1
0
mirror of https://github.com/gsi-upm/soil synced 2025-09-13 19:52:20 +00:00

Compare commits

...

37 Commits

Author SHA1 Message Date
J. Fernando Sánchez
90338c3549 skip-tls-verify in kaniko 2018-12-20 17:48:58 +01:00
J. Fernando Sánchez
1d532dacfe Remove entrypoint build stage 2018-12-20 15:14:58 +01:00
J. Fernando Sánchez
a1f8d8c9c5 Change entrypoint build stage 2018-12-20 15:07:45 +01:00
J. Fernando Sánchez
de326eb331 Remove CI global image 2018-12-20 15:05:45 +01:00
J. Fernando Sánchez
04b4380c61 Fix wrong import soil.web 2018-12-20 14:06:18 +01:00
J. Fernando Sánchez
d70a0c865c limit ci jobs to docker runners 2018-12-09 17:22:40 +01:00
J. Fernando Sánchez
625c28e4ee Fix CI syntax 2018-12-09 17:09:31 +01:00
J. Fernando Sánchez
9749f4ca14 Fix multithreading
Multithreading needs pickling to work.
Pickling/unpickling didn't work in some situations, like when the
environment_agents parameter was left blank.
This was due to two reasons:

1) agents and history didn't have a setstate method, and some of their
attributes cannot be pickled (generators, sqlite connection)
2) the environment was adding generators (agents) to its state.

This fixes the situation by restricting the keys that the environment exports
when it pickles, and by adding the set/getstate methods in agents.

The resulting pickles should contain enough information to inspect
them (history, state values, etc), but very limited.
2018-12-09 16:58:49 +01:00
J. Fernando Sánchez
3526fa29d7 Fix bug parallel 2018-12-09 14:06:50 +01:00
J. Fernando Sánchez
53604c1e66 Fix quickstart.rst markdown code 2018-12-09 13:10:00 +01:00
J. Fernando Sánchez
01cc8e9128 Merge branch 'refactor-imports'
* remove leftover import in example
* Update quickstart tutorial
* Add gitlab-ci
* Added missing gexf for tests
* Upgrade to python3.7 and pandas 0.3.4 because pandas has dropped support for
  python 3.4 -> There are some API changes in pandas, and I've updated the code
  accordingly.
* Set pytest as the default test runner
* Update dockerignore
* Skip testing long examples (>1000 steps)
2018-12-09 12:55:12 +01:00
J. Fernando Sánchez
a47ffa815b Fix CI. Skip testing long examples 2018-12-08 20:49:34 +01:00
J. Fernando Sánchez
b41927d7bf remove leftover import in example 2018-12-08 20:35:02 +01:00
J. Fernando Sánchez
70d033b3a9 Update dockerignore 2018-12-08 19:13:56 +01:00
J. Fernando Sánchez
3afed06656 Add gitlab-ci 2018-12-08 19:08:47 +01:00
J. Fernando Sánchez
0a7ef27844 Added missing gexf for tests 2018-12-08 18:53:12 +01:00
J. Fernando Sánchez
2e28b36f6e Python3.7, testing and bug fixes
* Upgrade to python3.7 and pandas 0.3.4 because pandas has dropped support for
python 3.4 -> There are some API changes in pandas, and I've update the code
accordingly.
* Set pytest as the default test runner
2018-12-08 18:53:06 +01:00
J. Fernando Sánchez
bd4700567e Update quickstart tutorial 2018-12-08 18:17:25 +01:00
J. Fernando Sánchez
ff1df62eec All tests pass 2018-12-08 18:17:21 +01:00
J. Fernando Sánchez
9165979b49 merge visualization branch
The web server is included as a submodule.
The dependencies for the web (tornado) are not installed by default, but they
can be installed as an extra:

```
pip install soil[web]
```

Once installed, the soil web can be used like this:

```
soil-web

OR

python -m soil.web
```

There are other minor changes:

* History re-connects to the sqlite database if it is used from a different
thread.
* Environment accepts additional parameters (so it can run simulations with
`visualization_params` or any other in the future).
* The simulator class is no longer necessary
* Logging is done in the same thread, and the simulation is run in a separate
one. This had to be done because it was creating some problems with tornado not
being able to find the current thread during logs, which caused hundreds of
repeated lines in the web "console".
* The player is slightly modified in this version. I noticed that when the
  visualization was playing, if you clicked somewhere it would change for a
  second, and then go back to the previous place. The code for the playback
  seemed too complex, especially speed control, so I rewrote some parts. I
  might've introduced new bugs.
2018-12-07 18:28:19 +01:00
J. Fernando Sánchez
078f8ace9e Merge commit '8fec544772c13efb1dc8a0589240551b9bad27cb' as 'soil/web' 2018-12-07 18:27:57 +01:00
J. Fernando Sánchez
8fec544772 Squashed 'soil/web/' content from commit 4dcd0fc
git-subtree-dir: soil/web
git-subtree-split: 4dcd0fcb3d
2018-12-07 20:30:24 +01:00
J. Fernando Sánchez
5420501d36 Fix state and networkx dynamic attributes 2018-05-07 18:59:19 +02:00
J. Fernando Sánchez
5d89827ccf Fix history bug 2018-05-04 11:21:23 +02:00
J. Fernando Sánchez
fc48ed7e09 Added history class
Now the environment does not deal with history directly, it delegates it to a
specific class. The analysis also uses history instances instead of either
using the database directly or creating a proxy environment.

This should make it easier to change the implementation in the future.

In fact, the change was motivated by the large size of the csv files in previous
versions. This new implementation only stores results in deltas, and it fills
any necessary values when needed.
2018-05-04 10:01:49 +02:00
J. Fernando Sánchez
73c90887e8 Fix pip installation 2018-05-04 09:59:31 +02:00
J. Fernando Sánchez
497c8a55db Add workaround for geometric models
Closes soil/soil#4
2018-02-16 18:04:43 +01:00
J. Fernando Sánchez
7d1c800490 Parallelism and granular exporting options
* Graphs are not saved by default (not backwards compatible)
* Modified newsspread examples
* More granular options to save results (exporting to CSV and GEXF are now
optional)
* Updated tutorial to include exporting options
* Removed references from environment to simulation
* Added parallelism to simulations (can be turned off with a flag or argument).
2017-11-01 14:44:46 +01:00
J. Fernando Sánchez
a4b32afa2f Fix py3.4 and pypi bugs 2017-10-19 18:28:17 +02:00
J. Fernando Sánchez
a7c51742f6 Improved docs
Fixed several bugs
Added convenience methods in soil.analysis
2017-10-19 18:06:33 +02:00
J. Fernando Sánchez
78364d89d5 Fix gephi representation. Add sqlite 2017-10-17 19:48:56 +02:00
J. Fernando Sánchez
af76f54a28 Added rabbits 2017-10-16 19:23:52 +02:00
J. Fernando Sánchez
dbc182c6d0 Compatibility with py3.4 2017-10-09 14:44:21 +02:00
J. Fernando Sánchez
eafecc9e5e Make py3 compatibility explicit 2017-10-09 11:38:16 +02:00
J. Fernando Sánchez
e8988015e2 Add more options to the command line 2017-10-05 16:21:58 +02:00
J. Fernando Sánchez
ccc8e43416 Removed timeout from the simulation examples 2017-10-05 16:07:10 +02:00
J. Fernando Sánchez
347d295b09 Updated to match NetworkX's 2.0 API 2017-10-05 15:54:18 +02:00
127 changed files with 115897 additions and 4565 deletions

2
.dockerignore Normal file
View File

@@ -0,0 +1,2 @@
**/soil_output
.*

26
.gitlab-ci.yml Normal file
View File

@@ -0,0 +1,26 @@
stages:
- build
- test
build:
stage: build
image:
name: gcr.io/kaniko-project/executor:debug
entrypoint: [""]
tags:
- docker
script:
- echo "{\"auths\":{\"$CI_REGISTRY\":{\"username\":\"$CI_REGISTRY_USER\",\"password\":\"$CI_REGISTRY_PASSWORD\"}}}" > /kaniko/.docker/config.json
# The skip-tls-verify flag is there because our registry certificate is self signed
- /kaniko/executor --context $CI_PROJECT_DIR --skip-tls-verify --dockerfile $CI_PROJECT_DIR/Dockerfile --destination $CI_REGISTRY_IMAGE:$CI_COMMIT_TAG
only:
- tags
test:
tags:
- docker
image: python:3.7
stage: test
script:
- python setup.py test

12
Dockerfile Normal file
View File

@@ -0,0 +1,12 @@
FROM python:3.7
WORKDIR /usr/src/app
COPY test-requirements.txt requirements.txt /usr/src/app/
RUN pip install --no-cache-dir -r test-requirements.txt -r requirements.txt
COPY ./ /usr/src/app
RUN pip install '.[web]'
ENTRYPOINT ["python", "-m", "soil"]

4
Makefile Normal file
View File

@@ -0,0 +1,4 @@
test:
docker-compose exec dev python -m pytest -s -v
.PHONY: test

View File

@@ -3,7 +3,7 @@
Soil is an extensible and user-friendly Agent-based Social Simulator for Social Networks.
Learn how to run your own simulations with our [documentation](http://soilsim.readthedocs.io).
Follow our [tutorial](notebooks/soil_tutorial.ipynb) to develop your own agent models.
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
If you use Soil in your research, don't forget to cite this paper:

12
docker-compose.yml Normal file
View File

@@ -0,0 +1,12 @@
version: '3'
services:
dev:
build: .
environment:
PYTHONDONTWRITEBYTECODE: 1
volumes:
- .:/usr/src/app
tty: true
entrypoint: /bin/bash
ports:
- '8001:8001'

File diff suppressed because it is too large Load Diff

244
docs/configuration.rst Normal file
View File

@@ -0,0 +1,244 @@
Configuring a simulation
------------------------
There are two ways to configure a simulation: programmatically and with a configuration file.
In both cases, the parameters used are the same.
The advantage of a configuration file is that it is a clean declarative description, and it makes it easier to reproduce.
Simulation configuration files can be formatted in ``json`` or ``yaml`` and they define all the parameters of a simulation.
Here's an example (``example.yml``).
.. code:: yaml
---
name: MyExampleSimulation
max_time: 50
num_trials: 3
interval: 2
network_params:
generator: barabasi_albert_graph
n: 100
m: 2
network_agents:
- agent_type: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
weight: 1
state:
id: discontent
- agent_type: SISaModel
weight: 8
state:
id: neutral
environment_params:
prob_infect: 0.075
This example configuration will run three trials (``num_trials``) of a simulation containing a randomly generated network (``network_params``).
The 100 nodes in the network will be SISaModel agents (``network_agents.agent_type``), which is an agent behavior that is included in Soil.
10% of the agents (``weight=1``) will start in the content state, 10% in the discontent state, and the remaining 80% (``weight=8``) in the neutral state.
All agents will have access to the environment (``environment_params``), which only contains one variable, ``prob_infected``.
The state of the agents will be updated every 2 seconds (``interval``).
Now run the simulation with the command line tool:
.. code:: bash
soil example.yml
Once the simulation finishes, its results will be stored in a folder named ``MyExampleSimulation``.
Three types of objects are saved by default: a pickle of the simulation; a ``YAML`` representation of the simulation (which can be used to re-launch it); and for every trial, a ``sqlite`` file with the content of the state of every network node and the environment parameters at every step of the simulation.
.. code::
soil_output
└── MyExampleSimulation
├── MyExampleSimulation.dumped.yml
├── MyExampleSimulation.simulation.pickle
├── MyExampleSimulation_trial_0.db.sqlite
├── MyExampleSimulation_trial_1.db.sqlite
└── MyExampleSimulation_trial_2.db.sqlite
You may also ask soil to export the states in a ``csv`` file, and the network in gephi format (``gexf``).
Network
=======
The network topology for the simulation can be loaded from an existing network file or generated with one of the random network generation methods from networkx.
Loading a network
#################
To load an existing network, specify its path in the configuration:
.. code:: yaml
---
network_params:
path: /tmp/mynetwork.gexf
Soil will try to guess what networkx method to use to read the file based on its extension.
However, we only test using ``gexf`` files.
For simple networks, you may also include them in the configuration itself using , using the ``topology`` parameter like so:
.. code:: yaml
---
topology:
nodes:
- id: First
- id: Second
links:
- source: First
target: Second
Generating a random network
###########################
To generate a random network using one of networkx's built-in methods, specify the `graph generation algorithm <https://networkx.github.io/documentation/development/reference/generators.html>`_ and other parameters.
For example, the following configuration is equivalent to :code:`nx.complete_graph(n=100)`:
.. code:: yaml
network_params:
generator: complete_graph
n: 100
Environment
============
The environment is the place where the shared state of the simulation is stored.
For instance, the probability of disease outbreak.
The configuration file may specify the initial value of the environment parameters:
.. code:: yaml
environment_params:
daily_probability_of_earthquake: 0.001
number_of_earthquakes: 0
All agents have access to the environment parameters.
In some scenarios, it is useful to have a custom environment, to provide additional methods or to control the way agents update environment state.
For example, if our agents play the lottery, the environment could provide a method to decide whether the agent wins, instead of leaving it to the agent.
Agents
======
Agents are a way of modelling behavior.
Agents can be characterized with two variables: agent type (``agent_type``) and state.
Only one agent is executed at a time (generally, every ``interval`` seconds), and it has access to its state and the environment parameters.
Through the environment, it can access the network topology and the state of other agents.
There are three three types of agents according to how they are added to the simulation: network agents and environment agent.
Network Agents
##############
Network agents are attached to a node in the topology.
The configuration file allows you to specify how agents will be mapped to topology nodes.
The simplest way is to specify a single type of agent.
Hence, every node in the network will be associated to an agent of that type.
.. code:: yaml
agent_type: SISaModel
It is also possible to add more than one type of agent to the simulation, and to control the ratio of each type (using the ``weight`` property).
For instance, with following configuration, it is five times more likely for a node to be assigned a CounterModel type than a SISaModel type.
.. code:: yaml
network_agents:
- agent_type: SISaModel
weight: 1
- agent_type: CounterModel
weight: 5
The third option is to specify the type of agent on the node itself, e.g.:
.. code:: yaml
topology:
nodes:
- id: first
agent_type: BaseAgent
states:
first:
agent_type: SISaModel
This would also work with a randomly generated network:
.. code:: yaml
network:
generator: complete
n: 5
agent_type: BaseAgent
states:
- agent_type: SISaModel
In addition to agent type, you may add a custom initial state to the distribution.
This is very useful to add the same agent type with different states.
e.g., to populate the network with SISaModel, roughly 10% of them with a discontent state:
.. code:: yaml
network_agents:
- agent_type: SISaModel
weight: 9
state:
id: neutral
- agent_type: SISaModel
weight: 1
state:
id: discontent
Lastly, the configuration may include initial state for one or more nodes.
For instance, to add a state for the two nodes in this configuration:
.. code:: yaml
agent_type: SISaModel
network:
generator: complete_graph
n: 2
states:
- id: content
- id: discontent
Or to add state only to specific nodes (by ``id``).
For example, to apply special skills to Linux Torvalds in a simulation:
.. literalinclude:: ../examples/torvalds.yml
:language: yaml
Environment Agents
##################
In addition to network agents, more agents can be added to the simulation.
These agents are programmed in much the same way as network agents, the only difference is that they will not be assigned to network nodes.
.. code::
environment_agents:
- agent_type: MyAgent
state:
mood: happy
- agent_type: DummyAgent
You may use environment agents to model events that a normal agent cannot control, such as natural disasters or chance.
They are also useful to add behavior that has little to do with the network and the interactions within that network.

