1
0
mirror of https://github.com/gsi-upm/soil synced 2025-09-13 19:52:20 +00:00

Compare commits

...

25 Commits

Author SHA1 Message Date
J. Fernando Sánchez
50cba751a6 Release 0.20.6 2022-07-05 12:08:34 +02:00
J. Fernando Sánchez
dfb6d13649 version 0.20.5 2022-05-18 16:13:53 +02:00
J. Fernando Sánchez
5559d37e57 version 0.20.4 2022-05-18 15:20:58 +02:00
J. Fernando Sánchez
2116fe6f38 Bug fixes and minor improvements 2022-05-12 16:14:47 +02:00
J. Fernando Sánchez
affeeb9643 Update examples 2022-04-04 16:47:58 +02:00
J. Fernando Sánchez
42ddc02318 CI: delay PyPI check 2022-03-07 14:35:07 +01:00
J. Fernando Sánchez
cab9a3440b Fix typo CI/CD 2022-03-07 13:57:25 +01:00
J. Fernando Sánchez
db505da49c Minor CI change 2022-03-07 13:35:02 +01:00
J. Fernando Sánchez
8eb8eb16eb Minor CI change 2022-03-07 12:51:22 +01:00
J. Fernando Sánchez
3fc5ca8c08 Fix requirements issue CI/CD 2022-03-07 12:46:01 +01:00
J. Fernando Sánchez
c02e6ea2e8 Fix die bug 2022-03-07 11:17:27 +01:00
J. Fernando Sánchez
38f8a8d110 Merge branch 'mesa'
First iteration to achieve MESA compatibility.
As a side effect, we have removed `simpy`.

For a full list of changes, see `CHANGELOG.md`.
2022-03-07 10:54:47 +01:00
J. Fernando Sánchez
cb72aac980 Add random activation example 2022-03-07 10:48:59 +01:00
J. Fernando Sánchez
6c4f44b4cb Partial MESA compatibility and several fixes
Documentation for the new APIs is still a work in progress :)
2021-10-15 20:16:49 +02:00
J. Fernando Sánchez
af9a392a93 WIP: mesa compat
All tests pass but some features are still missing/unclear:

- Mesa agents do not have a `state`, so their "metrics" don't get stored. I will
probably refactor this to remove some magic in this regard. This should get rid
of the `_state` dictionary and the setitem/getitem magic.
- Simulation is still different from a runner. So far only Agent and
Environment/Model have been updated.
2021-10-15 13:36:39 +02:00
J. Fernando Sánchez
5d7e57675a WIP: mesa compatibility 2021-10-14 17:37:06 +02:00
J. Fernando Sánchez
e860bdb922 v0.15.2
See CHANGELOG.md for a complete list of changes
2021-05-22 16:33:52 +02:00
J. Fernando Sánchez
d6b684c1c1 Fix docs requirements 2021-05-22 16:08:38 +02:00
J. Fernando Sánchez
05f7f49233 Refactoring v0.15.1
See CHANGELOG.md for a full list of changes

* Removed nxsim
* Refactored `agents.NetworkAgent` and `agents.BaseAgent`
* Refactored exporters
* Added stats to history
2020-11-19 23:58:47 +01:00
J. Fernando Sánchez
3b2c6a3db5 Seed before env initialization
Fixes #6
2020-07-27 12:29:24 +02:00
J. Fernando Sánchez
6118f917ee Fix Windows bug
Update URLs to gsi.upm.es
2020-07-07 10:57:10 +02:00
J. Fernando Sánchez
6adc8d36ba minor change in docs 2020-03-13 12:50:05 +01:00
J. Fernando Sánchez
c8b8149a17 Updated to 0.14.6
Fix compatibility issues with newer networkx and pandas versions
2020-03-11 16:17:14 +01:00
J. Fernando Sánchez
6690b6ee5f Fix incompatibility and bug in get_agents 2019-05-16 19:59:46 +02:00
J. Fernando Sánchez
97835b3d10 Clean up exporters 2019-05-03 13:17:27 +02:00
63 changed files with 6120 additions and 1481 deletions

View File

@@ -1,2 +1,5 @@
**/soil_output
.*
**/__pycache__
__pycache__
*.pyc

1
.gitignore vendored
View File

@@ -8,3 +8,4 @@ soil_output
docs/_build*
build/*
dist/*
prof

View File

@@ -1,9 +1,10 @@
stages:
- test
- build
- publish
- check_published
build:
stage: build
docker:
stage: publish
image:
name: gcr.io/kaniko-project/executor:debug
entrypoint: [""]
@@ -16,13 +17,37 @@ build:
only:
- tags
test:
except:
- tags # Avoid running tests for tags, because they are already run for the branch
tags:
- docker
image: python:3.7
stage: test
script:
- python setup.py test
- pip install -r requirements.txt -r test-requirements.txt
- python setup.py test
push_pypi:
only:
- tags
tags:
- docker
image: python:3.7
stage: publish
script:
- echo $CI_COMMIT_TAG > soil/VERSION
- pip install twine
- python setup.py sdist bdist_wheel
- TWINE_PASSWORD=$PYPI_PASSWORD TWINE_USERNAME=$PYPI_USERNAME python -m twine upload dist/*
check_pypi:
only:
- tags
tags:
- docker
image: python:3.7
stage: check_published
script:
- pip install soil==$CI_COMMIT_TAG
# Allow PYPI to update its index before we try to install
when: delayed
start_in: 2 minutes

View File

@@ -3,6 +3,117 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [UNRELEASED]
## [0.20.6]
### Fixed
* Agents now return `time.INFINITY` when dead, instead of 'inf'
* `soil.__init__` does not re-export built-in time (change in `soil.simulation`. It used to create subtle import conflicts when importing soil.time.
* Parallel simulations were broken because lambdas cannot be pickled properly, which is needed for multiprocessing.
### Changed
* Some internal simulation methods do not accept `*args` anymore, to avoid ambiguity and bugs.
## [0.20.5]
### Changed
* Defaults are now set in the agent __init__, not in the environment. This decouples both classes a bit more, and it is more intuitive
## [0.20.4]
### Added
* Agents can now be given any kwargs, which will be used to set their state
* Environments have a default logger `self.logger` and a log method, just like agents
## [0.20.3]
### Fixed
* Default state values are now deepcopied again.
* Seeds for environments only concatenate the trial id (i.e., a number), to provide repeatable results.
* `Environment.run` now calls `Environment.step`, to allow for easy overloading of the environment step
### Removed
* Datacollectors are not being used for now.
* `time.TimedActivation.step` does not use an `until` parameter anymore.
### Changed
* Simulations now run right up to `until` (open interval)
* Time instants (`time.When`) don't need to be floats anymore. Now we can avoid precision issues with big numbers by using ints.
* Rabbits simulation is more idiomatic (using subclasses)
## [0.20.2]
### Fixed
* CI/CD testing issues
## [0.20.1]
### Fixed
* Agents would run another step after dying.
## [0.20.0]
### Added
* Integration with MESA
* `not_agent_ids` parameter to get sql in history
### Changed
* `soil.Environment` now also inherits from `mesa.Model`
* `soil.Agent` now also inherits from `mesa.Agent`
* `soil.time` to replace `simpy` events, delays, duration, etc.
* `agent.id` is not `agent.unique_id` to be compatible with `mesa`. A property `BaseAgent.id` has been added for compatibility.
* `agent.environment` is now `agent.model`, for the same reason as above. The parameter name in `BaseAgent.__init__` has also been renamed.
### Removed
* `simpy` dependency and compatibility. Each agent used to be a simpy generator, but that made debugging and error handling more complex. That has been replaced by a scheduler within the `soil.Environment` class, similar to how `mesa` does it.
* `soil.history` is now a separate package named `tsih`. The keys namedtuple uses `dict_id` instead of `agent_id`.
### Added
* An option to choose whether a database should be used for history
## [0.15.2]
### Fixed
* Pass the right known_modules and parameters to stats discovery in simulation
* The configuration file must exist when launching through the CLI. If it doesn't, an error will be logged
* Minor changes in the documentation of the CLI arguments
### Changed
* Stats are now exported by default
## [0.15.1]
### Added
* read-only `History`
### Fixed
* Serialization problem with the `Environment` on parallel mode.
* Analysis functions now work as they should in the tutorial
## [0.15.0]
### Added
* Control logging level in CLI and simulation
* `Stats` to calculate trial and simulation-wide statistics
* Simulation statistics are stored in a separate table in history (see `History.get_stats` and `History.save_stats`, as well as `soil.stats`)
* Aliased `NetworkAgent.G` to `NetworkAgent.topology`.
### Changed
* Templates in config files can be given as dictionaries in addition to strings
* Samplers are used more explicitly
* Removed nxsim dependency. We had already made a lot of changes, and nxsim has not been updated in 5 years.
* Exporter methods renamed to `trial` and `end`. Added `start`.
* `Distribution` exporter now a stats class
* `global_topology` renamed to `topology`
* Moved topology-related methods to `NetworkAgent`
### Fixed
* Temporary files used for history in dry_run mode are not longer left open
## [0.14.9]
### Changed
* Seed random before environment initialization
## [0.14.8]
### Fixed
* Invalid directory names in Windows gsi-upm/soil#5
## [0.14.7]
### Changed
* Minor change to traceback handling in async simulations
### Fixed
* Incomplete example in the docs (example.yml) caused an exception
## [0.14.6]
### Fixed
* Bug with newer versions of networkx (0.24) where the Graph.node attribute has been removed. We have updated our calls, but the code in nxsim is not under our control, so we have pinned the networkx version until that issue is solved.
### Changed
* Explicit yaml.SafeLoader to avoid deprecation warnings when using yaml.load. It should not break any existing setups, but we could move to the FullLoader in the future if needed.
## [0.14.4]
### Fixed
* Bug in `agent.get_agents()` when `state_id` is passed as a string. The tests have been modified accordingly.
## [0.14.3]
### Fixed
* Incompatibility with py3.3-3.6 due to ModuleNotFoundError and TypeError in DryRunner
## [0.14.2]
### Fixed
* Output path for exporters is now soil_output
### Changed
* CSV output to stdout in dry_run mode
## [0.14.1]
### Changed
* Exporter names in lower case
* Add default exporter in runs
## [0.14.0]
### Added
* Loading configuration from template definitions in the yaml, in preparation for SALib support.

View File

@@ -5,6 +5,9 @@ Learn how to run your own simulations with our [documentation](http://soilsim.re
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
## Citation
If you use Soil in your research, don't forget to cite this paper:
```bibtex
@@ -28,7 +31,24 @@ If you use Soil in your research, don't forget to cite this paper:
```
@Copyright GSI - Universidad Politécnica de Madrid 2017
## Mesa compatibility
[![SOIL](logo_gsi.png)](https://www.gsi.dit.upm.es)
Soil is in the process of becoming fully compatible with MESA.
As of this writing,
This is a non-exhaustive list of tasks to achieve compatibility:
* Environments.agents and mesa.Agent.agents are not the same. env is a property, and it only takes into account network and environment agents. Might rename environment_agents to other_agents or sth like that
- [ ] Integrate `soil.Simulation` with mesa's runners:
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
- [ ] Integrate `soil.Environment` with `mesa.Model`:
- [x] `Soil.Environment` inherits from `mesa.Model`
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
- [x] Rename agent.id to unique_id?
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
- [ ] Document the new APIs and usage
@Copyright GSI - Universidad Politécnica de Madrid 2017-2021
[![SOIL](logo_gsi.png)](https://www.gsi.upm.es)

View File

@@ -31,7 +31,7 @@
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = []
extensions = ['IPython.sphinxext.ipython_console_highlighting']
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
@@ -69,7 +69,7 @@ language = None
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '**.ipynb_checkpoints']
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'

View File

@@ -8,32 +8,8 @@ The advantage of a configuration file is that it is a clean declarative descript
Simulation configuration files can be formatted in ``json`` or ``yaml`` and they define all the parameters of a simulation.
Here's an example (``example.yml``).
.. code:: yaml
---
name: MyExampleSimulation
max_time: 50
num_trials: 3
interval: 2
network_params:
generator: barabasi_albert_graph
n: 100
m: 2
network_agents:
- agent_type: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
weight: 1
state:
id: discontent
- agent_type: SISaModel
weight: 8
state:
id: neutral
environment_params:
prob_infect: 0.075
.. literalinclude:: example.yml
:language: yaml
This example configuration will run three trials (``num_trials``) of a simulation containing a randomly generated network (``network_params``).
@@ -242,3 +218,24 @@ These agents are programmed in much the same way as network agents, the only dif
You may use environment agents to model events that a normal agent cannot control, such as natural disasters or chance.
They are also useful to add behavior that has little to do with the network and the interactions within that network.
Templating
==========
Sometimes, it is useful to parameterize a simulation and run it over a range of values in order to compare each run and measure the effect of those parameters in the simulation.
For instance, you may want to run a simulation with different agent distributions.
This can be done in Soil using **templates**.
A template is a configuration where some of the values are specified with a variable.
e.g., ``weight: "{{ var1 }}"`` instead of ``weight: 1``.
There are two types of variables, depending on how their values are decided:
* Fixed. A list of values is provided, and a new simulation is run for each possible value. If more than a variable is given, a new simulation will be run per combination of values.
* Bounded/Sampled. The bounds of the variable are provided, along with a sampler method, which will be used to compute all the configuration combinations.
When fixed and bounded variables are mixed, Soil generates a new configuration per combination of fixed values and bounded values.
Here is an example with a single fixed variable and two bounded variable:
.. literalinclude:: ../examples/template.yml
:language: yaml

35
docs/example.yml Normal file
View File

@@ -0,0 +1,35 @@
---
name: MyExampleSimulation
max_time: 50
num_trials: 3
interval: 2
network_params:
generator: barabasi_albert_graph
n: 100
m: 2
network_agents:
- agent_type: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
weight: 1
state:
id: discontent
- agent_type: SISaModel
weight: 8
state:
id: neutral
environment_params:
prob_infect: 0.075
neutral_discontent_spon_prob: 0.1
neutral_discontent_infected_prob: 0.3
neutral_content_spon_prob: 0.3
neutral_content_infected_prob: 0.4
discontent_neutral: 0.5
discontent_content: 0.5
variance_d_c: 0.2
content_discontent: 0.2
variance_c_d: 0.2
content_neutral: 0.2
standard_variance: 1

View File

@@ -14,11 +14,11 @@ Now test that it worked by running the command line tool
soil --help
Or using soil programmatically:
Or, if you're using using soil programmatically:
.. code:: python
import soil
print(soil.__version__)
The latest version can be installed through `GitLab <https://lab.cluster.gsi.dit.upm.es/soil/soil.git>`_.
The latest version can be installed through `GitLab <https://lab.gsi.upm.es/soil/soil.git>`_ or `GitHub <https://github.com/gsi-upm/soil>`_.

