuration')
if 'name' in blank[0]:
raise ValueError('Templates cannot be named, use group instead')
raise ValueError("Templates must not return more than one configuration")
if "name" in blank[0]:
raise ValueError("Templates cannot be named, use group instead")
for ps in params:
string = template.render(ps)
@@ -96,32 +62,32 @@ def expand_template(config):
def params_for_template(config):
sampler_config = config.get('sampler', {'N': 100})
sampler = sampler_config.pop('method', 'SALib.sample.morris.sample')
sampler_config = config.get("sampler", {"N": 100})
sampler = sampler_config.pop("method", "SALib.sample.morris.sample")
sampler = deserializer(sampler)
bounds = config['vars']['bounds']
bounds = config["vars"]["bounds"]
problem = {
'num_vars': len(bounds),
'names': list(bounds.keys()),
'bounds': list(v for v in bounds.values())
"num_vars": len(bounds),
"names": list(bounds.keys()),
"bounds": list(v for v in bounds.values()),
}
samples = sampler(problem, **sampler_config)
lists = config['vars'].get('lists', {})
lists = config["vars"].get("lists", {})
names = list(lists.keys())
values = list(lists.values())
combs = list(product(*values))
allnames = names + problem['names']
allvalues = [(list(i[0])+list(i[1])) for i in product(combs, samples)]
allnames = names + problem["names"]
allvalues = [(list(i[0]) + list(i[1])) for i in product(combs, samples)]
params = list(map(lambda x: dict(zip(allnames, x)), allvalues))
return params
def load_files(*patterns, **kwargs):
for pattern in patterns:
for i in glob(pattern, **kwargs):
for i in glob(pattern, **kwargs, recursive=True):
for cfg in load_file(i):
path = os.path.abspath(i)
yield Config.from_raw(cfg), path
@@ -136,22 +102,24 @@ def load_config(cfg):
yield from load_files(cfg)
builtins = importlib.import_module('builtins')
builtins = importlib.import_module("builtins")
KNOWN_MODULES = ['soil', ]
KNOWN_MODULES = [
"soil",
]
def name(value, known_modules=KNOWN_MODULES):
'''Return a name that can be imported, to serialize/deserialize an object'''
"""Return a name that can be imported, to serialize/deserialize an object"""
if value is None:
return 'None'
return "None"
if not isinstance(value, type): # Get the class name first
value = type(value)
tname = value.__name__
if hasattr(builtins, tname):
return tname
modname = value.__module__
if modname == '__main__':
if modname == "__main__":
return tname
if known_modules and modname in known_modules:
return tname
@@ -161,17 +129,17 @@ def name(value, known_modules=KNOWN_MODULES):
module = importlib.import_module(kmod)
if hasattr(module, tname):
return tname
return '{}.{}'.format(modname, tname)
return "{}.{}".format(modname, tname)
def serializer(type_):
if type_ != 'str' and hasattr(builtins, type_):
if type_ != "str" and hasattr(builtins, type_):
return repr
return lambda x: x
def serialize(v, known_modules=KNOWN_MODULES):
'''Get a text representation of an object.'''
"""Get a text representation of an object."""
tname = name(v, known_modules=known_modules)
func = serializer(tname)
return func(v), tname
@@ -196,9 +164,9 @@ IS_CLASS = re.compile(r"<class '(.*)'>")
def deserializer(type_, known_modules=KNOWN_MODULES):
if type(type_) != str: # Already deserialized
return type_
if type_ == 'str':
return lambda x='': x
if type_ == 'None':
if type_ == "str":
return lambda x="": x
if type_ == "None":
return lambda x=None: None
if hasattr(builtins, type_): # Check if it's a builtin type
cls = getattr(builtins, type_)
@@ -208,7 +176,7 @@ def deserializer(type_, known_modules=KNOWN_MODULES):
modname, tname = match.group(1).rsplit(".", 1)
module = importlib.import_module(modname)
cls = getattr(module, tname)
return getattr(cls, 'deserialize', cls)
return getattr(cls, "deserialize", cls)
# Otherwise, see if we can find the module and the class
options = []
@@ -217,7 +185,7 @@ def deserializer(type_, known_modules=KNOWN_MODULES):
if mod:
options.append((mod, type_))
if '.' in type_: # Fully qualified module
if "." in type_: # Fully qualified module
module, type_ = type_.rsplit(".", 1)
options.append((module, type_))
@@ -226,27 +194,37 @@ def deserializer(type_, known_modules=KNOWN_MODULES):
try:
module = importlib.import_module(modname)
cls = getattr(module, tname)
return getattr(cls, 'deserialize', cls)
return getattr(cls, "deserialize", cls)
except (ImportError, AttributeError) as ex:
errors.append((modname, tname, ex))
raise Exception('Could not find type {}. Tried: {}'.format(type_, errors))
raise ValueError('Could not find type "{}". Tried: {}'.format(type_, errors))
def deserialize(type_, value=None, **kwargs):
'''Get an object from a text representation'''
def deserialize(type_, value=None, globs=None, **kwargs):
"""Get an object from a text representation"""
if not isinstance(type_, str):
return type_
des = deserializer(type_, **kwargs)
if globs and type_ in globs:
des = globs[type_]
else:
try:
des = deserializer(type_, **kwargs)
except ValueError as ex:
try:
des = eval(type_)
except Exception:
raise ex
if value is None:
return des
return des(value)
def deserialize_all(names, *args, known_modules=KNOWN_MODULES, **kwargs):
'''Return the list of deserialized objects'''
"""Return the list of deserialized objects"""
# TODO: remove
print("SERIALIZATION", kwargs)
objects = []
for name in names:
mod = deserialize(name, known_modules=known_modules)
objects.append(mod(*args, **kwargs))
return objects

