1
0
mirror of https://github.com/gsi-upm/soil synced 2024-12-22 08:18:13 +00:00

Improved docs

Fixed several bugs
Added convenience methods in soil.analysis
This commit is contained in:
J. Fernando Sánchez 2017-10-18 20:28:42 +02:00
parent 78364d89d5
commit a7c51742f6
69 changed files with 30969 additions and 3300 deletions

View File

@ -3,7 +3,7 @@
Soil is an extensible and user-friendly Agent-based Social Simulator for Social Networks.
Learn how to run your own simulations with our [documentation](http://soilsim.readthedocs.io).
Follow our [tutorial](notebooks/soil_tutorial.ipynb) to develop your own agent models.
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
If you use Soil in your research, don't forget to cite this paper:

File diff suppressed because it is too large Load Diff

View File

@ -34,13 +34,14 @@ If you use Soil in your research, do not forget to cite this paper:
.. toctree::
:maxdepth: 2
:maxdepth: 0
:caption: Learn more about soil:
installation
quickstart
Tutorial - Spreading news
Tutorial <soil_tutorial>
..
.. Indices and tables

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.5 KiB

After

Width:  |  Height:  |  Size: 7.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

BIN
docs/output_54_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_54_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_55_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_55_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_56_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_61_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_63_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_66_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_67_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 KiB

BIN
docs/output_72_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/output_72_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/output_74_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_75_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

BIN
docs/output_76_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

2612
docs/soil_tutorial.rst Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,17 +0,0 @@
default_state: {}
environment_agents: []
environment_params: {prob_neighbor_spread: 0.0, prob_tv_spread: 0.01}
interval: 1
max_time: 20
name: Sim_prob_0
network_agents:
- agent_type: NewsSpread
state: {has_tv: false}
weight: 1
- agent_type: NewsSpread
state: {has_tv: true}
weight: 2
network_params: {generator: erdos_renyi_graph, n: 500, p: 0.1}
num_trials: 1
states:
- {has_tv: true}

View File

@ -1,20 +0,0 @@
import soil
import random
class NewsSpread(soil.agents.FSM):
@soil.agents.default_state
@soil.agents.state
def neutral(self):
r = random.random()
if self['has_tv'] and r < self.env['prob_tv_spread']:
return self.infected
return
@soil.agents.state
def infected(self):
prob_infect = self.env['prob_neighbor_spread']
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
r = random.random()
if r < prob_infect:
neighbor.state['id'] = self.infected.id
return

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,138 @@
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 30
name: Sim_all_dumb
network_agents:
- agent_type: DumbViewer
state:
has_tv: false
weight: 1
- agent_type: DumbViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 30
name: Sim_half_herd
network_agents:
- agent_type: DumbViewer
state:
has_tv: false
weight: 1
- agent_type: DumbViewer
state:
has_tv: true
weight: 1
- agent_type: HerdViewer
state:
has_tv: false
weight: 1
- agent_type: HerdViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 30
name: Sim_all_herd
network_agents:
- agent_type: HerdViewer
state:
has_tv: true
id: infected
weight: 1
- agent_type: HerdViewer
state:
has_tv: true
id: neutral
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 30
name: Sim_wise_herd
network_agents:
- agent_type: HerdViewer
state:
has_tv: true
id: infected
weight: 1
- agent_type: WiseViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 30
name: Sim_all_wise
network_agents:
- agent_type: WiseViewer
state:
has_tv: true
id: infected
weight: 1
- agent_type: WiseViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50

View File

@ -0,0 +1,79 @@
from soil.agents import BaseAgent,FSM, state, default_state
import random
import logging
class DumbViewer(FSM):
'''
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
'''
defaults = {
'prob_neighbor_spread': 0.5,
'prob_neighbor_cure': 0.25,
}
@default_state
@state
def neutral(self):
r = random.random()
if self['has_tv'] and r < self.env['prob_tv_spread']:
self.infect()
return
@state
def infected(self):
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
prob_infect = self.env['prob_neighbor_spread']
r = random.random()
if r < prob_infect:
self.set_state(self.infected.id)
neighbor.infect()
return
def infect(self):
self.set_state(self.infected)
class HerdViewer(DumbViewer):
'''
A viewer whose probability of infection depends on the state of its neighbors.
'''
level = logging.DEBUG
def infect(self):
infected = self.count_neighboring_agents(state_id=self.infected.id)
total = self.count_neighboring_agents()
prob_infect = self.env['prob_neighbor_spread'] * infected/total
self.debug('prob_infect', prob_infect)
r = random.random()
if r < prob_infect:
self.set_state(self.infected.id)
class WiseViewer(HerdViewer):
'''
A viewer that can change its mind.
'''
@state
def cured(self):
prob_cure = self.env['prob_neighbor_cure']
for neighbor in self.get_neighboring_agents(state_id=self.infected.id):
r = random.random()
if r < prob_cure:
try:
neighbor.cure()
except AttributeError:
self.debug('Viewer {} cannot be cured'.format(neighbor.id))
return
def cure(self):
self.set_state(self.cured.id)
@state
def infected(self):
prob_cure = self.env['prob_neighbor_cure']
r = random.random()
if r < prob_cure:
self.cure()
return
return super().infected()