1
docs/requirements.txt Normal file
View File

@@ -0,0 +1 @@
ipython==7.31.1

View File

@@ -47,12 +47,6 @@ There are three main elements in a soil simulation:
- The environment. It assigns agents to nodes in the network, and
stores the environment parameters (shared state for all agents).
Soil is based on ``simpy``, which is an event-based network simulation
library. Soil provides several abstractions over events to make
developing agents easier. This means you can use events (timeouts,
delays) in soil, but for the most part we will assume your models will
be step-based.
Modeling behaviour
------------------
@@ -323,7 +317,7 @@ Let's run our simulation:
.. code:: ipython3
soil.simulation.run_from_config(config, dump=False)
soil.simulation.run_from_config(config)
.. parsed-literal::

View File

@@ -500,7 +500,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
"version": "3.8.5"
},
"toc": {
"colors": {

View File

@@ -80800,7 +80800,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
"version": "3.8.6"
}
},
"nbformat": 4,

View File

@@ -13,7 +13,7 @@ network_agents:
- agent_type: CounterModel
weight: 1
state:
id: 0
state_id: 0
- agent_type: AggregatedCounter
weight: 0.2
environment_agents: []

View File

@@ -13,4 +13,4 @@ network_agents:
- agent_type: CounterModel
weight: 1
state:
id: 0
state_id: 0

21
examples/mesa/mesa.yml Normal file
View File

@@ -0,0 +1,21 @@
---
name: mesa_sim
group: tests
dir_path: "/tmp"
num_trials: 3
max_time: 100
interval: 1
seed: '1'
network_params:
generator: social_wealth.graph_generator
n: 5
network_agents:
- agent_type: social_wealth.SocialMoneyAgent
weight: 1
environment_class: social_wealth.MoneyEnv
environment_params:
num_mesa_agents: 5
mesa_agent_type: social_wealth.MoneyAgent
N: 10
width: 50
height: 50

105
examples/mesa/server.py Normal file
View File

@@ -0,0 +1,105 @@
from mesa.visualization.ModularVisualization import ModularServer
from soil.visualization import UserSettableParameter
from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid
from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent
class MyNetwork(NetworkModule):
def render(self, model):
return self.portrayal_method(model)
def network_portrayal(env):
# The model ensures there is 0 or 1 agent per node
portrayal = dict()
portrayal["nodes"] = [
{
"id": agent_id,
"size": env.get_agent(agent_id).wealth,
# "color": "#CC0000" if not agents or agents[0].wealth == 0 else "#007959",
"color": "#CC0000",
"label": f"{agent_id}: {env.get_agent(agent_id).wealth}",
}
for (agent_id) in env.G.nodes
]
portrayal["edges"] = [
{"id": edge_id, "source": source, "target": target, "color": "#000000"}
for edge_id, (source, target) in enumerate(env.G.edges)
]
return portrayal
def gridPortrayal(agent):
"""
This function is registered with the visualization server to be called
each tick to indicate how to draw the agent in its current state.
:param agent: the agent in the simulation
:return: the portrayal dictionary
"""
color = max(10, min(agent.wealth*10, 100))
return {
"Shape": "rect",
"w": 1,
"h": 1,
"Filled": "true",
"Layer": 0,
"Label": agent.unique_id,
"Text": agent.unique_id,
"x": agent.pos[0],
"y": agent.pos[1],
"Color": f"rgba(31, 10, 255, 0.{color})"
}
grid = MyNetwork(network_portrayal, 500, 500, library="sigma")
chart = ChartModule(
[{"Label": "Gini", "Color": "Black"}], data_collector_name="datacollector"
)
model_params = {
"N": UserSettableParameter(
"slider",
"N",
5,
1,
10,
1,
description="Choose how many agents to include in the model",
),
"network_agents": [{"agent_type": SocialMoneyAgent}],
"height": UserSettableParameter(
"slider",
"height",
5,
5,
10,
1,
description="Grid height",
),
"width": UserSettableParameter(
"slider",
"width",
5,
5,
10,
1,
description="Grid width",
),
"network_params": {
'generator': graph_generator
},
}
canvas_element = CanvasGrid(gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500)
server = ModularServer(
MoneyEnv, [grid, chart, canvas_element], "Money Model", model_params
)
server.port = 8521
server.launch(open_browser=False)

View File

@@ -0,0 +1,120 @@
'''
This is an example that adds soil agents and environment in a normal
mesa workflow.
'''
from mesa import Agent as MesaAgent
from mesa.space import MultiGrid
# from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
import networkx as nx
from soil import NetworkAgent, Environment
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.agents]
x = sorted(agent_wealths)
N = len(list(model.agents))
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
return (1 + (1/N) - 2*B)
class MoneyAgent(MesaAgent):
"""
A MESA agent with fixed initial wealth.
It will only share wealth with neighbors based on grid proximity
"""
def __init__(self, unique_id, model):
super().__init__(unique_id=unique_id, model=model)
self.wealth = 1
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:
other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1
def step(self):
self.info("Crying wolf", self.pos)
self.move()
if self.wealth > 0:
self.give_money()
class SocialMoneyAgent(NetworkAgent, MoneyAgent):
wealth = 1
def give_money(self):
cellmates = set(self.model.grid.get_cell_list_contents([self.pos]))
friends = set(self.get_neighboring_agents())
self.info("Trying to give money")
self.debug("Cellmates: ", cellmates)
self.debug("Friends: ", friends)
nearby_friends = list(cellmates & friends)
if len(nearby_friends):
other = self.random.choice(nearby_friends)
other.wealth += 1
self.wealth -= 1
class MoneyEnv(Environment):
"""A model with some number of agents."""
def __init__(self, N, width, height, *args, network_params, **kwargs):
network_params['n'] = N
super().__init__(*args, network_params=network_params, **kwargs)
self.grid = MultiGrid(width, height, False)
# Create agents
for agent in self.agents:
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(agent, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": "wealth"})
def graph_generator(n=5):
G = nx.Graph()
for ix in range(n):
G.add_edge(0, ix)
return G
if __name__ == '__main__':
G = graph_generator()
fixed_params = {"topology": G,
"width": 10,
"network_agents": [{"agent_type": SocialMoneyAgent,
'weight': 1}],
"height": 10}
variable_params = {"N": range(10, 100, 10)}
batch_run = BatchRunner(MoneyEnv,
variable_parameters=variable_params,
fixed_parameters=fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini})
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)

83
examples/mesa/wealth.py Normal file
View File

@@ -0,0 +1,83 @@
from mesa import Agent, Model
from mesa.space import MultiGrid
from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.schedule.agents]
x = sorted(agent_wealths)
N = model.num_agents
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
return (1 + (1/N) - 2*B)
class MoneyAgent(Agent):
""" An agent with fixed initial wealth."""
def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:
other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1
def step(self):
self.move()
if self.wealth > 0:
self.give_money()
class MoneyModel(Model):
"""A model with some number of agents."""
def __init__(self, N, width, height):
self.num_agents = N
self.grid = MultiGrid(width, height, True)
self.schedule = RandomActivation(self)
self.running = True
# Create agents
for i in range(self.num_agents):
a = MoneyAgent(i, self)
self.schedule.add(a)
# Add the agent to a random grid cell
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": "wealth"})
def step(self):
self.datacollector.collect(self)
self.schedule.step()
if __name__ == '__main__':
fixed_params = {"width": 10,
"height": 10}
variable_params = {"N": range(10, 500, 10)}
batch_run = BatchRunner(MoneyModel,
variable_params,
fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini})
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)

View File

@@ -68,12 +68,12 @@ network_agents:
- agent_type: HerdViewer
state:
has_tv: true
id: neutral
state_id: neutral
weight: 1
- agent_type: HerdViewer
state:
has_tv: true
id: neutral
state_id: neutral
weight: 1
network_params:
generator: barabasi_albert_graph
@@ -95,7 +95,7 @@ network_agents:
- agent_type: HerdViewer
state:
has_tv: true
id: neutral
state_id: neutral
weight: 1
- agent_type: WiseViewer
state:
@@ -121,7 +121,7 @@ network_agents:
- agent_type: WiseViewer
state:
has_tv: true
id: neutral
state_id: neutral
weight: 1
- agent_type: WiseViewer
state:

View File

@@ -17,7 +17,7 @@ class DumbViewer(FSM):
def neutral(self):
if self['has_tv']:
if prob(self.env['prob_tv_spread']):
self.set_state(self.infected)
return self.infected
@state
def infected(self):
@@ -26,6 +26,12 @@ class DumbViewer(FSM):
neighbor.infect()
def infect(self):
'''
This is not a state. It is a function that other agents can use to try to
infect this agent. DumbViewer always gets infected, but other agents like
HerdViewer might not become infected right away
'''
self.set_state(self.infected)
@@ -34,15 +40,14 @@ class HerdViewer(DumbViewer):
A viewer whose probability of infection depends on the state of its neighbors.
'''
level = logging.DEBUG
def infect(self):
'''Notice again that this is NOT a state. See DumbViewer.infect for reference'''
infected = self.count_neighboring_agents(state_id=self.infected.id)
total = self.count_neighboring_agents()
prob_infect = self.env['prob_neighbor_spread'] * infected/total
self.debug('prob_infect', prob_infect)
if prob(prob_infect):
self.set_state(self.infected.id)
self.set_state(self.infected)
class WiseViewer(HerdViewer):
@@ -77,5 +82,5 @@ class WiseViewer(HerdViewer):
1.0)
prob_cure = self.env['prob_neighbor_cure'] * (cured/infected)
if prob(prob_cure):
return self.cure()
return self.cured
return self.set_state(super().infected)

View File

@@ -18,7 +18,9 @@ class MyAgent(agents.FSM):
@agents.default_state
@agents.state
def neutral(self):
self.info('I am running')
self.debug('I am running')
if agents.prob(0.2):
self.info('This runs 2/10 times on average')
s = Simulation(name='Programmatic',
@@ -29,10 +31,10 @@ s = Simulation(name='Programmatic',
dry_run=True)
# By default, logging will only print WARNING logs (and above).
# You need to choose a lower logging level to get INFO/DEBUG traces
logging.basicConfig(level=logging.INFO)
envs = s.run()
s.dump_yaml()
for env in envs:
env.dump_csv()
# Uncomment this to output the simulation to a YAML file
# s.dump_yaml('simulation.yaml')

View File

@@ -59,7 +59,7 @@ class Patron(FSM):
2) Look for a bar where the agent and other agents in the same group can get in.
3) While in the bar, patrons only drink, until they get drunk and taken home.
'''
level = logging.INFO
level = logging.DEBUG
defaults = {
'pub': None,
@@ -113,7 +113,8 @@ class Patron(FSM):
@state
def at_home(self):
'''The end'''
self.debug('Life sucks. I\'m home!')
others = self.get_agents(state_id=Patron.at_home.id, limit_neighbors=True)
self.debug('I\'m home. Just like {} of my friends'.format(len(others)))
def drink(self):
self['pints'] += 1

View File

@@ -1,7 +1,6 @@
from soil.agents import FSM, state, default_state, BaseAgent
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from enum import Enum
from random import random, choice
from itertools import islice
import logging
import math
@@ -13,8 +12,6 @@ class Genders(Enum):
class RabbitModel(FSM):
level = logging.INFO
defaults = {
'age': 0,
'gender': Genders.male.value,
@@ -22,7 +19,7 @@ class RabbitModel(FSM):
'offspring': 0,
}
sexual_maturity = 4*30
sexual_maturity = 3 #4*30
life_expectancy = 365 * 3
gestation = 33
pregnancy = -1
@@ -31,10 +28,23 @@ class RabbitModel(FSM):
@default_state
@state
def newborn(self):
self.debug(f'I am a newborn at age {self["age"]}')
self['age'] += 1
if self['age'] >= self.sexual_maturity:
self.debug('I am fertile!')
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
@state
def dead(self):
self.info('Agent {} is dying'.format(self.id))
self.die()
class Male(RabbitModel):
@state
def fertile(self):
@@ -46,21 +56,26 @@ class RabbitModel(FSM):
return
# Males try to mate
females = self.get_agents(state_id=self.fertile.id, gender=Genders.female.value, limit_neighbors=False)
for f in islice(females, self.max_females):
for f in self.get_agents(state_id=Female.fertile.id,
agent_type=Female,
limit_neighbors=False,
limit=self.max_females):
r = random()
if r < self['mating_prob']:
self.impregnate(f)
break # Take a break
def impregnate(self, whom):
if self['gender'] == Genders.female.value:
raise NotImplementedError('Females cannot impregnate')
whom['pregnancy'] = 0
whom['mate'] = self.id
whom.set_state(whom.pregnant)
self.debug('{} impregnating: {}. {}'.format(self.id, whom.id, whom.state))
class Female(RabbitModel):
@state
def fertile(self):
# Just wait for a Male
pass
@state
def pregnant(self):
self['age'] += 1
@@ -80,7 +95,7 @@ class RabbitModel(FSM):
self.env.add_edge(self['mate'], child.id)
# self.add_edge()
self.debug('A BABY IS COMING TO LIFE')
self.env['rabbits_alive'] = self.env.get('rabbits_alive', self.global_topology.number_of_nodes())+1
self.env['rabbits_alive'] = self.env.get('rabbits_alive', self.topology.number_of_nodes())+1
self.debug('Rabbits alive: {}'.format(self.env['rabbits_alive']))
self['offspring'] += 1
self.env.get_agent(self['mate'])['offspring'] += 1
@@ -90,19 +105,19 @@ class RabbitModel(FSM):
@state
def dead(self):
self.info('Agent {} is dying'.format(self.id))
super().dead()
if 'pregnancy' in self and self['pregnancy'] > -1:
self.info('A mother has died carrying a baby!!')
self.die()
return
class RandomAccident(BaseAgent):
class RandomAccident(NetworkAgent):
level = logging.DEBUG
def step(self):
rabbits_total = self.global_topology.number_of_nodes()
rabbits_total = self.topology.number_of_nodes()
if 'rabbits_alive' not in self.env:
self.env['rabbits_alive'] = 0
rabbits_alive = self.env.get('rabbits_alive', rabbits_total)
prob_death = self.env.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
@@ -116,5 +131,5 @@ class RandomAccident(BaseAgent):
self.log('Rabbits alive: {}'.format(self.env['rabbits_alive']))
i.set_state(i.dead)
self.log('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
if self.count_agents(state_id=RabbitModel.dead.id) == self.global_topology.number_of_nodes():
if self.count_agents(state_id=RabbitModel.dead.id) == self.topology.number_of_nodes():
self.die()

View File

@@ -1,23 +1,21 @@
---
load_module: rabbit_agents
name: rabbits_example
max_time: 500
max_time: 100
interval: 1
seed: MySeed
agent_type: RabbitModel
agent_type: rabbit_agents.RabbitModel
environment_agents:
- agent_type: RandomAccident
- agent_type: rabbit_agents.RandomAccident
environment_params:
prob_death: 0.001
default_state:
mating_prob: 0.01
mating_prob: 0.1
topology:
nodes:
- id: 1
state:
gender: female
agent_type: rabbit_agents.Male
- id: 0
state:
gender: male
agent_type: rabbit_agents.Female
directed: true
links: []

View File

@@ -0,0 +1,45 @@
'''
Example of setting a
Example of a fully programmatic simulation, without definition files.
'''
from soil import Simulation, agents
from soil.time import Delta
from random import expovariate
import logging
class MyAgent(agents.FSM):
'''
An agent that first does a ping
'''
defaults = {'pong_counts': 2}
@agents.default_state
@agents.state
def ping(self):
self.info('Ping')
return self.pong, Delta(expovariate(1/16))
@agents.state
def pong(self):
self.info('Pong')
self.pong_counts -= 1
self.info(str(self.pong_counts))
if self.pong_counts < 1:
return self.die()
return None, Delta(expovariate(1/16))
s = Simulation(name='Programmatic',
network_agents=[{'agent_type': MyAgent, 'id': 0}],
topology={'nodes': [{'id': 0}], 'links': []},
num_trials=1,
max_time=100,
agent_type=MyAgent,
dry_run=True)
logging.basicConfig(level=logging.INFO)
envs = s.run()

View File

@@ -1,13 +1,8 @@
---
vars:
bounds:
x1: [0, 1]
x2: [1, 2]
fixed:
x3: ["a", "b", "c"]
sampler: "SALib.sample.morris.sample"
samples: 10
template: |
sampler:
method: "SALib.sample.morris.sample"
N: 10
template:
group: simple
num_trials: 1
interval: 1
@@ -19,11 +14,17 @@ template: |
n: 10
network_agents:
- agent_type: CounterModel
weight: {{ x1 }}
weight: "{{ x1 }}"
state:
id: 0
state_id: 0
- agent_type: AggregatedCounter
weight: {{ 1 - x1 }}
weight: "{{ 1 - x1 }}"
environment_params:
name: {{ x3 }}
name: "{{ x3 }}"
skip_test: true
vars:
bounds:
x1: [0, 1]
x2: [1, 2]
fixed:
x3: ["a", "b", "c"]

