Compare commits

...

77 Commits

Author SHA1 Message Date
J. Fernando Sánchez 25d042f16c v1.0.0rc11 3 months ago
J. Fernando Sánchez f49be3af68 1.0pre4 1 year ago
J. Fernando Sánchez 5e93399d58 Initial benchmarking 1 year ago
J. Fernando Sánchez eca4cae298 Update tutorial and fix plotting bug 1 year ago
J. Fernando Sánchez 47a67f6665 Add jupyter to test-requirements 1 year ago
J. Fernando Sánchez c13550cf83 Tweak ipynb testing 1 year ago
J. Fernando Sánchez 55bbc76b2a Improve tutorial
* Improve text
* Move to docs
* Autogenerate with sphinx
* Fix naming issue `environment.run` (double name)
* Add to tests
1 year ago
J. Fernando Sánchez d13e4eb4b9 Plot env without agent reporters 1 year ago
J. Fernando Sánchez 93d23e4cab Add tutorial test to CI/CD 1 year ago
J. Fernando Sánchez 3802578ad5 Use context manager to add source files 1 year ago
J. Fernando Sánchez 4e296e0cf1 Merge branch 'mesa' 1 year ago
J. Fernando Sánchez 302075a65d Fix bug Py3.11 1 year ago
J. Fernando Sánchez fba379c97c Update readme 1 year ago
J. Fernando Sánchez 50bca88362 Fix pre-release version of v1.0.0rc1 1 year ago
J. Fernando Sánchez cc238d84ec Pre-release version of v1.0 1 year ago
J. Fernando Sánchez be65592055 Default parameters terroristnetwork 1 year ago
J. Fernando Sánchez 1d882dcff6 Update easy function 1 year ago
J. Fernando Sánchez b3e77cbff5 Update python version in gitlab-ci 1 year ago
J. Fernando Sánchez 05748a3250 Update python version requirement 1 year ago
J. Fernando Sánchez a3fc6a5efa Update README 1 year ago
J. Fernando Sánchez 4e95709188 Update README 1 year ago
J. Fernando Sánchez feab0ba79e Large set of changes for v0.30
The examples weren't being properly tested in the last commit. When we fixed
that a lot of bugs in the new implementation of environment and agent were
found, which accounts for most of these changes.

The main difference is the mechanism to load simulations from a configuration
file. For that to work, we had to rework our module loading code in
`serialization` and add a `source_file` attribute to configurations (and
simulations, for that matter).
1 year ago
J. Fernando Sánchez 73282530fd Big refactor v0.30
All test pass, except for the TestConfig suite, which is not too critical as the
plan for this version onwards is to avoid configuration as much as possible.
1 year ago
J. Fernando Sánchez bf481f0f88 v0.20.8 fix bugs 1 year ago
J. Fernando Sánchez 2869b1e1e6 Clean-up
* Removed old/unnecessary models
* Added a `simulation.{iter_}from_py` method to load simulations from python
files
* Changed tests of examples to run programmatic simulations
* Fixed programmatic examples
2 years ago
J. Fernando Sánchez d3cee18635 Add seed to cars example 2 years ago
J. Fernando Sánchez 9a7b62e88e Release 0.30.0rc3 2 years ago
J. Fernando Sánchez c09e480d37 black formatting 2 years ago
J. Fernando Sánchez b2d48cb4df Add test cases for 'ASK' 2 years ago
J. Fernando Sánchez a1262edd2a Refactored time
Treating time and conditions as the same entity was getting confusing, and it
added a lot of unnecessary abstraction in a critical part (the scheduler).

The scheduling queue now has the time as a floating number (faster), the agent
id (for ties) and the condition, as well as the agent. The first three
elements (time, id, condition) can be considered as the "key" for the event.

To allow for agent execution to be "randomized" within every step, a new
parameter has been added to the scheduler, which makes it add a random number to
the key in order to change the ordering.