View File

@@ -11,22 +11,20 @@ import networkx as nx
from textwrap import dedent
from dataclasses import dataclass, field, asdict
from typing import Any, Dict, Union, Optional
from typing import Any, Dict, Union, Optional, List
from networkx.readwrite import json_graph
from functools import partial
import pickle
from . import serialization, utils, basestring, agents
from . import serialization, exporters, utils, basestring, agents
from .environment import Environment
from .utils import logger, run_and_return_exceptions
from .exporters import default
from .time import INFINITY
from .config import Config, convert_old
#TODO: change documentation for simulation
# TODO: change documentation for simulation
@dataclass
class Simulation:
"""
@@ -35,74 +33,105 @@ class Simulation:
config (optional): :class:`config.Config`
name of the Simulation
kwargs: parameters to use to initialize a new configuration, if one has not been provided.
kwargs: parameters to use to initialize a new configuration, if one not been provided.
"""
version: str = '2'
name: str = 'Unnamed simulation'
description: Optional[str] = ''
version: str = "2"
name: str = "Unnamed simulation"
description: Optional[str] = ""
group: str = None
model_class: Union[str, type] = 'soil.Environment'
model_class: Union[str, type] = "soil.Environment"
model_params: dict = field(default_factory=dict)
seed: str = field(default_factory=lambda: current_time())
dir_path: str = field(default_factory=lambda: os.getcwd())
max_time: float = float('inf')
max_time: float = float("inf")
max_steps: int = -1
interval: int = 1
num_trials: int = 3
num_trials: int = 1
parallel: Optional[bool] = None
exporters: Optional[List[str]] = field(default_factory=list)
outdir: Optional[str] = None
exporter_params: Optional[Dict[str, Any]] = field(default_factory=dict)
dry_run: bool = False
extra: Dict[str, Any] = field(default_factory=dict)
@classmethod
def from_dict(cls, env):
def from_dict(cls, env, **kwargs):
ignored = {k: v for k, v in env.items()
if k not in inspect.signature(cls).parameters}
ignored = {
k: v for k, v in env.items() if k not in inspect.signature(cls).parameters
}
kwargs = {k:v for k, v in env.items() if k not in ignored}
d = {k: v for k, v in env.items() if k not in ignored}
if ignored:
kwargs.setdefault('extra', {}).update(ignored)
d.setdefault("extra", {}).update(ignored)
if ignored:
print(f'Warning: Ignoring these parameters (added to "extra"): { ignored }')
d.update(kwargs)
return cls(**kwargs)
return cls(**d)
def run_simulation(self, *args, **kwargs):
return self.run(*args, **kwargs)
def run(self, *args, **kwargs):
'''Run the simulation and return the list of resulting environments'''
logger.info(dedent('''
"""Run the simulation and return the list of resulting environments"""
logger.info(
dedent(
"""
Simulation:
---
''') +
self.to_yaml())
"""
)
+ self.to_yaml()
)
return list(self.run_gen(*args, **kwargs))
def run_gen(self, parallel=False, dry_run=False,
exporters=[default, ], outdir=None, exporter_params={},
log_level=None,
**kwargs):
'''Run the simulation and yield the resulting environments.'''
def run_gen(
self,
parallel=False,
dry_run=None,
exporters=None,
outdir=None,
exporter_params={},
log_level=None,
**kwargs,
):
"""Run the simulation and yield the resulting environments."""
if log_level:
logger.setLevel(log_level)
logger.info('Using exporters: %s', exporters or [])
logger.info('Output directory: %s', outdir)
exporters = serialization.deserialize_all(exporters,
simulation=self,
known_modules=['soil.exporters', ],
dry_run=dry_run,
outdir=outdir,
**exporter_params)
outdir = outdir or self.outdir
logger.info("Using exporters: %s", exporters or [])
logger.info("Output directory: %s", outdir)
if dry_run is None:
dry_run = self.dry_run
if exporters is None:
exporters = self.exporters
if not exporter_params:
exporter_params = self.exporter_params
with utils.timer('simulation {}'.format(self.name)):
exporters = serialization.deserialize_all(
exporters,
simulation=self,
known_modules=[
"soil.exporters",
],
dry_run=dry_run,
outdir=outdir,
**exporter_params,
)
with utils.timer("simulation {}".format(self.name)):
for exporter in exporters:
exporter.sim_start()
for env in utils.run_parallel(func=self.run_trial,
iterable=range(int(self.num_trials)),
parallel=parallel,
log_level=log_level,
**kwargs):
for env in utils.run_parallel(
func=self.run_trial,
iterable=range(int(self.num_trials)),
parallel=parallel,
log_level=log_level,
**kwargs,
):
for exporter in exporters:
exporter.trial_start(env)
@@ -115,28 +144,36 @@ class Simulation:
for exporter in exporters:
exporter.sim_end()
def get_env(self, trial_id=0, **kwargs):
'''Create an environment for a trial of the simulation'''
def get_env(self, trial_id=0, model_params=None, **kwargs):
"""Create an environment for a trial of the simulation"""
def deserialize_reporters(reporters):
for (k, v) in reporters.items():
if isinstance(v, str) and v.startswith('py:'):
reporters[k] = serialization.deserialize(value.lsplit(':', 1)[1])
if isinstance(v, str) and v.startswith("py:"):
reporters[k] = serialization.deserialize(v.split(":", 1)[1])
return reporters
model_params = self.model_params.copy()
model_params.update(kwargs)
params = self.model_params.copy()
if model_params:
params.update(model_params)
params.update(kwargs)
agent_reporters = deserialize_reporters(model_params.pop('agent_reporters', {}))
model_reporters = deserialize_reporters(model_params.pop('model_reporters', {}))
agent_reporters = deserialize_reporters(params.pop("agent_reporters", {}))
model_reporters = deserialize_reporters(params.pop("model_reporters", {}))
env = serialization.deserialize(self.model_class)
return env(id=f'{self.name}_trial_{trial_id}',
seed=f'{self.seed}_trial_{trial_id}',
dir_path=self.dir_path,
agent_reporters=agent_reporters,
model_reporters=model_reporters,
**model_params)
env = serialization.deserialize(self.model_class)
return env(
id=f"{self.name}_trial_{trial_id}",
seed=f"{self.seed}_trial_{trial_id}",
dir_path=self.dir_path,
agent_reporters=agent_reporters,
model_reporters=model_reporters,
**params,
)
def run_trial(self, trial_id=None, until=None, log_file=False, log_level=logging.INFO, **opts):
def run_trial(
self, trial_id=None, until=None, log_file=False, log_level=logging.INFO, **opts
):
"""
Run a single trial of the simulation
@@ -145,73 +182,83 @@ class Simulation:
logger.setLevel(log_level)
model = self.get_env(trial_id, **opts)
trial_id = trial_id if trial_id is not None else current_time()
with utils.timer('Simulation {} trial {}'.format(self.name, trial_id)):
return self.run_model(model=model, trial_id=trial_id, until=until, log_level=log_level)
with utils.timer("Simulation {} trial {}".format(self.name, trial_id)):
return self.run_model(
model=model, trial_id=trial_id, until=until, log_level=log_level
)
def run_model(self, model, until=None, **opts):
# Set-up trial environment and graph
until = float(until or self.max_time or 'inf')
until = float(until or self.max_time or "inf")
# Set up agents on nodes
def is_done():
return False
return not model.running
if until and hasattr(model.schedule, 'time'):
if until and hasattr(model.schedule, "time"):
prev = is_done
def is_done():
return prev() or model.schedule.time >= until
if self.max_steps and self.max_steps > 0 and hasattr(model.schedule, 'steps'):
if self.max_steps and self.max_steps > 0 and hasattr(model.schedule, "steps"):
prev_steps = is_done
def is_done():
return prev_steps() or model.schedule.steps >= self.max_steps
newline = '\n'
logger.info(dedent(f'''
newline = "\n"
logger.info(
dedent(
f"""
Model stats:
Agents (total: { model.schedule.get_agent_count() }):
- { (newline + ' - ').join(str(a) for a in model.schedule.agents) }'''
f'''
- { (newline + ' - ').join(str(a) for a in model.schedule.agents) }
Topologies (size):
- { dict( (k, len(v)) for (k, v) in model.topologies.items()) }
''' if getattr(model, "topologies", None) else ''
))
Topology size: { len(model.G) if hasattr(model, "G") else 0 }
"""
)
)
while not is_done():
utils.logger.debug(f'Simulation time {model.schedule.time}/{until}. Next: {getattr(model.schedule, "next_time", model.schedule.time + self.interval)}')
utils.logger.debug(
f'Simulation time {model.schedule.time}/{until}. Next: {getattr(model.schedule, "next_time", model.schedule.time + self.interval)}'
)
model.step()
if (
model.schedule.time < until
): # Simulation ended (no more steps) before the expected time
model.schedule.time = until
return model
def to_dict(self):
d = asdict(self)
if not isinstance(d['model_class'], str):
d['model_class'] = serialization.name(d['model_class'])
d['model_params'] = serialization.serialize_dict(d['model_params'])
d['dir_path'] = str(d['dir_path'])
d['version'] = '2'
if not isinstance(d["model_class"], str):
d["model_class"] = serialization.name(d["model_class"])
d["model_params"] = serialization.serialize_dict(d["model_params"])
d["dir_path"] = str(d["dir_path"])
d["version"] = "2"
return d
def to_yaml(self):
return yaml.dump(self.to_dict())
def iter_from_config(*cfgs):
def iter_from_config(*cfgs, **kwargs):
for config in cfgs:
configs = list(serialization.load_config(config))
for config, path in configs:
d = dict(config)
if 'dir_path' not in d:
d['dir_path'] = os.path.dirname(path)
yield Simulation.from_dict(d)
if "dir_path" not in d:
d["dir_path"] = os.path.dirname(path)
yield Simulation.from_dict(d, **kwargs)
def from_config(conf_or_path):
lst = list(iter_from_config(conf_or_path))
if len(lst) > 1:
raise AttributeError('Provide only one configuration')
raise AttributeError("Provide only one configuration")
return lst[0]