View File

@@ -18,12 +18,12 @@ class TerroristSpreadModel(FSM, Geo):
prob_interaction
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.information_spread_intensity = environment.environment_params['information_spread_intensity']
self.terrorist_additional_influence = environment.environment_params['terrorist_additional_influence']
self.prob_interaction = environment.environment_params['prob_interaction']
self.information_spread_intensity = model.environment_params['information_spread_intensity']
self.terrorist_additional_influence = model.environment_params['terrorist_additional_influence']
self.prob_interaction = model.environment_params['prob_interaction']
if self['id'] == self.civilian.id: # Civilian
self.mean_belief = random.uniform(0.00, 0.5)
@@ -34,10 +34,10 @@ class TerroristSpreadModel(FSM, Geo):
else:
raise Exception('Invalid state id: {}'.format(self['id']))
if 'min_vulnerability' in environment.environment_params:
self.vulnerability = random.uniform( environment.environment_params['min_vulnerability'], environment.environment_params['max_vulnerability'] )
if 'min_vulnerability' in model.environment_params:
self.vulnerability = random.uniform( model.environment_params['min_vulnerability'], model.environment_params['max_vulnerability'] )
else :
self.vulnerability = random.uniform( 0, environment.environment_params['max_vulnerability'] )
self.vulnerability = random.uniform( 0, model.environment_params['max_vulnerability'] )
@state
@@ -93,11 +93,11 @@ class TrainingAreaModel(FSM, Geo):
Requires TerroristSpreadModel.
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.training_influence = environment.environment_params['training_influence']
if 'min_vulnerability' in environment.environment_params:
self.min_vulnerability = environment.environment_params['min_vulnerability']
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.training_influence = model.environment_params['training_influence']
if 'min_vulnerability' in model.environment_params:
self.min_vulnerability = model.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
@default_state
@@ -120,13 +120,13 @@ class HavenModel(FSM, Geo):
Requires TerroristSpreadModel.
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.haven_influence = environment.environment_params['haven_influence']
if 'min_vulnerability' in environment.environment_params:
self.min_vulnerability = environment.environment_params['min_vulnerability']
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.haven_influence = model.environment_params['haven_influence']
if 'min_vulnerability' in model.environment_params:
self.min_vulnerability = model.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
self.max_vulnerability = environment.environment_params['max_vulnerability']
self.max_vulnerability = model.environment_params['max_vulnerability']
def get_occupants(self, **kwargs):
return self.get_neighboring_agents(agent_type=TerroristSpreadModel, **kwargs)
@@ -162,13 +162,13 @@ class TerroristNetworkModel(TerroristSpreadModel):
weight_link_distance
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.vision_range = environment.environment_params['vision_range']
self.sphere_influence = environment.environment_params['sphere_influence']
self.weight_social_distance = environment.environment_params['weight_social_distance']
self.weight_link_distance = environment.environment_params['weight_link_distance']
self.vision_range = model.environment_params['vision_range']
self.sphere_influence = model.environment_params['sphere_influence']
self.weight_social_distance = model.environment_params['weight_social_distance']
self.weight_link_distance = model.environment_params['weight_link_distance']
@state
def terrorist(self):
@@ -195,14 +195,14 @@ class TerroristNetworkModel(TerroristSpreadModel):
break
def get_distance(self, target):
source_x, source_y = nx.get_node_attributes(self.global_topology, 'pos')[self.id]
target_x, target_y = nx.get_node_attributes(self.global_topology, 'pos')[target]
source_x, source_y = nx.get_node_attributes(self.topology, 'pos')[self.id]
target_x, target_y = nx.get_node_attributes(self.topology, 'pos')[target]
dx = abs( source_x - target_x )
dy = abs( source_y - target_y )
return ( dx ** 2 + dy ** 2 ) ** ( 1 / 2 )
def shortest_path_length(self, target):
try:
return nx.shortest_path_length(self.global_topology, self.id, target)
return nx.shortest_path_length(self.topology, self.id, target)
except nx.NetworkXNoPath:
return float('inf')

File diff suppressed because one or more lines are too long

View File

@@ -1,10 +1,9 @@
nxsim>=0.1.2
simpy
networkx>=2.0
networkx>=2.5
numpy
matplotlib
pyyaml>=5.1
pandas>=0.23
scipy==1.2.1 # scipy 1.3.0rc1 is not compatible with salib
SALib>=1.3
Jinja2
Mesa>=0.8
tsih>=0.1.5

View File

@@ -16,6 +16,12 @@ def parse_requirements(filename):
install_reqs = parse_requirements("requirements.txt")
test_reqs = parse_requirements("test-requirements.txt")
extras_require={
'mesa': ['mesa>=0.8.9'],
'geo': ['scipy>=1.3'],
'web': ['tornado']
}
extras_require['all'] = [dep for package in extras_require.values() for dep in package]
setup(
@@ -40,10 +46,7 @@ setup(
'Operating System :: POSIX',
'Programming Language :: Python :: 3'],
install_requires=install_reqs,
extras_require={
'web': ['tornado']
},
extras_require=extras_require,
tests_require=test_reqs,
setup_requires=['pytest-runner', ],
include_package_data=True,

View File

@@ -1 +1 @@
0.14.0
0.20.5

View File

@@ -11,25 +11,28 @@ try:
except NameError:
basestring = str
from .agents import *
from . import agents
from .simulation import *
from .environment import Environment
from .history import History
from . import serialization
from . import analysis
from .utils import logger
from .time import *
def main():
import argparse
from . import simulation
logging.basicConfig(level=logging.INFO)
logging.info('Running SOIL version: {}'.format(__version__))
logger.info('Running SOIL version: {}'.format(__version__))
parser = argparse.ArgumentParser(description='Run a SOIL simulation')
parser.add_argument('file', type=str,
nargs="?",
default='simulation.yml',
help='python module containing the simulation configuration.')
help='Configuration file for the simulation (e.g., YAML or JSON)')
parser.add_argument('--version', action='store_true',
help='Show version info and exit')
parser.add_argument('--module', '-m', type=str,
help='file containing the code of any custom agents.')
parser.add_argument('--dry-run', '--dry', action='store_true',
@@ -40,6 +43,8 @@ def main():
help='Dump GEXF graph. Defaults to false.')
parser.add_argument('--csv', action='store_true',
help='Dump history in CSV format. Defaults to false.')
parser.add_argument('--level', type=str,
help='Logging level')
parser.add_argument('--output', '-o', type=str, default="soil_output",
help='folder to write results to. It defaults to the current directory.')
parser.add_argument('--synchronous', action='store_true',
@@ -48,23 +53,35 @@ def main():
help='Export environment and/or simulations using this exporter')
args = parser.parse_args()
logging.basicConfig(level=getattr(logging, (args.level or 'INFO').upper()))
if args.version:
return
if os.getcwd() not in sys.path:
sys.path.append(os.getcwd())
if args.module:
importlib.import_module(args.module)
logging.info('Loading config file: {}'.format(args.file))
logger.info('Loading config file: {}'.format(args.file))
if args.pdb:
args.synchronous = True
try:
exporters = list(args.exporter or [])
exporters = list(args.exporter or ['default', ])
if args.csv:
exporters.append('CSV')
exporters.append('csv')
if args.graph:
exporters.append('Gexf')
exporters.append('gexf')
exp_params = {}
if args.dry_run:
exp_params['copy_to'] = sys.stdout
if not os.path.exists(args.file):
logger.error('Please, input a valid file')
return
simulation.run_from_config(args.file,
dry_run=args.dry_run,
exporters=exporters,

View File

@@ -1,40 +1,31 @@
import random
from . import BaseAgent
from . import FSM, state, default_state
class BassModel(BaseAgent):
class BassModel(FSM):
"""
Settings:
innovation_prob
imitation_prob
"""
def __init__(self, environment, agent_id, state):
super().__init__(environment=environment, agent_id=agent_id, state=state)
env_params = environment.environment_params
self.state['sentimentCorrelation'] = 0
sentimentCorrelation = 0
def step(self):
self.behaviour()
def behaviour(self):
# Outside effects
if random.random() < self.state_params['innovation_prob']:
if self.state['id'] == 0:
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
else:
pass
return
# Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
@default_state
@state
def innovation(self):
if random.random() < self.innovation_prob:
self.sentimentCorrelation = 1
return self.aware
else:
aware_neighbors = self.get_neighboring_agents(state_id=self.aware.id)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (self.state_params['imitation_prob']*num_neighbors_aware):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
if random.random() < (self['imitation_prob']*num_neighbors_aware):
self.sentimentCorrelation = 1
return self.aware
else:
pass
@state
def aware(self):
self.die()

View File

@@ -1,8 +1,8 @@
import random
from . import BaseAgent
from . import FSM, state, default_state
class BigMarketModel(BaseAgent):
class BigMarketModel(FSM):
"""
Settings:
Names:
@@ -19,34 +19,25 @@ class BigMarketModel(BaseAgent):
sentiment_about [Array]
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.enterprises = environment.environment_params['enterprises']
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.enterprises = self.env.environment_params['enterprises']
self.type = ""
self.number_of_enterprises = len(environment.environment_params['enterprises'])
if self.id < self.number_of_enterprises: # Enterprises
self.state['id'] = self.id
if self.id < len(self.enterprises): # Enterprises
self.set_state(self.enterprise.id)
self.type = "Enterprise"
self.tweet_probability = environment.environment_params['tweet_probability_enterprises'][self.id]
else: # normal users
self.state['id'] = self.number_of_enterprises
self.type = "User"
self.set_state(self.user.id)
self.tweet_probability = environment.environment_params['tweet_probability_users']
self.tweet_relevant_probability = environment.environment_params['tweet_relevant_probability']
self.tweet_probability_about = environment.environment_params['tweet_probability_about'] # List
self.sentiment_about = environment.environment_params['sentiment_about'] # List
def step(self):
if self.id < self.number_of_enterprises: # Enterprise
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
for i in range(self.number_of_enterprises): # So that it never is set to 0 if there are not changes (logs)
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
def enterpriseBehaviour(self):
@state
def enterprise(self):
if random.random() < self.tweet_probability: # Tweets
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbour users
@@ -64,12 +55,12 @@ class BigMarketModel(BaseAgent):
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
def userBehaviour(self):
@state
def user(self):
if random.random() < self.tweet_probability: # Tweets
if random.random() < self.tweet_relevant_probability: # Tweets something relevant
# Tweet probability per enterprise
for i in range(self.number_of_enterprises):
for i in range(len(self.enterprises)):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
# The condition is fulfilled, sentiments are evaluated towards that enterprise
@@ -82,8 +73,10 @@ class BigMarketModel(BaseAgent):
else:
# POSITIVO
self.userTweets("positive",i)
for i in range(len(self.enterprises)): # So that it never is set to 0 if there are not changes (logs)
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
def userTweets(self,sentiment,enterprise):
def userTweets(self, sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbours users
for x in aware_neighbors:
if sentiment == "positive":

View File

@@ -1,7 +1,7 @@
from . import BaseAgent
from . import NetworkAgent
class CounterModel(BaseAgent):
class CounterModel(NetworkAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
@@ -9,14 +9,14 @@ class CounterModel(BaseAgent):
def step(self):
# Outside effects
total = len(list(self.get_all_agents()))
total = len(list(self.get_agents()))
neighbors = len(list(self.get_neighboring_agents()))
self['times'] = self.get('times', 0) + 1
self['neighbors'] = neighbors
self['total'] = total
class AggregatedCounter(BaseAgent):
class AggregatedCounter(NetworkAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
@@ -33,6 +33,6 @@ class AggregatedCounter(BaseAgent):
self['times'] += 1
neighbors = len(list(self.get_neighboring_agents()))
self['neighbors'] += neighbors
total = len(list(self.get_all_agents()))
total = len(list(self.get_agents()))
self['total'] += total
self.debug('Running for step: {}. Total: {}'.format(self.now, total))

21
soil/agents/Geo.py Normal file
View File

@@ -0,0 +1,21 @@
from scipy.spatial import cKDTree as KDTree
import networkx as nx
from . import NetworkAgent, as_node
class Geo(NetworkAgent):
'''In this type of network, nodes have a "pos" attribute.'''
def geo_search(self, radius, node=None, center=False, **kwargs):
'''Get a list of nodes whose coordinates are closer than *radius* to *node*.'''
node = as_node(node if node is not None else self)
G = self.subgraph(**kwargs)
pos = nx.get_node_attributes(G, 'pos')
if not pos:
return []
nodes, coords = list(zip(*pos.items()))
kdtree = KDTree(coords) # Cannot provide generator.
indices = kdtree.query_ball_point(pos[node], radius)
return [nodes[i] for i in indices if center or (nodes[i] != node)]

View File

@@ -10,10 +10,10 @@ class IndependentCascadeModel(BaseAgent):
imitation_prob
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = environment.environment_params['innovation_prob']
self.imitation_prob = environment.environment_params['imitation_prob']
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.innovation_prob = self.env.environment_params['innovation_prob']
self.imitation_prob = self.env.environment_params['imitation_prob']
self.state['time_awareness'] = 0
self.state['sentimentCorrelation'] = 0

View File

@@ -21,8 +21,8 @@ class SpreadModelM2(BaseAgent):
prob_generate_anti_rumor
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
@@ -123,8 +123,8 @@ class ControlModelM2(BaseAgent):
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])

View File

@@ -29,8 +29,8 @@ class SISaModel(FSM):
standard_variance
"""
def __init__(self, environment, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
def __init__(self, environment, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
self.neutral_discontent_spon_prob = np.random.normal(self.env['neutral_discontent_spon_prob'],
self.env['standard_variance'])

View File

@@ -16,8 +16,8 @@ class SentimentCorrelationModel(BaseAgent):
disgust_prob
"""
def __init__(self, environment, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
def __init__(self, environment, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
self.anger_prob = environment.environment_params['anger_prob']
self.joy_prob = environment.environment_params['joy_prob']