`EventedAgent.received` now checks the messages before returning control to the
user by default.
2 years ago
J. Fernando Sánchez cbbaf73538 Fix bug EventedEnvironment 2 years ago
J. Fernando Sánchez 2f5e5d0a74 Black formatting 2 years ago
J. Fernando Sánchez a2fb25c160 Version 0.30.0rc2
* Fix CLI arguments not being used when easy is passed a simulation instance
* Docs for `examples/events_and_messages/cars.py`
2 years ago
J. Fernando Sánchez 5fcf610108 Version 0.30.0rc1 2 years ago
J. Fernando Sánchez 159c9a9077 Add events 2 years ago
J. Fernando Sánchez 3776c4e5c5 Refactor
* Removed references to `set_state`
* Split some functionality from `agents` into separate files (`fsm` and
`network_agents`)
* Rename `neighboring_agents` to `neighbors`
* Delete some spurious functions
2 years ago
J. Fernando Sánchez 880a9f2a1c black formatting 2 years ago
J. Fernando Sánchez 227fdf050e Fix conditionals 2 years ago
J. Fernando Sánchez 5d759d0072 Add conditional time values 2 years ago
J. Fernando Sánchez 77d08fc592 Agent step can be a generator 2 years ago
J. Fernando Sánchez 0efcd24d90 Improve exporters 2 years ago
J. Fernando Sánchez 78833a9e08 Formatted with black 2 years ago
J. Fernando Sánchez d9947c2c52 WIP: all tests pass
Documentation needs some improvement

The API has been simplified to only allow for ONE topology per
NetworkEnvironment.
This covers the main use case, and simplifies the code.
2 years ago
J. Fernando Sánchez cd62c23cb9 WIP: all tests pass 2 years ago
J. Fernando Sánchez f811ee18c5 WIP 2 years ago
J. Fernando Sánchez 0a9c6d8b19 WIP: removed stats 2 years ago
J. Fernando Sánchez 3dc56892c1 WIP: working config 2 years ago
J. Fernando Sánchez e41dc3dae2 WIP 2 years ago
J. Fernando Sánchez bbaed636a8 WIP 2 years ago
J. Fernando Sánchez 6f7481769e WIP 2 years ago
J. Fernando Sánchez 1a8313e4f6 WIP 2 years ago
J. Fernando Sánchez a40aa55b6a Release 0.20.7 2 years ago
J. Fernando Sánchez 50cba751a6 Release 0.20.6 2 years ago
J. Fernando Sánchez dfb6d13649 version 0.20.5 2 years ago
J. Fernando Sánchez 5559d37e57 version 0.20.4 2 years ago
J. Fernando Sánchez 2116fe6f38 Bug fixes and minor improvements 2 years ago
J. Fernando Sánchez affeeb9643 Update examples 2 years ago
J. Fernando Sánchez 42ddc02318 CI: delay PyPI check 2 years ago
J. Fernando Sánchez cab9a3440b Fix typo CI/CD 2 years ago
J. Fernando Sánchez db505da49c Minor CI change 2 years ago
J. Fernando Sánchez 8eb8eb16eb Minor CI change 2 years ago
J. Fernando Sánchez 3fc5ca8c08 Fix requirements issue CI/CD 2 years ago
J. Fernando Sánchez c02e6ea2e8 Fix die bug 2 years ago
J. Fernando Sánchez 38f8a8d110 Merge branch 'mesa'
First iteration to achieve MESA compatibility.
As a side effect, we have removed `simpy`.

For a full list of changes, see `CHANGELOG.md`.
2 years ago
J. Fernando Sánchez cb72aac980 Add random activation example 2 years ago
J. Fernando Sánchez 6c4f44b4cb Partial MESA compatibility and several fixes
Documentation for the new APIs is still a work in progress :)
3 years ago
J. Fernando Sánchez af9a392a93 WIP: mesa compat
All tests pass but some features are still missing/unclear:

- Mesa agents do not have a `state`, so their "metrics" don't get stored. I will
probably refactor this to remove some magic in this regard. This should get rid
of the `_state` dictionary and the setitem/getitem magic.
- Simulation is still different from a runner. So far only Agent and
Environment/Model have been updated.
3 years ago
J. Fernando Sánchez 5d7e57675a WIP: mesa compatibility 3 years ago
J. Fernando Sánchez e860bdb922 v0.15.2
See CHANGELOG.md for a complete list of changes
3 years ago
J. Fernando Sánchez d6b684c1c1 Fix docs requirements 3 years ago
J. Fernando Sánchez 05f7f49233 Refactoring v0.15.1
See CHANGELOG.md for a full list of changes

* Removed nxsim
* Refactored `agents.NetworkAgent` and `agents.BaseAgent`
* Refactored exporters
* Added stats to history
4 years ago
J. Fernando Sánchez 3b2c6a3db5 Seed before env initialization
Fixes #6
4 years ago
J. Fernando Sánchez 6118f917ee Fix Windows bug
Update URLs to gsi.upm.es
4 years ago
J. Fernando Sánchez 6adc8d36ba minor change in docs 4 years ago
J. Fernando Sánchez c8b8149a17 Updated to 0.14.6
Fix compatibility issues with newer networkx and pandas versions
4 years ago
J. Fernando Sánchez 6690b6ee5f Fix incompatibility and bug in get_agents 5 years ago
J. Fernando Sánchez 97835b3d10 Clean up exporters 5 years ago