View File

@@ -2,11 +2,20 @@ from mesa.time import BaseScheduler
from queue import Empty
from heapq import heappush, heappop, heapify
import math
from inspect import getsource
from numbers import Number
from .utils import logger
from mesa import Agent as MesaAgent
INFINITY = float('inf')
INFINITY = float("inf")
class DeadAgent(Exception):
pass
class When:
def __init__(self, time):
@@ -14,9 +23,66 @@ class When:
return time
self._time = time
def abs(self, time):
def next(self, time):
return self._time
def abs(self, time):
return self
def __repr__(self):
return str(f"When({self._time})")
def __lt__(self, other):
if isinstance(other, Number):
return self._time < other
return self._time < other.next(self._time)
def __gt__(self, other):
if isinstance(other, Number):
return self._time > other
return self._time > other.next(self._time)
def ready(self, agent):
return self._time <= agent.model.schedule.time
def return_value(self, agent):
return None
class Cond(When):
def __init__(self, func, delta=1, return_func=lambda agent: None):
self._func = func
self._delta = delta
self._checked = False
self._return_func = return_func
def next(self, time):
if self._checked:
return time + self._delta
return time
def abs(self, time):
return self
def ready(self, agent):
self._checked = True
return self._func(agent)
def return_value(self, agent):
return self._return_func(agent)
def __eq__(self, other):
return False
def __lt__(self, other):
return True
def __gt__(self, other):
return False
def __repr__(self):
return str(f'Cond("{getsource(self._func)}")')
NEVER = When(INFINITY)
@@ -26,11 +92,19 @@ class Delta(When):
self._delta = delta
def __eq__(self, other):
return self._delta == other._delta
if isinstance(other, Delta):
return self._delta == other._delta
return False
def abs(self, time):
return When(self._delta + time)
def next(self, time):
return time + self._delta
def __repr__(self):
return str(f"Delta({self._delta})")
class TimedActivation(BaseScheduler):
"""A scheduler which activates each agent when the agent requests.
@@ -42,18 +116,21 @@ class TimedActivation(BaseScheduler):
self._next = {}
self._queue = []
self.next_time = 0
self.logger = logger.getChild(f'time_{ self.model }')
self.logger = logger.getChild(f"time_{ self.model }")
def add(self, agent: MesaAgent, when=None):
if when is None:
when = self.time
when = When(self.time)
elif not isinstance(when, When):
when = When(when)
if agent.unique_id in self._agents:
self._queue.remove((self._next[agent.unique_id], agent.unique_id))
del self._agents[agent.unique_id]
heapify(self._queue)
if agent.unique_id in self._next:
self._queue.remove((self._next[agent.unique_id], agent))
heapify(self._queue)
heappush(self._queue, (when, agent.unique_id))
self._next[agent.unique_id] = when
heappush(self._queue, (when, agent))
super().add(agent)
def step(self) -> None:
@@ -62,38 +139,77 @@ class TimedActivation(BaseScheduler):
an agent will signal when it wants to be scheduled next.
"""
self.logger.debug(f'Simulation step {self.next_time}')
self.logger.debug(f"Simulation step {self.time}")
if not self.model.running:
return
self.time = self.next_time
when = self.time
when = NEVER
while self._queue and self._queue[0][0] == self.time:
(when, agent_id) = heappop(self._queue)
self.logger.debug(f'Stepping agent {agent_id}')
to_process = []
skipped = []
next_time = INFINITY
agent = self._agents[agent_id]
returned = agent.step()
ix = 0
if not agent.alive:
self.remove(agent)
self.logger.debug(f"Queue length: {len(self._queue)}")
while self._queue:
(when, agent) = self._queue[0]
if when > self.time:
break
heappop(self._queue)
if when.ready(agent):
try:
agent._last_return = when.return_value(agent)
except Exception as ex:
agent._last_except = ex
self._next.pop(agent.unique_id, None)
to_process.append(agent)
continue
when = (returned or Delta(1)).abs(self.time)
if when < self.time:
raise Exception("Cannot schedule an agent for a time in the past ({} < {})".format(when, self.time))
next_time = min(next_time, when.next(self.time))
self._next[agent.unique_id] = next_time
skipped.append((when, agent))
self._next[agent_id] = when
heappush(self._queue, (when, agent_id))
if self._queue:
next_time = min(next_time, self._queue[0][0].next(self.time))
self._queue = [*skipped, *self._queue]
for agent in to_process:
self.logger.debug(f"Stepping agent {agent}")
try:
returned = ((agent.step() or Delta(1))).abs(self.time)
except DeadAgent:
if agent.unique_id in self._next:
del self._next[agent.unique_id]
agent.alive = False
continue
if not getattr(agent, "alive", True):
continue
value = returned.next(self.time)
agent._last_return = value
if value < self.time:
raise Exception(
f"Cannot schedule an agent for a time in the past ({when} < {self.time})"
)
if value < INFINITY:
next_time = min(value, next_time)
self._next[agent.unique_id] = returned
heappush(self._queue, (returned, agent))
else:
assert not self._next[agent.unique_id]
self.steps += 1
self.logger.debug(f"Updating time step: {self.time} -> {next_time}")
self.time = next_time
if not self._queue:
self.time = INFINITY
self.next_time = INFINITY
if not self._queue or next_time == INFINITY:
self.model.running = False
return self.time
self.next_time = self._queue[0][0]
self.logger.debug(f'Next step: {self.next_time}')

View File

@@ -4,57 +4,75 @@ import os
import traceback
from functools import partial
from shutil import copyfile
from shutil import copyfile, move
from multiprocessing import Pool
from contextlib import contextmanager
logger = logging.getLogger('soil')
logger = logging.getLogger("soil")
logger.setLevel(logging.INFO)
timeformat = "%H:%M:%S"
if os.environ.get('SOIL_VERBOSE', ''):
if os.environ.get("SOIL_VERBOSE", ""):
logformat = "[%(levelname)-5.5s][%(asctime)s][%(name)s]: %(message)s"
else:
logformat = "[%(levelname)-5.5s][%(asctime)s] %(message)s"
logFormatter = logging.Formatter(logformat, timeformat)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
logging.basicConfig(
level=logging.INFO,
handlers=[
consoleHandler,
],
)
@contextmanager
def timer(name='task', pre="", function=logger.info, to_object=None):
def timer(name="task", pre="", function=logger.info, to_object=None):
start = current_time()
function('{}Starting {} at {}.'.format(pre, name,
strftime("%X", gmtime(start))))
function("{}Starting {} at {}.".format(pre, name, strftime("%X", gmtime(start))))
yield start
end = current_time()
function('{}Finished {} at {} in {} seconds'.format(pre, name,
strftime("%X", gmtime(end)),
str(end-start)))
function(
"{}Finished {} at {} in {} seconds".format(
pre, name, strftime("%X", gmtime(end)), str(end - start)
)
)
if to_object:
to_object.start = start
to_object.end = end
def safe_open(path, mode='r', backup=True, **kwargs):
def try_backup(path, remove=False):
if not os.path.exists(path):
return None
outdir = os.path.dirname(path)
if outdir and not os.path.exists(outdir):
os.makedirs(outdir)
if backup and 'w' in mode and os.path.exists(path):
creation = os.path.getctime(path)
stamp = strftime('%Y-%m-%d_%H.%M.%S', localtime(creation))
creation = os.path.getctime(path)
stamp = strftime("%Y-%m-%d_%H.%M.%S", localtime(creation))
backup_dir = os.path.join(outdir, 'backup')
if not os.path.exists(backup_dir):
os.makedirs(backup_dir)
newpath = os.path.join(backup_dir, '{}@{}'.format(os.path.basename(path),
stamp))
backup_dir = os.path.join(outdir, "backup")
if not os.path.exists(backup_dir):
os.makedirs(backup_dir)
newpath = os.path.join(backup_dir, "{}@{}".format(os.path.basename(path), stamp))
if move:
move(path, newpath)
else:
copyfile(path, newpath)
return newpath
def safe_open(path, mode="r", backup=True, **kwargs):
outdir = os.path.dirname(path)
if outdir and not os.path.exists(outdir):
os.makedirs(outdir)
if backup and "w" in mode:
try_backup(path)
return open(path, mode=mode, **kwargs)
@@ -63,24 +81,26 @@ def open_or_reuse(f, *args, **kwargs):
try:
with safe_open(f, *args, **kwargs) as f:
yield f
except (AttributeError, TypeError):
except (AttributeError, TypeError) as ex:
yield f
def flatten_dict(d):
if not isinstance(d, dict):
return d
return dict(_flatten_dict(d))
def _flatten_dict(d, prefix=''):
def _flatten_dict(d, prefix=""):
if not isinstance(d, dict):
# print('END:', prefix, d)
yield prefix, d
return
if prefix:
prefix = prefix + '.'
prefix = prefix + "."
for k, v in d.items():
# print(k, v)
res = list(_flatten_dict(v, prefix='{}{}'.format(prefix, k)))
res = list(_flatten_dict(v, prefix="{}{}".format(prefix, k)))
# print('RES:', res)
yield from res
@@ -92,7 +112,7 @@ def unflatten_dict(d):
if not isinstance(k, str):
target[k] = v
continue
tokens = k.split('.')
tokens = k.split(".")
if len(tokens) < 2:
target[k] = v
continue
@@ -105,27 +125,28 @@ def unflatten_dict(d):
def run_and_return_exceptions(func, *args, **kwargs):
'''
"""
A wrapper for run_trial that catches exceptions and returns them.
It is meant for async simulations.
'''
"""
try:
return func(*args, **kwargs)
except Exception as ex:
if ex.__cause__ is not None:
ex = ex.__cause__
ex.message = ''.join(traceback.format_exception(type(ex), ex, ex.__traceback__)[:])
ex.message = "".join(
traceback.format_exception(type(ex), ex, ex.__traceback__)[:]
)
return ex
def run_parallel(func, iterable, parallel=False, **kwargs):
if parallel and not os.environ.get('SOIL_DEBUG', None):
if parallel and not os.environ.get("SOIL_DEBUG", None):
p = Pool()
wrapped_func = partial(run_and_return_exceptions,
func, **kwargs)
wrapped_func = partial(run_and_return_exceptions, func, **kwargs)
for i in p.imap_unordered(wrapped_func, iterable):
if isinstance(i, Exception):
logger.error('Trial failed:\n\t%s', i.message)
logger.error("Trial failed:\n\t%s", i.message)
continue
yield i
else:

View File

@@ -4,7 +4,7 @@ import logging
logger = logging.getLogger(__name__)
ROOT = os.path.dirname(__file__)
DEFAULT_FILE = os.path.join(ROOT, 'VERSION')
DEFAULT_FILE = os.path.join(ROOT, "VERSION")
def read_version(versionfile=DEFAULT_FILE):
@@ -12,9 +12,10 @@ def read_version(versionfile=DEFAULT_FILE):
with open(versionfile) as f:
return f.read().strip()
except IOError: # pragma: no cover
logger.error(('Running an unknown version of {}.'
'Be careful!.').format(__name__))
return '0.0'
logger.error(
("Running an unknown version of {}." "Be careful!.").format(__name__)
)
return "0.0"
__version__ = read_version()

View File

@@ -1,5 +1,6 @@
from mesa.visualization.UserParam import UserSettableParameter
class UserSettableParameter(UserSettableParameter):
def __str__(self):
return self.value

View File

@@ -20,6 +20,7 @@ from tornado.concurrent import run_on_executor
from concurrent.futures import ThreadPoolExecutor
from ..simulation import Simulation
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
@@ -31,140 +32,183 @@ LOGGING_INTERVAL = 0.5
# Workaround to let Soil load the required modules
sys.path.append(ROOT)
class PageHandler(tornado.web.RequestHandler):
""" Handler for the HTML template which holds the visualization. """
"""Handler for the HTML template which holds the visualization."""
def get(self):
self.render('index.html', port=self.application.port,
name=self.application.name)
self.render(
"index.html", port=self.application.port, name=self.application.name
)
class SocketHandler(tornado.websocket.WebSocketHandler):
""" Handler for websocket. """
"""Handler for websocket."""
executor = ThreadPoolExecutor(max_workers=MAX_WORKERS)
def open(self):
if self.application.verbose:
logger.info('Socket opened!')
logger.info("Socket opened!")
def check_origin(self, origin):
return True
def on_message(self, message):
""" Receiving a message from the websocket, parse, and act accordingly. """
"""Receiving a message from the websocket, parse, and act accordingly."""
msg = tornado.escape.json_decode(message)
if msg['type'] == 'config_file':
if msg["type"] == "config_file":
if self.application.verbose:
print(msg['data'])
print(msg["data"])
self.config = list(yaml.load_all(msg['data']))
self.config = list(yaml.load_all(msg["data"]))
if len(self.config) > 1:
error = 'Please, provide only one configuration.'
error = "Please, provide only one configuration."
if self.application.verbose:
logger.error(error)
self.write_message({'type': 'error',
'error': error})
self.write_message({"type": "error", "error": error})
return
self.config = self.config[0]
self.send_log('INFO.' + self.simulation_name,
'Using config: {name}'.format(name=self.config['name']))
self.send_log(
"INFO." + self.simulation_name,
"Using config: {name}".format(name=self.config["name"]),
)
if 'visualization_params' in self.config:
self.write_message({'type': 'visualization_params',
'data': self.config['visualization_params']})
self.name = self.config['name']
if "visualization_params" in self.config:
self.write_message(
{
"type": "visualization_params",
"data": self.config["visualization_params"],
}
)
self.name = self.config["name"]
self.run_simulation()
settings = []
for key in self.config['environment_params']:
if type(self.config['environment_params'][key]) == float or type(self.config['environment_params'][key]) == int:
if self.config['environment_params'][key] <= 1:
setting_type = 'number'
for key in self.config["environment_params"]:
if (
type(self.config["environment_params"][key]) == float
or type(self.config["environment_params"][key]) == int
):
if self.config["environment_params"][key] <= 1:
setting_type = "number"
else:
setting_type = 'great_number'
elif type(self.config['environment_params'][key]) == bool:
setting_type = 'boolean'
setting_type = "great_number"
elif type(self.config["environment_params"][key]) == bool:
setting_type = "boolean"
else:
setting_type = 'undefined'
setting_type = "undefined"
settings.append({
'label': key,
'type': setting_type,
'value': self.config['environment_params'][key]
})
settings.append(
{
"label": key,
"type": setting_type,
"value": self.config["environment_params"][key],
}
)
self.write_message({'type': 'settings',
'data': settings})
self.write_message({"type": "settings", "data": settings})
elif msg['type'] == 'get_trial':
elif msg["type"] == "get_trial":
if self.application.verbose:
logger.info('Trial {} requested!'.format(msg['data']))
self.send_log('INFO.' + __name__, 'Trial {} requested!'.format(msg['data']))
self.write_message({'type': 'get_trial',
'data': self.get_trial(int(msg['data']))})
logger.info("Trial {} requested!".format(msg["data"]))
self.send_log("INFO." + __name__, "Trial {} requested!".format(msg["data"]))
self.write_message(
{"type": "get_trial", "data": self.get_trial(int(msg["data"]))}
)
elif msg['type'] == 'run_simulation':
elif msg["type"] == "run_simulation":
if self.application.verbose:
logger.info('Running new simulation for {name}'.format(name=self.config['name']))
self.send_log('INFO.' + self.simulation_name, 'Running new simulation for {name}'.format(name=self.config['name']))
self.config['environment_params'] = msg['data']
logger.info(
"Running new simulation for {name}".format(name=self.config["name"])
)
self.send_log(
"INFO." + self.simulation_name,
"Running new simulation for {name}".format(name=self.config["name"]),
)
self.config["environment_params"] = msg["data"]
self.run_simulation()
elif msg['type'] == 'download_gexf':
G = self.trials[ int(msg['data']) ].history_to_graph()
elif msg["type"] == "download_gexf":
G = self.trials[int(msg["data"])].history_to_graph()
for node in G.nodes():
if 'pos' in G.nodes[node]:
G.nodes[node]['viz'] = {"position": {"x": G.nodes[node]['pos'][0], "y": G.nodes[node]['pos'][1], "z": 0.0}}
del (G.nodes[node]['pos'])
writer = nx.readwrite.gexf.GEXFWriter(version='1.2draft')
if "pos" in G.nodes[node]:
G.nodes[node]["viz"] = {
"position": {
"x": G.nodes[node]["pos"][0],
"y": G.nodes[node]["pos"][1],
"z": 0.0,
}
}
del G.nodes[node]["pos"]
writer = nx.readwrite.gexf.GEXFWriter(version="1.2draft")
writer.add_graph(G)
self.write_message({'type': 'download_gexf',
'filename': self.config['name'] + '_trial_' + str(msg['data']),
'data': tostring(writer.xml).decode(writer.encoding) })
self.write_message(
{
"type": "download_gexf",
"filename": self.config["name"] + "_trial_" + str(msg["data"]),
"data": tostring(writer.xml).decode(writer.encoding),
}
)
elif msg['type'] == 'download_json':
G = self.trials[ int(msg['data']) ].history_to_graph()
elif msg["type"] == "download_json":
G = self.trials[int(msg["data"])].history_to_graph()
for node in G.nodes():
if 'pos' in G.nodes[node]:
G.nodes[node]['viz'] = {"position": {"x": G.nodes[node]['pos'][0], "y": G.nodes[node]['pos'][1], "z": 0.0}}
del (G.nodes[node]['pos'])
self.write_message({'type': 'download_json',
'filename': self.config['name'] + '_trial_' + str(msg['data']),
'data': nx.node_link_data(G) })
if "pos" in G.nodes[node]:
G.nodes[node]["viz"] = {
"position": {
"x": G.nodes[node]["pos"][0],
"y": G.nodes[node]["pos"][1],
"z": 0.0,
}
}
del G.nodes[node]["pos"]
self.write_message(
{
"type": "download_json",
"filename": self.config["name"] + "_trial_" + str(msg["data"]),
"data": nx.node_link_data(G),
}
)
else:
if self.application.verbose:
logger.info('Unexpected message!')
logger.info("Unexpected message!")
def update_logging(self):
try:
if (not self.log_capture_string.closed and self.log_capture_string.getvalue()):
for i in range(len(self.log_capture_string.getvalue().split('\n')) - 1):
self.send_log('INFO.' + self.simulation_name, self.log_capture_string.getvalue().split('\n')[i])
if (
not self.log_capture_string.closed
and self.log_capture_string.getvalue()
):
for i in range(len(self.log_capture_string.getvalue().split("\n")) - 1):
self.send_log(
"INFO." + self.simulation_name,
self.log_capture_string.getvalue().split("\n")[i],
)
self.log_capture_string.truncate(0)
self.log_capture_string.seek(0)
finally:
if self.capture_logging:
tornado.ioloop.IOLoop.current().call_later(LOGGING_INTERVAL, self.update_logging)
tornado.ioloop.IOLoop.current().call_later(
LOGGING_INTERVAL, self.update_logging
)
def on_close(self):
if self.application.verbose:
logger.info('Socket closed!')
logger.info("Socket closed!")
def send_log(self, logger, logging):
self.write_message({'type': 'log',
'logger': logger,
'logging': logging})
self.write_message({"type": "log", "logger": logger, "logging": logging})
@property
def simulation_name(self):
return self.config.get('name', 'NoSimulationRunning')
return self.config.get("name", "NoSimulationRunning")
@run_on_executor
def nonblocking(self, config):
@@ -174,28 +218,31 @@ class SocketHandler(tornado.websocket.WebSocketHandler):
@tornado.gen.coroutine
def run_simulation(self):
# Run simulation and capture logs
logger.info('Running simulation!')
if 'visualization_params' in self.config:
del self.config['visualization_params']
logger.info("Running simulation!")
if "visualization_params" in self.config:
del self.config["visualization_params"]
with self.logging(self.simulation_name):
try:
config = dict(**self.config)
config['outdir'] = os.path.join(self.application.outdir, config['name'])
config['dump'] = self.application.dump
config["outdir"] = os.path.join(self.application.outdir, config["name"])
config["dump"] = self.application.dump
self.trials = yield self.nonblocking(config)
self.write_message({'type': 'trials',
'data': list(trial.name for trial in self.trials) })
self.write_message(
{
"type": "trials",
"data": list(trial.name for trial in self.trials),
}
)
except Exception as ex:
error = 'Something went wrong:\n\t{}'.format(ex)
error = "Something went wrong:\n\t{}".format(ex)
logging.info(error)
self.write_message({'type': 'error',
'error': error})
self.send_log('ERROR.' + self.simulation_name, error)
self.write_message({"type": "error", "error": error})
self.send_log("ERROR." + self.simulation_name, error)
def get_trial(self, trial):
logger.info('Available trials: %s ' % len(self.trials))
logger.info('Ask for : %s' % trial)
logger.info("Available trials: %s " % len(self.trials))
logger.info("Ask for : %s" % trial)
trial = self.trials[trial]
G = trial.history_to_graph()
return nx.node_link_data(G)
@@ -218,21 +265,24 @@ class SocketHandler(tornado.websocket.WebSocketHandler):
class ModularServer(tornado.web.Application):
""" Main visualization application. """
"""Main visualization application."""
port = 8001
page_handler = (r'/', PageHandler)
socket_handler = (r'/ws', SocketHandler)
static_handler = (r'/(.*)', tornado.web.StaticFileHandler,
{'path': os.path.join(ROOT, 'static')})
local_handler = (r'/local/(.*)', tornado.web.StaticFileHandler,
{'path': ''})
page_handler = (r"/", PageHandler)
socket_handler = (r"/ws", SocketHandler)
static_handler = (
r"/(.*)",
tornado.web.StaticFileHandler,
{"path": os.path.join(ROOT, "static")},
)
local_handler = (r"/local/(.*)", tornado.web.StaticFileHandler, {"path": ""})
handlers = [page_handler, socket_handler, static_handler, local_handler]
settings = {'debug': True,
'template_path': ROOT + '/templates'}
settings = {"debug": True, "template_path": ROOT + "/templates"}
def __init__(self, dump=False, outdir='output', name='SOIL', verbose=True, *args, **kwargs):
def __init__(
self, dump=False, outdir="output", name="SOIL", verbose=True, *args, **kwargs
):
self.verbose = verbose
self.name = name
@@ -243,12 +293,12 @@ class ModularServer(tornado.web.Application):
super().__init__(self.handlers, **self.settings)
def launch(self, port=None):
""" Run the app. """
"""Run the app."""
if port is not None:
self.port = port
url = 'http://127.0.0.1:{PORT}'.format(PORT=self.port)
print('Interface starting at {url}'.format(url=url))
url = "http://127.0.0.1:{PORT}".format(PORT=self.port)
print("Interface starting at {url}".format(url=url))
self.listen(self.port)
# webbrowser.open(url)
tornado.ioloop.IOLoop.instance().start()
@@ -263,12 +313,22 @@ def run(*args, **kwargs):
def main():
import argparse
parser = argparse.ArgumentParser(description='Visualization of a Graph Model')
parser = argparse.ArgumentParser(description="Visualization of a Graph Model")
parser.add_argument('--name', '-n', nargs=1, default='SOIL', help='name of the simulation')
parser.add_argument('--dump', '-d', help='dumping results in folder output', action='store_true')
parser.add_argument('--port', '-p', nargs=1, default=8001, help='port for launching the server')
parser.add_argument('--verbose', '-v', help='verbose mode', action='store_true')
parser.add_argument(
"--name", "-n", nargs=1, default="SOIL", help="name of the simulation"
)
parser.add_argument(
"--dump", "-d", help="dumping results in folder output", action="store_true"
)
parser.add_argument(
"--port", "-p", nargs=1, default=8001, help="port for launching the server"
)
parser.add_argument("--verbose", "-v", help="verbose mode", action="store_true")
args = parser.parse_args()
run(name=args.name, port=(args.port[0] if isinstance(args.port, list) else args.port), verbose=args.verbose)
run(
name=args.name,
port=(args.port[0] if isinstance(args.port, list) else args.port),
verbose=args.verbose,
)