View File

@@ -6,7 +6,7 @@
Welcome to Soil's documentation!
================================
Soil is an Agent-based Social Simulator in Python for modelling and simulation of Social Networks.
Soil is an Agent-based Social Simulator in Python focused on Social Networks.
If you use Soil in your research, do not forget to cite this paper:
@@ -34,13 +34,15 @@ If you use Soil in your research, do not forget to cite this paper:
.. toctree::
:maxdepth: 2
:maxdepth: 0
:caption: Learn more about soil:
installation
quickstart
Tutorial - Spreading news
configuration
Tutorial <soil_tutorial>
..
.. Indices and tables

View File

@@ -1,7 +1,7 @@
Installation
------------
The easiest way to install Soil is through pip:
The easiest way to install Soil is through pip, with Python >= 3.4:
.. code:: bash

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.5 KiB

After

Width:  |  Height:  |  Size: 7.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

BIN
docs/output_54_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_54_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_55_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_55_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_56_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_61_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_63_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_66_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_67_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 KiB

BIN
docs/output_72_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/output_72_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/output_74_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_75_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

BIN
docs/output_76_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

View File

@@ -1,194 +1,93 @@
Quickstart
----------
This section shows how to run simulations from simulation configuration files.
First of all, you need to install the package (See :doc:`installation`)
This section shows how to run your first simulation with Soil.
For installation instructions, see :doc:`installation`.
Simulation configuration files are ``json`` or ``yaml`` files that define all the parameters of a simulation.
Here's an example (``example.yml``).
.. code:: yaml
---
name: MyExampleSimulation
max_time: 50
num_trials: 3
timeout: 2
network_params:
network_type: barabasi_albert_graph
n: 100
m: 2
agent_distribution:
- agent_type: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
weight: 1
state:
id: discontent
- agent_type: SISaModel
weight: 8
state:
id: neutral
environment_params:
prob_infect: 0.075
Now run the simulation with the command line tool:
.. code:: bash
soil example.yml
Once the simulation finishes, its results will be stored in a folder named ``MyExampleSimulation``.
Four types of objects are saved by default: a pickle of the simulation, a ``YAML`` representation of the simulation (to re-launch it), for every trial, a csv file with the content of the state of every network node and the environment parameters at every step of the simulation as well as the network in gephi format (``gexf``).
There are mainly two parts in a simulation: agent classes and simulation configuration.
An agent class defines how the agent will behave throughout the simulation.
The configuration includes things such as number of agents to use and their type, network topology to use, etc.
.. code::
soil_output
├── Sim_prob_0
│   ├── Sim_prob_0.dumped.yml
│   ├── Sim_prob_0.simulation.pickle
│   ├── Sim_prob_0_trial_0.environment.csv
│   └── Sim_prob_0_trial_0.gexf
.. image:: soil.png
:width: 80%
:align: center
This example configuration will run three trials of a simulation containing a randomly generated network.
The 100 nodes in the network will be SISaModel agents, 10% of them will start in the content state, 10% in the discontent state, and the remaining 80% in the neutral state.
All agents will have access to the environment, which only contains one variable, ``prob_infected``.
The state of the agents will be updated every 2 seconds (``timeout``).
Soil includes several agent classes in the ``soil.agents`` module, and we will use them in this quickstart.
If you are interested in developing your own agents classes, see :doc:`soil_tutorial`.
Configuration
=============
To get you started, we will use this configuration (:download:`download the file <quickstart.yml>` directly):
Network
=======
The network topology for the simulation can be loaded from an existing network file or generated with one of the random network generation methods from networkx.
Loading a network
#################
To load an existing network, specify its path in the configuration:
.. code:: yaml
---
network_params:
path: /tmp/mynetwork.gexf
Soil will try to guess what networkx method to use to read the file based on its extension.
However, we only test using ``gexf`` files.
Generating a random network
###########################
To generate a random network using one of networkx's built-in methods, specify the `graph generation algorithm <https://networkx.github.io/documentation/development/reference/generators.html>`_ and other parameters.
For example, the following configuration is equivalent to :code:`nx.complete_graph(100)`:
.. code:: yaml
network_params:
network_type: complete_graph
n: 100
Environment
============
The environment is the place where the shared state of the simulation is stored.
For instance, the probability of certain events.
The configuration file may specify the initial value of the environment parameters:
.. code:: yaml
environment_params:
daily_probability_of_earthquake: 0.001
number_of_earthquakes: 0
Agents
======
Agents are a way of modelling behavior.
Agents can be characterized with two variables: an agent type (``agent_type``) and its state.
Only one agent is executed at a time (generally, every ``timeout`` seconds), and it has access to its state and the environment parameters.
Through the environment, it can access the network topology and the state of other agents.
There are three three types of agents according to how they are added to the simulation: network agents, environment agent, and other agents.
Network Agents
##############
Network agents are attached to a node in the topology.
The configuration file allows you to specify how agents will be mapped to topology nodes.
The simplest way is to specify a single type of agent.
Hence, every node in the network will have an associated agent of that type.
.. code:: yaml
agent_type: SISaModel
It is also possible to add more than one type of agent to the simulation, and to control the ratio of each type (``weight``).
For instance, with following configuration, it is five times more likely for a node to be assigned a CounterModel type than a SISaModel type.
.. code:: yaml
agent_distribution:
- agent_type: SISaModel
weight: 1
- agent_type: CounterModel
weight: 5
In addition to agent type, you may also add a custom initial state to the distribution.
This is very useful to add the same agent type with different states.
e.g., to populate the network with SISaModel, roughly 10% of them with a discontent state:
.. code:: yaml
agent_distribution:
- agent_type: SISaModel
weight: 9
state:
id: neutral
- agent_type: SISaModel
weight: 1
state:
id: discontent
Lastly, the configuration may include initial state for one or more nodes.
For instance, to add a state for the two nodes in this configuration:
.. code:: yaml
agent_type: SISaModel
network:
network_type: complete_graph
n: 2
states:
- id: content
- id: discontent
Or to add state only to specific nodes (by ``id``).
For example, to apply special skills to Linux Torvalds in a simulation:
.. literalinclude:: ../examples/torvalds.yml
.. literalinclude:: quickstart.yml
:language: yaml
The agent type used, SISa, is a very simple model.
It only has three states (neutral, content and discontent),
Its parameters are the probabilities to change from one state to another, either spontaneously or because of contagion from neighboring agents.
Environment Agents
##################
In addition to network agents, more agents can be added to the simulation.
These agens are programmed in much the same way as network agents, the only difference is that they will not be assigned to network nodes.
Running the simulation
======================
To see the simulation in action, simply point soil to the configuration, and tell it to store the graph and the history of agent states and environment parameters at every point.
.. code::
environment_agents:
- agent_type: MyAgent
state:
mood: happy
- agent_type: DummyAgent
soil --graph --csv quickstart.yml [13:35:29]
INFO:soil:Using config(s): quickstart
INFO:soil:Dumping results to soil_output/quickstart : ['csv', 'gexf']
INFO:soil:Starting simulation quickstart at 13:35:30.
INFO:soil:Starting Simulation quickstart trial 0 at 13:35:30.
INFO:soil:Finished Simulation quickstart trial 0 at 13:35:49 in 19.43677067756653 seconds
INFO:soil:Starting Dumping simulation quickstart trial 0 at 13:35:49.
INFO:soil:Finished Dumping simulation quickstart trial 0 at 13:35:51 in 1.7733407020568848 seconds
INFO:soil:Dumping results to soil_output/quickstart
INFO:soil:Finished simulation quickstart at 13:35:51 in 21.29862952232361 seconds
Visualizing the results
=======================
The ``CSV`` file should look like this:
The simulation will return a dynamic graph .gexf file which could be visualized with
.. code::
agent_id,t_step,key,value
env,0,neutral_discontent_spon_prob,0.05
env,0,neutral_discontent_infected_prob,0.1
env,0,neutral_content_spon_prob,0.2
env,0,neutral_content_infected_prob,0.4
env,0,discontent_neutral,0.2
env,0,discontent_content,0.05
env,0,content_discontent,0.05
env,0,variance_d_c,0.05
env,0,variance_c_d,0.1
Results and visualization
=========================
The environment variables are marked as ``agent_id`` env.
Th exported values are only stored when they change.
To find out how to get every key and value at every point in the simulation, check out the :doc:`soil_tutorial`.
The dynamic graph is exported as a .gexf file which could be visualized with
`Gephi <https://gephi.org/users/download/>`__.
Now it is your turn to experiment with the simulation.
Change some of the parameters, such as the number of agents, the probability of becoming content, or the type of network, and see how the results change.
Soil also includes a web server that allows you to upload your simulations, change parameters, and visualize the results, including a timeline of the network.
To make it work, you have to install soil like this:
.. code::
pip install soil[web]
Once installed, the soil web UI can be run in two ways:
.. code::
soil-web
# OR
python -m soil.web

30
docs/quickstart.yml Normal file
View File

@@ -0,0 +1,30 @@
---
name: quickstart
num_trials: 1
max_time: 1000
network_agents:
- agent_type: SISaModel
state:
id: neutral
weight: 1
- agent_type: SISaModel
state:
id: content
weight: 2
network_params:
n: 100
k: 5
p: 0.2
generator: newman_watts_strogatz_graph
environment_params:
neutral_discontent_spon_prob: 0.05
neutral_discontent_infected_prob: 0.1
neutral_content_spon_prob: 0.2
neutral_content_infected_prob: 0.4
discontent_neutral: 0.2
discontent_content: 0.05
content_discontent: 0.05
variance_d_c: 0.05
variance_c_d: 0.1
content_neutral: 0.1
standard_variance: 0.1

BIN
docs/soil.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

2612
docs/soil_tutorial.rst Normal file

File diff suppressed because it is too large Load Diff

532
examples/NewsSpread.ipynb Normal file

File diff suppressed because one or more lines are too long

80808
examples/Untitled.ipynb Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -2,8 +2,11 @@
name: simple
dir_path: "/tmp/"
num_trials: 3
dry_run: True
max_time: 100
interval: 1
seed: "CompleteSeed!"
dump: false
network_params:
generator: complete_graph
n: 10
@@ -15,10 +18,11 @@ network_agents:
- agent_type: AggregatedCounter
weight: 0.2
environment_agents: []
environment_class: Environment
environment_params:
am_i_complete: true
default_state:
incidents: 0
states:
- name: 'The first node'
- name: 'The second node'
- name: 'The second node'

View File

@@ -1,17 +0,0 @@
default_state: {}
environment_agents: []
environment_params: {prob_neighbor_spread: 0.0, prob_tv_spread: 0.01}
interval: 1
max_time: 20
name: Sim_prob_0
network_agents:
- agent_type: NewsSpread
state: {has_tv: false}
weight: 1
- agent_type: NewsSpread
state: {has_tv: true}
weight: 2
network_params: {generator: erdos_renyi_graph, n: 500, p: 0.1}
num_trials: 1
states:
- {has_tv: true}

View File

@@ -1,20 +0,0 @@
import soil
import random
class NewsSpread(soil.agents.FSM):
@soil.agents.default_state
@soil.agents.state
def neutral(self):
r = random.random()
if self['has_tv'] and r < self.env['prob_tv_spread']:
return self.infected
return
@soil.agents.state
def infected(self):
prob_infect = self.env['prob_neighbor_spread']
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
r = random.random()
if r < prob_infect:
neighbor.state['id'] = self.infected.id
return

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,138 @@
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 30
name: Sim_all_dumb
network_agents:
- agent_type: DumbViewer
state:
has_tv: false
weight: 1
- agent_type: DumbViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 30
name: Sim_half_herd
network_agents:
- agent_type: DumbViewer
state:
has_tv: false
weight: 1
- agent_type: DumbViewer
state:
has_tv: true
weight: 1
- agent_type: HerdViewer
state:
has_tv: false
weight: 1
- agent_type: HerdViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 30
name: Sim_all_herd
network_agents:
- agent_type: HerdViewer
state:
has_tv: true
id: neutral
weight: 1
- agent_type: HerdViewer
state:
has_tv: true
id: neutral
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 30
name: Sim_wise_herd
network_agents:
- agent_type: HerdViewer
state:
has_tv: true
id: neutral
weight: 1
- agent_type: WiseViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 30
name: Sim_all_wise
network_agents:
- agent_type: WiseViewer
state:
has_tv: true
id: neutral
weight: 1
- agent_type: WiseViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50

View File

@@ -0,0 +1,81 @@
from soil.agents import FSM, state, default_state, prob
import logging
class DumbViewer(FSM):
'''
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
'''
defaults = {
'prob_neighbor_spread': 0.5,
'prob_tv_spread': 0.1,
}
@default_state
@state
def neutral(self):
if self['has_tv']:
if prob(self.env['prob_tv_spread']):
self.set_state(self.infected)
@state
def infected(self):
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
if prob(self.env['prob_neighbor_spread']):
neighbor.infect()
def infect(self):
self.set_state(self.infected)
class HerdViewer(DumbViewer):
'''
A viewer whose probability of infection depends on the state of its neighbors.
'''
level = logging.DEBUG
def infect(self):
infected = self.count_neighboring_agents(state_id=self.infected.id)
total = self.count_neighboring_agents()
prob_infect = self.env['prob_neighbor_spread'] * infected/total
self.debug('prob_infect', prob_infect)
if prob(prob_infect):
self.set_state(self.infected.id)
class WiseViewer(HerdViewer):
'''
A viewer that can change its mind.
'''
defaults = {
'prob_neighbor_spread': 0.5,
'prob_neighbor_cure': 0.25,
'prob_tv_spread': 0.1,
}
@state
def cured(self):
prob_cure = self.env['prob_neighbor_cure']
for neighbor in self.get_neighboring_agents(state_id=self.infected.id):
if prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
self.debug('Viewer {} cannot be cured'.format(neighbor.id))
def cure(self):
self.set_state(self.cured.id)
@state
def infected(self):
cured = max(self.count_neighboring_agents(self.cured.id),
1.0)
infected = max(self.count_neighboring_agents(self.infected.id),
1.0)
prob_cure = self.env['prob_neighbor_cure'] * (cured/infected)
if prob(prob_cure):
return self.cure()
return self.set_state(super().infected)

View File

@@ -0,0 +1,10 @@
Simulation of pubs and drinking pals that go from pub to pub.
Th custom environment includes a list of pubs and methods to allow agents to discover and enter pubs.
There are two types of agents:
* Patron. A patron will do three things, in this order:
* Look for other patrons to drink with
* Look for a pub where the agent and other agents in the same group can get in.
* While in the pub, patrons only drink, until they get drunk and taken home.
* Police. There is only one police agent that will take any drunk patrons home (kick them out of the pub).