View File

@ -1,4 +1,4 @@
from soil.agents import NetworkAgent, FSM, state, default_state, BaseAgent
from soil.agents import FSM, state, default_state, BaseAgent
from enum import Enum
from random import random, choice
from itertools import islice
@ -11,7 +11,7 @@ class Genders(Enum):
female = 'female'
class RabbitModel(NetworkAgent, FSM):
class RabbitModel(FSM):
level = logging.INFO
@ -26,7 +26,7 @@ class RabbitModel(NetworkAgent, FSM):
life_expectancy = 365 * 3
gestation = 33
pregnancy = -1
max_females = 2
max_females = 5
@default_state
@state
@ -71,6 +71,7 @@ class RabbitModel(NetworkAgent, FSM):
self.debug('Pregnancy: {}'.format(self['pregnancy']))
if self['pregnancy'] >= self.gestation:
number_of_babies = int(8+4*random())
self.info('Having {} babies'.format(number_of_babies))
for i in range(number_of_babies):
state = {}
state['gender'] = choice(list(Genders)).value
@ -79,13 +80,13 @@ class RabbitModel(NetworkAgent, FSM):
self.env.add_edge(self['mate'], child.id)
# self.add_edge()
self.debug('A BABY IS COMING TO LIFE')
self.env['rabbits_alive'] = self.env.get('rabbits_alive', 0)+1
self.env['rabbits_alive'] = self.env.get('rabbits_alive', self.global_topology.number_of_nodes())+1
self.debug('Rabbits alive: {}'.format(self.env['rabbits_alive']))
self['offspring'] += 1
self.env.get_agent(self['mate'])['offspring'] += 1
del self['mate']
self['pregnancy'] = -1
return self.fertile
del self['mate']
self['pregnancy'] = -1
return self.fertile
@state
def dead(self):
@ -98,12 +99,12 @@ class RabbitModel(NetworkAgent, FSM):
class RandomAccident(BaseAgent):
level = logging.INFO
level = logging.DEBUG
def step(self):
rabbits_total = self.global_topology.number_of_nodes()
rabbits_alive = self.env.get('rabbits_alive', rabbits_total)
prob_death = self.env.get('prob_death', 1e-100)*math.log(max(1, rabbits_alive))
prob_death = self.env.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.env.network_agents:
if i.state['id'] == i.dead.id:

View File

@ -1,14 +1,14 @@
---
load_module: rabbit_agents
name: rabbits_example
max_time: 1500
max_time: 1200
interval: 1
seed: MySeed
agent_type: RabbitModel
environment_agents:
- agent_type: RandomAccident
environment_params:
prob_death: 0.0001
prob_death: 0.001
default_state:
mating_prob: 0.01
topology:

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -4,15 +4,20 @@ import os
import pdb
import logging
__version__ = "0.9.7"
__version__ = "0.10"
try:
basestring
except NameError:
basestring = str
logging.basicConfig()#format=FORMAT)
logging.basicConfig()
from . import agents
from . import simulation
from . import environment
from . import utils
from . import analysis
def main():

View File

@ -1,8 +1,8 @@
import random
from . import NetworkAgent
from . import BaseAgent
class BassModel(NetworkAgent):
class BassModel(BaseAgent):
"""
Settings:
innovation_prob

View File

@ -1,8 +1,8 @@
import random
from . import NetworkAgent
from . import BaseAgent
class BigMarketModel(NetworkAgent):
class BigMarketModel(BaseAgent):
"""
Settings:
Names:

View File

@ -1,7 +1,7 @@
from . import NetworkAgent
from . import BaseAgent
class CounterModel(NetworkAgent):
class CounterModel(BaseAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
@ -16,7 +16,7 @@ class CounterModel(NetworkAgent):
self.state['total'] = total
class AggregatedCounter(NetworkAgent):
class AggregatedCounter(BaseAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
@ -28,4 +28,5 @@ class AggregatedCounter(NetworkAgent):
neighbors = len(list(self.get_neighboring_agents()))
self.state['times'] = self.state.get('times', 0) + 1
self.state['neighbors'] = self.state.get('neighbors', 0) + neighbors
self.state['total'] = self.state.get('total', 0) + total
self.state['total'] = total = self.state.get('total', 0) + total
self.debug('Running for step: {}. Total: {}'.format(self.now, total))

View File

@ -1,9 +1,9 @@
import random
import numpy as np
from . import NetworkAgent
from . import BaseAgent
class SpreadModelM2(NetworkAgent):
class SpreadModelM2(BaseAgent):
"""
Settings:
prob_neutral_making_denier
@ -104,7 +104,7 @@ class SpreadModelM2(NetworkAgent):
neighbor.state['id'] = 2 # Cured
class ControlModelM2(NetworkAgent):
class ControlModelM2(BaseAgent):
"""
Settings:
prob_neutral_making_denier

View File

@ -1,9 +1,9 @@
import random
import numpy as np
from . import FSM, NetworkAgent, state
from . import FSM, state
class SISaModel(FSM, NetworkAgent):
class SISaModel(FSM):
"""
Settings:
neutral_discontent_spon_prob

View File

@ -1,8 +1,8 @@
import random
from . import NetworkAgent
from . import BaseAgent
class SentimentCorrelationModel(NetworkAgent):
class SentimentCorrelationModel(BaseAgent):
"""
Settings:
outside_effects_prob

View File

@ -72,9 +72,10 @@ class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
return None
def run(self):
interval = self.env.interval
while self.alive:
res = self.step()
yield res or self.env.timeout(self.env.interval)
yield res or self.env.timeout(interval)
def die(self, remove=False):
self.alive = False
@ -99,7 +100,10 @@ class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
count += 1
return count
def get_agents(self, state_id=None, limit_neighbors=False, **kwargs):
def count_neighboring_agents(self, state_id=None):
return len(super().get_agents(state_id, limit_neighbors=True))
def get_agents(self, state_id=None, limit_neighbors=False, iterator=False, **kwargs):
if limit_neighbors:
agents = super().get_agents(state_id, limit_neighbors)
else:
@ -113,9 +117,13 @@ class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
return False
return True
return filter(matches_all, agents)
f = filter(matches_all, agents)
if iterator:
return f
return list(f)
def log(self, message, level=logging.INFO, **kwargs):
def log(self, message, *args, level=logging.INFO, **kwargs):
message = message + " ".join(str(i) for i in args)
message = "\t@{:>5}:\t{}".format(self.now, message)
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
@ -130,11 +138,6 @@ class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
def info(self, *args, **kwargs):
return self.log(*args, level=logging.INFO, **kwargs)
class NetworkAgent(BaseAgent, nxsim.BaseNetworkAgent):
def count_neighboring_agents(self, state_id=None):
return self.count_agents(state_id, limit_neighbors=True)
def state(func):
@ -150,7 +153,7 @@ def state(func):
try:
self.state['id'] = next_state.id
except AttributeError:
raise NotImplemented('State id %s is not valid.' % next_state)
raise ValueError('State id %s is not valid.' % next_state)
return when
func_wrapper.id = func.__name__