View File

@@ -4,20 +4,33 @@ from simulator import Simulator
def run(simulator, name="SOIL", port=8001, verbose=False):
server = ModularServer(simulator, name=(name[0] if isinstance(name, list) else name), verbose=verbose)
server = ModularServer(
simulator, name=(name[0] if isinstance(name, list) else name), verbose=verbose
)
server.port = port
server.launch()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Visualization of a Graph Model')
parser = argparse.ArgumentParser(description="Visualization of a Graph Model")
parser.add_argument('--name', '-n', nargs=1, default='SOIL', help='name of the simulation')
parser.add_argument('--dump', '-d', help='dumping results in folder output', action='store_true')
parser.add_argument('--port', '-p', nargs=1, default=8001, help='port for launching the server')
parser.add_argument('--verbose', '-v', help='verbose mode', action='store_true')
parser.add_argument(
"--name", "-n", nargs=1, default="SOIL", help="name of the simulation"
)
parser.add_argument(
"--dump", "-d", help="dumping results in folder output", action="store_true"
)
parser.add_argument(
"--port", "-p", nargs=1, default=8001, help="port for launching the server"
)
parser.add_argument("--verbose", "-v", help="verbose mode", action="store_true")
args = parser.parse_args()
soil = Simulator(dump=args.dump)
run(soil, name=args.name, port=(args.port[0] if isinstance(args.port, list) else args.port), verbose=args.verbose)
run(
soil,
name=args.name,
port=(args.port[0] if isinstance(args.port, list) else args.port),
verbose=args.verbose,
)

View File

@@ -9,17 +9,16 @@ interval: 1
seed: "CompleteSeed!"
model_class: Environment
model_params:
topologies:
default:
params:
generator: complete_graph
n: 4
topology:
params:
generator: complete_graph
n: 4
agents:
agent_class: CounterModel
state:
group: network
times: 1
topology: 'default'
topology: true
distribution:
- agent_class: CounterModel
weight: 0.25
@@ -42,7 +41,7 @@ model_params:
fixed:
- agent_class: BaseAgent
hidden: true
topology: null
topology: false
state:
name: 'Environment Agent 1'
times: 10

View File

@@ -4,21 +4,66 @@ import pytest
from soil import agents, environment
from soil import time as stime
class Dead(agents.FSM):
@agents.default_state
@agents.state
def only(self):
return self.die()
class TestMain(TestCase):
def test_die_raises_exception(self):
d = Dead(unique_id=0, model=environment.Environment())
d.step()
with pytest.raises(agents.DeadAgent):
d.step()
class TestMain(TestCase):
def test_die_returns_infinity(self):
'''The last step of a dead agent should return time.INFINITY'''
d = Dead(unique_id=0, model=environment.Environment())
ret = d.step().abs(0)
print(ret, 'next')
assert ret == stime.INFINITY
print(ret, "next")
assert ret == stime.NEVER
def test_die_raises_exception(self):
'''A dead agent should raise an exception if it is stepped after death'''
d = Dead(unique_id=0, model=environment.Environment())
d.step()
with pytest.raises(stime.DeadAgent):
d.step()
def test_agent_generator(self):
'''
The step function of an agent could be a generator. In that case, the state of the
agent will be resumed after every call to step.
'''
a = 0
class Gen(agents.BaseAgent):
def step(self):
nonlocal a
for i in range(5):
yield
a += 1
e = environment.Environment()
g = Gen(model=e, unique_id=e.next_id())
e.schedule.add(g)
for i in range(5):
e.step()
assert a == i
def test_state_decorator(self):
class MyAgent(agents.FSM):
run = 0
@agents.default_state
@agents.state('original')
def root(self):
self.run += 1
return self.other
@agents.state
def other(self):
self.run += 1
e = environment.Environment()
a = MyAgent(model=e, unique_id=e.next_id())
a.step()
assert a.run == 1
a.step()
assert a.run == 2