View File

@@ -0,0 +1,174 @@
from soil.agents import FSM, state, default_state
from soil import Environment
from random import random, shuffle
from itertools import islice
import logging
class CityPubs(Environment):
'''Environment with Pubs'''
level = logging.INFO
def __init__(self, *args, number_of_pubs=3, pub_capacity=10, **kwargs):
super(CityPubs, self).__init__(*args, **kwargs)
pubs = {}
for i in range(number_of_pubs):
newpub = {
'name': 'The awesome pub #{}'.format(i),
'open': True,
'capacity': pub_capacity,
'occupancy': 0,
}
pubs[newpub['name']] = newpub
self['pubs'] = pubs
def enter(self, pub_id, *nodes):
'''Agents will try to enter. The pub checks if it is possible'''
try:
pub = self['pubs'][pub_id]
except KeyError:
raise ValueError('Pub {} is not available'.format(pub_id))
if not pub['open'] or (pub['capacity'] < (len(nodes) + pub['occupancy'])):
return False
pub['occupancy'] += len(nodes)
for node in nodes:
node['pub'] = pub_id
return True
def available_pubs(self):
for pub in self['pubs'].values():
if pub['open'] and (pub['occupancy'] < pub['capacity']):
yield pub['name']
def exit(self, pub_id, *node_ids):
'''Agents will notify the pub they want to leave'''
try:
pub = self['pubs'][pub_id]
except KeyError:
raise ValueError('Pub {} is not available'.format(pub_id))
for node_id in node_ids:
node = self.get_agent(node_id)
if pub_id == node['pub']:
del node['pub']
pub['occupancy'] -= 1
class Patron(FSM):
'''Agent that looks for friends to drink with. It will do three things:
1) Look for other patrons to drink with
2) Look for a bar where the agent and other agents in the same group can get in.
3) While in the bar, patrons only drink, until they get drunk and taken home.
'''
level = logging.INFO
defaults = {
'pub': None,
'drunk': False,
'pints': 0,
'max_pints': 3,
}
@default_state
@state
def looking_for_friends(self):
'''Look for friends to drink with'''
self.info('I am looking for friends')
available_friends = list(self.get_agents(drunk=False,
pub=None,
state_id=self.looking_for_friends.id))
if not available_friends:
self.info('Life sucks and I\'m alone!')
return self.at_home
befriended = self.try_friends(available_friends)
if befriended:
return self.looking_for_pub
@state
def looking_for_pub(self):
'''Look for a pub that accepts me and my friends'''
if self['pub'] != None:
return self.sober_in_pub
self.debug('I am looking for a pub')
group = list(self.get_neighboring_agents())
for pub in self.env.available_pubs():
self.debug('We\'re trying to get into {}: total: {}'.format(pub, len(group)))
if self.env.enter(pub, self, *group):
self.info('We\'re all {} getting in {}!'.format(len(group), pub))
return self.sober_in_pub
@state
def sober_in_pub(self):
'''Drink up.'''
self.drink()
if self['pints'] > self['max_pints']:
return self.drunk_in_pub
@state
def drunk_in_pub(self):
'''I'm out. Take me home!'''
self.info('I\'m so drunk. Take me home!')
self['drunk'] = True
pass # out drunk
@state
def at_home(self):
'''The end'''
self.debug('Life sucks. I\'m home!')
def drink(self):
self['pints'] += 1
self.debug('Cheers to that')
def kick_out(self):
self.set_state(self.at_home)
def befriend(self, other_agent, force=False):
'''
Try to become friends with another agent. The chances of
success depend on both agents' openness.
'''
if force or self['openness'] > random():
self.env.add_edge(self, other_agent)
self.info('Made some friend {}'.format(other_agent))
return True
return False
def try_friends(self, others):
''' Look for random agents around me and try to befriend them'''
befriended = False
k = int(10*self['openness'])
shuffle(others)
for friend in islice(others, k): # random.choice >= 3.7
if friend == self:
continue
if friend.befriend(self):
self.befriend(friend, force=True)
self.debug('Hooray! new friend: {}'.format(friend.id))
befriended = True
else:
self.debug('{} does not want to be friends'.format(friend.id))
return befriended
class Police(FSM):
'''Simple agent to take drunk people out of pubs.'''
level = logging.INFO
@default_state
@state
def patrol(self):
drunksters = list(self.get_agents(drunk=True,
state_id=Patron.drunk_in_pub.id))
for drunk in drunksters:
self.info('Kicking out the trash: {}'.format(drunk.id))
drunk.kick_out()
else:
self.info('No trash to take out. Too bad.')
if __name__ == '__main__':
from soil import simulation
simulation.run_from_config('pubcrawl.yml',
dry_run=True,
dump=None,
parallel=False)

View File

@@ -0,0 +1,26 @@
---
name: pubcrawl
num_trials: 3
max_time: 10
dump: false
network_params:
# Generate 100 empty nodes. They will be assigned a network agent
generator: empty_graph
n: 30
network_agents:
- agent_type: pubcrawl.Patron
description: Extroverted patron
state:
openness: 1.0
weight: 9
- agent_type: pubcrawl.Patron
description: Introverted patron
state:
openness: 0.1
weight: 1
environment_agents:
- agent_type: pubcrawl.Police
environment_class: pubcrawl.CityPubs
environment_params:
altercations: 0
number_of_pubs: 3

View File

@@ -0,0 +1,120 @@
from soil.agents import FSM, state, default_state, BaseAgent
from enum import Enum
from random import random, choice
from itertools import islice
import logging
import math
class Genders(Enum):
male = 'male'
female = 'female'
class RabbitModel(FSM):
level = logging.INFO
defaults = {
'age': 0,
'gender': Genders.male.value,
'mating_prob': 0.001,
'offspring': 0,
}
sexual_maturity = 4*30
life_expectancy = 365 * 3
gestation = 33
pregnancy = -1
max_females = 5
@default_state
@state
def newborn(self):
self['age'] += 1
if self['age'] >= self.sexual_maturity:
return self.fertile
@state
def fertile(self):
self['age'] += 1
if self['age'] > self.life_expectancy:
return self.dead
if self['gender'] == Genders.female.value:
return
# Males try to mate
females = self.get_agents(state_id=self.fertile.id, gender=Genders.female.value, limit_neighbors=False)
for f in islice(females, self.max_females):
r = random()
if r < self['mating_prob']:
self.impregnate(f)
break # Take a break
def impregnate(self, whom):
if self['gender'] == Genders.female.value:
raise NotImplementedError('Females cannot impregnate')
whom['pregnancy'] = 0
whom['mate'] = self.id
whom.set_state(whom.pregnant)
self.debug('{} impregnating: {}. {}'.format(self.id, whom.id, whom.state))
@state
def pregnant(self):
self['age'] += 1
if self['age'] > self.life_expectancy:
return self.dead
self['pregnancy'] += 1
self.debug('Pregnancy: {}'.format(self['pregnancy']))
if self['pregnancy'] >= self.gestation:
number_of_babies = int(8+4*random())
self.info('Having {} babies'.format(number_of_babies))
for i in range(number_of_babies):
state = {}
state['gender'] = choice(list(Genders)).value
child = self.env.add_node(self.__class__, state)
self.env.add_edge(self.id, child.id)
self.env.add_edge(self['mate'], child.id)
# self.add_edge()
self.debug('A BABY IS COMING TO LIFE')
self.env['rabbits_alive'] = self.env.get('rabbits_alive', self.global_topology.number_of_nodes())+1
self.debug('Rabbits alive: {}'.format(self.env['rabbits_alive']))
self['offspring'] += 1
self.env.get_agent(self['mate'])['offspring'] += 1
del self['mate']
self['pregnancy'] = -1
return self.fertile
@state
def dead(self):
self.info('Agent {} is dying'.format(self.id))
if 'pregnancy' in self and self['pregnancy'] > -1:
self.info('A mother has died carrying a baby!!')
self.die()
return
class RandomAccident(BaseAgent):
level = logging.DEBUG
def step(self):
rabbits_total = self.global_topology.number_of_nodes()
rabbits_alive = self.env.get('rabbits_alive', rabbits_total)
prob_death = self.env.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.env.network_agents:
if i.state['id'] == i.dead.id:
continue
r = random()
if r < prob_death:
self.debug('I killed a rabbit: {}'.format(i.id))
rabbits_alive = self.env['rabbits_alive'] = rabbits_alive -1
self.log('Rabbits alive: {}'.format(self.env['rabbits_alive']))
i.set_state(i.dead)
self.log('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
if self.count_agents(state_id=RabbitModel.dead.id) == self.global_topology.number_of_nodes():
self.die()

View File

@@ -0,0 +1,23 @@
---
load_module: rabbit_agents
name: rabbits_example
max_time: 500
interval: 1
seed: MySeed
agent_type: RabbitModel
environment_agents:
- agent_type: RandomAccident
environment_params:
prob_death: 0.001
default_state:
mating_prob: 0.01
topology:
nodes:
- id: 1
state:
gender: female
- id: 0
state:
gender: male
directed: true
links: []

View File

@@ -1,6 +1,6 @@
---
name: torvalds_example
max_time: 1
max_time: 10
interval: 2
agent_type: CounterModel
default_state:
@@ -11,4 +11,4 @@ states:
Torvalds:
skill_level: 'God'
balkian:
skill_level: 'developer'
skill_level: 'developer'

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@@ -1,596 +0,0 @@
from nxsim import BaseNetworkAgent
import numpy as np
import random
import settings
settings.init()
##############################
# Variables initialization #
##############################
def init():
global networkStatus
networkStatus = {} # Dict that will contain the status of every agent in the network
sentimentCorrelationNodeArray=[]
for x in range(0, settings.number_of_nodes):
sentimentCorrelationNodeArray.append({'id':x})
# Initialize agent states. Let's assume everyone is normal.
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
####################
# Available models #
####################
class BaseBehaviour(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self._attrs = {}
@property
def attrs(self):
now = self.env.now
if now not in self._attrs:
self._attrs[now] = {}
return self._attrs[now]
@attrs.setter
def attrs(self, value):
self._attrs[self.env.now] = value
def run(self):
while True:
self.step(self.env.now)
yield self.env.timeout(settings.timeout)
def step(self, now):
networkStatus['agent_%s'% self.id] = self.to_json()
def to_json(self):
final = {}
for stamp, attrs in self._attrs.items():
for a in attrs:
if a not in final:
final[a] = {}
final[a][stamp] = attrs[a]
return final
class ControlModelM2(BaseBehaviour):
#Init infected
init_states[random.randint(0,settings.number_of_nodes-1)] = {'id':1}
init_states[random.randint(0,settings.number_of_nodes-1)] = {'id':1}
# Init beacons
init_states[random.randint(0, settings.number_of_nodes-1)] = {'id': 4}
init_states[random.randint(0, settings.number_of_nodes-1)] = {'id': 4}
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.prob_neutral_making_denier = np.random.normal(settings.prob_neutral_making_denier, settings.standard_variance)
self.prob_infect = np.random.normal(settings.prob_infect, settings.standard_variance)
self.prob_cured_healing_infected = np.random.normal(settings.prob_cured_healing_infected, settings.standard_variance)
self.prob_cured_vaccinate_neutral = np.random.normal(settings.prob_cured_vaccinate_neutral, settings.standard_variance)
self.prob_vaccinated_healing_infected = np.random.normal(settings.prob_vaccinated_healing_infected, settings.standard_variance)
self.prob_vaccinated_vaccinate_neutral = np.random.normal(settings.prob_vaccinated_vaccinate_neutral, settings.standard_variance)
self.prob_generate_anti_rumor = np.random.normal(settings.prob_generate_anti_rumor, settings.standard_variance)
def step(self, now):
if self.state['id'] == 0: #Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: #Infected
self.infected_behaviour()
elif self.state['id'] == 2: #Cured
self.cured_behaviour()
elif self.state['id'] == 3: #Vaccinated
self.vaccinated_behaviour()
elif self.state['id'] == 4: #Beacon-off
self.beacon_off_behaviour()
elif self.state['id'] == 5: #Beacon-on
self.beacon_on_behaviour()
self.attrs['status'] = self.state['id']
super().step(now)
def neutral_behaviour(self):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors)>0:
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
def cured_behaviour(self):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
def beacon_off_behaviour(self):
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
self.state['id'] == 5 #Beacon on
def beacon_on_behaviour(self):
# Cure (M2 feature added)
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
class SpreadModelM2(BaseBehaviour):
init_states[random.randint(0,settings.number_of_nodes)] = {'id':1}
init_states[random.randint(0,settings.number_of_nodes)] = {'id':1}
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.prob_neutral_making_denier = np.random.normal(settings.prob_neutral_making_denier, settings.standard_variance)
self.prob_infect = np.random.normal(settings.prob_infect, settings.standard_variance)
self.prob_cured_healing_infected = np.random.normal(settings.prob_cured_healing_infected, settings.standard_variance)
self.prob_cured_vaccinate_neutral = np.random.normal(settings.prob_cured_vaccinate_neutral, settings.standard_variance)
self.prob_vaccinated_healing_infected = np.random.normal(settings.prob_vaccinated_healing_infected, settings.standard_variance)
self.prob_vaccinated_vaccinate_neutral = np.random.normal(settings.prob_vaccinated_vaccinate_neutral, settings.standard_variance)
self.prob_generate_anti_rumor = np.random.normal(settings.prob_generate_anti_rumor, settings.standard_variance)
def step(self, now):
if self.state['id'] == 0: #Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: #Infected
self.infected_behaviour()
elif self.state['id'] == 2: #Cured
self.cured_behaviour()
elif self.state['id'] == 3: #Vaccinated
self.vaccinated_behaviour()
self.attrs['status'] = self.state['id']
super().step(now)
def neutral_behaviour(self):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors)>0:
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
def cured_behaviour(self):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
class SISaModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.neutral_discontent_spon_prob = np.random.normal(settings.neutral_discontent_spon_prob, settings.standard_variance)
self.neutral_discontent_infected_prob = np.random.normal(settings.neutral_discontent_infected_prob,settings.standard_variance)
self.neutral_content_spon_prob = np.random.normal(settings.neutral_content_spon_prob,settings.standard_variance)
self.neutral_content_infected_prob = np.random.normal(settings.neutral_content_infected_prob,settings.standard_variance)
self.discontent_neutral = np.random.normal(settings.discontent_neutral,settings.standard_variance)
self.discontent_content = np.random.normal(settings.discontent_content,settings.variance_d_c)
self.content_discontent = np.random.normal(settings.content_discontent,settings.variance_c_d)
self.content_neutral = np.random.normal(settings.content_neutral,settings.standard_variance)
def step(self, now):
if self.state['id'] == 0:
self.neutral_behaviour()
if self.state['id'] == 1:
self.discontent_behaviour()
if self.state['id'] == 2:
self.content_behaviour()
self.attrs['status'] = self.state['id']
super().step(now)
def neutral_behaviour(self):
#Spontaneus effects
if random.random() < self.neutral_discontent_spon_prob:
self.state['id'] = 1
if random.random() < self.neutral_content_spon_prob:
self.state['id'] = 2
#Infected
discontent_neighbors = self.get_neighboring_agents(state_id=1)
if random.random() < len(discontent_neighbors)*self.neutral_discontent_infected_prob:
self.state['id'] = 1
content_neighbors = self.get_neighboring_agents(state_id=2)
if random.random() < len(content_neighbors)*self.neutral_content_infected_prob:
self.state['id'] = 2
def discontent_behaviour(self):
#Healing
if random.random() < self.discontent_neutral:
self.state['id'] = 0
#Superinfected
content_neighbors = self.get_neighboring_agents(state_id=2)
if random.random() < len(content_neighbors)*self.discontent_content:
self.state['id'] = 2
def content_behaviour(self):
#Healing
if random.random() < self.content_neutral:
self.state['id'] = 0
#Superinfected
discontent_neighbors = self.get_neighboring_agents(state_id=1)
if random.random() < len(discontent_neighbors)*self.content_discontent:
self.state['id'] = 1
class BigMarketModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.enterprises = settings.enterprises
self.type = ""
self.number_of_enterprises = len(settings.enterprises)
if self.id < self.number_of_enterprises: #Enterprises
self.state['id']=self.id
self.type="Enterprise"
self.tweet_probability = settings.tweet_probability_enterprises[self.id]
else: #normal users
self.state['id']=self.number_of_enterprises
self.type="User"
self.tweet_probability = settings.tweet_probability_users
self.tweet_relevant_probability = settings.tweet_relevant_probability
self.tweet_probability_about = settings.tweet_probability_about #List
self.sentiment_about = settings.sentiment_about #List
def step(self, now):
if(self.id < self.number_of_enterprises): # Ennterprise
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
for i in range(self.number_of_enterprises): # So that it never is set to 0 if there are not changes (logs)
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
super().step(now)
def enterpriseBehaviour(self):
if random.random()< self.tweet_probability: #Tweets
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodes neighbour users
for x in aware_neighbors:
if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 #Increments for enterprise
else:
x.sentiment_about[self.id] -= 0.1 #Decrements for enterprise
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id]< -1:
x.sentiment_about[self.id] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
def userBehaviour(self):
if random.random() < self.tweet_probability: #Tweets
if random.random() < self.tweet_relevant_probability: #Tweets something relevant
#Tweet probability per enterprise
for i in range(self.number_of_enterprises):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
#The condition is fulfilled, sentiments are evaluated towards that enterprise
if self.sentiment_about[i] < 0:
#NEGATIVO
self.userTweets("negative",i)
elif self.sentiment_about[i] == 0:
#NEUTRO
pass
else:
#POSITIVO
self.userTweets("positive",i)
def userTweets(self,sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodes neighbours users
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[enterprise]] = x.sentiment_about[enterprise]
class SentimentCorrelationModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = settings.outside_effects_prob
self.anger_prob = settings.anger_prob
self.joy_prob = settings.joy_prob
self.sadness_prob = settings.sadness_prob
self.disgust_prob = settings.disgust_prob
self.time_awareness=[]
for i in range(4): #In this model we have 4 sentiments
self.time_awareness.append(0) #0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self, now):
self.behaviour()
super().step(now)
def behaviour(self):
angry_neighbors_1_time_step=[]
joyful_neighbors_1_time_step=[]
sad_neighbors_1_time_step=[]
disgusted_neighbors_1_time_step=[]
angry_neighbors = self.get_neighboring_agents(state_id=1)
for x in angry_neighbors:
if x.time_awareness[0] > (self.env.now-500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
for x in joyful_neighbors:
if x.time_awareness[1] > (self.env.now-500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
for x in sad_neighbors:
if x.time_awareness[2] > (self.env.now-500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
for x in disgusted_neighbors:
if x.time_awareness[3] > (self.env.now-500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob= settings.anger_prob+(len(angry_neighbors_1_time_step)*settings.anger_prob)
joy_prob= settings.joy_prob+(len(joyful_neighbors_1_time_step)*settings.joy_prob)
sadness_prob = settings.sadness_prob+(len(sad_neighbors_1_time_step)*settings.sadness_prob)
disgust_prob = settings.disgust_prob+(len(disgusted_neighbors_1_time_step)*settings.disgust_prob)
outside_effects_prob= settings.outside_effects_prob
num = random.random()
if(num<outside_effects_prob):
self.state['id'] = random.randint(1,4)
sentimentCorrelationNodeArray[self.id][self.env.now]=self.state['id'] #It is stored when it has been infected for the dynamic network
self.time_awareness[self.state['id']-1] = self.env.now
self.attrs['sentiment'] = self.state['id']
if(num<anger_prob):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
self.state['id'] = 2
sentimentCorrelationNodeArray[self.id][self.env.now]=2
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
self.state['id'] = 3
sentimentCorrelationNodeArray[self.id][self.env.now]=3
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
self.state['id'] = 4
sentimentCorrelationNodeArray[self.id][self.env.now]=4
self.time_awareness[self.state['id']-1] = self.env.now
self.attrs['sentiment'] = self.state['id']
class BassModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self, now):
self.behaviour()
super().step(now)
def behaviour(self):
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
return
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
class IndependentCascadeModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
self.time_awareness = 0
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self,now):
self.behaviour()
super().step(now)
def behaviour(self):
aware_neighbors_1_time_step=[]
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness = self.env.now #To know when they have been infected
else:
pass
self.attrs['status'] = self.state['id']
return
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
for x in aware_neighbors:
if x.time_awareness == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
return