@ -1,2 +1,7 @@
**/soil_output
.*
**/.*
**/__pycache__
__pycache__
*.pyc
**/backup

2
.gitignore vendored

@ -8,3 +8,5 @@ soil_output
docs/_build*
build/*
dist/*
prof
backup

@ -1,9 +1,10 @@
stages:
- test
- build
- publish
- check_published
build:
stage: build
docker:
stage: publish
image:
name: gcr.io/kaniko-project/executor:debug
entrypoint: [""]
@ -16,13 +17,37 @@ build:
only:
- tags
test:
except:
- tags # Avoid running tests for tags, because they are already run for the branch
tags:
- docker
image: python:3.7
image: python:3.8
stage: test
script:
- python setup.py test
- pip install -r requirements.txt -r test-requirements.txt
- python setup.py test
push_pypi:
only:
- tags
tags:
- docker
image: python:3.8
stage: publish
script:
- echo $CI_COMMIT_TAG > soil/VERSION
- pip install twine
- python setup.py sdist bdist_wheel
- TWINE_PASSWORD=$PYPI_PASSWORD TWINE_USERNAME=$PYPI_USERNAME python -m twine upload dist/*
check_pypi:
only:
- tags
tags:
- docker
image: python:3.8
stage: check_published
script:
- pip install soil==$CI_COMMIT_TAG
# Allow PYPI to update its index before we try to install
when: delayed
start_in: 2 minutes