View File

@@ -7,9 +7,9 @@ from os.path import join
from soil import simulation, serialization, config, network, agents, utils
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
EXAMPLES = join(ROOT, "..", "examples")
FORCE_TESTS = os.environ.get('FORCE_TESTS', '')
FORCE_TESTS = os.environ.get("FORCE_TESTS", "")
def isequal(a, b):
@@ -24,7 +24,6 @@ def isequal(a, b):
class TestConfig(TestCase):
def test_conversion(self):
expected = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
old = serialization.load_file(join(ROOT, "old_complete.yml"))[0]
@@ -38,7 +37,7 @@ class TestConfig(TestCase):
The configuration should not change after running
the simulation.
"""
config = serialization.load_file(join(EXAMPLES, 'complete.yml'))[0]
config = serialization.load_file(join(EXAMPLES, "complete.yml"))[0]
s = simulation.from_config(config)
init_config = copy.copy(s.to_dict())
@@ -47,11 +46,8 @@ class TestConfig(TestCase):
# del nconfig['to
isequal(init_config, nconfig)
def test_topology_config(self):
netconfig = config.NetConfig(**{
'path': join(ROOT, 'test.gexf')
})
netconfig = config.NetConfig(**{"path": join(ROOT, "test.gexf")})
net = network.from_config(netconfig, dir_path=ROOT)
assert len(net.nodes) == 2
assert len(net.edges) == 1
@@ -62,36 +58,33 @@ class TestConfig(TestCase):
network agents are initialized properly.
"""
cfg = {
'name': 'CounterAgent',
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'agent_class': 'CounterModel',
"name": "CounterAgent",
"network_params": {"path": join(ROOT, "test.gexf")},
"agent_class": "CounterModel",
# 'states': [{'times': 10}, {'times': 20}],
'max_time': 2,
'dry_run': True,
'num_trials': 1,
'environment_params': {
}
"max_time": 2,
"dry_run": True,
"num_trials": 1,
"environment_params": {},
}
conf = config.convert_old(cfg)
s = simulation.from_config(conf)
env = s.get_env()
assert len(env.topologies['default'].nodes) == 2
assert len(env.topologies['default'].edges) == 1
assert len(env.G.nodes) == 2
assert len(env.G.edges) == 1
assert len(env.agents) == 2
assert env.agents[0].G == env.topologies['default']
assert env.agents[0].G == env.G
def test_agents_from_config(self):
'''We test that the known complete configuration produces
the right agents in the right groups'''
"""We test that the known complete configuration produces
the right agents in the right groups"""
cfg = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
s = simulation.from_config(cfg)
env = s.get_env()
assert len(env.topologies['default'].nodes) == 4
assert len(env.agents(group='network')) == 4
assert len(env.agents(group='environment')) == 1
assert len(env.G.nodes) == 4
assert len(env.agents(group="network")) == 4
assert len(env.agents(group="environment")) == 1
def test_yaml(self):
"""
@@ -100,16 +93,17 @@ class TestConfig(TestCase):
Values not present in the original config file should have reasonable
defaults.
"""
with utils.timer('loading'):
config = serialization.load_file(join(EXAMPLES, 'complete.yml'))[0]
with utils.timer("loading"):
config = serialization.load_file(join(EXAMPLES, "complete.yml"))[0]
s = simulation.from_config(config)
with utils.timer('serializing'):
with utils.timer("serializing"):
serial = s.to_yaml()
with utils.timer('recovering'):
with utils.timer("recovering"):
recovered = yaml.load(serial, Loader=yaml.SafeLoader)
for (k, v) in config.items():
assert recovered[k] == v
def make_example_test(path, cfg):
def wrapped(self):
root = os.getcwd()
@@ -133,18 +127,19 @@ def make_example_test(path, cfg):
# assert env.now <= config['max_time'] # But not further than allowed
# except KeyError:
# pass
return wrapped
def add_example_tests():
for config, path in serialization.load_files(
join(EXAMPLES, '*', '*.yml'),
join(EXAMPLES, '*.yml'),
join(EXAMPLES, "*", "*.yml"),
join(EXAMPLES, "*.yml"),
):
p = make_example_test(path=path, cfg=config)
fname = os.path.basename(path)
p.__name__ = 'test_example_file_%s' % fname
p.__doc__ = '%s should be a valid configuration' % fname
p.__name__ = "test_example_file_%s" % fname
p.__doc__ = "%s should be a valid configuration" % fname
setattr(TestConfig, p.__name__, p)
del p

View File

@@ -5,9 +5,9 @@ from os.path import join
from soil import serialization, simulation, config
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
EXAMPLES = join(ROOT, "..", "examples")
FORCE_TESTS = os.environ.get('FORCE_TESTS', '')
FORCE_TESTS = os.environ.get("FORCE_TESTS", "")
class TestExamples(TestCase):
@@ -23,31 +23,31 @@ def make_example_test(path, cfg):
s.max_steps = 100
s.num_trials = 1
assert isinstance(cfg, config.Config)
if getattr(cfg, 'skip_test', False) and not FORCE_TESTS:
self.skipTest('Example ignored.')
if getattr(cfg, "skip_test", False) and not FORCE_TESTS:
self.skipTest("Example ignored.")
envs = s.run_simulation(dry_run=True)
assert envs
for env in envs:
assert env
try:
n = cfg.model_params['network_params']['n']
n = cfg.model_params["network_params"]["n"]
assert len(list(env.network_agents)) == n
except KeyError:
pass
assert env.schedule.steps > 0 # It has run
assert env.schedule.steps <= s.max_steps # But not further than allowed
return wrapped
def add_example_tests():
for cfg, path in serialization.load_files(
join(EXAMPLES, '*', '*.yml'),
join(EXAMPLES, '*.yml'),
join(EXAMPLES, "**", "*.yml"),
):
p = make_example_test(path=path, cfg=config.Config.from_raw(cfg))
fname = os.path.basename(path)
p.__name__ = 'test_example_file_%s' % fname
p.__doc__ = '%s should be a valid configuration' % fname
p.__name__ = "test_example_file_%s" % fname
p.__doc__ = "%s should be a valid configuration" % fname
setattr(TestExamples, p.__name__, p)
del p

View File

@@ -2,6 +2,7 @@ import os
import io
import tempfile
import shutil
import sqlite3
from unittest import TestCase
from soil import exporters
@@ -40,20 +41,15 @@ class Exporters(TestCase):
num_trials = 5
max_time = 2
config = {
'name': 'exporter_sim',
'model_params': {
'agents': [{
'agent_class': agents.BaseAgent
}]
},
'max_time': max_time,
'num_trials': num_trials,
"name": "exporter_sim",
"model_params": {"agents": [{"agent_class": agents.BaseAgent}]},
"max_time": max_time,
"num_trials": num_trials,
}
s = simulation.from_config(config)
for env in s.run_simulation(exporters=[Dummy], dry_run=True):
assert len(env.agents) == 1
assert env.now == max_time
assert Dummy.started
assert Dummy.ended
@@ -64,40 +60,52 @@ class Exporters(TestCase):
assert Dummy.total_time == max_time * num_trials
def test_writing(self):
'''Try to write CSV, sqlite and YAML (without dry_run)'''
"""Try to write CSV, sqlite and YAML (without dry_run)"""
n_trials = 5
config = {
'name': 'exporter_sim',
'network_params': {
'generator': 'complete_graph',
'n': 4
},
'agent_class': 'CounterModel',
'max_time': 2,
'num_trials': n_trials,
'dry_run': False,
'environment_params': {}
"name": "exporter_sim",
"network_params": {"generator": "complete_graph", "n": 4},
"agent_class": "CounterModel",
"max_time": 2,
"num_trials": n_trials,
"dry_run": False,
"environment_params": {},
}
output = io.StringIO()
s = simulation.from_config(config)
tmpdir = tempfile.mkdtemp()
envs = s.run_simulation(exporters=[
exporters.default,
exporters.csv,
],
dry_run=False,
outdir=tmpdir,
exporter_params={'copy_to': output})
envs = s.run_simulation(
exporters=[
exporters.default,
exporters.csv,
],
model_params={
"agent_reporters": {"times": "times"},
"model_reporters": {
"constant": lambda x: 1,
},
},
dry_run=False,
outdir=tmpdir,
exporter_params={"copy_to": output},
)
result = output.getvalue()
simdir = os.path.join(tmpdir, s.group or '', s.name)
with open(os.path.join(simdir, '{}.dumped.yml'.format(s.name))) as f:
simdir = os.path.join(tmpdir, s.group or "", s.name)
with open(os.path.join(simdir, "{}.dumped.yml".format(s.name))) as f:
result = f.read()
assert result
try:
for e in envs:
with open(os.path.join(simdir, '{}.env.csv'.format(e.id))) as f:
db = sqlite3.connect(os.path.join(simdir, f"{s.name}.sqlite"))
cur = db.cursor()
agent_entries = cur.execute("SELECT * from agents").fetchall()
env_entries = cur.execute("SELECT * from env").fetchall()
assert len(agent_entries) > 0
assert len(env_entries) > 0
with open(os.path.join(simdir, "{}.env.csv".format(e.id))) as f:
result = f.read()
assert result
finally:

View File

@@ -6,60 +6,55 @@ import networkx as nx
from functools import partial
from os.path import join
from soil import (simulation, Environment, agents, network, serialization,
utils, config)
from soil import simulation, Environment, agents, network, serialization, utils, config
from soil.time import Delta
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
EXAMPLES = join(ROOT, "..", "examples")
class CustomAgent(agents.FSM, agents.NetworkAgent):
@agents.default_state
@agents.state
def normal(self):
self.neighbors = self.count_agents(state_id='normal',
limit_neighbors=True)
self.neighbors = self.count_agents(state_id="normal", limit_neighbors=True)
@agents.state
def unreachable(self):
return
class TestMain(TestCase):
def test_empty_simulation(self):
"""A simulation with a base behaviour should do nothing"""
config = {
'model_params': {
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'agent_class': 'BaseAgent',
"model_params": {
"network_params": {"path": join(ROOT, "test.gexf")},
"agent_class": "BaseAgent",
}
}
s = simulation.from_config(config)
s.run_simulation(dry_run=True)
def test_network_agent(self):
"""
The initial states should be applied to the agent and the
agent should be able to update its state."""
config = {
'name': 'CounterAgent',
'num_trials': 1,
'max_time': 2,
'model_params': {
'network_params': {
'generator': nx.complete_graph,
'n': 2,
"name": "CounterAgent",
"num_trials": 1,
"max_time": 2,
"model_params": {
"network_params": {
"generator": nx.complete_graph,
"n": 2,
},
'agent_class': 'CounterModel',
'states': {
0: {'times': 10},
1: {'times': 20},
"agent_class": "CounterModel",
"states": {
0: {"times": 10},
1: {"times": 20},
},
}
},
}
s = simulation.from_config(config)
@@ -68,48 +63,41 @@ class TestMain(TestCase):
The initial states should be applied to the agent and the
agent should be able to update its state."""
config = {
'version': '2',
'name': 'CounterAgent',
'dry_run': True,
'num_trials': 1,
'max_time': 2,
'model_params': {
'topologies': {
'default': {
'path': join(ROOT, 'test.gexf')
}
"version": "2",
"name": "CounterAgent",
"dry_run": True,
"num_trials": 1,
"max_time": 2,
"model_params": {
"topology": {"path": join(ROOT, "test.gexf")},
"agents": {
"agent_class": "CounterModel",
"topology": True,
"fixed": [{"state": {"times": 10}}, {"state": {"times": 20}}],
},
'agents': {
'agent_class': 'CounterModel',
'topology': 'default',
'fixed': [{'state': {'times': 10}}, {'state': {'times': 20}}],
}
}
},
}
s = simulation.from_config(config)
env = s.get_env()
assert isinstance(env.agents[0], agents.CounterModel)
assert env.agents[0].G == env.topologies['default']
assert env.agents[0]['times'] == 10
assert env.agents[0]['times'] == 10
assert env.agents[0].G == env.G
assert env.agents[0]["times"] == 10
assert env.agents[0]["times"] == 10
env.step()
assert env.agents[0]['times'] == 11
assert env.agents[1]['times'] == 21
assert env.agents[0]["times"] == 11
assert env.agents[1]["times"] == 21
def test_init_and_count_agents(self):
"""Agents should be properly initialized and counting should filter them properly"""
#TODO: separate this test into two or more test cases
# TODO: separate this test into two or more test cases
config = {
'max_time': 10,
'model_params': {
'agents': [{'agent_class': CustomAgent, 'weight': 1, 'topology': 'default'},
{'agent_class': CustomAgent, 'weight': 3, 'topology': 'default'},
"max_time": 10,
"model_params": {
"agents": [
{"agent_class": CustomAgent, "weight": 1, "topology": True},
{"agent_class": CustomAgent, "weight": 3, "topology": True},
],
'topologies': {
'default': {
'path': join(ROOT, 'test.gexf')
}
},
"topology": {"path": join(ROOT, "test.gexf")},
},
}
s = simulation.from_config(config)
@@ -120,40 +108,45 @@ class TestMain(TestCase):
assert env.count_agents(weight=3) == 1
assert env.count_agents(agent_class=CustomAgent) == 2
def test_torvalds_example(self):
"""A complete example from a documentation should work."""
config = serialization.load_file(join(EXAMPLES, 'torvalds.yml'))[0]
config['model_params']['network_params']['path'] = join(EXAMPLES,
config['model_params']['network_params']['path'])
config = serialization.load_file(join(EXAMPLES, "torvalds.yml"))[0]
config["model_params"]["network_params"]["path"] = join(
EXAMPLES, config["model_params"]["network_params"]["path"]
)
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
for a in env.network_agents:
skill_level = a.state['skill_level']
if a.id == 'Torvalds':
assert skill_level == 'God'
assert a.state['total'] == 3
assert a.state['neighbors'] == 2
elif a.id == 'balkian':
assert skill_level == 'developer'
assert a.state['total'] == 3
assert a.state['neighbors'] == 1
skill_level = a.state["skill_level"]
if a.id == "Torvalds":
assert skill_level == "God"
assert a.state["total"] == 3
assert a.state["neighbors"] == 2
elif a.id == "balkian":
assert skill_level == "developer"
assert a.state["total"] == 3
assert a.state["neighbors"] == 1
else:
assert skill_level == 'beginner'
assert a.state['total'] == 3
assert a.state['neighbors'] == 1
assert skill_level == "beginner"
assert a.state["total"] == 3
assert a.state["neighbors"] == 1
def test_serialize_class(self):
ser, name = serialization.serialize(agents.BaseAgent, known_modules=[])
assert name == 'soil.agents.BaseAgent'
assert name == "soil.agents.BaseAgent"
assert ser == agents.BaseAgent
ser, name = serialization.serialize(agents.BaseAgent, known_modules=['soil', ])
assert name == 'BaseAgent'
ser, name = serialization.serialize(
agents.BaseAgent,
known_modules=[
"soil",
],
)
assert name == "BaseAgent"
assert ser == agents.BaseAgent
ser, name = serialization.serialize(CustomAgent)
assert name == 'test_main.CustomAgent'
assert name == "test_main.CustomAgent"
assert ser == CustomAgent
pickle.dumps(ser)
@@ -166,72 +159,43 @@ class TestMain(TestCase):
assert i == des
def test_serialize_agent_class(self):
'''A class from soil.agents should be serialized without the module part'''
ser = agents.serialize_type(CustomAgent)
assert ser == 'test_main.CustomAgent'
ser = agents.serialize_type(agents.BaseAgent)
assert ser == 'BaseAgent'
"""A class from soil.agents should be serialized without the module part"""
ser = agents._serialize_type(CustomAgent)
assert ser == "test_main.CustomAgent"
ser = agents._serialize_type(agents.BaseAgent)
assert ser == "BaseAgent"
pickle.dumps(ser)
def test_deserialize_agent_distribution(self):
agent_distro = [
{
'agent_class': 'CounterModel',
'weight': 1
},
{
'agent_class': 'test_main.CustomAgent',
'weight': 2
},
]
converted = agents.deserialize_definition(agent_distro)
assert converted[0]['agent_class'] == agents.CounterModel
assert converted[1]['agent_class'] == CustomAgent
pickle.dumps(converted)
def test_serialize_agent_distribution(self):
agent_distro = [
{
'agent_class': agents.CounterModel,
'weight': 1
},
{
'agent_class': CustomAgent,
'weight': 2
},
]
converted = agents.serialize_definition(agent_distro)
assert converted[0]['agent_class'] == 'CounterModel'
assert converted[1]['agent_class'] == 'test_main.CustomAgent'
pickle.dumps(converted)
def test_templates(self):
'''Loading a template should result in several configs'''
configs = serialization.load_file(join(EXAMPLES, 'template.yml'))
"""Loading a template should result in several configs"""
configs = serialization.load_file(join(EXAMPLES, "template.yml"))
assert len(configs) > 0
def test_until(self):
config = {
'name': 'until_sim',
'model_params': {
'network_params': {},
'agents': {
'fixed': [{
'agent_class': agents.BaseAgent,
}]
"name": "until_sim",
"model_params": {
"network_params": {},
"agents": {
"fixed": [
{
"agent_class": agents.BaseAgent,
}
]
},
},
'max_time': 2,
'num_trials': 50,
"max_time": 2,
"num_trials": 50,
}
s = simulation.from_config(config)
runs = list(s.run_simulation(dry_run=True))
over = list(x.now for x in runs if x.now > 2)
assert len(runs) == config['num_trials']
assert len(runs) == config["num_trials"]
assert len(over) == 0
def test_fsm(self):
'''Basic state change'''
"""Basic state change"""
class ToggleAgent(agents.FSM):
@agents.default_state
@agents.state
@@ -250,7 +214,8 @@ class TestMain(TestCase):
assert a.state_id == a.ping.id
def test_fsm_when(self):
'''Basic state change'''
"""Basic state change"""
class ToggleAgent(agents.FSM):
@agents.default_state
@agents.state