File diff suppressed because one or more lines are too long

View File

@@ -1,6 +1,7 @@
nxsim
simpy
networkx
networkx>=2.0
numpy
matplotlib
pyyaml
pandas

4
setup.cfg Normal file
View File

@@ -0,0 +1,4 @@
[aliases]
test=pytest
[tool:pytest]
addopts = --verbose

View File

@@ -1,20 +1,21 @@
import pip
import os
from setuptools import setup
# parse_requirements() returns generator of pip.req.InstallRequirement objects
from pip.req import parse_requirements
from soil import __version__
try:
install_reqs = parse_requirements(
"requirements.txt", session=pip.download.PipSession())
test_reqs = parse_requirements(
"test-requirements.txt", session=pip.download.PipSession())
except AttributeError:
install_reqs = parse_requirements("requirements.txt")
test_reqs = parse_requirements("test-requirements.txt")
install_reqs = [str(ir.req) for ir in install_reqs]
test_reqs = [str(ir.req) for ir in test_reqs]
with open(os.path.join('soil', 'VERSION')) as f:
__version__ = f.readlines()[0].strip()
assert __version__
def parse_requirements(filename):
""" load requirements from a pip requirements file """
with open(filename, 'r') as f:
lineiter = list(line.strip() for line in f)
return [line for line in lineiter if line and not line.startswith("#")]
install_reqs = parse_requirements("requirements.txt")
test_reqs = parse_requirements("test-requirements.txt")
setup(
@@ -28,12 +29,26 @@ setup(
download_url='https://github.com/gsi-upm/soil/archive/{}.tar.gz'.format(
__version__),
keywords=['agent', 'social', 'simulator'],
classifiers=[],
classifiers=[
'Development Status :: 5 - Production/Stable',
'Environment :: Console',
'Intended Audience :: End Users/Desktop',
'Intended Audience :: Developers',
'License :: OSI Approved :: Apache Software License',
'Operating System :: MacOS :: MacOS X',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'Programming Language :: Python :: 3'],
install_requires=install_reqs,
extras_require={
'web': ['tornado']
},
tests_require=test_reqs,
setup_requires=['pytest-runner', ],
include_package_data=True,
entry_points={
'console_scripts':
['soil = soil.__init__:main']
['soil = soil.__init__:main',
'soil-web = soil.web.__init__:main']
})

View File

@@ -1,63 +0,0 @@
---
name: ControlModelM2_sim
max_time: 50
num_trials: 1
timeout: 2
network_params:
generator: barabasi_albert_graph
n: 100
m: 2
agent_distribution:
- agent_type: ControlModelM2
weight: 0.1
state:
id: 1
- agent_type: ControlModelM2
weight: 0.9
state:
id: 0
environment_params:
prob_neutral_making_denier: 0.035
prob_infect: 0.075
prob_cured_healing_infected: 0.035
prob_cured_vaccinate_neutral: 0.035
prob_vaccinated_healing_infected: 0.035
prob_vaccinated_vaccinate_neutral: 0.035
prob_generate_anti_rumor: 0.035
standard_variance: 0.055
---
name: SISA_sm
max_time: 50
num_trials: 2
timeout: 2
network_params:
generator: erdos_renyi_graph
n: 10000
p: 0.05
#other_agents:
# - agent_type: DrawingAgent
agent_distribution:
- agent_type: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
weight: 1
state:
id: neutral
- agent_type: SISaModel
weight: 1
state:
id: discontent
environment_params:
neutral_discontent_spon_prob: 0.04
neutral_discontent_infected_prob: 0.04
neutral_content_spon_prob: 0.18
neutral_content_infected_prob: 0.02
discontent_neutral: 0.13
discontent_content: 0.07
variance_d_c: 0.02
content_discontent: 0.009
variance_c_d: 0.003
content_neutral: 0.088
standard_variance: 0.055

1
soil/VERSION Normal file
View File

@@ -0,0 +1 @@
0.13.4

View File

@@ -1,8 +1,10 @@
import importlib
import sys
import os
import pdb
import logging
__version__ = "0.9.2"
from .version import __version__
try:
basestring
@@ -10,16 +12,18 @@ except NameError:
basestring = str
from . import agents
from . import simulation
from . import environment
from .simulation import *
from .environment import Environment
from . import utils
from . import settings
from . import analysis
def main():
import argparse
from . import simulation
logging.basicConfig(level=logging.INFO)
logging.info('Running SOIL version: {}'.format(__version__))
parser = argparse.ArgumentParser(description='Run a SOIL simulation')
parser.add_argument('file', type=str,
nargs="?",
@@ -27,15 +31,45 @@ def main():
help='python module containing the simulation configuration.')
parser.add_argument('--module', '-m', type=str,
help='file containing the code of any custom agents.')
parser.add_argument('--dry-run', '--dry', action='store_true',
help='Do not store the results of the simulation.')
parser.add_argument('--pdb', action='store_true',
help='Use a pdb console in case of exception.')
parser.add_argument('--graph', '-g', action='store_true',
help='Dump GEXF graph. Defaults to false.')
parser.add_argument('--csv', action='store_true',
help='Dump history in CSV format. Defaults to false.')
parser.add_argument('--output', '-o', type=str, default="soil_output",
help='folder to write results to. It defaults to the current directory.')
parser.add_argument('--synchronous', action='store_true',
help='Run trials serially and synchronously instead of in parallel. Defaults to false.')
args = parser.parse_args()
if args.module:
if os.getcwd() not in sys.path:
sys.path.append(os.getcwd())
if args.module:
importlib.import_module(args.module)
print('Loading config file: {}'.format(args.file))
simulation.run_from_config(args.file)
logging.info('Loading config file: {}'.format(args.file))
try:
dump = []
if not args.dry_run:
if args.csv:
dump.append('csv')
if args.graph:
dump.append('gexf')
simulation.run_from_config(args.file,
dry_run=args.dry_run,
dump=dump,
parallel=(not args.synchronous),
results_dir=args.output)
except Exception:
if args.pdb:
pdb.post_mortem()
else:
raise
if __name__ == '__main__':

4
soil/__main__.py Normal file
View File

@@ -0,0 +1,4 @@
from . import main
if __name__ == '__main__':
main()

View File

@@ -1,123 +0,0 @@
import nxsim
from collections import OrderedDict
from copy import deepcopy
import json
from functools import wraps
class BaseAgent(nxsim.BaseAgent):
"""
A special simpy BaseAgent that keeps track of its state history.
"""
def __init__(self, *args, **kwargs):
self._history = OrderedDict()
self._neighbors = None
super().__init__(*args, **kwargs)
self._history[None] = deepcopy(self.state)
@property
def now(self):
try:
return self.env.now
except AttributeError:
# No environment
return None
def run(self):
while True:
res = self.step()
self._history[self.env.now] = deepcopy(self.state)
yield res or self.env.timeout(self.env.interval)
def step(self):
pass
def to_json(self):
return json.dumps(self._history)
class NetworkAgent(BaseAgent, nxsim.BaseNetworkAgent):
def count_agents(self, state_id=None, limit_neighbors=False):
if limit_neighbors:
agents = self.global_topology.neighbors(self.id)
else:
agents = self.global_topology.nodes()
count = 0
for agent in agents:
if state_id and state_id != self.global_topology.node[agent]['agent'].state['id']:
continue
count += 1
return count
def count_neighboring_agents(self, state_id=None):
return self.count_agents(state_id, limit_neighbors=True)
def state(func):
@wraps(func)
def func_wrapper(self):
when = None
next_state = func(self)
try:
next_state, when = next_state
except TypeError:
pass
if next_state:
try:
self.state['id'] = next_state.id
except AttributeError:
raise NotImplemented('State id %s is not valid.' % next_state)
return when
func_wrapper.id = func.__name__
func_wrapper.is_default = False
return func_wrapper
def default_state(func):
func.is_default = True
return func
class MetaFSM(type):
def __init__(cls, name, bases, nmspc):
super(MetaFSM, cls).__init__(name, bases, nmspc)
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i.states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for name, func in nmspc.items():
if hasattr(func, 'id'):
if func.is_default:
default_state = func
states[func.id] = func
cls.default_state = default_state
cls.states = states
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
if 'id' not in self.state:
self.state['id'] = self.default_state.id
def step(self):
if 'id' in self.state:
next_state = self.state['id']
elif self.default_state:
next_state = self.default_state.id
else:
raise Exception('{} has no valid state id or default state'.format(self))
if next_state not in self.states:
raise Exception('{} is not a valid id for {}'.format(next_state, self))
self.states[next_state](self)

View File

@@ -1,8 +1,8 @@
import random
from . import NetworkAgent
from . import BaseAgent
class BassModel(NetworkAgent):
class BassModel(BaseAgent):
"""
Settings:
innovation_prob

View File

@@ -1,8 +1,8 @@
import random
from . import NetworkAgent
from . import BaseAgent
class BigMarketModel(NetworkAgent):
class BigMarketModel(BaseAgent):
"""
Settings:
Names:

View File

@@ -1,7 +1,7 @@
from . import NetworkAgent
from . import BaseAgent
class CounterModel(NetworkAgent):
class CounterModel(BaseAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
@@ -9,14 +9,14 @@ class CounterModel(NetworkAgent):
def step(self):
# Outside effects
total = len(self.get_all_agents())
neighbors = len(self.get_neighboring_agents())
self.state['times'] = self.state.get('times', 0) + 1
self.state['neighbors'] = neighbors
self.state['total'] = total
total = len(list(self.get_all_agents()))
neighbors = len(list(self.get_neighboring_agents()))
self['times'] = self.get('times', 0) + 1
self['neighbors'] = neighbors
self['total'] = total
class AggregatedCounter(NetworkAgent):
class AggregatedCounter(BaseAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
@@ -24,8 +24,9 @@ class AggregatedCounter(NetworkAgent):
def step(self):
# Outside effects
total = len(self.get_all_agents())
neighbors = len(self.get_neighboring_agents())
self.state['times'] = self.state.get('times', 0) + 1
self.state['neighbors'] = self.state.get('neighbors', 0) + neighbors
self.state['total'] = self.state.get('total', 0) + total
total = len(list(self.get_all_agents()))
neighbors = len(list(self.get_neighboring_agents()))
self['times'] = self.get('times', 0) + 1
self['neighbors'] = self.get('neighbors', 0) + neighbors
self['total'] = total = self.get('total', 0) + total
self.debug('Running for step: {}. Total: {}'.format(self.now, total))

View File

@@ -15,4 +15,4 @@ class DrawingAgent(BaseAgent):
# Outside effects
f = plt.figure()
nx.draw(self.env.G, node_size=10, width=0.2, pos=nx.spring_layout(self.env.G, scale=100), ax=f.add_subplot(111))
f.savefig(os.path.join(self.env.sim().dir_path, "graph-"+str(self.env.now)+".png"))
f.savefig(os.path.join(self.env.get_path(), "graph-"+str(self.env.now)+".png"))

View File

@@ -1,9 +1,9 @@
import random
import numpy as np
from . import NetworkAgent
from . import BaseAgent
class SpreadModelM2(NetworkAgent):
class SpreadModelM2(BaseAgent):
"""
Settings:
prob_neutral_making_denier
@@ -104,7 +104,7 @@ class SpreadModelM2(NetworkAgent):
neighbor.state['id'] = 2 # Cured
class ControlModelM2(NetworkAgent):
class ControlModelM2(BaseAgent):
"""
Settings:
prob_neutral_making_denier

