1
0
mirror of https://github.com/gsi-upm/soil synced 2025-09-14 04:02:21 +00:00
Files
soil/soil/agents/SISaModel.py
J. Fernando Sánchez 3776c4e5c5 Refactor
* Removed references to `set_state`
* Split some functionality from `agents` into separate files (`fsm` and
`network_agents`)
* Rename `neighboring_agents` to `neighbors`
* Delete some spurious functions
2022-10-17 21:49:31 +02:00

103 lines
3.1 KiB
Python

import numpy as np
from . import FSM, state
class SISaModel(FSM):
"""
Settings:
neutral_discontent_spon_prob
neutral_discontent_infected_prob
neutral_content_spon_prob
neutral_content_infected_prob
discontent_neutral
discontent_content
variance_d_c
content_discontent
variance_c_d
content_neutral
standard_variance
"""
def __init__(self, environment, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
random = np.random.default_rng(seed=self._seed)
self.neutral_discontent_spon_prob = random.normal(
self.env["neutral_discontent_spon_prob"], self.env["standard_variance"]
)
self.neutral_discontent_infected_prob = random.normal(
self.env["neutral_discontent_infected_prob"], self.env["standard_variance"]
)
self.neutral_content_spon_prob = random.normal(
self.env["neutral_content_spon_prob"], self.env["standard_variance"]
)
self.neutral_content_infected_prob = random.normal(
self.env["neutral_content_infected_prob"], self.env["standard_variance"]
)
self.discontent_neutral = random.normal(
self.env["discontent_neutral"], self.env["standard_variance"]
)
self.discontent_content = random.normal(
self.env["discontent_content"], self.env["variance_d_c"]
)
self.content_discontent = random.normal(
self.env["content_discontent"], self.env["variance_c_d"]
)
self.content_neutral = random.normal(
self.env["content_neutral"], self.env["standard_variance"]
)
@state
def neutral(self):
# Spontaneous effects
if self.prob(self.neutral_discontent_spon_prob):
return self.discontent
if self.prob(self.neutral_content_spon_prob):
return self.content
# Infected
discontent_neighbors = self.count_neighbors(state_id=self.discontent)
if self.prob(scontent_neighbors * self.neutral_discontent_infected_prob):
return self.discontent
content_neighbors = self.count_neighbors(state_id=self.content.id)
if self.prob(s * self.neutral_content_infected_prob):
return self.content
return self.neutral
@state
def discontent(self):
# Healing
if self.prob(self.discontent_neutral):
return self.neutral
# Superinfected
content_neighbors = self.count_neighbors(state_id=self.content.id)
if self.prob(s * self.discontent_content):
return self.content
return self.discontent
@state
def content(self):
# Healing
if self.prob(self.content_neutral):
return self.neutral
# Superinfected
discontent_neighbors = self.count_neighbors(state_id=self.discontent.id)
if self.prob(scontent_neighbors * self.content_discontent):
self.discontent
return self.content