View File

@@ -1,21 +1,16 @@
# networkStatus = {} # Dict that will contain the status of every agent in the network
# sentimentCorrelationNodeArray = []
# for x in range(0, settings.network_params["number_of_nodes"]):
# sentimentCorrelationNodeArray.append({'id': x})
# Initialize agent states. Let's assume everyone is normal.
import nxsim
import logging
from collections import OrderedDict
from collections import OrderedDict, defaultdict
from copy import deepcopy
from functools import partial
from scipy.spatial import cKDTree as KDTree
from functools import partial, wraps
from itertools import islice
import json
import networkx as nx
from functools import wraps
from .. import serialization, utils, time
from .. import serialization, history
from tsih import Key
from mesa import Agent
def as_node(agent):
@@ -23,41 +18,62 @@ def as_node(agent):
return agent.id
return agent
IGNORED_FIELDS = ('model', 'logger')
class BaseAgent(nxsim.BaseAgent):
class DeadAgent(Exception):
pass
class BaseAgent(Agent):
"""
A special simpy BaseAgent that keeps track of its state history.
A special Agent that keeps track of its state history.
"""
defaults = {}
def __init__(self, environment, agent_id, state=None,
name=None, interval=None, **state_params):
def __init__(self,
unique_id,
model,
name=None,
interval=None,
**kwargs
):
# Check for REQUIRED arguments
assert environment is not None, TypeError('__init__ missing 1 required keyword argument: \'environment\'. '
'Cannot be NoneType.')
# Initialize agent parameters
self.id = agent_id
self.name = name or '{}[{}]'.format(type(self).__name__, self.id)
self.state_params = state_params
# Register agent to environment
self.env = environment
if isinstance(unique_id, Agent):
raise Exception()
self._saved = set()
super().__init__(unique_id=unique_id, model=model)
self.name = name or '{}[{}]'.format(type(self).__name__, self.unique_id)
self._neighbors = None
self.alive = True
real_state = deepcopy(self.defaults)
real_state.update(state or {})
self.state = real_state
self.interval = interval
if not hasattr(self, 'level'):
self.level = logging.DEBUG
self.logger = logging.getLogger(self.env.name)
self.logger.setLevel(self.level)
self.interval = interval or self.get('interval', 1)
self.logger = logging.getLogger(self.model.name).getChild(self.name)
# initialize every time an instance of the agent is created
self.action = self.env.process(self.run())
if hasattr(self, 'level'):
self.logger.setLevel(self.level)
for (k, v) in self.defaults.items():
if not hasattr(self, k) or getattr(self, k) is None:
setattr(self, k, deepcopy(v))
for (k, v) in kwargs.items():
setattr(self, k, v)
# TODO: refactor to clean up mesa compatibility
@property
def id(self):
return self.unique_id
@property
def env(self):
return self.model
@env.setter
def env(self, model):
self.model = model
@property
def state(self):
@@ -71,44 +87,47 @@ class BaseAgent(nxsim.BaseAgent):
@state.setter
def state(self, value):
self._state = {}
for k, v in value.items():
self[k] = v
@property
def global_topology(self):
return self.env.G
@property
def environment_params(self):
return self.env.environment_params
return self.model.environment_params
@environment_params.setter
def environment_params(self, value):
self.env.environment_params = value
self.model.environment_params = value
def __setattr__(self, key, value):
if not key.startswith('_') and key not in IGNORED_FIELDS:
try:
k = Key(t_step=self.now,
dict_id=self.unique_id,
key=key)
self._saved.add(key)
self.model[k] = value
except AttributeError:
pass
super().__setattr__(key, value)
def __getitem__(self, key):
if isinstance(key, tuple):
key, t_step = key
k = history.Key(key=key, t_step=t_step, agent_id=self.id)
return self.env[k]
return self._state.get(key, None)
k = Key(key=key, t_step=t_step, dict_id=self.unique_id)
return self.model[k]
return getattr(self, key)
def __delitem__(self, key):
self._state[key] = None
return delattr(self, key)
def __contains__(self, key):
return key in self._state
return hasattr(self, key)
def __setitem__(self, key, value):
self._state[key] = value
k = history.Key(t_step=self.now,
agent_id=self.id,
key=key)
self.env[k] = value
setattr(self, key, value)
def items(self):
return self._state.items()
return ((k, getattr(self, k)) for k in self._saved)
def get(self, key, default=None):
return self[key] if key in self else default
@@ -116,54 +135,34 @@ class BaseAgent(nxsim.BaseAgent):
@property
def now(self):
try:
return self.env.now
return self.model.now
except AttributeError:
# No environment
return None
def run(self):
if self.interval is not None:
interval = self.interval
elif 'interval' in self:
interval = self['interval']
else:
interval = self.env.interval
while self.alive:
res = self.step()
yield res or self.env.timeout(interval)
def die(self, remove=False):
self.info(f'agent {self.unique_id} is dying')
self.alive = False
if remove:
super().die()
self.remove_node(self.id)
return time.INFINITY
def step(self):
pass
def count_agents(self, **kwargs):
return len(list(self.get_agents(**kwargs)))
def count_neighboring_agents(self, state_id=None, **kwargs):
return len(super().get_neighboring_agents(state_id=state_id, **kwargs))
def get_neighboring_agents(self, state_id=None, **kwargs):
return self.get_agents(limit_neighbors=True, state_id=state_id, **kwargs)
def get_agents(self, agents=None, limit_neighbors=False, **kwargs):
if limit_neighbors:
agents = super().get_agents(limit_neighbors=limit_neighbors)
else:
agents = self.env.get_agents(agents)
return select(agents, **kwargs)
if not self.alive:
raise DeadAgent(self.unique_id)
return super().step() or time.Delta(self.interval)
def log(self, message, *args, level=logging.INFO, **kwargs):
if not self.logger.isEnabledFor(level):
return
message = message + " ".join(str(i) for i in args)
message = "\t{:10}@{:>5}:\t{}".format(self.name, self.now, message)
message = " @{:>3}: {}".format(self.now, message)
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
extra = {}
extra['now'] = self.now
extra['id'] = self.id
extra['unique_id'] = self.unique_id
extra['agent_name'] = self.name
return self.logger.log(level, message, extra=extra)
def debug(self, *args, **kwargs):
@@ -171,45 +170,56 @@ class BaseAgent(nxsim.BaseAgent):
def info(self, *args, **kwargs):
return self.log(*args, level=logging.INFO, **kwargs)
def __getstate__(self):
'''
Serializing an agent will lose all its running information (you cannot
serialize an iterator), but it keeps the state and link to the environment,
so it can be used for inspection and dumping to a file
'''
state = {}
state['id'] = self.id
state['environment'] = self.env
state['_state'] = self._state
return state
def __setstate__(self, state):
'''
Get back a serialized agent and try to re-compose it
'''
self.id = state['id']
self._state = state['_state']
self.env = state['environment']
def add_edge(self, node1, node2, **attrs):
node1 = as_node(node1)
node2 = as_node(node2)
for n in [node1, node2]:
if n not in self.global_topology.nodes(data=False):
raise ValueError('"{}" not in the graph'.format(n))
return self.global_topology.add_edge(node1, node2, **attrs)
def subgraph(self, center=True, **kwargs):
include = [self] if center else []
return self.global_topology.subgraph(n.id for n in self.get_agents(**kwargs)+include)
class NetworkAgent(BaseAgent):
def add_edge(self, other, **kwargs):
return super(NetworkAgent, self).add_edge(node1=self.id, node2=other, **kwargs)
@property
def topology(self):
return self.model.G
@property
def G(self):
return self.model.G
def count_agents(self, **kwargs):
return len(list(self.get_agents(**kwargs)))
def count_neighboring_agents(self, state_id=None, **kwargs):
return len(self.get_neighboring_agents(state_id=state_id, **kwargs))
def get_neighboring_agents(self, state_id=None, **kwargs):
return self.get_agents(limit_neighbors=True, state_id=state_id, **kwargs)
def get_agents(self, *args, limit=None, **kwargs):
it = self.iter_agents(*args, **kwargs)
if limit is not None:
it = islice(it, limit)
return list(it)
def iter_agents(self, agents=None, limit_neighbors=False, **kwargs):
if limit_neighbors:
agents = self.topology.neighbors(self.unique_id)
agents = self.model.get_agents(agents)
return select(agents, **kwargs)
def subgraph(self, center=True, **kwargs):
include = [self] if center else []
return self.topology.subgraph(n.unique_id for n in list(self.get_agents(**kwargs))+include)
def remove_node(self, unique_id):
self.topology.remove_node(unique_id)
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
# return super(NetworkAgent, self).add_edge(node1=self.id, node2=other, **kwargs)
if self.unique_id not in self.topology.nodes(data=False):
raise ValueError('{} not in list of existing agents in the network'.format(self.unique_id))
if other.unique_id not in self.topology.nodes(data=False):
raise ValueError('{} not in list of existing agents in the network'.format(other))
self.topology.add_edge(self.unique_id, other.unique_id, edge_attr_dict=edge_attr_dict, *edge_attrs)
def ego_search(self, steps=1, center=False, node=None, **kwargs):
'''Get a list of nodes in the ego network of *node* of radius *steps*'''
@@ -219,17 +229,17 @@ class NetworkAgent(BaseAgent):
def degree(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.env, '_degree')) or getattr(self.env, '_last_step', 0) < self.now:
self.env._degree = nx.degree_centrality(self.global_topology)
self.env._last_step = self.now
return self.env._degree[node]
if force or (not hasattr(self.model, '_degree')) or getattr(self.model, '_last_step', 0) < self.now:
self.model._degree = nx.degree_centrality(self.topology)
self.model._last_step = self.now
return self.model._degree[node]
def betweenness(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.env, '_betweenness')) or getattr(self.env, '_last_step', 0) < self.now:
self.env._betweenness = nx.betweenness_centrality(self.global_topology)
self.env._last_step = self.now
return self.env._betweenness[node]
if force or (not hasattr(self.model, '_betweenness')) or getattr(self.model, '_last_step', 0) < self.now:
self.model._betweenness = nx.betweenness_centrality(self.topology)
self.model._last_step = self.now
return self.model._betweenness[node]
def state(name=None):
@@ -292,31 +302,35 @@ class MetaFSM(type):
cls.states = states
class FSM(BaseAgent, metaclass=MetaFSM):
class FSM(NetworkAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
if 'id' not in self.state:
if not hasattr(self, 'state_id'):
if not self.default_state:
raise ValueError('No default state specified for {}'.format(self.id))
self['id'] = self.default_state.id
raise ValueError('No default state specified for {}'.format(self.unique_id))
self.state_id = self.default_state.id
self.set_state(self.state_id)
def step(self):
if 'id' in self.state:
next_state = self['id']
elif self.default_state:
next_state = self.default_state.id
else:
raise Exception('{} has no valid state id or default state'.format(self))
if next_state not in self.states:
raise Exception('{} is not a valid id for {}'.format(next_state, self))
return self.states[next_state](self)
self.debug(f'Agent {self.unique_id} @ state {self.state_id}')
interval = super().step()
if 'id' not in self.state:
if self.default_state:
self.set_state(self.default_state.id)
else:
raise Exception('{} has no valid state id or default state'.format(self))
interval = self.states[self.state_id](self) or interval
if not self.alive:
return time.NEVER
return interval
def set_state(self, state):
if hasattr(state, 'id'):
state = state.id
if state not in self.states:
raise ValueError('{} is not a valid state'.format(state))
self['id'] = state
self.state_id = state
return state
@@ -335,9 +349,6 @@ def prob(prob=1):
return r < prob
STATIC_THRESHOLD = (-1, -1)
def calculate_distribution(network_agents=None,
agent_type=None):
'''
@@ -365,20 +376,23 @@ def calculate_distribution(network_agents=None,
'agent_type_1'.
'''
if network_agents:
network_agents = deepcopy(network_agents)
network_agents = [deepcopy(agent) for agent in network_agents if not hasattr(agent, 'id')]
elif agent_type:
network_agents = [{'agent_type': agent_type}]
else:
raise ValueError('Specify a distribution or a default agent type')
# Fix missing weights and incompatible types
for x in network_agents:
x['weight'] = float(x.get('weight', 1))
# Calculate the thresholds
total = sum(x.get('weight', 1) for x in network_agents)
total = sum(x['weight'] for x in network_agents)
acc = 0
for v in network_agents:
if 'ids' in v:
v['threshold'] = STATIC_THRESHOLD
continue
upper = acc + (v.get('weight', 1)/total)
upper = acc + (v['weight']/total)
v['threshold'] = [acc, upper]
acc = upper
return network_agents
@@ -391,7 +405,7 @@ def serialize_type(agent_type, known_modules=[], **kwargs):
return serialization.serialize(agent_type, known_modules=known_modules, **kwargs)[1] # Get the name of the class
def serialize_distribution(network_agents, known_modules=[]):
def serialize_definition(network_agents, known_modules=[]):
'''
When serializing an agent distribution, remove the thresholds, in order
to avoid cluttering the YAML definition file.
@@ -413,7 +427,7 @@ def deserialize_type(agent_type, known_modules=[]):
return agent_type
def deserialize_distribution(ind, **kwargs):
def deserialize_definition(ind, **kwargs):
d = deepcopy(ind)
for v in d:
v['agent_type'] = deserialize_type(v['agent_type'], **kwargs)
@@ -425,7 +439,7 @@ def _validate_states(states, topology):
states = states or []
if isinstance(states, dict):
for x in states:
assert x in topology.node
assert x in topology.nodes
else:
assert len(states) <= len(topology)
return states
@@ -434,78 +448,112 @@ def _validate_states(states, topology):
def _convert_agent_types(ind, to_string=False, **kwargs):
'''Convenience method to allow specifying agents by class or class name.'''
if to_string:
return serialize_distribution(ind, **kwargs)
return deserialize_distribution(ind, **kwargs)
return serialize_definition(ind, **kwargs)
return deserialize_definition(ind, **kwargs)
def _agent_from_distribution(distribution, value=-1, agent_id=None):
def _agent_from_definition(definition, value=-1, unique_id=None):
"""Used in the initialization of agents given an agent distribution."""
if value < 0:
value = random.random()
for d in sorted(distribution, key=lambda x: x['threshold']):
threshold = d['threshold']
for d in sorted(definition, key=lambda x: x.get('threshold')):
threshold = d.get('threshold', (-1, -1))
# Check if the definition matches by id (first) or by threshold
if not ((agent_id is not None and threshold == STATIC_THRESHOLD and agent_id in d['ids']) or \
(value >= threshold[0] and value < threshold[1])):
continue
state = {}
if 'state' in d:
state = deepcopy(d['state'])
return d['agent_type'], state
if (unique_id is not None and unique_id in d.get('ids', [])) or \
(value >= threshold[0] and value < threshold[1]):
state = {}
if 'state' in d:
state = deepcopy(d['state'])
return d['agent_type'], state
raise Exception('Distribution for value {} not found in: {}'.format(value, distribution))
raise Exception('Definition for value {} not found in: {}'.format(value, definition))
class Geo(NetworkAgent):
'''In this type of network, nodes have a "pos" attribute.'''
def _definition_to_dict(definition, size=None, default_state=None):
state = default_state or {}
agents = {}
remaining = {}
if size:
for ix in range(size):
remaining[ix] = copy(state)
else:
remaining = defaultdict(lambda x: copy(state))
def geo_search(self, radius, node=None, center=False, **kwargs):
'''Get a list of nodes whose coordinates are closer than *radius* to *node*.'''
node = as_node(node if node is not None else self)
distro = sorted([item for item in definition if 'weight' in item])
G = self.subgraph(**kwargs)
ix = 0
def init_agent(item, id=ix):
while id in agents:
id += 1
pos = nx.get_node_attributes(G, 'pos')
if not pos:
return []
nodes, coords = list(zip(*pos.items()))
kdtree = KDTree(coords) # Cannot provide generator.
indices = kdtree.query_ball_point(pos[node], radius)
return [nodes[i] for i in indices if center or (nodes[i] != node)]
agent = remaining[id]
agent['state'].update(copy(item.get('state', {})))
agents[id] = agent
del remaining[id]
return agent
for item in definition:
if 'ids' in item:
ids = item['ids']
del item['ids']
for id in ids:
agent = init_agent(item, id)
for item in definition:
if 'number' in item:
times = item['number']
del item['number']
for times in range(times):
if size:
ix = random.choice(remaining.keys())
agent = init_agent(item, id)
else:
agent = init_agent(item)
if not size:
return agents
if len(remaining) < 0:
raise Exception('Invalid definition. Too many agents to add')
total_weight = float(sum(s['weight'] for s in distro))
unit = size / total_weight
for item in distro:
times = unit * item['weight']
del item['weight']
for times in range(times):
ix = random.choice(remaining.keys())
agent = init_agent(item, id)
return agents
def select(agents, state_id=None, agent_type=None, ignore=None, iterator=False, **kwargs):
if state_id is not None:
try:
state_id = tuple(state_id)
except TypeError:
state_id = tuple([state_id])
if state_id is not None and not isinstance(state_id, (tuple, list)):
state_id = tuple([state_id])
if agent_type is not None:
try:
agent_type = tuple(agent_type)
except TypeError:
agent_type = tuple([agent_type])
def matches_all(agent):
if state_id is not None:
if agent.state.get('id', None) not in state_id:
return False
if agent_type is not None:
if not isinstance(agent, agent_type):
return False
state = agent.state
for k, v in kwargs.items():
if state.get(k, None) != v:
return False
return True
f = agents
f = filter(matches_all, agents)
if ignore:
f = filter(lambda x: x not in ignore, f)
if state_id is not None:
f = filter(lambda agent: agent.get('state_id', None) in state_id, f)
if agent_type is not None:
f = filter(lambda agent: isinstance(agent, agent_type), f)
for k, v in kwargs.items():
f = filter(lambda agent: agent.state.get(k, None) == v, f)
if iterator:
return f
return list(f)
return f
from .BassModel import *
@@ -515,3 +563,10 @@ from .ModelM2 import *
from .SentimentCorrelationModel import *
from .SISaModel import *
from .CounterModel import *
try:
import scipy
from .Geo import Geo
except ImportError:
import sys
print('Could not load the Geo Agent, scipy is not installed', file=sys.stderr)