View File

@@ -10,7 +10,7 @@ class SISaModel(FSM):
neutral_discontent_infected_prob
neutral_content_spong_prob
neutral_content_spon_prob
neutral_content_infected_prob
@@ -29,27 +29,27 @@ class SISaModel(FSM):
standard_variance
"""
def __init__(self, environment=None, agent_id=0, state=()):
def __init__(self, environment, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.neutral_discontent_spon_prob = np.random.normal(environment.environment_params['neutral_discontent_spon_prob'],
environment.environment_params['standard_variance'])
self.neutral_discontent_infected_prob = np.random.normal(environment.environment_params['neutral_discontent_infected_prob'],
environment.environment_params['standard_variance'])
self.neutral_content_spon_prob = np.random.normal(environment.environment_params['neutral_content_spon_prob'],
environment.environment_params['standard_variance'])
self.neutral_content_infected_prob = np.random.normal(environment.environment_params['neutral_content_infected_prob'],
environment.environment_params['standard_variance'])
self.neutral_discontent_spon_prob = np.random.normal(self.env['neutral_discontent_spon_prob'],
self.env['standard_variance'])
self.neutral_discontent_infected_prob = np.random.normal(self.env['neutral_discontent_infected_prob'],
self.env['standard_variance'])
self.neutral_content_spon_prob = np.random.normal(self.env['neutral_content_spon_prob'],
self.env['standard_variance'])
self.neutral_content_infected_prob = np.random.normal(self.env['neutral_content_infected_prob'],
self.env['standard_variance'])
self.discontent_neutral = np.random.normal(environment.environment_params['discontent_neutral'],
environment.environment_params['standard_variance'])
self.discontent_content = np.random.normal(environment.environment_params['discontent_content'],
environment.environment_params['variance_d_c'])
self.discontent_neutral = np.random.normal(self.env['discontent_neutral'],
self.env['standard_variance'])
self.discontent_content = np.random.normal(self.env['discontent_content'],
self.env['variance_d_c'])
self.content_discontent = np.random.normal(environment.environment_params['content_discontent'],
environment.environment_params['variance_c_d'])
self.content_neutral = np.random.normal(environment.environment_params['content_neutral'],
environment.environment_params['standard_variance'])
self.content_discontent = np.random.normal(self.env['content_discontent'],
self.env['variance_c_d'])
self.content_neutral = np.random.normal(self.env['content_neutral'],
self.env['standard_variance'])
@state
def neutral(self):

View File

@@ -1,8 +1,8 @@
import random
from . import NetworkAgent
from . import BaseAgent
class SentimentCorrelationModel(NetworkAgent):
class SentimentCorrelationModel(BaseAgent):
"""
Settings:
outside_effects_prob
@@ -16,7 +16,7 @@ class SentimentCorrelationModel(NetworkAgent):
disgust_prob
"""
def __init__(self, environment=None, agent_id=0, state=()):
def __init__(self, environment, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
self.anger_prob = environment.environment_params['anger_prob']

View File

@@ -6,49 +6,106 @@
import nxsim
import logging
from collections import OrderedDict
from copy import deepcopy
from functools import partial
import json
from functools import wraps
agent_types = {}
from .. import utils, history
class MetaAgent(type):
def __init__(cls, name, bases, nmspc):
super(MetaAgent, cls).__init__(name, bases, nmspc)
agent_types[name] = cls
class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
class BaseAgent(nxsim.BaseAgent):
"""
A special simpy BaseAgent that keeps track of its state history.
"""
def __init__(self, *args, **kwargs):
self._history = OrderedDict()
defaults = {}
def __init__(self, environment, agent_id, state=None,
name='network_process', interval=None, **state_params):
# Check for REQUIRED arguments
assert environment is not None, TypeError('__init__ missing 1 required keyword argument: \'environment\'. '
'Cannot be NoneType.')
# Initialize agent parameters
self.id = agent_id
self.name = name
self.state_params = state_params
# Register agent to environment
self.env = environment
self._neighbors = None
super().__init__(*args, **kwargs)
self.alive = True
real_state = deepcopy(self.defaults)
real_state.update(state or {})
self.state = real_state
self.interval = interval
if not hasattr(self, 'level'):
self.level = logging.DEBUG
self.logger = logging.getLogger('{}-Agent-{}'.format(self.env.name,
self.id))
self.logger.setLevel(self.level)
# initialize every time an instance of the agent is created
self.action = self.env.process(self.run())
@property
def state(self):
'''
Return the agent itself, which behaves as a dictionary.
Changes made to `agent.state` will be reflected in the history.
This method shouldn't be used, but is kept here for backwards compatibility.
'''
return self
@state.setter
def state(self, value):
self._state = {}
for k, v in value.items():
self[k] = v
@property
def global_topology(self):
return self.env.G
@property
def environment_params(self):
return self.env.environment_params
@environment_params.setter
def environment_params(self, value):
self.env.environment_params = value
def __getitem__(self, key):
if isinstance(key, tuple):
k, t_step = key
if k is not None:
if t_step is not None:
return self._history[t_step][k]
else:
return {tt: tv.get(k, None) for tt, tv in self._history.items()}
else:
return self._history[t_step]
return self.state[key]
key, t_step = key
k = history.Key(key=key, t_step=t_step, agent_id=self.id)
return self.env[k]
return self._state.get(key, None)
def __delitem__(self, key):
self._state[key] = None
def __contains__(self, key):
return key in self._state
def __setitem__(self, key, value):
self.state[key] = value
self._state[key] = value
k = history.Key(t_step=self.now,
agent_id=self.id,
key=key)
self.env[k] = value
def save_state(self):
self._history[self.now] = deepcopy(self.state)
def items(self):
return self._state.items()
def get(self, key, default=None):
return self[key] if key in self else default
@property
def now(self):
@@ -59,19 +116,24 @@ class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
return None
def run(self):
while True:
if self.interval is not None:
interval = self.interval
elif 'interval' in self:
interval = self['interval']
else:
interval = self.env.interval
while self.alive:
res = self.step()
yield res or self.env.timeout(self.env.interval)
yield res or self.env.timeout(interval)
def die(self, remove=False):
self.alive = False
if remove:
super().die()
def step(self):
pass
def to_json(self):
return json.dumps(self._history)
class NetworkAgent(BaseAgent, nxsim.BaseNetworkAgent):
def count_agents(self, state_id=None, limit_neighbors=False):
if limit_neighbors:
agents = self.global_topology.neighbors(self.id)
@@ -79,30 +141,93 @@ class NetworkAgent(BaseAgent, nxsim.BaseNetworkAgent):
agents = self.global_topology.nodes()
count = 0
for agent in agents:
if state_id and state_id != self.global_topology.node[agent]['agent'].state['id']:
if state_id and state_id != self.global_topology.node[agent]['agent']['id']:
continue
count += 1
return count
def count_neighboring_agents(self, state_id=None):
return self.count_agents(state_id, limit_neighbors=True)
return len(super().get_agents(state_id, limit_neighbors=True))
def get_agents(self, state_id=None, agent_type=None, limit_neighbors=False, iterator=False, **kwargs):
agents = self.env.agents
if limit_neighbors:
agents = super().get_agents(state_id, limit_neighbors)
def matches_all(agent):
if state_id is not None:
if agent.state.get('id', None) != state_id:
return False
if agent_type is not None:
if type(agent) != agent_type:
return False
state = agent.state
for k, v in kwargs.items():
if state.get(k, None) != v:
return False
return True
f = filter(matches_all, agents)
if iterator:
return f
return list(f)
def log(self, message, *args, level=logging.INFO, **kwargs):
message = message + " ".join(str(i) for i in args)
message = "\t@{:>5}:\t{}".format(self.now, message)
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
extra = {}
extra['now'] = self.now
extra['id'] = self.id
return self.logger.log(level, message, extra=extra)
def debug(self, *args, **kwargs):
return self.log(*args, level=logging.DEBUG, **kwargs)
def info(self, *args, **kwargs):
return self.log(*args, level=logging.INFO, **kwargs)
def __getstate__(self):
'''
Serializing an agent will lose all its running information (you cannot
serialize an iterator), but it keeps the state and link to the environment,
so it can be used for inspection and dumping to a file
'''
state = {}
state['id'] = self.id
state['environment'] = self.env
state['_state'] = self._state
return state
def __setstate__(self, state):
'''
Get back a serialized agent and try to re-compose it
'''
self.id = state['id']
self._state = state['_state']
self.env = state['environment']
def state(func):
'''
A state function should return either a state id, or a tuple (state_id, when)
The default value for state_id is the current state id.
The default value for when is the interval defined in the nevironment.
'''
@wraps(func)
def func_wrapper(self):
when = None
next_state = func(self)
when = None
if next_state is None:
return when
try:
next_state, when = next_state
except TypeError:
except (ValueError, TypeError):
pass
if next_state:
try:
self.state['id'] = next_state.id
except AttributeError:
raise NotImplemented('State id %s is not valid.' % next_state)
self.set_state(next_state)
return when
func_wrapper.id = func.__name__
@@ -115,7 +240,7 @@ def default_state(func):
return func
class MetaFSM(MetaAgent):
class MetaFSM(type):
def __init__(cls, name, bases, nmspc):
super(MetaFSM, cls).__init__(name, bases, nmspc)
states = {}
@@ -142,11 +267,13 @@ class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
if 'id' not in self.state:
self.state['id'] = self.default_state.id
if not self.default_state:
raise ValueError('No default state specified for {}'.format(self.id))
self['id'] = self.default_state.id
def step(self):
if 'id' in self.state:
next_state = self.state['id']
next_state = self['id']
elif self.default_state:
next_state = self.default_state.id
else:
@@ -155,6 +282,141 @@ class FSM(BaseAgent, metaclass=MetaFSM):
raise Exception('{} is not a valid id for {}'.format(next_state, self))
self.states[next_state](self)
def set_state(self, state):
if hasattr(state, 'id'):
state = state.id
if state not in self.states:
raise ValueError('{} is not a valid state'.format(state))
self['id'] = state
return state
def prob(prob=1):
'''
A true/False uniform distribution with a given probability.
To be used like this:
.. code-block:: python
if prob(0.3):
do_something()
'''
r = random.random()
return r < prob
def calculate_distribution(network_agents=None,
agent_type=None):
'''
Calculate the threshold values (thresholds for a uniform distribution)
of an agent distribution given the weights of each agent type.
The input has this form: ::
[
{'agent_type': 'agent_type_1',
'weight': 0.2,
'state': {
'id': 0
}
},
{'agent_type': 'agent_type_2',
'weight': 0.8,
'state': {
'id': 1
}
}
]
In this example, 20% of the nodes will be marked as type
'agent_type_1'.
'''
if network_agents:
network_agents = deepcopy(network_agents)
elif agent_type:
network_agents = [{'agent_type': agent_type}]
else:
return []
# Calculate the thresholds
total = sum(x.get('weight', 1) for x in network_agents)
acc = 0
for v in network_agents:
upper = acc + (v.get('weight', 1)/total)
v['threshold'] = [acc, upper]
acc = upper
return network_agents
def serialize_type(agent_type, known_modules=[], **kwargs):
if isinstance(agent_type, str):
return agent_type
known_modules += ['soil.agents']
return utils.serialize(agent_type, known_modules=known_modules, **kwargs)[1] # Get the name of the class
def serialize_distribution(network_agents, known_modules=[]):
'''
When serializing an agent distribution, remove the thresholds, in order
to avoid cluttering the YAML definition file.
'''
d = deepcopy(list(network_agents))
for v in d:
if 'threshold' in v:
del v['threshold']
v['agent_type'] = serialize_type(v['agent_type'],
known_modules=known_modules)
return d
def deserialize_type(agent_type, known_modules=[]):
if not isinstance(agent_type, str):
return agent_type
known = known_modules + ['soil.agents', 'soil.agents.custom' ]
agent_type = utils.deserializer(agent_type, known_modules=known)
return agent_type
def deserialize_distribution(ind, **kwargs):
d = deepcopy(ind)
for v in d:
v['agent_type'] = deserialize_type(v['agent_type'], **kwargs)
return d
def _validate_states(states, topology):
'''Validate states to avoid ignoring states during initialization'''
states = states or []
if isinstance(states, dict):
for x in states:
assert x in topology.node
else:
assert len(states) <= len(topology)
return states
def _convert_agent_types(ind, to_string=False, **kwargs):
'''Convenience method to allow specifying agents by class or class name.'''
if to_string:
return serialize_distribution(ind, **kwargs)
return deserialize_distribution(ind, **kwargs)
def _agent_from_distribution(distribution, value=-1):
"""Used in the initialization of agents given an agent distribution."""
if value < 0:
value = random.random()
for d in distribution:
threshold = d['threshold']
if value >= threshold[0] and value < threshold[1]:
state = {}
if 'state' in d:
state = deepcopy(d['state'])
return d['agent_type'], state
raise Exception('Distribution for value {} not found in: {}'.format(value, distribution))
from .BassModel import *
from .BigMarketModel import *

View File

@@ -4,20 +4,163 @@ import glob
import yaml
from os.path import join
from . import utils, history
def get_data(pattern, process=True, attributes=None):
def read_data(*args, group=False, **kwargs):
iterable = _read_data(*args, **kwargs)
if group:
return group_trials(iterable)
else:
return list(iterable)
def _read_data(pattern, *args, from_csv=False, process_args=None, **kwargs):
if not process_args:
process_args = {}
for folder in glob.glob(pattern):
config_file = glob.glob(join(folder, '*.yml'))[0]
config = yaml.load(open(config_file))
for trial_data in sorted(glob.glob(join(folder, '*.environment.csv'))):
df = pd.read_csv(trial_data)
if process:
if attributes is not None:
df = df[df['attribute'].isin(attributes)]
df = df.pivot_table(values='attribute', index='tstep', columns=['value'], aggfunc='count').fillna(0)
yield config_file, df, config
df = None
if from_csv:
for trial_data in sorted(glob.glob(join(folder,
'*.environment.csv'))):
df = read_csv(trial_data, **kwargs)
yield config_file, df, config
else:
for trial_data in sorted(glob.glob(join(folder, '*.db.sqlite'))):
df = read_sql(trial_data, **kwargs)
yield config_file, df, config
def read_sql(db, *args, **kwargs):
h = history.History(db, backup=False)
df = h.read_sql(*args, **kwargs)
return df
def read_csv(filename, keys=None, convert_types=False, **kwargs):
'''
Read a CSV in canonical form: ::
<agent_id, t_step, key, value, value_type>
'''
df = pd.read_csv(filename)
if convert_types:
df = convert_types_slow(df)
if keys:
df = df[df['key'].isin(keys)]
df = process_one(df)
return df
def convert_row(row):
row['value'] = utils.deserialize(row['value_type'], row['value'])
return row
def convert_types_slow(df):
'''This is a slow operation.'''
dtypes = get_types(df)
for k, v in dtypes.items():
t = df[df['key']==k]
t['value'] = t['value'].astype(v)
df = df.apply(convert_row, axis=1)
return df
def split_df(df):
'''
Split a dataframe in two dataframes: one with the history of agents,
and one with the environment history
'''
envmask = (df['agent_id'] == 'env')
n_env = envmask.sum()
if n_env == len(df):
return df, None
elif n_env == 0:
return None, df
agents, env = [x for _, x in df.groupby(envmask)]
return env, agents
def process(df, **kwargs):
'''
Process a dataframe in canonical form ``(t_step, agent_id, key, value, value_type)`` into
two dataframes with a column per key: one with the history of the agents, and one for the
history of the environment.
'''
env, agents = split_df(df)
return process_one(env, **kwargs), process_one(agents, **kwargs)
def get_types(df):
dtypes = df.groupby(by=['key'])['value_type'].unique()
return {k:v[0] for k,v in dtypes.iteritems()}
def process_one(df, *keys, columns=['key', 'agent_id'], values='value',
fill=True, index=['t_step',],
aggfunc='first', **kwargs):
'''
Process a dataframe in canonical form ``(t_step, agent_id, key, value, value_type)`` into
a dataframe with a column per key
'''
if df is None:
return df
if keys:
df = df[df['key'].isin(keys)]
df = df.pivot_table(values=values, index=index, columns=columns,
aggfunc=aggfunc, **kwargs)
if fill:
df = fillna(df)
return df
def get_count(df, *keys):
if keys:
df = df[list(keys)]
counts = pd.DataFrame()
for key in df.columns.levels[0]:
g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0)
for value, series in g.iteritems():
counts[key, value] = series
counts.columns = pd.MultiIndex.from_tuples(counts.columns)
return counts
def get_value(df, *keys, aggfunc='sum'):
if keys:
df = df[list(keys)]
return df.groupby(axis=1, level=0).agg(aggfunc, axis=1)
def plot_all(*args, **kwargs):
for config_file, df, config in sorted(get_data(*args, **kwargs)):
'''
Read all the trial data and plot the result of applying a function on them.
'''
dfs = do_all(*args, **kwargs)
ps = []
for line in dfs:
f, df, config = line
df.plot(title=config['name'])
ps.append(df)
return ps
def do_all(pattern, func, *keys, include_env=False, **kwargs):
for config_file, df, config in read_data(pattern, keys=keys):
p = func(df, *keys, **kwargs)
p.plot(title=config['name'])
yield config_file, p, config
def group_trials(trials, aggfunc=['mean', 'min', 'max', 'std']):
trials = list(trials)
trials = list(map(lambda x: x[1] if isinstance(x, tuple) else x, trials))
return pd.concat(trials).groupby(level=0).agg(aggfunc).reorder_levels([2, 0,1] ,axis=1)
def fillna(df):
new_df = df.ffill(axis=0)
return new_df