View File

@@ -1,4 +1,4 @@
'''
"""
Mesa-SOIL integration tests
We have to test that:
@@ -8,13 +8,15 @@ We have to test that:
- Mesa visualizations work with SOIL simulations
'''
"""
from mesa import Agent, Model
from mesa.time import RandomActivation
from mesa.space import MultiGrid
class MoneyAgent(Agent):
""" An agent with fixed initial wealth."""
"""An agent with fixed initial wealth."""
def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1
@@ -33,15 +35,15 @@ class MoneyAgent(Agent):
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
class MoneyModel(Model):
"""A model with some number of agents."""
def __init__(self, N, width, height):
self.num_agents = N
self.grid = MultiGrid(width, height, True)
@@ -58,7 +60,7 @@ class MoneyModel(Model):
self.grid.place_agent(a, (x, y))
def step(self):
'''Advance the model by one step.'''
"""Advance the model by one step."""
self.schedule.step()

View File

@@ -10,7 +10,7 @@ from soil import config, network, environment, agents, simulation
from test_main import CustomAgent
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
EXAMPLES = join(ROOT, "..", "examples")
class TestNetwork(TestCase):
@@ -19,21 +19,13 @@ class TestNetwork(TestCase):
Load a graph from file if the extension is known.
Raise an exception otherwise.
"""
config = {
'network_params': {
'path': join(ROOT, 'test.gexf')
}
}
G = network.from_config(config['network_params'])
config = {"network_params": {"path": join(ROOT, "test.gexf")}}
G = network.from_config(config["network_params"])
assert G
assert len(G) == 2
with self.assertRaises(AttributeError):
config = {
'network_params': {
'path': join(ROOT, 'unknown.extension')
}
}
G = network.from_config(config['network_params'])
config = {"network_params": {"path": join(ROOT, "unknown.extension")}}
G = network.from_config(config["network_params"])
print(G)
def test_generate_barabasi(self):
@@ -41,15 +33,11 @@ class TestNetwork(TestCase):
If no path is given, a generator and network parameters
should be used to generate a network
"""
cfg = {
'params': {
'generator': 'barabasi_albert_graph'
}
}
cfg = {"params": {"generator": "barabasi_albert_graph"}}
with self.assertRaises(Exception):
G = network.from_config(cfg)
cfg['params']['n'] = 100
cfg['params']['m'] = 10
cfg["params"]["n"] = 100
cfg["params"]["m"] = 10
G = network.from_config(cfg)
assert len(G) == 100
@@ -61,68 +49,57 @@ class TestNetwork(TestCase):
G = nx.random_geometric_graph(20, 0.1)
env = environment.NetworkEnvironment(topology=G)
f = io.BytesIO()
assert env.topologies['default']
network.dump_gexf(env.topologies['default'], f)
assert env.G
network.dump_gexf(env.G, f)
def test_networkenvironment_creation(self):
"""Networkenvironment should accept netconfig as parameters"""
model_params = {
'topologies': {
'default': {
'path': join(ROOT, 'test.gexf')
}
"topology": {"path": join(ROOT, "test.gexf")},
"agents": {
"topology": True,
"distribution": [
{
"agent_class": CustomAgent,
}
],
},
'agents': {
'topology': 'default',
'distribution': [{
'agent_class': CustomAgent,
}]
}
}
env = environment.Environment(**model_params)
assert env.topologies
assert env.G
env.step()
assert len(env.topologies['default']) == 2
assert len(env.G) == 2
assert len(env.agents) == 2
assert env.agents[1].count_agents(state_id='normal') == 2
assert env.agents[1].count_agents(state_id='normal', limit_neighbors=True) == 1
assert env.agents[1].count_agents(state_id="normal") == 2
assert env.agents[1].count_agents(state_id="normal", limit_neighbors=True) == 1
assert env.agents[0].neighbors == 1
def test_custom_agent_neighbors(self):
"""Allow for search of neighbors with a certain state_id"""
config = {
'model_params': {
'topologies': {
'default': {
'path': join(ROOT, 'test.gexf')
}
},
'agents': {
'topology': 'default',
'distribution': [
{
'weight': 1,
'agent_class': CustomAgent
}
]
}
"model_params": {
"topology": {"path": join(ROOT, "test.gexf")},
"agents": {
"topology": True,
"distribution": [{"weight": 1, "agent_class": CustomAgent}],
},
},
'max_time': 10,
"max_time": 10,
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
assert env.agents[1].count_agents(state_id='normal') == 2
assert env.agents[1].count_agents(state_id='normal', limit_neighbors=True) == 1
assert env.agents[1].count_agents(state_id="normal") == 2
assert env.agents[1].count_agents(state_id="normal", limit_neighbors=True) == 1
assert env.agents[0].neighbors == 1
def test_subgraph(self):
'''An agent should be able to subgraph the global topology'''
"""An agent should be able to subgraph the global topology"""
G = nx.Graph()
G.add_node(3)
G.add_edge(1, 2)
distro = agents.calculate_distribution(agent_class=agents.NetworkAgent)
aconfig = config.AgentConfig(distribution=distro, topology='default')
env = environment.Environment(name='Test', topologies={'default': G}, agents=aconfig)
aconfig = config.AgentConfig(distribution=distro, topology=True)
env = environment.Environment(name="Test", topology=G, agents=aconfig)
lst = list(env.network_agents)
a2 = env.find_one(node_id=2)

74
tests/test_time.py Normal file
View File

@@ -0,0 +1,74 @@
from unittest import TestCase
from soil import time, agents, environment
class TestMain(TestCase):
def test_cond(self):
'''
A condition should match a When if the concition is True
'''
t = time.Cond(lambda t: True)
f = time.Cond(lambda t: False)
for i in range(10):
w = time.When(i)
assert w == t
assert w is not f
def test_cond(self):
'''
Comparing a Cond to a Delta should always return False
'''
c = time.Cond(lambda t: False)
d = time.Delta(1)
assert c is not d
def test_cond_env(self):
'''
'''
times_started = []
times_awakened = []
times = []
done = 0
class CondAgent(agents.BaseAgent):
def step(self):
nonlocal done
times_started.append(self.now)
while True:
yield time.Cond(lambda agent: agent.model.schedule.time >= 10)
times_awakened.append(self.now)
if self.now >= 10:
break
done += 1
env = environment.Environment(agents=[{'agent_class': CondAgent}])
while env.schedule.time < 11:
env.step()
times.append(env.now)
assert env.schedule.time == 11
assert times_started == [0]
assert times_awakened == [10]
assert done == 1
# The first time will produce the Cond.
# Since there are no other agents, time will not advance, but the number
# of steps will.
assert env.schedule.steps == 12
assert len(times) == 12
while env.schedule.time < 12:
env.step()
times.append(env.now)
assert env.schedule.time == 12
assert times_started == [0, 11]
assert times_awakened == [10, 11]
assert done == 2
# Once more to yield the cond, another one to continue
assert env.schedule.steps == 14
assert len(times) == 14