View File

@@ -4,7 +4,8 @@ import glob
import yaml
from os.path import join
from . import serialization, history
from . import serialization
from tsih import History
def read_data(*args, group=False, **kwargs):
@@ -20,7 +21,7 @@ def _read_data(pattern, *args, from_csv=False, process_args=None, **kwargs):
process_args = {}
for folder in glob.glob(pattern):
config_file = glob.glob(join(folder, '*.yml'))[0]
config = yaml.load(open(config_file))
config = yaml.load(open(config_file), Loader=yaml.SafeLoader)
df = None
if from_csv:
for trial_data in sorted(glob.glob(join(folder,
@@ -28,13 +29,13 @@ def _read_data(pattern, *args, from_csv=False, process_args=None, **kwargs):
df = read_csv(trial_data, **kwargs)
yield config_file, df, config
else:
for trial_data in sorted(glob.glob(join(folder, '*.db.sqlite'))):
for trial_data in sorted(glob.glob(join(folder, '*.sqlite'))):
df = read_sql(trial_data, **kwargs)
yield config_file, df, config
def read_sql(db, *args, **kwargs):
h = history.History(db_path=db, backup=False)
h = History(db_path=db, backup=False, readonly=True)
df = h.read_sql(*args, **kwargs)
return df
@@ -61,7 +62,12 @@ def convert_row(row):
def convert_types_slow(df):
'''This is a slow operation.'''
'''
Go over every column in a dataframe and convert it to the type determined by the `get_types`
function.
This is a slow operation.
'''
dtypes = get_types(df)
for k, v in dtypes.items():
t = df[df['key']==k]
@@ -69,6 +75,13 @@ def convert_types_slow(df):
df = df.apply(convert_row, axis=1)
return df
def split_processed(df):
env = df.loc[:, df.columns.get_level_values(1).isin(['env', 'stats'])]
agents = df.loc[:, ~df.columns.get_level_values(1).isin(['env', 'stats'])]
return env, agents
def split_df(df):
'''
Split a dataframe in two dataframes: one with the history of agents,
@@ -95,6 +108,9 @@ def process(df, **kwargs):
def get_types(df):
'''
Get the value type for every key stored in a raw history dataframe.
'''
dtypes = df.groupby(by=['key'])['value_type'].unique()
return {k:v[0] for k,v in dtypes.iteritems()}
@@ -119,8 +135,14 @@ def process_one(df, *keys, columns=['key', 'agent_id'], values='value',
def get_count(df, *keys):
'''
For every t_step and key, get the value count.
The result is a dataframe with `t_step` as index, an a multiindex column based on `key` and the values found for each `key`.
'''
if keys:
df = df[list(keys)]
df.columns = df.columns.remove_unused_levels()
counts = pd.DataFrame()
for key in df.columns.levels[0]:
g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0)
@@ -130,13 +152,28 @@ def get_count(df, *keys):
return counts
def get_majority(df, *keys):
'''
For every t_step and key, get the value of the majority of agents
The result is a dataframe with `t_step` as index, and columns based on `key`.
'''
df = get_count(df, *keys)
return df.stack(level=0).idxmax(axis=1).unstack()
def get_value(df, *keys, aggfunc='sum'):
'''
For every t_step and key, get the value of *numeric columns*, aggregated using a specific function.
'''
if keys:
df = df[list(keys)]
return df.groupby(axis=1, level=0).agg(aggfunc, axis=1)
df.columns = df.columns.remove_unused_levels()
df = df.select_dtypes('number')
return df.groupby(level='key', axis=1).agg(aggfunc)
def plot_all(*args, **kwargs):
def plot_all(*args, plot_args={}, **kwargs):
'''
Read all the trial data and plot the result of applying a function on them.
'''
@@ -144,14 +181,17 @@ def plot_all(*args, **kwargs):
ps = []
for line in dfs:
f, df, config = line
df.plot(title=config['name'])
if len(df) < 1:
continue
df.plot(title=config['name'], **plot_args)
ps.append(df)
return ps
def do_all(pattern, func, *keys, include_env=False, **kwargs):
for config_file, df, config in read_data(pattern, keys=keys):
if len(df) < 1:
continue
p = func(df, *keys, **kwargs)
p.plot(title=config['name'])
yield config_file, p, config

26
soil/datacollection.py Normal file
View File

@@ -0,0 +1,26 @@
from mesa import DataCollector as MDC
class SoilDataCollector(MDC):
def __init__(self, environment, *args, **kwargs):
super().__init__(*args, **kwargs)
# Populate model and env reporters so they have a key per
# So they can be shown in the web interface
self.environment = environment
@property
def model_vars(self):
pass
@model_vars.setter
def model_vars(self, value):
pass
@property
def agent_reporters(self):
self.model._history._
pass

View File

@@ -1,29 +1,32 @@
import os
import sqlite3
import time
import csv
import math
import random
import simpy
import yaml
import tempfile
import logging
import pandas as pd
from time import time as current_time
from copy import deepcopy
from collections import Counter
from networkx.readwrite import json_graph
import networkx as nx
import nxsim
from . import serialization, agents, analysis, history, utils
from tsih import History, Record, Key, NoHistory
from mesa import Model
from . import serialization, agents, analysis, utils, time
# These properties will be copied when pickling/unpickling the environment
_CONFIG_PROPS = [ 'name',
'states',
'default_state',
'interval',
'states',
'default_state',
'interval',
]
class Environment(nxsim.NetworkEnvironment):
class Environment(Model):
"""
The environment is key in a simulation. It contains the network topology,
a reference to network and environment agents, as well as the environment
@@ -40,27 +43,72 @@ class Environment(nxsim.NetworkEnvironment):
states=None,
default_state=None,
interval=1,
network_params=None,
seed=None,
topology=None,
*args, **kwargs):
schedule=None,
initial_time=0,
environment_params=None,
history=True,
dir_path=None,
**kwargs):
super().__init__()
self.schedule = schedule
if schedule is None:
self.schedule = time.TimedActivation()
self.name = name or 'UnnamedEnvironment'
seed = seed or current_time()
random.seed(seed)
if isinstance(states, list):
states = dict(enumerate(states))
self.states = deepcopy(states) if states else {}
self.default_state = deepcopy(default_state) or {}
if topology is None:
network_params = network_params or {}
topology = serialization.load_network(network_params,
dir_path=dir_path)
if not topology:
topology = nx.Graph()
super().__init__(*args, topology=topology, **kwargs)
self.G = nx.Graph(topology)
self.environment_params = environment_params or {}
self.environment_params.update(kwargs)
self._env_agents = {}
self.interval = interval
self._history = history.History(name=self.name,
backup=True)
# Add environment agents first, so their events get
# executed before network agents
self.environment_agents = environment_agents or []
self.network_agents = network_agents or []
self['SEED'] = seed or time.time()
random.seed(self['SEED'])
if history:
history = History
else:
history = NoHistory
self._history = history(name=self.name,
backup=True)
self['SEED'] = seed
if network_agents:
distro = agents.calculate_distribution(network_agents)
self.network_agents = agents._convert_agent_types(distro)
else:
self.network_agents = []
environment_agents = environment_agents or []
if environment_agents:
distro = agents.calculate_distribution(environment_agents)
environment_agents = agents._convert_agent_types(distro)
self.environment_agents = environment_agents
self.logger = utils.logger.getChild(self.name)
@property
def now(self):
if self.schedule:
return self.schedule.time
raise Exception('The environment has not been scheduled, so it has no sense of time')
@property
def agents(self):
@@ -74,20 +122,14 @@ class Environment(nxsim.NetworkEnvironment):
@environment_agents.setter
def environment_agents(self, environment_agents):
# Set up environmental agent
self._env_agents = {}
for item in environment_agents:
kwargs = deepcopy(item)
atype = kwargs.pop('agent_type')
kwargs['agent_id'] = kwargs.get('agent_id', atype.__name__)
kwargs['state'] = kwargs.get('state', {})
a = atype(environment=self, **kwargs)
self._env_agents[a.id] = a
self._environment_agents = environment_agents
self._env_agents = agents._definition_to_dict(definition=environment_agents)
@property
def network_agents(self):
for i in self.G.nodes():
node = self.G.node[i]
node = self.G.nodes[i]
if 'agent' in node:
yield node['agent']
@@ -95,9 +137,9 @@ class Environment(nxsim.NetworkEnvironment):
def network_agents(self, network_agents):
self._network_agents = network_agents
for ix in self.G.nodes():
self.init_agent(ix, agent_distribution=network_agents)
self.init_agent(ix, agent_definitions=network_agents)
def init_agent(self, agent_id, agent_distribution):
def init_agent(self, agent_id, agent_definitions):
node = self.G.nodes[agent_id]
init = False
state = dict(node)
@@ -112,8 +154,8 @@ class Environment(nxsim.NetworkEnvironment):
if agent_type:
agent_type = agents.deserialize_type(agent_type)
elif agent_distribution:
agent_type, state = agents._agent_from_distribution(agent_distribution, agent_id=agent_id)
elif agent_definitions:
agent_type, state = agents._agent_from_definition(agent_definitions, unique_id=agent_id)
else:
serialization.logger.debug('Skipping node {}'.format(agent_id))
return
@@ -129,10 +171,15 @@ class Environment(nxsim.NetworkEnvironment):
a = None
if agent_type:
state = defstate
a = agent_type(environment=self,
agent_id=agent_id,
state=state)
a = agent_type(model=self,
unique_id=agent_id
)
for (k, v) in state.items():
setattr(a, k, v)
node['agent'] = a
self.schedule.add(a)
return a
def add_node(self, agent_type, state=None):
@@ -150,34 +197,35 @@ class Environment(nxsim.NetworkEnvironment):
start = start or self.now
return self.G.add_edge(agent1, agent2, **attrs)
def run(self, *args, **kwargs):
def log(self, message, *args, level=logging.INFO, **kwargs):
if not self.logger.isEnabledFor(level):
return
message = message + " ".join(str(i) for i in args)
message = " @{:>3}: {}".format(self.now, message)
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
extra = {}
extra['now'] = self.now
extra['unique_id'] = self.name
return self.logger.log(level, message, extra=extra)
def step(self):
super().step()
self.schedule.step()
def run(self, until, *args, **kwargs):
self._save_state()
self.log_stats()
super().run(*args, **kwargs)
while self.schedule.next_time < until:
self.step()
utils.logger.debug(f'Simulation step {self.schedule.time}/{until}. Next: {self.schedule.next_time}')
self.schedule.time = until
self._history.flush_cache()
self.log_stats()
def _save_state(self, now=None):
serialization.logger.debug('Saving state @{}'.format(self.now))
self._history.save_records(self.state_to_tuples(now=now))
def save_state(self):
'''
:DEPRECATED:
Periodically save the state of the environment and the agents.
'''
self._save_state()
while self.peek() != simpy.core.Infinity:
delay = max(self.peek() - self.now, self.interval)
serialization.logger.debug('Step: {}'.format(self.now))
ev = self.event()
ev._ok = True
# Schedule the event with minimum priority so
# that it executes before all agents
self.schedule(ev, -999, delay)
yield ev
self._save_state()
def __getitem__(self, key):
if isinstance(key, tuple):
self._history.flush_cache()
@@ -187,12 +235,12 @@ class Environment(nxsim.NetworkEnvironment):
def __setitem__(self, key, value):
if isinstance(key, tuple):
k = history.Key(*key)
k = Key(*key)
self._history.save_record(*k,
value=value)
return
self.environment_params[key] = value
self._history.save_record(agent_id='env',
self._history.save_record(dict_id='env',
t_step=self.now,
key=key,
value=value)
@@ -212,12 +260,12 @@ class Environment(nxsim.NetworkEnvironment):
return self[key] if key in self else default
def get_agent(self, agent_id):
return self.G.node[agent_id]['agent']
return self.G.nodes[agent_id]['agent']
def get_agents(self, nodes=None):
if nodes is None:
return list(self.agents)
return [self.G.node[i]['agent'] for i in nodes]
return self.agents
return (self.G.nodes[i]['agent'] for i in nodes)
def dump_csv(self, f):
with utils.open_or_reuse(f, 'w') as f:
@@ -231,9 +279,9 @@ class Environment(nxsim.NetworkEnvironment):
# Workaround for geometric models
# See soil/soil#4
for node in G.nodes():
if 'pos' in G.node[node]:
G.node[node]['viz'] = {"position": {"x": G.node[node]['pos'][0], "y": G.node[node]['pos'][1], "z": 0.0}}
del (G.node[node]['pos'])
if 'pos' in G.nodes[node]:
G.nodes[node]['viz'] = {"position": {"x": G.nodes[node]['pos'][0], "y": G.nodes[node]['pos'][1], "z": 0.0}}
del (G.nodes[node]['pos'])
nx.write_gexf(G, f, version="1.2draft")
@@ -257,16 +305,16 @@ class Environment(nxsim.NetworkEnvironment):
if now is None:
now = self.now
for k, v in self.environment_params.items():
yield history.Record(agent_id='env',
t_step=now,
key=k,
value=v)
yield Record(dict_id='env',
t_step=now,
key=k,
value=v)
for agent in self.agents:
for k, v in agent.state.items():
yield history.Record(agent_id=agent.id,
t_step=now,
key=k,
value=v)
yield Record(dict_id=agent.id,
t_step=now,
key=k,
value=v)
def history_to_tuples(self):
return self._history.to_tuples()
@@ -317,25 +365,6 @@ class Environment(nxsim.NetworkEnvironment):
return G
def stats(self):
stats = {}
stats['network'] = {}
stats['network']['n_nodes'] = self.G.number_of_nodes()
stats['network']['n_edges'] = self.G.number_of_edges()
c = Counter()
c.update(a.__class__.__name__ for a in self.network_agents)
stats['agents'] = {}
stats['agents']['model_count'] = dict(c)
c2 = Counter()
c2.update(a['id'] for a in self.network_agents)
stats['agents']['state_count'] = dict(c2)
stats['params'] = self.environment_params
return stats
def log_stats(self):
stats = self.stats()
serialization.logger.info('Environment stats: \n{}'.format(yaml.dump(stats, default_flow_style=False)))
def __getstate__(self):
state = {}
for prop in _CONFIG_PROPS:
@@ -343,6 +372,7 @@ class Environment(nxsim.NetworkEnvironment):
state['G'] = json_graph.node_link_data(self.G)
state['environment_agents'] = self._env_agents
state['history'] = self._history
state['schedule'] = self.schedule
return state
def __setstate__(self, state):
@@ -351,6 +381,9 @@ class Environment(nxsim.NetworkEnvironment):
self._env_agents = state['environment_agents']
self.G = json_graph.node_link_graph(state['G'])
self._history = state['history']
# self._env = None
self.schedule = state['schedule']
self._queue = []
SoilEnvironment = Environment

View File

@@ -1,10 +1,11 @@
import os
import csv as csvlib
import time
from io import BytesIO
import matplotlib.pyplot as plt
import networkx as nx
import pandas as pd
from .serialization import deserialize
from .utils import open_or_reuse, logger, timer
@@ -13,15 +14,6 @@ from .utils import open_or_reuse, logger, timer
from . import utils
def for_sim(simulation, names, *args, **kwargs):
'''Return the set of exporters for a simulation, given the exporter names'''
exporters = []
for name in names:
mod = deserialize(name, known_modules=['soil.exporters'])
exporters.append(mod(simulation, *args, **kwargs))
return exporters
class DryRunner(BytesIO):
def __init__(self, fname, *args, copy_to=None, **kwargs):
super().__init__(*args, **kwargs)
@@ -37,8 +29,12 @@ class DryRunner(BytesIO):
super().write(bytes(txt, 'utf-8'))
def close(self):
logger.info('**Not** written to {} (dry run mode):\n\n{}\n\n'.format(self.__fname,
self.getvalue().decode()))
content = '(binary data not shown)'
try:
content = self.getvalue().decode()
except UnicodeDecodeError:
pass
logger.info('**Not** written to {} (dry run mode):\n\n{}\n\n'.format(self.__fname, content))
super().close()
@@ -49,8 +45,8 @@ class Exporter:
'''
def __init__(self, simulation, outdir=None, dry_run=None, copy_to=None):
self.sim = simulation
outdir = outdir or os.getcwd()
self.simulation = simulation
outdir = outdir or os.path.join(os.getcwd(), 'soil_output')
self.outdir = os.path.join(outdir,
simulation.group or '',
simulation.name)
@@ -59,12 +55,15 @@ class Exporter:
def start(self):
'''Method to call when the simulation starts'''
pass
def end(self):
def end(self, stats):
'''Method to call when the simulation ends'''
pass
def trial_end(self, env):
def trial(self, env, stats):
'''Method to call when a trial ends'''
pass
def output(self, f, mode='w', **kwargs):
if self.dry_run:
@@ -78,98 +77,82 @@ class Exporter:
return open_or_reuse(f, mode=mode, **kwargs)
class Default(Exporter):
'''Default exporter. Writes CSV and sqlite results, as well as the simulation YAML'''
class default(Exporter):
'''Default exporter. Writes sqlite results, as well as the simulation YAML'''
def start(self):
if not self.dry_run:
logger.info('Dumping results to %s', self.outdir)
self.sim.dump_yaml(outdir=self.outdir)
self.simulation.dump_yaml(outdir=self.outdir)
else:
logger.info('NOT dumping results')
def trial_end(self, env):
def trial(self, env, stats):
if not self.dry_run:
with timer('Dumping simulation {} trial {}'.format(self.sim.name,
with timer('Dumping simulation {} trial {}'.format(self.simulation.name,
env.name)):
with self.output('{}.sqlite'.format(env.name), mode='wb') as f:
env.dump_sqlite(f)
class CSV(Exporter):
def trial_end(self, env):
if not self.dry_run:
with timer('[CSV] Dumping simulation {} trial {}'.format(self.sim.name,
env.name)):
with self.output('{}.csv'.format(env.name)) as f:
env.dump_csv(f)
def end(self, stats):
with timer('Dumping simulation {}\'s stats'.format(self.simulation.name)):
with self.output('{}.sqlite'.format(self.simulation.name), mode='wb') as f:
self.simulation.dump_sqlite(f)
class Gexf(Exporter):
def trial_end(self, env):
if not self.dry_run:
with timer('[CSV] Dumping simulation {} trial {}'.format(self.sim.name,
env.name)):
with self.output('{}.gexf'.format(env.name), mode='wb') as f:
env.dump_gexf(f)
class csv(Exporter):
'''Export the state of each environment (and its agents) in a separate CSV file'''
def trial(self, env, stats):
with timer('[CSV] Dumping simulation {} trial {} @ dir {}'.format(self.simulation.name,
env.name,
self.outdir)):
with self.output('{}.csv'.format(env.name)) as f:
env.dump_csv(f)
with self.output('{}.stats.csv'.format(env.name)) as f:
statwriter = csvlib.writer(f, delimiter='\t', quotechar='"', quoting=csvlib.QUOTE_ALL)
for stat in stats:
statwriter.writerow(stat)
class Dummy(Exporter):
class gexf(Exporter):
def trial(self, env, stats):
if self.dry_run:
logger.info('Not dumping GEXF in dry_run mode')
return
with timer('[GEXF] Dumping simulation {} trial {}'.format(self.simulation.name,
env.name)):
with self.output('{}.gexf'.format(env.name), mode='wb') as f:
env.dump_gexf(f)
class dummy(Exporter):
def start(self):
with self.output('dummy', 'w') as f:
f.write('simulation started @ {}\n'.format(time.time()))
def trial_end(self, env):
def trial(self, env, stats):
with self.output('dummy', 'w') as f:
for i in env.history_to_tuples():
f.write(','.join(map(str, i)))
f.write('\n')
def end(self):
def sim(self, stats):
with self.output('dummy', 'a') as f:
f.write('simulation ended @ {}\n'.format(time.time()))
class Distribution(Exporter):
'''
Write the distribution of agent states at the end of each trial,
the mean value, and its deviation.
'''
def start(self):
self.means = []
self.counts = []
class graphdrawing(Exporter):
def trial_end(self, env):
df = env[None, None, None].df()
ix = df.index[-1]
attrs = df.columns.levels[0]
vc = {}
stats = {}
for a in attrs:
t = df.loc[(ix, a)]
try:
self.means.append(('mean', a, t.mean()))
except TypeError:
for name, count in t.value_counts().iteritems():
self.counts.append(('count', a, name, count))
def end(self):
dfm = pd.DataFrame(self.means, columns=['metric', 'key', 'value'])
dfc = pd.DataFrame(self.counts, columns=['metric', 'key', 'value', 'count'])
dfm = dfm.groupby(by=['key']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
dfc = dfc.groupby(by=['key', 'value']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
with self.output('counts.csv') as f:
dfc.to_csv(f)
with self.output('metrics.csv') as f:
dfm.to_csv(f)
class GraphDrawing(Exporter):
def trial_end(self, env):
def trial(self, env, stats):
# Outside effects
f = plt.figure()
nx.draw(env.G, node_size=10, width=0.2, pos=nx.spring_layout(env.G, scale=100), ax=f.add_subplot(111))
with open('graph-{}.png'.format(env.name)) as f:
f.savefig(f)