View File

@ -4,20 +4,175 @@ import glob
import yaml
from os.path import join
from . import utils
def get_data(pattern, process=True, attributes=None):
def read_data(*args, group=False, **kwargs):
iterable = _read_data(*args, **kwargs)
if group:
return group_trials(iterable)
else:
return list(iterable)
def _read_data(pattern, keys=None, convert_types=False,
process=None, from_csv=False, **kwargs):
for folder in glob.glob(pattern):
config_file = glob.glob(join(folder, '*.yml'))[0]
config = yaml.load(open(config_file))
for trial_data in sorted(glob.glob(join(folder, '*.environment.csv'))):
df = pd.read_csv(trial_data)
if process:
if attributes is not None:
df = df[df['attribute'].isin(attributes)]
df = df.pivot_table(values='attribute', index='tstep', columns=['value'], aggfunc='count').fillna(0)
yield config_file, df, config
df = None
if from_csv:
for trial_data in sorted(glob.glob(join(folder,
'*.environment.csv'))):
df = read_csv(trial_data, convert_types=convert_types)
if process:
df = process(df, **kwargs)
yield config_file, df, config
else:
for trial_data in sorted(glob.glob(join(folder, '*.db.sqlite'))):
df = read_sql(trial_data, convert_types=convert_types,
keys=keys)
if process:
df = process(df, **kwargs)
yield config_file, df, config
def read_csv(filename, keys=None, convert_types=False, **kwargs):
'''
Read a CSV in canonical form: ::
<agent_id, t_step, key, value, value_type>
'''
df = pd.read_csv(filename)
if convert_types:
df = convert_types_slow(df)
if keys:
df = df[df['key'].isin(keys)]
return df
def read_sql(filename, keys=None, convert_types=False, limit=-1):
condition = ''
if keys:
k = map(lambda x: "\'{}\'".format(x), keys)
condition = 'where key in ({})'.format(','.join(k))
query = 'select * from history {} limit {}'.format(condition, limit)
df = pd.read_sql_query(query, 'sqlite:///{}'.format(filename))
if convert_types:
df = convert_types_slow(df)
return df
def convert_row(row):
row['value'] = utils.convert(row['value'], row['value_type'])
return row
def convert_types_slow(df):
'''This is a slow operation.'''
dtypes = get_types(df)
for k, v in dtypes.items():
t = df[df['key']==k]
t['value'] = t['value'].astype(v)
df = df.apply(convert_row, axis=1)
return df
def split_df(df):
'''
Split a dataframe in two dataframes: one with the history of agents,
and one with the environment history
'''
envmask = (df['agent_id'] == 'env')
n_env = envmask.sum()
if n_env == len(df):
return df, None
elif n_env == 0:
return None, df
agents, env = [x for _, x in df.groupby(envmask)]
return env, agents
def process(df, **kwargs):
'''
Process a dataframe in canonical form ``(t_step, agent_id, key, value, value_type)`` into
two dataframes with a column per key: one with the history of the agents, and one for the
history of the environment.
'''
env, agents = split_df(df)
return process_one(env, **kwargs), process_one(agents, **kwargs)
def get_types(df):
dtypes = df.groupby(by=['key'])['value_type'].unique()
return {k:v[0] for k,v in dtypes.iteritems()}
def process_one(df, *keys, columns=['key'], values='value',
index=['t_step', 'agent_id'], aggfunc='first', **kwargs):
'''
Process a dataframe in canonical form ``(t_step, agent_id, key, value, value_type)`` into
a dataframe with a column per key
'''
if df is None:
return df
if keys:
df = df[df['key'].isin(keys)]
dtypes = get_types(df)
df = df.pivot_table(values=values, index=index, columns=columns,
aggfunc=aggfunc, **kwargs)
df = df.fillna(0).astype(dtypes)
return df
def get_count_processed(df, *keys):
if keys:
df = df[list(keys)]
# p = df.groupby(level=0).apply(pd.Series.value_counts)
p = df.unstack().apply(pd.Series.value_counts, axis=1)
return p
def get_count(df, *keys):
if keys:
df = df[df['key'].isin(keys)]
p = df.groupby(by=['t_step', 'key', 'value']).size().unstack(level=[1,2]).fillna(0)
return p
def get_value(df, *keys, aggfunc='sum'):
if keys:
df = df[df['key'].isin(keys)]
p = process_one(df, *keys)
p = p.groupby(level='t_step').agg(aggfunc)
return p
def plot_all(*args, **kwargs):
for config_file, df, config in sorted(get_data(*args, **kwargs)):
'''
Read all the trial data and plot the result of applying a function on them.
'''
dfs = do_all(*args, **kwargs)
ps = []
for line in dfs:
f, df, config = line
df.plot(title=config['name'])
ps.append(df)
return ps
def do_all(pattern, func, *keys, include_env=False, **kwargs):
for config_file, df, config in read_data(pattern, keys=keys):
p = func(df, *keys, **kwargs)
p.plot(title=config['name'])
yield config_file, p, config
def group_trials(trials, aggfunc=['mean', 'min', 'max', 'std']):
trials = list(trials)
trials = list(map(lambda x: x[1] if isinstance(x, tuple) else x, trials))
return pd.concat(trials).groupby(level=0).agg(aggfunc).reorder_levels([2, 0,1] ,axis=1)