View File

@@ -1,14 +1,38 @@
import os
import sqlite3
import time
import csv
import weakref
from random import random
import random
import simpy
import tempfile
import pandas as pd
from copy import deepcopy
from networkx.readwrite import json_graph
import networkx as nx
import nxsim
from . import utils, agents, analysis, history
class SoilEnvironment(nxsim.NetworkEnvironment):
# These properties will be copied when pickling/unpickling the environment
_CONFIG_PROPS = [ 'name',
'states',
'default_state',
'interval',
'dry_run',
'dir_path',
]
class Environment(nxsim.NetworkEnvironment):
"""
The environment is key in a simulation. It contains the network topology,
a reference to network and environment agents, as well as the environment
params, which are used as shared state between agents.
The environment parameters and the state of every agent can be accessed
both by using the environment as a dictionary or with the environment's
:meth:`soil.environment.Environment.get` method.
"""
def __init__(self, name=None,
network_agents=None,
@@ -16,20 +40,33 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
states=None,
default_state=None,
interval=1,
seed=None,
dry_run=False,
dir_path=None,
topology=None,
*args, **kwargs):
self.name = name or 'UnnamedEnvironment'
self.states = deepcopy(states) or {}
if isinstance(states, list):
states = dict(enumerate(states))
self.states = deepcopy(states) if states else {}
self.default_state = deepcopy(default_state) or {}
super().__init__(*args, **kwargs)
if not topology:
topology = nx.Graph()
super().__init__(*args, topology=topology, **kwargs)
self._env_agents = {}
self._history = {}
self.dry_run = dry_run
self.interval = interval
self.logger = None
self.dir_path = dir_path or tempfile.mkdtemp('soil-env')
if not dry_run:
self.get_path()
self._history = history.History(name=self.name if not dry_run else None,
dir_path=self.dir_path)
# Add environment agents first, so their events get
# executed before network agents
self.environment_agents = environment_agents or []
self.network_agents = network_agents or []
self.process(self.save_state())
self['SEED'] = seed or time.time()
random.seed(self['SEED'])
@property
def agents(self):
@@ -39,7 +76,7 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
@property
def environment_agents(self):
for ref in self._env_agents.values():
yield ref()
yield ref
@environment_agents.setter
def environment_agents(self, environment_agents):
@@ -50,9 +87,8 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
atype = kwargs.pop('agent_type')
kwargs['agent_id'] = kwargs.get('agent_id', atype.__name__)
kwargs['state'] = kwargs.get('state', {})
a = atype(**kwargs,
environment=self)
self._env_agents[a.id] = weakref.ref(a)
a = atype(environment=self, **kwargs)
self._env_agents[a.id] = a
@property
def network_agents(self):
@@ -63,60 +99,126 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
@network_agents.setter
def network_agents(self, network_agents):
if not network_agents:
return
for ix in self.G.nodes():
i = ix
node = self.G.node[i]
v = random()
found = False
for d in network_agents:
threshold = d['threshold']
if v >= threshold[0] and v < threshold[1]:
agent = d['agent_type']
state = None
if 'state' in d:
state = deepcopy(d['state'])
else:
try:
state = self.states[i]
except (IndexError, KeyError):
state = deepcopy(self.default_state)
node['agent'] = agent(environment=self,
agent_id=i,
state=state)
found = True
break
assert found
self.init_agent(ix, agent_distribution=network_agents)
def init_agent(self, agent_id, agent_distribution):
node = self.G.nodes[agent_id]
init = False
state = dict(node)
agent_type = None
if 'agent_type' in self.states.get(agent_id, {}):
agent_type = self.states[agent_id]
elif 'agent_type' in node:
agent_type = node['agent_type']
elif 'agent_type' in self.default_state:
agent_type = self.default_state['agent_type']
if agent_type:
agent_type = agents.deserialize_type(agent_type)
else:
agent_type, state = agents._agent_from_distribution(agent_distribution)
return self.set_agent(agent_id, agent_type, state)
def set_agent(self, agent_id, agent_type, state=None):
node = self.G.nodes[agent_id]
defstate = deepcopy(self.default_state) or {}
defstate.update(self.states.get(agent_id, {}))
defstate.update(node.get('state', {}))
if state:
defstate.update(state)
state = defstate
a = agent_type(environment=self,
agent_id=agent_id,
state=state)
node['agent'] = a
return a
def add_node(self, agent_type, state=None):
agent_id = int(len(self.G.nodes()))
self.G.add_node(agent_id)
a = self.set_agent(agent_id, agent_type, state)
a['visible'] = True
return a
def add_edge(self, agent1, agent2, attrs=None):
if hasattr(agent1, 'id'):
agent1 = agent1.id
if hasattr(agent2, 'id'):
agent2 = agent2.id
return self.G.add_edge(agent1, agent2)
def run(self, *args, **kwargs):
self._save_state()
super().run(*args, **kwargs)
self._save_state()
self._history.flush_cache()
def _save_state(self):
for agent in self.agents:
agent.save_state()
self._history[self.now] = deepcopy(self.environment_params)
def _save_state(self, now=None):
# for agent in self.agents:
# agent.save_state()
utils.logger.debug('Saving state @{}'.format(self.now))
self._history.save_records(self.state_to_tuples(now=now))
def save_state(self):
while True:
'''
:DEPRECATED:
Periodically save the state of the environment and the agents.
'''
self._save_state()
while self.peek() != simpy.core.Infinity:
delay = max(self.peek() - self.now, self.interval)
utils.logger.debug('Step: {}'.format(self.now))
ev = self.event()
ev._ok = True
# Schedule the event with minimum priority so
# that it executes after all agents are done
self.schedule(ev, -1, self.interval)
# that it executes before all agents
self.schedule(ev, -999, delay)
yield ev
self._save_state()
def __getitem__(self, key):
if isinstance(key, tuple):
self._history.flush_cache()
return self._history[key]
return self.environment_params[key]
def __setitem__(self, key, value):
if isinstance(key, tuple):
k = history.Key(*key)
self._history.save_record(*k,
value=value)
return
self.environment_params[key] = value
self._history.save_record(agent_id='env',
t_step=self.now,
key=key,
value=value)
def __contains__(self, key):
return key in self.environment_params
def get(self, key, default=None):
'''
Get the value of an environment attribute in a
given point in the simulation (history).
If key is an attribute name, this method returns
the current value.
To get values at other times, use a
:meth: `soil.history.Key` tuple.
'''
return self[key] if key in self else default
def get_path(self, dir_path=None):
dir_path = dir_path or self.sim().dir_path
dir_path = dir_path or self.dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
try:
os.makedirs(dir_path)
except FileExistsError:
pass
return dir_path
def get_agent(self, agent_id):
@@ -131,7 +233,7 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
with open(csv_name, 'w') as f:
cr = csv.writer(f)
cr.writerow(('agent_id', 'tstep', 'attribute', 'value'))
cr.writerow(('agent_id', 't_step', 'key', 'value'))
for i in self.history_to_tuples():
cr.writerow(i)
@@ -139,52 +241,107 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
G = self.history_to_graph()
graph_path = os.path.join(self.get_path(dir_path),
self.name+".gexf")
# Workaround for geometric models
# See soil/soil#4
for node in G.nodes():
if 'pos' in G.node[node]:
G.node[node]['viz'] = {"position": {"x": G.node[node]['pos'][0], "y": G.node[node]['pos'][1], "z": 0.0}}
del (G.node[node]['pos'])
nx.write_gexf(G, graph_path, version="1.2draft")
def history_to_tuples(self):
for tstep, state in self._history.items():
for attribute, value in state.items():
yield ('env', tstep, attribute, value)
def dump(self, dir_path=None, formats=None):
if not formats:
return
functions = {
'csv': self.dump_csv,
'gexf': self.dump_gexf
}
for f in formats:
if f in functions:
functions[f](dir_path)
else:
raise ValueError('Unknown format: {}'.format(f))
def state_to_tuples(self, now=None):
if now is None:
now = self.now
for k, v in self.environment_params.items():
yield history.Record(agent_id='env',
t_step=now,
key=k,
value=v)
for agent in self.agents:
for tstep, state in agent._history.items():
for attribute, value in state.items():
yield (agent.id, tstep, attribute, value)
for k, v in agent.state.items():
yield history.Record(agent_id=agent.id,
t_step=now,
key=k,
value=v)
def history_to_tuples(self):
return self._history.to_tuples()
def history_to_graph(self):
G = nx.Graph(self.G)
for agent in self.agents:
for agent in self.network_agents:
attributes = {'agent': str(agent.__class__)}
lastattributes = {}
spells = []
lastvisible = False
laststep = None
for t_step, state in reversed(agent._history.items()):
for attribute, value in state.items():
if attribute == 'visible':
nowvisible = state[attribute]
if nowvisible and not lastvisible:
laststep = t_step
if not nowvisible and lastvisible:
spells.append((laststep, t_step))
history = self[agent.id, None, None]
if not history:
continue
for t_step, attribute, value in sorted(list(history)):
if attribute == 'visible':
nowvisible = value
if nowvisible and not lastvisible:
laststep = t_step
if not nowvisible and lastvisible:
spells.append((laststep, t_step))
lastvisible = nowvisible
else:
if attribute not in lastattributes or lastattributes[attribute][0] != value:
laststep = lastattributes.get(attribute,
(None, None))[1]
value = (state[attribute], t_step, laststep)
key = 'attr_' + attribute
if key not in attributes:
attributes[key] = list()
attributes[key].append(value)
lastattributes[attribute] = (state[attribute], t_step)
lastvisible = nowvisible
continue
key = 'attr_' + attribute
if key not in attributes:
attributes[key] = list()
if key not in lastattributes:
lastattributes[key] = (value, t_step)
elif lastattributes[key][0] != value:
last_value, laststep = lastattributes[key]
commit_value = (last_value, laststep, t_step)
if key not in attributes:
attributes[key] = list()
attributes[key].append(commit_value)
lastattributes[key] = (value, t_step)
for k, v in lastattributes.items():
attributes[k].append((v[0], v[1], None))
if lastvisible:
spells.append((laststep, None))
if spells:
G.add_node(agent.id, attributes, spells=spells)
G.add_node(agent.id, spells=spells, **attributes)
else:
G.add_node(agent.id, attributes)
G.add_node(agent.id, **attributes)
return G
def __getstate__(self):
state = {}
for prop in _CONFIG_PROPS:
state[prop] = self.__dict__[prop]
state['G'] = json_graph.node_link_data(self.G)
state['environment_agents'] = self._env_agents
state['history'] = self._history
return state
def __setstate__(self, state):
for prop in _CONFIG_PROPS:
self.__dict__[prop] = state[prop]
self._env_agents = state['environment_agents']
self.G = json_graph.node_link_graph(state['G'])
self._history = state['history']
SoilEnvironment = Environment

291
soil/history.py Normal file
View File

@@ -0,0 +1,291 @@
import time
import os
import pandas as pd
import sqlite3
import copy
from collections import UserDict, namedtuple
from . import utils
class History:
"""
Store and retrieve values from a sqlite database.
"""
def __init__(self, db_path=None, name=None, dir_path=None, backup=True):
if db_path is None and name:
db_path = os.path.join(dir_path or os.getcwd(),
'{}.db.sqlite'.format(name))
if db_path:
if backup and os.path.exists(db_path):
newname = db_path + '.backup{}.sqlite'.format(time.time())
os.rename(db_path, newname)
else:
db_path = ":memory:"
self.db_path = db_path
self.db = db_path
with self.db:
self.db.execute('''CREATE TABLE IF NOT EXISTS history (agent_id text, t_step int, key text, value text text)''')
self.db.execute('''CREATE TABLE IF NOT EXISTS value_types (key text, value_type text)''')
self.db.execute('''CREATE UNIQUE INDEX IF NOT EXISTS idx_history ON history (agent_id, t_step, key);''')
self._dtypes = {}
self._tups = []
@property
def db(self):
try:
self._db.cursor()
except (sqlite3.ProgrammingError, AttributeError):
self.db = None # Reset the database
return self._db
@db.setter
def db(self, db_path=None):
db_path = db_path or self.db_path
if isinstance(db_path, str):
self._db = sqlite3.connect(db_path)
else:
self._db = db_path
@property
def dtypes(self):
self.read_types()
return {k:v[0] for k, v in self._dtypes.items()}
def save_tuples(self, tuples):
'''
Save a series of tuples, converting them to records if necessary
'''
self.save_records(Record(*tup) for tup in tuples)
def save_records(self, records):
'''
Save a collection of records
'''
for record in records:
if not isinstance(record, Record):
record = Record(*record)
self.save_record(*record)
def save_record(self, agent_id, t_step, key, value):
'''
Save a collection of records to the database.
Database writes are cached.
'''
value = self.convert(key, value)
self._tups.append(Record(agent_id=agent_id,
t_step=t_step,
key=key,
value=value))
if len(self._tups) > 100:
self.flush_cache()
def convert(self, key, value):
"""Get the serialized value for a given key."""
if key not in self._dtypes:
self.read_types()
if key not in self._dtypes:
name = utils.name(value)
serializer = utils.serializer(name)
deserializer = utils.deserializer(name)
self._dtypes[key] = (name, serializer, deserializer)
with self.db:
self.db.execute("replace into value_types (key, value_type) values (?, ?)", (key, name))
return self._dtypes[key][1](value)
def recover(self, key, value):
"""Get the deserialized value for a given key, and the serialized version."""
if key not in self._dtypes:
self.read_types()
if key not in self._dtypes:
raise ValueError("Unknown datatype for {} and {}".format(key, value))
return self._dtypes[key][2](value)
def flush_cache(self):
'''
Use a cache to save state changes to avoid opening a session for every change.
The cache will be flushed at the end of the simulation, and when history is accessed.
'''
with self.db:
for rec in self._tups:
self.db.execute("replace into history(agent_id, t_step, key, value) values (?, ?, ?, ?)", (rec.agent_id, rec.t_step, rec.key, rec.value))
self._tups = list()
def to_tuples(self):
self.flush_cache()
with self.db:
res = self.db.execute("select agent_id, t_step, key, value from history ").fetchall()
for r in res:
agent_id, t_step, key, value = r
value = self.recover(key, value)
yield agent_id, t_step, key, value
def read_types(self):
with self.db:
res = self.db.execute("select key, value_type from value_types ").fetchall()
for k, v in res:
serializer = utils.serializer(v)
deserializer = utils.deserializer(v)
self._dtypes[k] = (v, serializer, deserializer)
def __getitem__(self, key):
self.flush_cache()
key = Key(*key)
agent_ids = [key.agent_id] if key.agent_id is not None else []
t_steps = [key.t_step] if key.t_step is not None else []
keys = [key.key] if key.key is not None else []
df = self.read_sql(agent_ids=agent_ids,
t_steps=t_steps,
keys=keys)
r = Records(df, filter=key, dtypes=self._dtypes)
if r.resolved:
return r.value()
return r
def read_sql(self, keys=None, agent_ids=None, t_steps=None, convert_types=False, limit=-1):
self.read_types()
def escape_and_join(v):
if v is None:
return
return ",".join(map(lambda x: "\'{}\'".format(x), v))
filters = [("key in ({})".format(escape_and_join(keys)), keys),
("agent_id in ({})".format(escape_and_join(agent_ids)), agent_ids)
]
filters = list(k[0] for k in filters if k[1])
last_df = None
if t_steps:
# Look for the last value before the minimum step in the query
min_step = min(t_steps)
last_filters = ['t_step < {}'.format(min_step),]
last_filters = last_filters + filters
condition = ' and '.join(last_filters)
last_query = '''
select h1.*
from history h1
inner join (
select agent_id, key, max(t_step) as t_step
from history
where {condition}
group by agent_id, key
) h2
on h1.agent_id = h2.agent_id and
h1.key = h2.key and
h1.t_step = h2.t_step
'''.format(condition=condition)
last_df = pd.read_sql_query(last_query, self.db)
filters.append("t_step >= '{}' and t_step <= '{}'".format(min_step, max(t_steps)))
condition = ''
if filters:
condition = 'where {} '.format(' and '.join(filters))
query = 'select * from history {} limit {}'.format(condition, limit)
df = pd.read_sql_query(query, self.db)
if last_df is not None:
df = pd.concat([df, last_df])
df_p = df.pivot_table(values='value', index=['t_step'],
columns=['key', 'agent_id'],
aggfunc='first')
for k, v in self._dtypes.items():
if k in df_p:
dtype, _, deserial = v
df_p[k] = df_p[k].fillna(method='ffill').astype(dtype)
if t_steps:
df_p = df_p.reindex(t_steps, method='ffill')
return df_p.ffill()
def __getstate__(self):
state = dict(**self.__dict__)
del state['_db']
del state['_dtypes']
return state
def __setstate__(self, state):
self.__dict__ = state
self._dtypes = {}
class Records():
def __init__(self, df, filter=None, dtypes=None):
if not filter:
filter = Key(agent_id=None,
t_step=None,
key=None)
self._df = df
self._filter = filter
self.dtypes = dtypes or {}
super().__init__()
def mask(self, tup):
res = ()
for i, k in zip(tup[:-1], self._filter):
if k is None:
res = res + (i,)
res = res + (tup[-1],)
return res
def filter(self, newKey):
f = list(self._filter)
for ix, i in enumerate(f):
if i is None:
f[ix] = newKey
self._filter = Key(*f)
@property
def resolved(self):
return sum(1 for i in self._filter if i is not None) == 3
def __iter__(self):
for column, series in self._df.iteritems():
key, agent_id = column
for t_step, value in series.iteritems():
r = Record(t_step=t_step,
agent_id=agent_id,
key=key,
value=value)
yield self.mask(r)
def value(self):
if self.resolved:
f = self._filter
try:
i = self._df[f.key][str(f.agent_id)]
ix = i.index.get_loc(f.t_step, method='ffill')
return i.iloc[ix]
except KeyError:
return self.dtypes[f.key][2]()
return list(self)
def __getitem__(self, k):
n = copy.copy(self)
n.filter(k)
if n.resolved:
return n.value()
return n
def __len__(self):
return len(self._df)
def __str__(self):
if self.resolved:
return str(self.value())
return '<Records for [{}]>'.format(self._filter)
Key = namedtuple('Key', ['agent_id', 't_step', 'key'])
Record = namedtuple('Record', 'agent_id t_step key value')