View File

@@ -1,314 +0,0 @@
import time
import os
import pandas as pd
import sqlite3
import copy
import logging
import tempfile
logger = logging.getLogger(__name__)
from collections import UserDict, namedtuple
from . import serialization
class History:
"""
Store and retrieve values from a sqlite database.
"""
def __init__(self, name=None, db_path=None, backup=False):
self._db = None
if db_path is None:
if not name:
name = time.time()
_, db_path = tempfile.mkstemp(suffix='{}.sqlite'.format(name))
if backup and os.path.exists(db_path):
newname = db_path + '.backup{}.sqlite'.format(time.time())
os.rename(db_path, newname)
self.db_path = db_path
self.db = db_path
with self.db:
logger.debug('Creating database {}'.format(self.db_path))
self.db.execute('''CREATE TABLE IF NOT EXISTS history (agent_id text, t_step int, key text, value text text)''')
self.db.execute('''CREATE TABLE IF NOT EXISTS value_types (key text, value_type text)''')
self.db.execute('''CREATE UNIQUE INDEX IF NOT EXISTS idx_history ON history (agent_id, t_step, key);''')
self._dtypes = {}
self._tups = []
@property
def db(self):
try:
self._db.cursor()
except (sqlite3.ProgrammingError, AttributeError):
self.db = None # Reset the database
return self._db
@db.setter
def db(self, db_path=None):
self._close()
db_path = db_path or self.db_path
if isinstance(db_path, str):
logger.debug('Connecting to database {}'.format(db_path))
self._db = sqlite3.connect(db_path)
else:
self._db = db_path
def _close(self):
if self._db is None:
return
self.flush_cache()
self._db.close()
self._db = None
@property
def dtypes(self):
self.read_types()
return {k:v[0] for k, v in self._dtypes.items()}
def save_tuples(self, tuples):
'''
Save a series of tuples, converting them to records if necessary
'''
self.save_records(Record(*tup) for tup in tuples)
def save_records(self, records):
'''
Save a collection of records
'''
for record in records:
if not isinstance(record, Record):
record = Record(*record)
self.save_record(*record)
def save_record(self, agent_id, t_step, key, value):
'''
Save a collection of records to the database.
Database writes are cached.
'''
value = self.convert(key, value)
self._tups.append(Record(agent_id=agent_id,
t_step=t_step,
key=key,
value=value))
if len(self._tups) > 100:
self.flush_cache()
def convert(self, key, value):
"""Get the serialized value for a given key."""
if key not in self._dtypes:
self.read_types()
if key not in self._dtypes:
name = serialization.name(value)
serializer = serialization.serializer(name)
deserializer = serialization.deserializer(name)
self._dtypes[key] = (name, serializer, deserializer)
with self.db:
self.db.execute("replace into value_types (key, value_type) values (?, ?)", (key, name))
return self._dtypes[key][1](value)
def recover(self, key, value):
"""Get the deserialized value for a given key, and the serialized version."""
if key not in self._dtypes:
self.read_types()
if key not in self._dtypes:
raise ValueError("Unknown datatype for {} and {}".format(key, value))
return self._dtypes[key][2](value)
def flush_cache(self):
'''
Use a cache to save state changes to avoid opening a session for every change.
The cache will be flushed at the end of the simulation, and when history is accessed.
'''
logger.debug('Flushing cache {}'.format(self.db_path))
with self.db:
for rec in self._tups:
self.db.execute("replace into history(agent_id, t_step, key, value) values (?, ?, ?, ?)", (rec.agent_id, rec.t_step, rec.key, rec.value))
self._tups = list()
def to_tuples(self):
self.flush_cache()
with self.db:
res = self.db.execute("select agent_id, t_step, key, value from history ").fetchall()
for r in res:
agent_id, t_step, key, value = r
value = self.recover(key, value)
yield agent_id, t_step, key, value
def read_types(self):
with self.db:
res = self.db.execute("select key, value_type from value_types ").fetchall()
for k, v in res:
serializer = serialization.serializer(v)
deserializer = serialization.deserializer(v)
self._dtypes[k] = (v, serializer, deserializer)
def __getitem__(self, key):
self.flush_cache()
key = Key(*key)
agent_ids = [key.agent_id] if key.agent_id is not None else []
t_steps = [key.t_step] if key.t_step is not None else []
keys = [key.key] if key.key is not None else []
df = self.read_sql(agent_ids=agent_ids,
t_steps=t_steps,
keys=keys)
r = Records(df, filter=key, dtypes=self._dtypes)
if r.resolved:
return r.value()
return r
def read_sql(self, keys=None, agent_ids=None, t_steps=None, convert_types=False, limit=-1):
self.read_types()
def escape_and_join(v):
if v is None:
return
return ",".join(map(lambda x: "\'{}\'".format(x), v))
filters = [("key in ({})".format(escape_and_join(keys)), keys),
("agent_id in ({})".format(escape_and_join(agent_ids)), agent_ids)
]
filters = list(k[0] for k in filters if k[1])
last_df = None
if t_steps:
# Look for the last value before the minimum step in the query
min_step = min(t_steps)
last_filters = ['t_step < {}'.format(min_step),]
last_filters = last_filters + filters
condition = ' and '.join(last_filters)
last_query = '''
select h1.*
from history h1
inner join (
select agent_id, key, max(t_step) as t_step
from history
where {condition}
group by agent_id, key
) h2
on h1.agent_id = h2.agent_id and
h1.key = h2.key and
h1.t_step = h2.t_step
'''.format(condition=condition)
last_df = pd.read_sql_query(last_query, self.db)
filters.append("t_step >= '{}' and t_step <= '{}'".format(min_step, max(t_steps)))
condition = ''
if filters:
condition = 'where {} '.format(' and '.join(filters))
query = 'select * from history {} limit {}'.format(condition, limit)
df = pd.read_sql_query(query, self.db)
if last_df is not None:
df = pd.concat([df, last_df])
df_p = df.pivot_table(values='value', index=['t_step'],
columns=['key', 'agent_id'],
aggfunc='first')
for k, v in self._dtypes.items():
if k in df_p:
dtype, _, deserial = v
df_p[k] = df_p[k].fillna(method='ffill').astype(dtype)
if t_steps:
df_p = df_p.reindex(t_steps, method='ffill')
return df_p.ffill()
def __getstate__(self):
state = dict(**self.__dict__)
del state['_db']
del state['_dtypes']
return state
def __setstate__(self, state):
self.__dict__ = state
self._dtypes = {}
self._db = None
def dump(self, f):
self._close()
for line in open(self.db_path, 'rb'):
f.write(line)
class Records():
def __init__(self, df, filter=None, dtypes=None):
if not filter:
filter = Key(agent_id=None,
t_step=None,
key=None)
self._df = df
self._filter = filter
self.dtypes = dtypes or {}
super().__init__()
def mask(self, tup):
res = ()
for i, k in zip(tup[:-1], self._filter):
if k is None:
res = res + (i,)
res = res + (tup[-1],)
return res
def filter(self, newKey):
f = list(self._filter)
for ix, i in enumerate(f):
if i is None:
f[ix] = newKey
self._filter = Key(*f)
@property
def resolved(self):
return sum(1 for i in self._filter if i is not None) == 3
def __iter__(self):
for column, series in self._df.iteritems():
key, agent_id = column
for t_step, value in series.iteritems():
r = Record(t_step=t_step,
agent_id=agent_id,
key=key,
value=value)
yield self.mask(r)
def value(self):
if self.resolved:
f = self._filter
try:
i = self._df[f.key][str(f.agent_id)]
ix = i.index.get_loc(f.t_step, method='ffill')
return i.iloc[ix]
except KeyError as ex:
return self.dtypes[f.key][2]()
return list(self)
def df(self):
return self._df
def __getitem__(self, k):
n = copy.copy(self)
n.filter(k)
if n.resolved:
return n.value()
return n
def __len__(self):
return len(self._df)
def __str__(self):
if self.resolved:
return str(self.value())
return '<Records for [{}]>'.format(self._filter)
Key = namedtuple('Key', ['agent_id', 't_step', 'key'])
Record = namedtuple('Record', 'agent_id t_step key value')

View File

@@ -13,14 +13,13 @@ from jinja2 import Template
logger = logging.getLogger('soil')
logger.setLevel(logging.INFO)
def load_network(network_params, dir_path=None):
if network_params is None:
return nx.Graph()
path = network_params.get('path', None)
if path:
G = nx.Graph()
if 'path' in network_params:
path = network_params['path']
if dir_path and not os.path.isabs(path):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
@@ -32,24 +31,28 @@ def load_network(network_params, dir_path=None):
method = getattr(nx.readwrite, 'read_' + extension)
except AttributeError:
raise AttributeError('Unknown format')
return method(path, **kwargs)
G = method(path, **kwargs)
net_args = network_params.copy()
if 'generator' not in net_args:
return nx.Graph()
elif 'generator' in network_params:
net_args = network_params.copy()
net_gen = net_args.pop('generator')
net_gen = net_args.pop('generator')
if dir_path not in sys.path:
sys.path.append(dir_path)
if dir_path not in sys.path:
sys.path.append(dir_path)
method = deserializer(net_gen,
known_modules=['networkx.generators',])
G = method(**net_args)
return G
method = deserializer(net_gen,
known_modules=['networkx.generators',])
return method(**net_args)
def load_file(infile):
folder = os.path.dirname(infile)
if folder not in sys.path:
sys.path.append(folder)
with open(infile, 'r') as f:
return list(chain.from_iterable(map(expand_template, load_string(f))))
@@ -66,11 +69,32 @@ def expand_template(config):
raise ValueError(('You must provide a definition of variables'
' for the template.'))
template = Template(config['template'])
template = config['template']
sampler_name = config.get('sampler', 'SALib.sample.morris.sample')
n_samples = int(config.get('samples', 100))
sampler = deserializer(sampler_name)
if not isinstance(template, str):
template = yaml.dump(template)
template = Template(template)
params = params_for_template(config)
blank_str = template.render({k: 0 for k in params[0].keys()})
blank = list(load_string(blank_str))
if len(blank) > 1:
raise ValueError('Templates must not return more than one configuration')
if 'name' in blank[0]:
raise ValueError('Templates cannot be named, use group instead')
for ps in params:
string = template.render(ps)
for c in load_string(string):
yield c
def params_for_template(config):
sampler_config = config.get('sampler', {'N': 100})
sampler = sampler_config.pop('method', 'SALib.sample.morris.sample')
sampler = deserializer(sampler)
bounds = config['vars']['bounds']
problem = {
@@ -78,7 +102,7 @@ def expand_template(config):
'names': list(bounds.keys()),
'bounds': list(v for v in bounds.values())
}
samples = sampler(problem, n_samples)
samples = sampler(problem, **sampler_config)
lists = config['vars'].get('lists', {})
names = list(lists.keys())
@@ -88,20 +112,7 @@ def expand_template(config):
allnames = names + problem['names']
allvalues = [(list(i[0])+list(i[1])) for i in product(combs, samples)]
params = list(map(lambda x: dict(zip(allnames, x)), allvalues))
blank_str = template.render({k: 0 for k in allnames})
blank = list(load_string(blank_str))
if len(blank) > 1:
raise ValueError('Templates must not return more than one configuration')
if 'name' in blank[0]:
raise ValueError('Templates cannot be named, use group instead')
confs = []
for ps in params:
string = template.render(ps)
for c in load_string(string):
yield c
return params
def load_files(*patterns, **kwargs):
@@ -116,7 +127,7 @@ def load_files(*patterns, **kwargs):
def load_config(config):
if isinstance(config, dict):
yield config, None
yield config, os.getcwd()
else:
yield from load_files(config)
@@ -186,7 +197,7 @@ def deserializer(type_, known_modules=[]):
module = importlib.import_module(modname)
cls = getattr(module, tname)
return getattr(cls, 'deserialize', cls)
except (ModuleNotFoundError, AttributeError) as ex:
except (ImportError, AttributeError) as ex:
errors.append((modname, tname, ex))
raise Exception('Could not find type {}. Tried: {}'.format(type_, errors))
@@ -199,3 +210,13 @@ def deserialize(type_, value=None, **kwargs):
if value is None:
return des
return des(value)
def deserialize_all(names, *args, known_modules=['soil'], **kwargs):
'''Return the set of exporters for a simulation, given the exporter names'''
exporters = []
for name in names:
mod = deserialize(name, known_modules=known_modules)
exporters.append(mod(*args, **kwargs))
return exporters