@ -3,6 +3,155 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [1.0.0 UNRELEASED]
Version 1.0 will introduce multiple changes, especially on the `Simulation` class and anything related to how configuration is handled.
For an explanation of the general changes in version 1.0, please refer to the file `docs/notes_v1.0.rst`.
### Added
* A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology).
* Environments now have a class method to make them easier to use without a simulation`.run`. Notice that this is different from `run_model`, which is an instance method.
* Ability to run simulations using mesa models
* The `soil.exporters` module to export the results of datacollectors (`model.datacollector`) into files at the end of trials/simulations
* Agents can now have generators or async functions as their step or as states. They work similar to normal functions, with one caveat in the case of `FSM`: only time values (a float, int or None) can be awaited or yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. To return to a different state, use the `delay` and `at` functions of the state.
* Simulations can now specify a `matrix` with possible values for every simulation parameter. The final parameters will be calculated based on the `parameters` used and a cartesian product (i.e., all possible combinations) of each parameter.
* Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>`
* The `agent.after` and `agent.at` methods, to avoid having to return a time manually.
### Changed
* Configuration schema (`Simulation`) is very simplified. All simulations should be checked
* Model / environment variables are expected (but not enforced) to be a single value. This is done to more closely align with mesa
* `Exporter.iteration_end` now takes two parameters: `env` (same as before) and `params` (specific parameters for this environment). We considered including a `parameters` attribute in the environment, but this would not be compatible with mesa.
* `num_trials` renamed to `iterations`
* General renaming of `trial` to `iteration`, to work better with `mesa`
* `model_parameters` renamed to `parameters` in simulation
* Simulation results for every iteration of a simulation with the same name are stored in a single `sqlite` database
### Removed
* The `time.When` and `time.Cond` classes are removed
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.
## [0.20.8]
### Changed
* Tsih bumped to version 0.1.8
### Fixed
* Mentions to `id` in docs. It should be `state_id` now.
* Fixed bug: environment agents were not being added to the simulation
## [0.20.7]
### Changed
* Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument)
### Fixed
* Bug with time.NEVER/time.INFINITY
## [0.20.6]
### Fixed
* Agents now return `time.INFINITY` when dead, instead of 'inf'
* `soil.__init__` does not re-export built-in time (change in `soil.simulation`. It used to create subtle import conflicts when importing soil.time.
* Parallel simulations were broken because lambdas cannot be pickled properly, which is needed for multiprocessing.
### Changed
* Some internal simulation methods do not accept `*args` anymore, to avoid ambiguity and bugs.
## [0.20.5]
### Changed
* Defaults are now set in the agent __init__, not in the environment. This decouples both classes a bit more, and it is more intuitive
## [0.20.4]
### Added
* Agents can now be given any kwargs, which will be used to set their state
* Environments have a default logger `self.logger` and a log method, just like agents
## [0.20.3]
### Fixed
* Default state values are now deepcopied again.
* Seeds for environments only concatenate the trial id (i.e., a number), to provide repeatable results.
* `Environment.run` now calls `Environment.step`, to allow for easy overloading of the environment step
### Removed
* Datacollectors are not being used for now.
* `time.TimedActivation.step` does not use an `until` parameter anymore.
### Changed
* Simulations now run right up to `until` (open interval)
* Time instants (`time.When`) don't need to be floats anymore. Now we can avoid precision issues with big numbers by using ints.
* Rabbits simulation is more idiomatic (using subclasses)
## [0.20.2]
### Fixed
* CI/CD testing issues
## [0.20.1]
### Fixed
* Agents would run another step after dying.
## [0.20.0]
### Added
* Integration with MESA
* `not_agent_ids` parameter to get sql in history
### Changed
* `soil.Environment` now also inherits from `mesa.Model`
* `soil.Agent` now also inherits from `mesa.Agent`
* `soil.time` to replace `simpy` events, delays, duration, etc.
* `agent.id` is not `agent.unique_id` to be compatible with `mesa`. A property `BaseAgent.id` has been added for compatibility.
* `agent.environment` is now `agent.model`, for the same reason as above. The parameter name in `BaseAgent.__init__` has also been renamed.
### Removed
* `simpy` dependency and compatibility. Each agent used to be a simpy generator, but that made debugging and error handling more complex. That has been replaced by a scheduler within the `soil.Environment` class, similar to how `mesa` does it.
* `soil.history` is now a separate package named `tsih`. The keys namedtuple uses `dict_id` instead of `agent_id`.
### Added
* An option to choose whether a database should be used for history
## [0.15.2]
### Fixed
* Pass the right known_modules and parameters to stats discovery in simulation
* The configuration file must exist when launching through the CLI. If it doesn't, an error will be logged
* Minor changes in the documentation of the CLI arguments
### Changed
* Stats are now exported by default
## [0.15.1]
### Added
* read-only `History`
### Fixed
* Serialization problem with the `Environment` on parallel mode.
* Analysis functions now work as they should in the tutorial
## [0.15.0]
### Added
* Control logging level in CLI and simulation
* `Stats` to calculate trial and simulation-wide statistics
* Simulation statistics are stored in a separate table in history (see `History.get_stats` and `History.save_stats`, as well as `soil.stats`)
* Aliased `NetworkAgent.G` to `NetworkAgent.topology`.
### Changed
* Templates in config files can be given as dictionaries in addition to strings
* Samplers are used more explicitly
* Removed nxsim dependency. We had already made a lot of changes, and nxsim has not been updated in 5 years.
* Exporter methods renamed to `trial` and `end`. Added `start`.
* `Distribution` exporter now a stats class
* `global_topology` renamed to `topology`
* Moved topology-related methods to `NetworkAgent`
### Fixed
* Temporary files used for history in dry_run mode are not longer left open
## [0.14.9]
### Changed
* Seed random before environment initialization
## [0.14.8]
### Fixed
* Invalid directory names in Windows gsi-upm/soil#5
## [0.14.7]
### Changed
* Minor change to traceback handling in async simulations
### Fixed
* Incomplete example in the docs (example.yml) caused an exception
## [0.14.6]
### Fixed
* Bug with newer versions of networkx (0.24) where the Graph.node attribute has been removed. We have updated our calls, but the code in nxsim is not under our control, so we have pinned the networkx version until that issue is solved.
### Changed
* Explicit yaml.SafeLoader to avoid deprecation warnings when using yaml.load. It should not break any existing setups, but we could move to the FullLoader in the future if needed.
## [0.14.4]
### Fixed
* Bug in `agent.get_agents()` when `state_id` is passed as a string. The tests have been modified accordingly.
## [0.14.3]
### Fixed
* Incompatibility with py3.3-3.6 due to ModuleNotFoundError and TypeError in DryRunner
## [0.14.2]
### Fixed
* Output path for exporters is now soil_output
### Changed
* CSV output to stdout in dry_run mode
## [0.14.1]
### Changed
* Exporter names in lower case
* Add default exporter in runs
## [0.14.0]
### Added
* Loading configuration from template definitions in the yaml, in preparation for SALib support.