View File

@@ -1,27 +1,28 @@
import weakref
import os
import csv
import time
import importlib
import sys
import yaml
import traceback
import networkx as nx
from networkx.readwrite import json_graph
from copy import deepcopy
from random import random
from matplotlib import pyplot as plt
from multiprocessing import Pool
from functools import partial
import pickle
from nxsim import NetworkSimulation
from . import agents, utils, environment, basestring
from . import utils, basestring, agents
from .environment import Environment
from .utils import logger
class SoilSimulation(NetworkSimulation):
class Simulation(NetworkSimulation):
"""
Subclass of nsim.NetworkSimulation with three main differences:
1) agent type can be specified by name or by class.
2) instead of just one type, an network_agents can be used.
2) instead of just one type, a network agents distribution can be used.
The distribution specifies the weight (or probability) of each
agent type in the topology. This is an example distribution: ::
@@ -44,13 +45,48 @@ class SoilSimulation(NetworkSimulation):
'agent_type_1'.
3) if no initial state is given, each node's state will be set
to `{'id': 0}`.
Parameters
---------
name : str, optional
name of the Simulation
topology : networkx.Graph instance, optional
network_params : dict
parameters used to create a topology with networkx, if no topology is given
network_agents : dict
definition of agents to populate the topology with
agent_type : NetworkAgent subclass, optional
Default type of NetworkAgent to use for nodes not specified in network_agents
states : list, optional
List of initial states corresponding to the nodes in the topology. Basic form is a list of integers
whose value indicates the state
dir_path : str, optional
Directory path where to save pickled objects
seed : str, optional
Seed to use for the random generator
num_trials : int, optional
Number of independent simulation runs
max_time : int, optional
Time how long the simulation should run
environment_params : dict, optional
Dictionary of globally-shared environmental parameters
environment_agents: dict, optional
Similar to network_agents. Distribution of Agents that control the environment
environment_class: soil.environment.Environment subclass, optional
Class for the environment. It defailts to soil.environment.Environment
load_module : str, module name, deprecated
If specified, soil will load the content of this module under 'soil.agents.custom'
"""
def __init__(self, name=None, topology=None, network_params=None,
network_agents=None, agent_type=None, states=None,
default_state=None, interval=1,
dir_path=None, num_trials=3, max_time=100,
agent_module=None,
environment_agents=None, environment_params=None):
default_state=None, interval=1, dump=None, dry_run=False,
dir_path=None, num_trials=1, max_time=100,
load_module=None, seed=None,
environment_agents=None, environment_params=None,
environment_class=None, **kwargs):
if topology is None:
topology = utils.load_network(network_params,
@@ -58,6 +94,7 @@ class SoilSimulation(NetworkSimulation):
elif isinstance(topology, basestring) or isinstance(topology, dict):
topology = json_graph.node_link_graph(topology)
self.load_module = load_module
self.topology = nx.Graph(topology)
self.network_params = network_params
self.name = name or 'UnnamedSimulation'
@@ -66,78 +103,78 @@ class SoilSimulation(NetworkSimulation):
self.default_state = default_state or {}
self.dir_path = dir_path or os.getcwd()
self.interval = interval
self.seed = str(seed) or str(time.time())
self.dump = dump
self.dry_run = dry_run
sys.path += [self.dir_path, os.getcwd()]
self.environment_params = environment_params or {}
self.environment_class = utils.deserialize(environment_class,
known_modules=['soil.environment', ]) or Environment
environment_agents = environment_agents or []
self.environment_agents = self._convert_agent_types(environment_agents)
self.environment_agents = agents._convert_agent_types(environment_agents,
known_modules=[self.load_module])
distro = self.calculate_distribution(network_agents,
agent_type)
self.network_agents = self._convert_agent_types(distro)
distro = agents.calculate_distribution(network_agents,
agent_type)
self.network_agents = agents._convert_agent_types(distro,
known_modules=[self.load_module])
self.states = self.validate_states(states,
topology)
self.states = agents._validate_states(states,
self.topology)
def calculate_distribution(self,
network_agents=None,
agent_type=None):
if network_agents:
network_agents = deepcopy(network_agents)
elif agent_type:
network_agents = [{'agent_type': agent_type}]
else:
return []
def run_simulation(self, *args, **kwargs):
return self.run(*args, **kwargs)
# Calculate the thresholds
total = sum(x.get('weight', 1) for x in network_agents)
acc = 0
for v in network_agents:
upper = acc + (v.get('weight', 1)/total)
v['threshold'] = [acc, upper]
acc = upper
return network_agents
def run(self, *args, **kwargs):
return list(self.run_simulation_gen(*args, **kwargs))
def serialize_distribution(self):
d = self._convert_agent_types(self.network_agents,
to_string=True)
for v in d:
if 'threshold' in v:
del v['threshold']
return d
def run_simulation_gen(self, *args, parallel=False, dry_run=False,
**kwargs):
p = Pool()
with utils.timer('simulation {}'.format(self.name)):
if parallel:
func = partial(self.run_trial_exceptions, dry_run=dry_run or self.dry_run,
return_env=True,
**kwargs)
for i in p.imap_unordered(func, range(self.num_trials)):
if isinstance(i, Exception):
logger.error('Trial failed:\n\t{}'.format(i.message))
continue
yield i
else:
for i in range(self.num_trials):
yield self.run_trial(i, dry_run = dry_run or self.dry_run, **kwargs)
if not (dry_run or self.dry_run):
logger.info('Dumping results to {}'.format(self.dir_path))
self.dump_pickle(self.dir_path)
self.dump_yaml(self.dir_path)
else:
logger.info('NOT dumping results')
def _convert_agent_types(self, ind, to_string=False):
d = deepcopy(ind)
for v in d:
agent_type = v['agent_type']
if to_string and not isinstance(agent_type, str):
v['agent_type'] = str(agent_type.__name__)
elif not to_string and isinstance(agent_type, str):
v['agent_type'] = agents.agent_types[agent_type]
return d
def get_env(self, trial_id = 0, **kwargs):
opts=self.environment_params.copy()
env_name='{}_trial_{}'.format(self.name, trial_id)
opts.update({
'name': env_name,
'topology': self.topology.copy(),
'seed': self.seed+env_name,
'initial_time': 0,
'dry_run': self.dry_run,
'interval': self.interval,
'network_agents': self.network_agents,
'states': self.states,
'default_state': self.default_state,
'environment_agents': self.environment_agents,
'dir_path': self.dir_path,
})
opts.update(kwargs)
env=self.environment_class(**opts)
return env
def validate_states(self, states, topology):
states = states or []
# Validate states to avoid ignoring states during
# initialization
if isinstance(states, dict):
for x in states:
assert x in self.topology.node
else:
assert len(states) <= len(self.topology)
return states
def run_simulation(self):
return self.run()
def run(self):
return list(self.run_simulation_gen())
def run_simulation_gen(self):
with utils.timer('simulation'):
for i in range(self.num_trials):
yield self.run_trial(i)
def run_trial(self, trial_id=0):
def run_trial(self, trial_id = 0, until = None, return_env = True, **opts):
"""Run a single trial of the simulation
Parameters
@@ -145,24 +182,27 @@ class SoilSimulation(NetworkSimulation):
trial_id : int
"""
# Set-up trial environment and graph
print('Trial: {}'.format(trial_id))
env_name = '{}_trial_{}'.format(self.name, trial_id)
env = environment.SoilEnvironment(name=env_name,
topology=self.topology.copy(),
initial_time=0,
interval=self.interval,
network_agents=self.network_agents,
states=self.states,
default_state=self.default_state,
environment_agents=self.environment_agents,
**self.environment_params)
env.sim = weakref.ref(self)
until=until or self.max_time
env=self.get_env(trial_id = trial_id, **opts)
# Set up agents on nodes
print('\tRunning')
with utils.timer('trial'):
env.run(until=self.max_time)
return env
with utils.timer('Simulation {} trial {}'.format(self.name, trial_id)):
env.run(until)
if self.dump and not self.dry_run:
with utils.timer('Dumping simulation {} trial {}'.format(self.name, trial_id)):
env.dump(formats = self.dump)
if return_env:
return env
def run_trial_exceptions(self, *args, **kwargs):
'''
A wrapper for run_trial that catches exceptions and returns them.
It is meant for async simulations
'''
try:
return self.run_trial(*args, **kwargs)
except Exception as ex:
c = ex.__cause__
c.message = ''.join(traceback.format_exception(type(c), c, c.__traceback__)[:])
return c
def to_dict(self):
return self.__getstate__()
@@ -170,72 +210,80 @@ class SoilSimulation(NetworkSimulation):
def to_yaml(self):
return yaml.dump(self.to_dict())
def dump_yaml(self, dir_path=None, file_name=None):
dir_path = dir_path or self.dir_path
def dump_yaml(self, dir_path = None, file_name = None):
dir_path=dir_path or self.dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
if not file_name:
file_name = os.path.join(dir_path,
file_name=os.path.join(dir_path,
'{}.dumped.yml'.format(self.name))
with open(file_name, 'w') as f:
f.write(self.to_yaml())
def dump_pickle(self, dir_path=None, pickle_name=None):
dir_path = dir_path or self.dir_path
def dump_pickle(self, dir_path = None, pickle_name = None):
dir_path=dir_path or self.dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
if not pickle_name:
pickle_name = os.path.join(dir_path,
pickle_name=os.path.join(dir_path,
'{}.simulation.pickle'.format(self.name))
with open(pickle_name, 'wb') as f:
pickle.dump(self, f)
def __getstate__(self):
state = self.__dict__.copy()
state['topology'] = json_graph.node_link_data(self.topology)
state['network_agents'] = self.serialize_distribution()
state['environment_agents'] = self._convert_agent_types(self.environment_agents,
to_string=True)
state={}
for k, v in self.__dict__.items():
if k[0] != '_':
state[k]=v
state['topology']=json_graph.node_link_data(self.topology)
state['network_agents']=agents.serialize_distribution(self.network_agents,
known_modules = [])
state['environment_agents']=agents.serialize_distribution(self.environment_agents,
known_modules = [])
state['environment_class']=utils.serialize(self.environment_class,
known_modules=['soil.environment'])[1] # func, name
if state['load_module'] is None:
del state['load_module']
return state
def __setstate__(self, state):
self.__dict__ = state
self.load_module = getattr(self, 'load_module', None)
if self.dir_path not in sys.path:
sys.path += [self.dir_path, os.getcwd()]
self.topology = json_graph.node_link_graph(state['topology'])
self.network_agents = self._convert_agent_types(self.network_agents)
self.environment_agents = self._convert_agent_types(self.environment_agents)
self.network_agents = agents.calculate_distribution(agents._convert_agent_types(self.network_agents))
self.environment_agents = agents._convert_agent_types(self.environment_agents,
known_modules=[self.load_module])
self.environment_class = utils.deserialize(self.environment_class,
known_modules=[self.load_module, 'soil.environment', ]) # func, name
return state
def from_config(config, G=None):
def from_config(config):
config = list(utils.load_config(config))
if len(config) > 1:
raise AttributeError('Provide only one configuration')
config = config[0][0]
sim = SoilSimulation(**config)
sim = Simulation(**config)
return sim
def run_from_config(*configs, dump=True, results_dir=None, timestamp=False):
if not results_dir:
results_dir = 'soil_output'
def run_from_config(*configs, results_dir='soil_output', dump=None, timestamp=False, **kwargs):
for config_def in configs:
for config, cpath in utils.load_config(config_def):
# logger.info("Found {} config(s)".format(len(ls)))
for config, _ in utils.load_config(config_def):
name = config.get('name', 'unnamed')
print("Using config(s): {name}".format(name=name))
logger.info("Using config(s): {name}".format(name=name))
sim = SoilSimulation(**config)
if timestamp:
sim_folder = '{}_{}'.format(sim.name,
sim_folder = '{}_{}'.format(name,
time.strftime("%Y-%m-%d_%H:%M:%S"))
else:
sim_folder = sim.name
dir_path = os.path.join(results_dir,
sim_folder)
results = sim.run_simulation()
if dump:
sim.dump_pickle(dir_path)
sim.dump_yaml(dir_path)
for env in results:
env.dump_gexf(dir_path)
env.dump_csv(dir_path)
sim_folder = name
dir_path = os.path.join(results_dir, sim_folder)
if dump is not None:
config['dump'] = dump
sim = Simulation(dir_path=dir_path, **config)
logger.info('Dumping results to {} : {}'.format(sim.dir_path, sim.dump))
sim.run_simulation(**kwargs)