View File

@@ -1,27 +1,31 @@
import os
import time
import importlib
import sys
import yaml
import traceback
import logging
import networkx as nx
from time import strftime
from networkx.readwrite import json_graph
from multiprocessing import Pool
from functools import partial
from tsih import History
import pickle
from nxsim import NetworkSimulation
from . import serialization, utils, basestring, agents
from .environment import Environment
from .utils import logger
from .exporters import for_sim as exporters_for_sim
from .exporters import default
from .stats import defaultStats
class Simulation(NetworkSimulation):
#TODO: change documentation for simulation
class Simulation:
"""
Subclass of nsim.NetworkSimulation with three main differences:
Similar to nsim.NetworkSimulation with three main differences:
1) agent type can be specified by name or by class.
2) instead of just one type, a network agents distribution can be used.
The distribution specifies the weight (or probability) of each
@@ -91,11 +95,12 @@ class Simulation(NetworkSimulation):
environment_params=None, environment_class=None,
**kwargs):
self.seed = str(seed) or str(time.time())
self.load_module = load_module
self.network_params = network_params
self.name = name or 'Unnamed_' + time.strftime("%Y-%m-%d_%H:%M:%S")
self.group = group or None
self.name = name or 'Unnamed'
self.seed = str(seed or name)
self._id = '{}_{}'.format(self.name, strftime("%Y-%m-%d_%H.%M.%S"))
self.group = group or ''
self.num_trials = num_trials
self.max_time = max_time
self.default_state = default_state or {}
@@ -128,19 +133,20 @@ class Simulation(NetworkSimulation):
self.states = agents._validate_states(states,
self.topology)
self._history = History(name=self.name,
backup=False)
def run_simulation(self, *args, **kwargs):
return self.run(*args, **kwargs)
def run(self, *args, **kwargs):
'''Run the simulation and return the list of resulting environments'''
return list(self._run_simulation_gen(*args, **kwargs))
return list(self.run_gen(*args, **kwargs))
def _run_sync_or_async(self, parallel=False, *args, **kwargs):
if parallel:
def _run_sync_or_async(self, parallel=False, **kwargs):
if parallel and not os.environ.get('SENPY_DEBUG', None):
p = Pool()
func = partial(self.run_trial_exceptions,
*args,
**kwargs)
func = partial(self.run_trial_exceptions, **kwargs)
for i in p.imap_unordered(func, range(self.num_trials)):
if isinstance(i, Exception):
logger.error('Trial failed:\n\t%s', i.message)
@@ -148,45 +154,84 @@ class Simulation(NetworkSimulation):
yield i
else:
for i in range(self.num_trials):
yield self.run_trial(i,
*args,
yield self.run_trial(trial_id=i,
**kwargs)
def _run_simulation_gen(self, *args, parallel=False, dry_run=False,
exporters=None, outdir=None, exporter_params={}, **kwargs):
def run_gen(self, parallel=False, dry_run=False,
exporters=[default, ], stats=[], outdir=None, exporter_params={},
stats_params={}, log_level=None,
**kwargs):
'''Run the simulation and yield the resulting environments.'''
if log_level:
logger.setLevel(log_level)
logger.info('Using exporters: %s', exporters or [])
logger.info('Output directory: %s', outdir)
exporters = exporters_for_sim(self,
exporters or [],
dry_run=dry_run,
outdir=outdir,
**exporter_params)
exporters = serialization.deserialize_all(exporters,
simulation=self,
known_modules=['soil.exporters',],
dry_run=dry_run,
outdir=outdir,
**exporter_params)
stats = serialization.deserialize_all(simulation=self,
names=stats,
known_modules=['soil.stats',],
**stats_params)
with utils.timer('simulation {}'.format(self.name)):
for stat in stats:
stat.start()
for exporter in exporters:
exporter.start()
for env in self._run_sync_or_async(*args, parallel=parallel,
for env in self._run_sync_or_async(parallel=parallel,
log_level=log_level,
**kwargs):
collected = list(stat.trial(env) for stat in stats)
saved = self.save_stats(collected, t_step=env.now, trial_id=env.name)
for exporter in exporters:
exporter.trial_end(env)
exporter.trial(env, saved)
yield env
for exporter in exporters:
exporter.end()
def get_env(self, trial_id = 0, **kwargs):
collected = list(stat.end() for stat in stats)
saved = self.save_stats(collected)
for exporter in exporters:
exporter.end(saved)
def save_stats(self, collection, **kwargs):
stats = dict(kwargs)
for stat in collection:
stats.update(stat)
self._history.save_stats(utils.flatten_dict(stats))
return stats
def get_stats(self, **kwargs):
return self._history.get_stats(**kwargs)
def log_stats(self, stats):
logger.info('Stats: \n{}'.format(yaml.dump(stats, default_flow_style=False)))
def get_env(self, trial_id=0, **kwargs):
'''Create an environment for a trial of the simulation'''
opts = self.environment_params.copy()
env_name = '{}_trial_{}'.format(self.name, trial_id)
opts.update({
'name': env_name,
'name': '{}_trial_{}'.format(self.name, trial_id),
'topology': self.topology.copy(),
'seed': self.seed+env_name,
'network_params': self.network_params,
'seed': '{}_trial_{}'.format(self.seed, trial_id),
'initial_time': 0,
'interval': self.interval,
'network_agents': self.network_agents,
'initial_time': 0,
'states': self.states,
'dir_path': self.dir_path,
'default_state': self.default_state,
'environment_agents': self.environment_agents,
})
@@ -194,20 +239,21 @@ class Simulation(NetworkSimulation):
env = self.environment_class(**opts)
return env
def run_trial(self, trial_id=0, until=None, **opts):
"""Run a single trial of the simulation
Parameters
----------
trial_id : int
def run_trial(self, trial_id=0, until=None, log_level=logging.INFO, **opts):
"""
Run a single trial of the simulation
"""
if log_level:
logger.setLevel(log_level)
# Set-up trial environment and graph
until = until or self.max_time
env = self.get_env(trial_id = trial_id, **opts)
env = self.get_env(trial_id=trial_id, **opts)
# Set up agents on nodes
with utils.timer('Simulation {} trial {}'.format(self.name, trial_id)):
env.run(until)
return env
def run_trial_exceptions(self, *args, **kwargs):
'''
A wrapper for run_trial that catches exceptions and returns them.
@@ -216,9 +262,10 @@ class Simulation(NetworkSimulation):
try:
return self.run_trial(*args, **kwargs)
except Exception as ex:
c = ex.__cause__
c.message = ''.join(traceback.format_exception(type(c), c, c.__traceback__)[:])
return c
if ex.__cause__ is not None:
ex = ex.__cause__
ex.message = ''.join(traceback.format_exception(type(ex), ex, ex.__traceback__)[:])
return ex
def to_dict(self):
return self.__getstate__()
@@ -247,16 +294,19 @@ class Simulation(NetworkSimulation):
with utils.open_or_reuse(f, 'wb') as f:
pickle.dump(self, f)
def dump_sqlite(self, f):
return self._history.dump(f)
def __getstate__(self):
state={}
for k, v in self.__dict__.items():
if k[0] != '_':
state[k] = v
state['topology'] = json_graph.node_link_data(self.topology)
state['network_agents'] = agents.serialize_distribution(self.network_agents,
known_modules = [])
state['environment_agents'] = agents.serialize_distribution(self.environment_agents,
known_modules = [])
state['network_agents'] = agents.serialize_definition(self.network_agents,
known_modules = [])
state['environment_agents'] = agents.serialize_definition(self.environment_agents,
known_modules = [])
state['environment_class'] = serialization.serialize(self.environment_class,
known_modules=['soil.environment'])[1] # func, name
if state['load_module'] is None:
@@ -274,7 +324,6 @@ class Simulation(NetworkSimulation):
known_modules=[self.load_module])
self.environment_class = serialization.deserialize(self.environment_class,
known_modules=[self.load_module, 'soil.environment', ]) # func, name
return state
def all_from_config(config):

106
soil/stats.py Normal file
View File

@@ -0,0 +1,106 @@
import pandas as pd
from collections import Counter
class Stats:
'''
Interface for all stats. It is not necessary, but it is useful
if you don't plan to implement all the methods.
'''
def __init__(self, simulation):
self.simulation = simulation
def start(self):
'''Method to call when the simulation starts'''
pass
def end(self):
'''Method to call when the simulation ends'''
return {}
def trial(self, env):
'''Method to call when a trial ends'''
return {}
class distribution(Stats):
'''
Calculate the distribution of agent states at the end of each trial,
the mean value, and its deviation.
'''
def start(self):
self.means = []
self.counts = []
def trial(self, env):
df = env[None, None, None].df()
df = df.drop('SEED', axis=1)
ix = df.index[-1]
attrs = df.columns.get_level_values(0)
vc = {}
stats = {
'mean': {},
'count': {},
}
for a in attrs:
t = df.loc[(ix, a)]
try:
stats['mean'][a] = t.mean()
self.means.append(('mean', a, t.mean()))
except TypeError:
pass
for name, count in t.value_counts().iteritems():
if a not in stats['count']:
stats['count'][a] = {}
stats['count'][a][name] = count
self.counts.append(('count', a, name, count))
return stats
def end(self):
dfm = pd.DataFrame(self.means, columns=['metric', 'key', 'value'])
dfc = pd.DataFrame(self.counts, columns=['metric', 'key', 'value', 'count'])
count = {}
mean = {}
if self.means:
res = dfm.groupby(by=['key']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
mean = res['value'].to_dict()
if self.counts:
res = dfc.groupby(by=['key', 'value']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
for k,v in res['count'].to_dict().items():
if k not in count:
count[k] = {}
for tup, times in v.items():
subkey, subcount = tup
if subkey not in count[k]:
count[k][subkey] = {}
count[k][subkey][subcount] = times
return {'count': count, 'mean': mean}
class defaultStats(Stats):
def trial(self, env):
c = Counter()
c.update(a.__class__.__name__ for a in env.network_agents)
c2 = Counter()
c2.update(a['id'] for a in env.network_agents)
return {
'network ': {
'n_nodes': env.G.number_of_nodes(),
'n_edges': env.G.number_of_edges(),
},
'agents': {
'model_count': dict(c),
'state_count': dict(c2),
}
}

77
soil/time.py Normal file
View File

@@ -0,0 +1,77 @@
from mesa.time import BaseScheduler
from queue import Empty
from heapq import heappush, heappop
import math
from .utils import logger
from mesa import Agent
INFINITY = float('inf')
class When:
def __init__(self, time):
self._time = time
def abs(self, time):
return self._time
NEVER = When(INFINITY)
class Delta:
def __init__(self, delta):
self._delta = delta
def __eq__(self, other):
return self._delta == other._delta
def abs(self, time):
return time + self._delta
class TimedActivation(BaseScheduler):
"""A scheduler which activates each agent when the agent requests.
In each activation, each agent will update its 'next_time'.
"""
def __init__(self, *args, **kwargs):
super().__init__(self)
self._queue = []
self.next_time = 0
def add(self, agent: Agent):
if agent.unique_id not in self._agents:
heappush(self._queue, (self.time, agent.unique_id))
super().add(agent)
def step(self) -> None:
"""
Executes agents in order, one at a time. After each step,
an agent will signal when it wants to be scheduled next.
"""
if self.next_time == INFINITY:
return
self.time = self.next_time
when = self.time
while self._queue and self._queue[0][0] == self.time:
(when, agent_id) = heappop(self._queue)
logger.debug(f'Stepping agent {agent_id}')
when = (self._agents[agent_id].step() or Delta(1)).abs(self.time)
if when < self.time:
raise Exception("Cannot schedule an agent for a time in the past ({} < {})".format(when, self.time))
heappush(self._queue, (when, agent_id))
self.steps += 1
if not self._queue:
self.time = INFINITY
self.next_time = INFINITY
return
self.next_time = self._queue[0][0]

View File

@@ -2,10 +2,13 @@ import logging
import time
import os
from shutil import copyfile
from contextlib import contextmanager
logger = logging.getLogger('soil')
logger.setLevel(logging.INFO)
# logging.basicConfig()
# logger.setLevel(logging.INFO)
@contextmanager
@@ -23,15 +26,64 @@ def timer(name='task', pre="", function=logger.info, to_object=None):
to_object.end = end
def safe_open(path, *args, **kwargs):
def safe_open(path, mode='r', backup=True, **kwargs):
outdir = os.path.dirname(path)
if outdir and not os.path.exists(outdir):
os.makedirs(outdir)
return open(path, *args, **kwargs)
if backup and 'w' in mode and os.path.exists(path):
creation = os.path.getctime(path)
stamp = time.strftime('%Y-%m-%d_%H.%M.%S', time.localtime(creation))
backup_dir = os.path.join(outdir, 'backup')
if not os.path.exists(backup_dir):
os.makedirs(backup_dir)
newpath = os.path.join(backup_dir, '{}@{}'.format(os.path.basename(path),
stamp))
copyfile(path, newpath)
return open(path, mode=mode, **kwargs)
def open_or_reuse(f, *args, **kwargs):
try:
return safe_open(f, *args, **kwargs)
except TypeError:
except (AttributeError, TypeError):
return f
def flatten_dict(d):
if not isinstance(d, dict):
return d
return dict(_flatten_dict(d))
def _flatten_dict(d, prefix=''):
if not isinstance(d, dict):
# print('END:', prefix, d)
yield prefix, d
return
if prefix:
prefix = prefix + '.'
for k, v in d.items():
# print(k, v)
res = list(_flatten_dict(v, prefix='{}{}'.format(prefix, k)))
# print('RES:', res)
yield from res
def unflatten_dict(d):
out = {}
for k, v in d.items():
target = out
if not isinstance(k, str):
target[k] = v
continue
tokens = k.split('.')
if len(tokens) < 2:
target[k] = v
continue
for token in tokens[:-1]:
if token not in target:
target[token] = {}
target = target[token]
target[tokens[-1]] = v
return out

5
soil/visualization.py Normal file
View File

@@ -0,0 +1,5 @@
from mesa.visualization.UserParam import UserSettableParameter
class UserSettableParameter(UserSettableParameter):
def __str__(self):
return self.value

View File

@@ -118,9 +118,9 @@ class SocketHandler(tornado.websocket.WebSocketHandler):
elif msg['type'] == 'download_gexf':
G = self.trials[ int(msg['data']) ].history_to_graph()
for node in G.nodes():
if 'pos' in G.node[node]:
G.node[node]['viz'] = {"position": {"x": G.node[node]['pos'][0], "y": G.node[node]['pos'][1], "z": 0.0}}
del (G.node[node]['pos'])
if 'pos' in G.nodes[node]:
G.nodes[node]['viz'] = {"position": {"x": G.nodes[node]['pos'][0], "y": G.nodes[node]['pos'][1], "z": 0.0}}
del (G.nodes[node]['pos'])
writer = nx.readwrite.gexf.GEXFWriter(version='1.2draft')
writer.add_graph(G)
self.write_message({'type': 'download_gexf',
@@ -130,9 +130,9 @@ class SocketHandler(tornado.websocket.WebSocketHandler):
elif msg['type'] == 'download_json':
G = self.trials[ int(msg['data']) ].history_to_graph()
for node in G.nodes():
if 'pos' in G.node[node]:
G.node[node]['viz'] = {"position": {"x": G.node[node]['pos'][0], "y": G.node[node]['pos'][1], "z": 0.0}}
del (G.node[node]['pos'])
if 'pos' in G.nodes[node]:
G.nodes[node]['viz'] = {"position": {"x": G.nodes[node]['pos'][0], "y": G.nodes[node]['pos'][1], "z": 0.0}}
del (G.nodes[node]['pos'])
self.write_message({'type': 'download_json',
'filename': self.config['name'] + '_trial_' + str(msg['data']),
'data': nx.node_link_data(G) })
@@ -271,4 +271,4 @@ def main():
parser.add_argument('--verbose', '-v', help='verbose mode', action='store_true')
args = parser.parse_args()
run(name=args.name, port=(args.port[0] if isinstance(args.port, list) else args.port), verbose=args.verbose)
run(name=args.name, port=(args.port[0] if isinstance(args.port, list) else args.port), verbose=args.verbose)

View File

@@ -1 +1,4 @@
pytest
pytest
mesa>=0.8.9
scipy>=1.3
tornado

24
tests/test_agents.py Normal file
View File

@@ -0,0 +1,24 @@
from unittest import TestCase
import pytest
from soil import agents, environment
from soil import time as stime
class Dead(agents.FSM):
@agents.default_state
@agents.state
def only(self):
self.die()
class TestMain(TestCase):
def test_die_raises_exception(self):
d = Dead(unique_id=0, model=environment.Environment())
d.step()
with pytest.raises(agents.DeadAgent):
d.step()
def test_die_returns_infinity(self):
d = Dead(unique_id=0, model=environment.Environment())
assert d.step().abs(0) == stime.INFINITY