@ -1,9 +1,67 @@
# [SOIL](https://github.com/gsi-upm/soil)
Soil is an extensible and user-friendly Agent-based Social Simulator for Social Networks.
Learn how to run your own simulations with our [documentation](http://soilsim.readthedocs.io).
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
Follow our [tutorial](docs/tutorial/soil_tutorial.ipynb) to develop your own agent models.
> **Warning**
> Soil 1.0 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/notes_v1.0.rst)
## Features
* Integration with (social) networks (through `networkx`)
* Convenience functions and methods to easily assign agents to your model (and optionally to its network):
* Following a given distribution (e.g., 2 agents of type `Foo`, 10% of the network should be agents of type `Bar`)
* Based on the topology of the network
* **Several types of abstractions for agents**:
* Finite state machine, where methods can be turned into a state
* Network agents, which have convenience methods to access the model's topology
* Generator-based agents, whose state is paused though a `yield` and resumed on the next step
* **Reporting and data collection**:
* Soil models include data collection and record some data by default (# of agents, state of each agent, etc.)
* All data collected are exported by default to a SQLite database and a description file
* Options to export to other formats, such as CSV, or defining your own exporters
* A summary of the data collected is shown in the command line, for easy inspection
* **An event-based scheduler**
* Agents can be explicit about when their next time/step should be, and not all agents run in every step. This avoids unnecessary computation.
* Time intervals between each step are flexible.
* There are primitives to specify when the next execution of an agent should be (or conditions)
* **Actor-inspired** message-passing
* A simulation runner (`soil.Simulation`) that can:
* Run models in parallel
* Save results to different formats
* Simulation configuration files
* A command line interface (`soil`), to quickly run simulations with different parameters
* An integrated debugger (`soil --debug`) with custom functions to print agent states and break at specific states
## Mesa compatibility
SOIL has been redesigned to integrate well with [Mesa](https://github.com/projectmesa/mesa).
For instance, it should be possible to run a `mesa.Model` models using a `soil.Simulation` and the `soil` CLI, or to integrate the `soil.TimedActivation` scheduler on a `mesa.Model`.
Note that some combinations of `mesa` and `soil` components, while technically possible, are much less useful or might yield surprising results.
For instance, you may add any `soil.agent` agent on a regular `mesa.Model` with a vanilla scheduler from `mesa.time`.
But in that case the agents will not get any of the advanced event-based scheduling, and most agent behaviors that depend on that may not work.
## Changes in version 0.3
Version 0.3 came packed with many changes to provide much better integration with MESA.
For a long time, we tried to keep soil backwards-compatible, but it turned out to be a big endeavour and the resulting code was less readable.
This translates to harder maintenance and a worse experience for newcomers.
In the end, we decided to make some breaking changes.
If you have an older Soil simulation, you have two options:
* Update the necessary configuration files and code. You may use the examples in the `examples` folder for reference, as well as the documentation.
* Keep using a previous `soil` version.
## Citation
If you use Soil in your research, don't forget to cite this paper:
@ -28,7 +86,6 @@ If you use Soil in your research, don't forget to cite this paper:
```
@Copyright GSI - Universidad Politécnica de Madrid 2017
[![SOIL](logo_gsi.png)](https://www.gsi.dit.upm.es)
@Copyright GSI - Universidad Politécnica de Madrid 2017-2021
[![SOIL](logo_gsi.png)](https://www.gsi.upm.es)

@ -0,0 +1,12 @@
command,mean,stddev,median,user,system,min,max,parameter_sim
python noop/mesa_batchrunner.py,1.3258325165599998,0.05822826666377271,1.31279976286,1.2978164199999997,0.25767558,1.2780627573599999,1.46763559736,mesa_batchrunner
python noop/mesa_simulation.py,1.3915081544599999,0.07311646048704976,1.37166811936,1.35267662,0.29222067999999995,1.32746067836,1.58495303336,mesa_simulation