View File

@@ -1,14 +1,25 @@
import os
import ast
import yaml
from time import time
import logging
import importlib
import time
from glob import glob
from random import random
from copy import deepcopy
import networkx as nx
from contextlib import contextmanager
logger = logging.getLogger('soil')
logger.setLevel(logging.INFO)
def load_network(network_params, dir_path=None):
if network_params is None:
return nx.Graph()
path = network_params.get('path', None)
if path:
if dir_path and not os.path.isabs(path):
@@ -51,11 +62,93 @@ def load_config(config):
@contextmanager
def timer(name='task', pre="", function=print, to_object=None):
start = time()
def timer(name='task', pre="", function=logger.info, to_object=None):
start = time.time()
function('{}Starting {} at {}.'.format(pre, name,
time.strftime("%X", time.gmtime(start))))
yield start
end = time()
function('{}Finished {} in {} seconds'.format(pre, name, str(end-start)))
end = time.time()
function('{}Finished {} at {} in {} seconds'.format(pre, name,
time.strftime("%X", time.gmtime(end)),
str(end-start)))
if to_object:
to_object.start = start
to_object.end = end
builtins = importlib.import_module('builtins')
def name(value, known_modules=[]):
'''Return a name that can be imported, to serialize/deserialize an object'''
if value is None:
return 'None'
if not isinstance(value, type): # Get the class name first
value = type(value)
tname = value.__name__
if hasattr(builtins, tname):
return tname
modname = value.__module__
if modname == '__main__':
return tname
if known_modules and modname in known_modules:
return tname
for kmod in known_modules:
if not kmod:
continue
module = importlib.import_module(kmod)
if hasattr(module, tname):
return tname
return '{}.{}'.format(modname, tname)
def serializer(type_):
if type_ != 'str' and hasattr(builtins, type_):
return repr
return lambda x: x
def serialize(v, known_modules=[]):
'''Get a text representation of an object.'''
tname = name(v, known_modules=known_modules)
func = serializer(tname)
return func(v), tname
def deserializer(type_, known_modules=[]):
if type_ == 'str':
return lambda x='': x
if type_ == 'None':
return lambda x=None: None
if hasattr(builtins, type_): # Check if it's a builtin type
cls = getattr(builtins, type_)
return lambda x=None: ast.literal_eval(x) if x is not None else cls()
# Otherwise, see if we can find the module and the class
modules = known_modules or []
options = []
for mod in modules:
if mod:
options.append((mod, type_))
if '.' in type_: # Fully qualified module
module, type_ = type_.rsplit(".", 1)
options.append ((module, type_))
errors = []
for modname, tname in options:
try:
module = importlib.import_module(modname)
cls = getattr(module, tname)
return getattr(cls, 'deserialize', cls)
except (ImportError, AttributeError) as ex:
errors.append((modname, tname, ex))
raise Exception('Could not find type {}. Tried: {}'.format(type_, errors))
def deserialize(type_, value=None, **kwargs):
'''Get an object from a text representation'''
if not isinstance(type_, str):
return type_
des = deserializer(type_, **kwargs)
if value is None:
return des
return des(value)

20
soil/version.py Normal file
View File

@@ -0,0 +1,20 @@
import os
import logging
logger = logging.getLogger(__name__)
ROOT = os.path.dirname(__file__)
DEFAULT_FILE = os.path.join(ROOT, 'VERSION')
def read_version(versionfile=DEFAULT_FILE):
try:
with open(versionfile) as f:
return f.read().strip()
except IOError: # pragma: no cover
logger.error(('Running an unknown version of {}.'
'Be careful!.').format(__name__))
return '0.0'
__version__ = read_version()

4
soil/web/.gitignore vendored Normal file
View File

@@ -0,0 +1,4 @@
__pycache__/
output/
tests/
soil_output/

59
soil/web/README.md Normal file
View File

@@ -0,0 +1,59 @@
# Graph Visualization with D3.js
The aim of this software is to provide a useful tool for visualising and analysing the result of different simulations based on graph. Once you run the simulation, you will be able to interact with the simulation in real time.
For this purpose, a model which tries to simulate the spread of information to comprehend the radicalism spread in a society is included. Whith all this, the main project goals could be divided in five as it is shown in the following.
* Simulate the spread of information through a network applied to radicalism.
* Visualize the results of the simulation.
* Interact with the simulation in real time.
* Extract data from the results.
* Show data in a right way for its research.
## Deploying the server
For deploying the application, you will only need to run the following command.
`python3 run.py [--name NAME] [--dump] [--port PORT] [--verbose]`
Where the options are detailed in the following table.
| Option | Description |
| --- | --- |
| `--name NAME` | The name of the simulation. It will appear on the app. |
| `--dump` | For dumping the results in server side. |
| `--port PORT` | The port where the server will listen. |
| `--verbose` | Verbose mode. |
> You can dump the results of the simulation in server side. Anyway, you will be able to download them in GEXF or JSON Graph format directly from the browser.
## Visualization Params
The configuration of the simulation is based on the simulator configuration. In this case, it follows the [SOIL](https://github.com/gsi-upm/soil) configuration syntax and for visualising the results in a more comfortable way, more params can be added in `visualization_params` dictionary.
* For setting a background image, the tag needed is `background image`. You can also add a `background_opacity` and `background_filter_color` if the image is so clear than you can difficult view the nodes.
* For setting colors to the nodes, you can do it based on their properties values. Using the `color` tag, you will need to indicate the attribute key and value, and then the color you want to apply.
* The shapes applied to a group of nodes are always the same. This means than it won't change dynamically, so you will have to indicate the property with the `shape_property` tag and add a dictionary called `shapes` in which for each value, you indicate the shape.
All shapes have to had been downloaded before in SVG format and added to the server.
An example of this configuration applied to the TerroristNetworkModel is presented.
```yaml
visualization_params:
# Icons downloaded from https://www.iconfinder.com/
shape_property: agent
shapes:
TrainingAreaModel: target
HavenModel: home
TerroristNetworkModel: person
colors:
- attr_id: 0
color: '#40de40'
- attr_id: 1
color: red
- attr_id: 2
color: '#c16a6a'
background_image: 'map_4800x2860.jpg'
background_opacity: '0.9'
background_filter_color: 'blue'
```

View File

@@ -0,0 +1,255 @@
import random
import networkx as nx
from soil.agents import BaseAgent, FSM, state, default_state
from scipy.spatial import cKDTree as KDTree
global betweenness_centrality_global
global degree_centrality_global
betweenness_centrality_global = None
degree_centrality_global = None
class TerroristSpreadModel(FSM):
"""
Settings:
information_spread_intensity
terrorist_additional_influence
min_vulnerability (optional else zero)
max_vulnerability
prob_interaction
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
global betweenness_centrality_global
global degree_centrality_global
if betweenness_centrality_global == None:
betweenness_centrality_global = nx.betweenness_centrality(self.global_topology)
if degree_centrality_global == None:
degree_centrality_global = nx.degree_centrality(self.global_topology)
self.information_spread_intensity = environment.environment_params['information_spread_intensity']
self.terrorist_additional_influence = environment.environment_params['terrorist_additional_influence']
self.prob_interaction = environment.environment_params['prob_interaction']
if self['id'] == self.civilian.id: # Civilian
self.initial_belief = random.uniform(0.00, 0.5)
elif self['id'] == self.terrorist.id: # Terrorist
self.initial_belief = random.uniform(0.8, 1.00)
elif self['id'] == self.leader.id: # Leader
self.initial_belief = 1.00
else:
raise Exception('Invalid state id: {}'.format(self['id']))
if 'min_vulnerability' in environment.environment_params:
self.vulnerability = random.uniform( environment.environment_params['min_vulnerability'], environment.environment_params['max_vulnerability'] )
else :
self.vulnerability = random.uniform( 0, environment.environment_params['max_vulnerability'] )
self.mean_belief = self.initial_belief
self.betweenness_centrality = betweenness_centrality_global[self.id]
self.degree_centrality = degree_centrality_global[self.id]
# self.state['radicalism'] = self.mean_belief
def count_neighboring_agents(self, state_id=None):
if isinstance(state_id, list):
return len(self.get_neighboring_agents(state_id))
else:
return len(super().get_agents(state_id, limit_neighbors=True))
def get_neighboring_agents(self, state_id=None):
if isinstance(state_id, list):
_list = []
for i in state_id:
_list += super().get_agents(i, limit_neighbors=True)
return [ neighbour for neighbour in _list if isinstance(neighbour, TerroristSpreadModel) ]
else:
_list = super().get_agents(state_id, limit_neighbors=True)
return [ neighbour for neighbour in _list if isinstance(neighbour, TerroristSpreadModel) ]
@state
def civilian(self):
if self.count_neighboring_agents() > 0:
neighbours = []
for neighbour in self.get_neighboring_agents():
if random.random() < self.prob_interaction:
neighbours.append(neighbour)
influence = sum( neighbour.degree_centrality for neighbour in neighbours )
mean_belief = sum( neighbour.mean_belief * neighbour.degree_centrality / influence for neighbour in neighbours )
self.initial_belief = self.mean_belief
mean_belief = mean_belief * self.information_spread_intensity + self.initial_belief * ( 1 - self.information_spread_intensity )
self.mean_belief = mean_belief * self.vulnerability + self.initial_belief * ( 1 - self.vulnerability )
if self.mean_belief >= 0.8:
return self.terrorist
@state
def leader(self):
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
if self.count_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]) > 0:
for neighbour in self.get_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]):
if neighbour.betweenness_centrality > self.betweenness_centrality:
return self.terrorist
@state
def terrorist(self):
if self.count_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]) > 0:
neighbours = self.get_neighboring_agents(state_id=[self.terrorist.id, self.leader.id])
influence = sum( neighbour.degree_centrality for neighbour in neighbours )
mean_belief = sum( neighbour.mean_belief * neighbour.degree_centrality / influence for neighbour in neighbours )
self.initial_belief = self.mean_belief
self.mean_belief = mean_belief * self.vulnerability + self.initial_belief * ( 1 - self.vulnerability )
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
if self.count_neighboring_agents(state_id=self.leader.id) == 0 and self.count_neighboring_agents(state_id=self.terrorist.id) > 0:
max_betweenness_centrality = self
for neighbour in self.get_neighboring_agents(state_id=self.terrorist.id):
if neighbour.betweenness_centrality > max_betweenness_centrality.betweenness_centrality:
max_betweenness_centrality = neighbour
if max_betweenness_centrality == self:
return self.leader
def add_edge(self, G, source, target):
G.add_edge(source.id, target.id, start=self.env._now)
def link_search(self, G, node, radius):
pos = nx.get_node_attributes(G, 'pos')
nodes, coords = list(zip(*pos.items()))
kdtree = KDTree(coords) # Cannot provide generator.
edge_indexes = kdtree.query_pairs(radius, 2)
_list = [ edge[int(not edge.index(node))] for edge in edge_indexes if node in edge ]
return [ G.nodes()[index]['agent'] for index in _list ]
def social_search(self, G, node, steps):
nodes = list(nx.ego_graph(G, node, radius=steps).nodes())
nodes.remove(node)
return [ G.nodes()[index]['agent'] for index in nodes ]
class TrainingAreaModel(FSM):
"""
Settings:
training_influence
min_vulnerability
Requires TerroristSpreadModel.
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.training_influence = environment.environment_params['training_influence']
if 'min_vulnerability' in environment.environment_params:
self.min_vulnerability = environment.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
@default_state
@state
def terrorist(self):
for neighbour in self.get_neighboring_agents():
if isinstance(neighbour, TerroristSpreadModel) and neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.training_influence )
class HavenModel(FSM):
"""
Settings:
haven_influence
min_vulnerability
max_vulnerability
Requires TerroristSpreadModel.
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.haven_influence = environment.environment_params['haven_influence']
if 'min_vulnerability' in environment.environment_params:
self.min_vulnerability = environment.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
self.max_vulnerability = environment.environment_params['max_vulnerability']
@state
def civilian(self):
for neighbour_agent in self.get_neighboring_agents():
if isinstance(neighbour_agent, TerroristSpreadModel) and neighbour_agent['id'] == neighbour_agent.civilian.id:
for neighbour in self.get_neighboring_agents():
if isinstance(neighbour, TerroristSpreadModel) and neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability * ( 1 - self.haven_influence )
return self.civilian
return self.terrorist
@state
def terrorist(self):
for neighbour in self.get_neighboring_agents():
if isinstance(neighbour, TerroristSpreadModel) and neighbour.vulnerability < self.max_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.haven_influence )
return self.terrorist
class TerroristNetworkModel(TerroristSpreadModel):
"""
Settings:
sphere_influence
vision_range
weight_social_distance
weight_link_distance
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.vision_range = environment.environment_params['vision_range']
self.sphere_influence = environment.environment_params['sphere_influence']
self.weight_social_distance = environment.environment_params['weight_social_distance']
self.weight_link_distance = environment.environment_params['weight_link_distance']
@state
def terrorist(self):
self.update_relationships()
return super().terrorist()
@state
def leader(self):
self.update_relationships()
return super().leader()
def update_relationships(self):
if self.count_neighboring_agents(state_id=self.civilian.id) == 0:
close_ups = self.link_search(self.global_topology, self.id, self.vision_range)
step_neighbours = self.social_search(self.global_topology, self.id, self.sphere_influence)
search = list(set(close_ups).union(step_neighbours))
neighbours = self.get_neighboring_agents()
search = [item for item in search if not item in neighbours and isinstance(item, TerroristNetworkModel)]
for agent in search:
social_distance = 1 / self.shortest_path_length(self.global_topology, self.id, agent.id)
spatial_proximity = ( 1 - self.get_distance(self.global_topology, self.id, agent.id) )
prob_new_interaction = self.weight_social_distance * social_distance + self.weight_link_distance * spatial_proximity
if agent['id'] == agent.civilian.id and random.random() < prob_new_interaction:
self.add_edge(self.global_topology, self, agent)
break
def get_distance(self, G, source, target):
source_x, source_y = nx.get_node_attributes(G, 'pos')[source]
target_x, target_y = nx.get_node_attributes(G, 'pos')[target]
dx = abs( source_x - target_x )
dy = abs( source_y - target_y )
return ( dx ** 2 + dy ** 2 ) ** ( 1 / 2 )
def shortest_path_length(self, G, source, target):
try:
return nx.shortest_path_length(G, source, target)
except nx.NetworkXNoPath:
return float('inf')

View File

@@ -0,0 +1,62 @@
name: TerroristNetworkModel_sim
load_module: TerroristNetworkModel
max_time: 150
num_trials: 1
network_params:
generator: random_geometric_graph
radius: 0.2
# generator: geographical_threshold_graph
# theta: 20
n: 100
network_agents:
- agent_type: TerroristNetworkModel
weight: 0.8
state:
id: civilian # Civilians
- agent_type: TerroristNetworkModel
weight: 0.1
state:
id: leader # Leaders
- agent_type: TrainingAreaModel
weight: 0.05
state:
id: terrorist # Terrorism
- agent_type: HavenModel
weight: 0.05
state:
id: civilian # Civilian
environment_params:
# TerroristSpreadModel
information_spread_intensity: 0.7
terrorist_additional_influence: 0.035
max_vulnerability: 0.7
prob_interaction: 0.5
# TrainingAreaModel and HavenModel
training_influence: 0.20
haven_influence: 0.20
# TerroristNetworkModel
vision_range: 0.30
sphere_influence: 2
weight_social_distance: 0.035
weight_link_distance: 0.035
visualization_params:
# Icons downloaded from https://www.iconfinder.com/
shape_property: agent
shapes:
TrainingAreaModel: target
HavenModel: home
TerroristNetworkModel: person
colors:
- attr_id: civilian
color: '#40de40'
- attr_id: terrorist
color: red
- attr_id: leader
color: '#c16a6a'
background_image: 'map_4800x2860.jpg'
background_opacity: '0.9'
background_filter_color: 'blue'

Some files were not shown because too many files have changed in this diff Show More