View File

@@ -21,11 +21,13 @@ class Ping(agents.FSM):
@agents.default_state
@agents.state
def even(self):
self.debug(f'Even {self["count"]}')
self['count'] += 1
return self.odd
@agents.state
def odd(self):
self.debug(f'Odd {self["count"]}')
self['count'] += 1
return self.even
@@ -65,25 +67,24 @@ class TestAnalysis(TestCase):
def test_count(self):
env = self.env
df = analysis.read_sql(env._history.db_path)
res = analysis.get_count(df, 'SEED', 'id')
assert res['SEED']['seedanalysis_trial_0'].iloc[0] == 1
assert res['SEED']['seedanalysis_trial_0'].iloc[-1] == 1
assert res['id']['odd'].iloc[0] == 2
assert res['id']['even'].iloc[0] == 0
assert res['id']['odd'].iloc[-1] == 1
assert res['id']['even'].iloc[-1] == 1
res = analysis.get_count(df, 'SEED', 'state_id')
assert res['SEED'][self.env['SEED']].iloc[0] == 1
assert res['SEED'][self.env['SEED']].iloc[-1] == 1
assert res['state_id']['odd'].iloc[0] == 2
assert res['state_id']['even'].iloc[0] == 0
assert res['state_id']['odd'].iloc[-1] == 1
assert res['state_id']['even'].iloc[-1] == 1
def test_value(self):
env = self.env
df = analysis.read_sql(env._history._db)
df = analysis.read_sql(env._history.db_path)
res_sum = analysis.get_value(df, 'count')
assert res_sum['count'].iloc[0] == 2
import numpy as np
res_mean = analysis.get_value(df, 'count', aggfunc=np.mean)
assert res_mean['count'].iloc[0] == 1
assert res_mean['count'].iloc[15] == (16+8)/2
res_total = analysis.get_value(df)
res_total['SEED'].iloc[0] == 'seedanalysis_trial_0'
res_total = analysis.get_majority(df)
res_total['SEED'].iloc[0] == self.env['SEED']

View File

@@ -31,7 +31,7 @@ def make_example_test(path, config):
try:
n = config['network_params']['n']
assert len(list(env.network_agents)) == n
assert env.now > 2 # It has run
assert env.now > 0 # It has run
assert env.now <= config['max_time'] # But not further than allowed
except KeyError:
pass

View File

@@ -6,26 +6,32 @@ from time import time
from unittest import TestCase
from soil import exporters
from soil.utils import safe_open
from soil import simulation
from soil.stats import distribution
class Dummy(exporters.Exporter):
started = False
trials = 0
ended = False
total_time = 0
called_start = 0
called_trial = 0
called_end = 0
def start(self):
self.__class__.called_start += 1
self.__class__.started = True
def trial_end(self, env):
def trial(self, env, stats):
assert env
self.__class__.trials += 1
self.__class__.total_time += env.now
self.__class__.called_trial += 1
def end(self):
def end(self, stats):
self.__class__.ended = True
self.__class__.called_end += 1
class Exporters(TestCase):
@@ -39,32 +45,17 @@ class Exporters(TestCase):
'environment_params': {}
}
s = simulation.from_config(config)
s.run_simulation(exporters=[Dummy], dry_run=True)
for env in s.run_simulation(exporters=[Dummy], dry_run=True):
assert env.now <= 2
assert Dummy.started
assert Dummy.ended
assert Dummy.called_start == 1
assert Dummy.called_end == 1
assert Dummy.called_trial == 5
assert Dummy.trials == 5
assert Dummy.total_time == 2*5
def test_distribution(self):
'''The distribution exporter should write the number of agents in each state'''
config = {
'name': 'exporter_sim',
'network_params': {
'generator': 'complete_graph',
'n': 4
},
'agent_type': 'CounterModel',
'max_time': 2,
'num_trials': 5,
'environment_params': {}
}
output = io.StringIO()
s = simulation.from_config(config)
s.run_simulation(exporters=[exporters.Distribution], dry_run=True, exporter_params={'copy_to': output})
result = output.getvalue()
assert 'count' in result
assert 'SEED,Noneexporter_sim_trial_3,1,,1,1,1,1' in result
def test_writing(self):
'''Try to write CSV, GEXF, sqlite and YAML (without dry_run)'''
n_trials = 5
@@ -83,11 +74,11 @@ class Exporters(TestCase):
s = simulation.from_config(config)
tmpdir = tempfile.mkdtemp()
envs = s.run_simulation(exporters=[
exporters.Default,
exporters.CSV,
exporters.Gexf,
exporters.Distribution,
],
exporters.default,
exporters.csv,
exporters.gexf,
],
stats=[distribution,],
outdir=tmpdir,
exporter_params={'copy_to': output})
result = output.getvalue()

View File

@@ -1,156 +0,0 @@
from unittest import TestCase
import os
import shutil
from glob import glob
from soil import history
ROOT = os.path.abspath(os.path.dirname(__file__))
DBROOT = os.path.join(ROOT, 'testdb')
class TestHistory(TestCase):
def setUp(self):
if not os.path.exists(DBROOT):
os.makedirs(DBROOT)
def tearDown(self):
if os.path.exists(DBROOT):
shutil.rmtree(DBROOT)
def test_history(self):
"""
"""
tuples = (
('a_0', 0, 'id', 'h'),
('a_0', 1, 'id', 'e'),
('a_0', 2, 'id', 'l'),
('a_0', 3, 'id', 'l'),
('a_0', 4, 'id', 'o'),
('a_1', 0, 'id', 'v'),
('a_1', 1, 'id', 'a'),
('a_1', 2, 'id', 'l'),
('a_1', 3, 'id', 'u'),
('a_1', 4, 'id', 'e'),
('env', 1, 'prob', 1),
('env', 3, 'prob', 2),
('env', 5, 'prob', 3),
('a_2', 7, 'finished', True),
)
h = history.History()
h.save_tuples(tuples)
# assert h['env', 0, 'prob'] == 0
for i in range(1, 7):
assert h['env', i, 'prob'] == ((i-1)//2)+1
for i, k in zip(range(5), 'hello'):
assert h['a_0', i, 'id'] == k
for record, value in zip(h['a_0', None, 'id'], 'hello'):
t_step, val = record
assert val == value
for i, k in zip(range(5), 'value'):
assert h['a_1', i, 'id'] == k
for i in range(5, 8):
assert h['a_1', i, 'id'] == 'e'
for i in range(7):
assert h['a_2', i, 'finished'] == False
assert h['a_2', 7, 'finished']
def test_history_gen(self):
"""
"""
tuples = (
('a_1', 0, 'id', 'v'),
('a_1', 1, 'id', 'a'),
('a_1', 2, 'id', 'l'),
('a_1', 3, 'id', 'u'),
('a_1', 4, 'id', 'e'),
('env', 1, 'prob', 1),
('env', 2, 'prob', 2),
('env', 3, 'prob', 3),
('a_2', 7, 'finished', True),
)
h = history.History()
h.save_tuples(tuples)
for t_step, key, value in h['env', None, None]:
assert t_step == value
assert key == 'prob'
records = list(h[None, 7, None])
assert len(records) == 3
for i in records:
agent_id, key, value = i
if agent_id == 'a_1':
assert key == 'id'
assert value == 'e'
elif agent_id == 'a_2':
assert key == 'finished'
assert value
else:
assert key == 'prob'
assert value == 3
records = h['a_1', 7, None]
assert records['id'] == 'e'
def test_history_file(self):
"""
History should be saved to a file
"""
tuples = (
('a_1', 0, 'id', 'v'),
('a_1', 1, 'id', 'a'),
('a_1', 2, 'id', 'l'),
('a_1', 3, 'id', 'u'),
('a_1', 4, 'id', 'e'),
('env', 1, 'prob', 1),
('env', 2, 'prob', 2),
('env', 3, 'prob', 3),
('a_2', 7, 'finished', True),
)
db_path = os.path.join(DBROOT, 'test')
h = history.History(db_path=db_path)
h.save_tuples(tuples)
h.flush_cache()
assert os.path.exists(db_path)
# Recover the data
recovered = history.History(db_path=db_path)
assert recovered['a_1', 0, 'id'] == 'v'
assert recovered['a_1', 4, 'id'] == 'e'
# Using backup=True should create a backup copy, and initialize an empty history
newhistory = history.History(db_path=db_path, backup=True)
backuppaths = glob(db_path + '.backup*.sqlite')
assert len(backuppaths) == 1
backuppath = backuppaths[0]
assert newhistory.db_path == h.db_path
assert os.path.exists(backuppath)
assert len(newhistory[None, None, None]) == 0
def test_history_tuples(self):
"""
The data recovered should be equal to the one recorded.
"""
tuples = (
('a_1', 0, 'id', 'v'),
('a_1', 1, 'id', 'a'),
('a_1', 2, 'id', 'l'),
('a_1', 3, 'id', 'u'),
('a_1', 4, 'id', 'e'),
('env', 1, 'prob', 1),
('env', 2, 'prob', 2),
('env', 3, 'prob', 3),
('a_2', 7, 'finished', True),
)
h = history.History()
h.save_tuples(tuples)
recovered = list(h.to_tuples())
assert recovered
for i in recovered:
assert i in tuples

View File

@@ -9,17 +9,23 @@ from functools import partial
from os.path import join
from soil import (simulation, Environment, agents, serialization,
history, utils)
utils)
from soil.time import Delta
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
class CustomAgent(agents.BaseAgent):
def step(self):
self.state['neighbors'] = self.count_agents(state_id=0,
limit_neighbors=True)
class CustomAgent(agents.FSM):
@agents.default_state
@agents.state
def normal(self):
self.neighbors = self.count_agents(state_id='normal',
limit_neighbors=True)
@agents.state
def unreachable(self):
return
class TestMain(TestCase):
@@ -110,7 +116,7 @@ class TestMain(TestCase):
'network_agents': [{
'agent_type': 'AggregatedCounter',
'weight': 1,
'state': {'id': 0}
'state': {'state_id': 0}
}],
'max_time': 10,
@@ -134,8 +140,7 @@ class TestMain(TestCase):
},
'network_agents': [{
'agent_type': CustomAgent,
'weight': 1,
'state': {'id': 0}
'weight': 1
}],
'max_time': 10,
@@ -144,7 +149,9 @@ class TestMain(TestCase):
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
assert env.get_agent(0).state['neighbors'] == 1
assert env.get_agent(1).count_agents(state_id='normal') == 2
assert env.get_agent(1).count_agents(state_id='normal', limit_neighbors=True) == 1
assert env.get_agent(0).neighbors == 1
def test_torvalds_example(self):
"""A complete example from a documentation should work."""
@@ -179,7 +186,7 @@ class TestMain(TestCase):
with utils.timer('serializing'):
serial = s.to_yaml()
with utils.timer('recovering'):
recovered = yaml.load(serial)
recovered = yaml.load(serial, Loader=yaml.SafeLoader)
with utils.timer('deleting'):
del recovered['topology']
assert config == recovered
@@ -191,11 +198,11 @@ class TestMain(TestCase):
"""
config = serialization.load_file(join(EXAMPLES, 'complete.yml'))[0]
s = simulation.from_config(config)
for i in range(5):
s.run_simulation(dry_run=True)
nconfig = s.to_dict()
del nconfig['topology']
assert config == nconfig
s.run_simulation(dry_run=True)
nconfig = s.to_dict()
del nconfig['topology']
assert config == nconfig
def test_row_conversion(self):
env = Environment()
@@ -204,7 +211,7 @@ class TestMain(TestCase):
res = list(env.history_to_tuples())
assert len(res) == len(env.environment_params)
env._now = 1
env.schedule.time = 1
env['test'] = 'second_value'
res = list(env.history_to_tuples())
@@ -233,7 +240,7 @@ class TestMain(TestCase):
env[0, 0, 'testvalue'] = 'start'
env[0, 10, 'testvalue'] = 'finish'
nG = env.history_to_graph()
values = nG.node[0]['attr_testvalue']
values = nG.nodes[0]['attr_testvalue']
assert ('start', 0, 10) in values
assert ('finish', 10, None) in values
@@ -274,7 +281,7 @@ class TestMain(TestCase):
'weight': 2
},
]
converted = agents.deserialize_distribution(agent_distro)
converted = agents.deserialize_definition(agent_distro)
assert converted[0]['agent_type'] == agents.CounterModel
assert converted[1]['agent_type'] == CustomAgent
pickle.dumps(converted)
@@ -290,14 +297,14 @@ class TestMain(TestCase):
'weight': 2
},
]
converted = agents.serialize_distribution(agent_distro)
converted = agents.serialize_definition(agent_distro)
assert converted[0]['agent_type'] == 'CounterModel'
assert converted[1]['agent_type'] == 'test_main.CustomAgent'
pickle.dumps(converted)
def test_pickle_agent_environment(self):
env = Environment(name='Test')
a = agents.BaseAgent(environment=env, agent_id=25)
a = agents.BaseAgent(model=env, unique_id=25)
a['key'] = 'test'
@@ -309,12 +316,6 @@ class TestMain(TestCase):
assert recovered['key', 0] == 'test'
assert recovered['key'] == 'test'
def test_history(self):
'''Test storing in and retrieving from history (sqlite)'''
h = history.History()
h.save_record(agent_id=0, t_step=0, key="test", value="hello")
assert h[0, 0, "test"] == "hello"
def test_subgraph(self):
'''An agent should be able to subgraph the global topology'''
G = nx.Graph()
@@ -336,4 +337,55 @@ class TestMain(TestCase):
configs = serialization.load_file(join(EXAMPLES, 'template.yml'))
assert len(configs) > 0
def test_until(self):
config = {
'name': 'until_sim',
'network_params': {},
'agent_type': 'CounterModel',
'max_time': 2,
'num_trials': 50,
'environment_params': {}
}
s = simulation.from_config(config)
runs = list(s.run_simulation(dry_run=True))
over = list(x.now for x in runs if x.now>2)
assert len(runs) == config['num_trials']
assert len(over) == 0
def test_fsm(self):
'''Basic state change'''
class ToggleAgent(agents.FSM):
@agents.default_state
@agents.state
def ping(self):
return self.pong
@agents.state
def pong(self):
return self.ping
a = ToggleAgent(unique_id=1, model=Environment())
assert a.state_id == a.ping.id
a.step()
assert a.state_id == a.pong.id
a.step()
assert a.state_id == a.ping.id
def test_fsm_when(self):
'''Basic state change'''
class ToggleAgent(agents.FSM):
@agents.default_state
@agents.state
def ping(self):
return self.pong, 2
@agents.state
def pong(self):
return self.ping
a = ToggleAgent(unique_id=1, model=Environment())
when = a.step()
assert when == 2
when = a.step()
assert when == Delta(a.interval)

69
tests/test_mesa.py Normal file
View File

@@ -0,0 +1,69 @@
'''
Mesa-SOIL integration tests
We have to test that:
- Mesa agents can be used in SOIL
- Simplified soil agents can be used in mesa simulations
- Mesa and soil agents can interact in a simulation
- Mesa visualizations work with SOIL simulations
'''
from mesa import Agent, Model
from mesa.time import RandomActivation
from mesa.space import MultiGrid
class MoneyAgent(Agent):
""" An agent with fixed initial wealth."""
def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1
def step(self):
self.move()
if self.wealth > 0:
self.give_money()
def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:
other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
class MoneyModel(Model):
"""A model with some number of agents."""
def __init__(self, N, width, height):
self.num_agents = N
self.grid = MultiGrid(width, height, True)
self.schedule = RandomActivation(self)
# Create agents
for i in range(self.num_agents):
a = MoneyAgent(i, self)
self.schedule.add(a)
# Add the agent to a random grid cell
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
def step(self):
'''Advance the model by one step.'''
self.schedule.step()
# model = MoneyModel(10)
# for i in range(10):
# model.step()
# agent_wealth = [a.wealth for a in model.schedule.agents]

34
tests/test_stats.py Normal file
View File

@@ -0,0 +1,34 @@
from unittest import TestCase
from soil import simulation, stats
from soil.utils import unflatten_dict
class Stats(TestCase):
def test_distribution(self):
'''The distribution exporter should write the number of agents in each state'''
config = {
'name': 'exporter_sim',
'network_params': {
'generator': 'complete_graph',
'n': 4
},
'agent_type': 'CounterModel',
'max_time': 2,
'num_trials': 5,
'environment_params': {}
}
s = simulation.from_config(config)
for env in s.run_simulation(stats=[stats.distribution]):
pass
# stats_res = unflatten_dict(dict(env._history['stats', -1, None]))
allstats = s.get_stats()
for stat in allstats:
assert 'count' in stat
assert 'mean' in stat
if 'trial_id' in stat:
assert stat['mean']['neighbors'] == 3
assert stat['count']['total']['4'] == 4
else:
assert stat['count']['count']['neighbors']['3'] == 20
assert stat['mean']['min']['neighbors'] == stat['mean']['max']['neighbors']