View File

@ -41,17 +41,20 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
# executed before network agents
self['SEED'] = seed or time.time()
random.seed(self['SEED'])
self.process(self.save_state())
self.environment_agents = environment_agents or []
self.network_agents = network_agents or []
self.process(self.save_state())
if self.dump:
self._db_path = os.path.join(self.get_path(), 'db.sqlite')
self._db_path = os.path.join(self.get_path(), '{}.db.sqlite'.format(self.name))
else:
self._db_path = ":memory:"
self.create_db(self._db_path)
def create_db(self, db_path=None):
db_path = db_path or self._db_path
if os.path.exists(db_path):
newname = db_path.replace('db.sqlite', 'backup{}.sqlite'.format(time.time()))
os.rename(db_path, newname)
self._db = sqlite3.connect(db_path)
with self._db:
self._db.execute('''CREATE TABLE IF NOT EXISTS history (agent_id text, t_step int, key text, value text, value_type text)''')
@ -118,24 +121,25 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
return self.G.add_edge(agent1, agent2)
def run(self, *args, **kwargs):
self._save_state()
super().run(*args, **kwargs)
self._save_state()
def _save_state(self, now=None):
# for agent in self.agents:
# agent.save_state()
utils.logger.debug('Saving state @{}'.format(self.now))
with self._db:
self._db.executemany("insert into history(agent_id, t_step, key, value, value_type) values (?, ?, ?, ?, ?)", self.state_to_tuples(now=now))
def save_state(self):
self._save_state()
while self.peek() != simpy.core.Infinity:
utils.logger.info('Step: {}'.format(self.now))
delay = max(self.peek() - self.now, self.interval)
utils.logger.debug('Step: {}'.format(self.now))
ev = self.event()
ev._ok = True
# Schedule the event with minimum priority so
# that it executes after all agents are done
self.schedule(ev, -1, self.peek())
# that it executes before all agents
self.schedule(ev, -999, delay)
yield ev
self._save_state()
@ -215,7 +219,7 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
with open(csv_name, 'w') as f:
cr = csv.writer(f)
cr.writerow(('agent_id', 'tstep', 'attribute', 'value'))
cr.writerow(('agent_id', 't_step', 'key', 'value', 'value_type'))
for i in self.history_to_tuples():
cr.writerow(i)
@ -229,14 +233,16 @@ class SoilEnvironment(nxsim.NetworkEnvironment):
if now is None:
now = self.now
for k, v in self.environment_params.items():
yield 'env', now, k, v, type(v).__name__
v, v_t = utils.repr(v)
yield 'env', now, k, v, v_t
for agent in self.agents:
for k, v in agent.state.items():
yield agent.id, now, k, v, type(v).__name__
v, v_t = utils.repr(v)
yield agent.id, now, k, v, v_t
def history_to_tuples(self):
with self._db:
res = self._db.execute("select agent_id, t_step, key, value from history ").fetchall()
res = self._db.execute("select agent_id, t_step, key, value, value_type from history ").fetchall()
yield from res
def history_to_graph(self):

View File

@ -67,7 +67,7 @@ class SoilSimulation(NetworkSimulation):
self.default_state = default_state or {}
self.dir_path = dir_path or os.getcwd()
self.interval = interval
self.seed = seed
self.seed = str(seed) or str(time.time())
self.dump = dump
self.environment_params = environment_params or {}
@ -168,7 +168,7 @@ class SoilSimulation(NetworkSimulation):
env_name = '{}_trial_{}'.format(self.name, trial_id)
env = environment.SoilEnvironment(name=env_name,
topology=self.topology.copy(),
seed=self.seed,
seed=self.seed+env_name,
initial_time=0,
dump=self.dump,
interval=self.interval,

View File

@ -13,7 +13,6 @@ from contextlib import contextmanager
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())
def load_network(network_params, dir_path=None):
@ -86,6 +85,12 @@ def agent_from_distribution(distribution, value=-1):
raise Exception('Distribution for value {} not found in: {}'.format(value, distribution))
def repr(v):
if isinstance(v, bool):
v = "true" if v else ""
return v, bool.__name__
return v, type(v).__name__
def convert(value, type_):
import importlib
try:

View File

@ -60,7 +60,7 @@ class TestMain(TestCase):
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'agent_type': 'NetworkAgent',
'agent_type': 'BaseAgent',
'environment_params': {
}
}
@ -119,7 +119,7 @@ class TestMain(TestCase):
def test_custom_agent(self):
"""Allow for search of neighbors with a certain state_id"""
class CustomAgent(agents.NetworkAgent):
class CustomAgent(agents.BaseAgent):
def step(self):
self.state['neighbors'] = self.count_agents(state_id=0,
limit_neighbors=True)
@ -208,7 +208,7 @@ class TestMain(TestCase):
res = list(env.history_to_tuples())
assert len(res) == len(env.environment_params)
assert ('env', 0, 'test', 'test_value') in res
assert ('env', 0, 'test', 'test_value', 'str') in res
env['test'] = 'second_value'
env._save_state(now=1)