python noop/soil_step.py,1.9859962588599998,0.12143759641749913,1.93586195486,2.0000750199999997,0.54126188,1.9061700903599998,2.2532835533599997,soil_step
python noop/soil_step_pqueue.py,2.1347049971600005,0.01336179424666973,2.13492341986,2.1368160200000004,0.56862948,2.11810132936,2.16042739636,soil_step_pqueue
python noop/soil_gens.py,2.1284937893599998,0.03030587681163665,2.13585231586,2.14158812,0.54900038,2.0768625143599997,2.19043625236,soil_gens
python noop/soil_gens_pqueue.py,2.3469003942599995,0.019461346004472344,2.3486906343599996,2.36505852,0.54629858,2.31766326036,2.37998102136,soil_gens_pqueue
python noop/soil_async.py,2.85755484126,0.0314955571121844,2.84774029536,2.86388112,0.55261338,2.81428668936,2.90567961636,soil_async
python noop/soil_async_pqueue.py,3.1999731134600005,0.04432336803797717,3.20255954186,3.2162337199999995,0.5501872800000001,3.1406816913599997,3.26137401936,soil_async_pqueue
python noop/soilent_step.py,1.30038977816,0.017973958957989845,1.30187804986,1.3231730199999998,0.5452653799999999,1.27058263436,1.31902240836,soilent_step
python noop/soilent_step_pqueue.py,1.4708435788599998,0.027193290392962755,1.4707784423599999,1.4900387199999998,0.54749428,1.43498127536,1.53065598436,soilent_step_pqueue
python noop/soilent_gens.py,1.6338810973599998,0.05752539125688073,1.63513330036,1.65216122,0.51846678,1.54135944036,1.7038832853599999,soilent_gens
1 command mean stddev median user system min max parameter_sim
2 python noop/mesa_batchrunner.py 1.3258325165599998 0.05822826666377271 1.31279976286 1.2978164199999997 0.25767558 1.2780627573599999 1.46763559736 mesa_batchrunner
3 python noop/mesa_simulation.py 1.3915081544599999 0.07311646048704976 1.37166811936 1.35267662 0.29222067999999995 1.32746067836 1.58495303336 mesa_simulation
4 python noop/soil_step.py 1.9859962588599998 0.12143759641749913 1.93586195486 2.0000750199999997 0.54126188 1.9061700903599998 2.2532835533599997 soil_step
5 python noop/soil_step_pqueue.py 2.1347049971600005 0.01336179424666973 2.13492341986 2.1368160200000004 0.56862948 2.11810132936 2.16042739636 soil_step_pqueue
6 python noop/soil_gens.py 2.1284937893599998 0.03030587681163665 2.13585231586 2.14158812 0.54900038 2.0768625143599997 2.19043625236 soil_gens
7 python noop/soil_gens_pqueue.py 2.3469003942599995 0.019461346004472344 2.3486906343599996 2.36505852 0.54629858 2.31766326036 2.37998102136 soil_gens_pqueue
8 python noop/soil_async.py 2.85755484126 0.0314955571121844 2.84774029536 2.86388112 0.55261338 2.81428668936 2.90567961636 soil_async
9 python noop/soil_async_pqueue.py 3.1999731134600005 0.04432336803797717 3.20255954186 3.2162337199999995 0.5501872800000001 3.1406816913599997 3.26137401936 soil_async_pqueue
10 python noop/soilent_step.py 1.30038977816 0.017973958957989845 1.30187804986 1.3231730199999998 0.5452653799999999 1.27058263436 1.31902240836 soilent_step
11 python noop/soilent_step_pqueue.py 1.4708435788599998 0.027193290392962755 1.4707784423599999 1.4900387199999998 0.54749428 1.43498127536 1.53065598436 soilent_step_pqueue
12 python noop/soilent_gens.py 1.6338810973599998 0.05752539125688073 1.63513330036 1.65216122 0.51846678 1.54135944036 1.7038832853599999 soilent_gens

@ -0,0 +1,11 @@
command,mean,stddev,median,user,system,min,max,parameter_sim
python noop/mesa1_batchrunner.py,1.2559917394000002,0.012031173494887278,1.2572688413000002,1.2168630799999998,0.31825289999999995,1.2346063853,1.2735512493,mesa1_batchrunner
python noop/mesa1_simulation.py,1.3024417227,0.022498874113931668,1.2994157323,1.2595484799999999,0.3087897,1.2697029703,1.3350640403,mesa1_simulation
python noop/soil1.py,1.8789492443,0.18023367899835044,1.8186795393000001,1.86076288,0.5309521,1.7326687413000001,2.2928370642999996,soil1
python noop/soil1_pqueue.py,1.9841675890000001,0.01735524088843906,1.9884363323,2.01830338,0.5787977999999999,1.9592171483,2.0076169282999996,soil1_pqueue
python noop/soil2.py,2.0135188921999996,0.02869307129649681,2.0184709453,2.03951308,0.5885591,1.9680417823,2.0567112592999997,soil2
python noop/soil2_pqueue.py,2.2367320454999997,0.024339667344486046,2.2357249777999995,2.2515216799999997,0.5978869,2.1957917303,2.2688685033,soil2_pqueue
python noop/soilent1.py,1.1309301329,0.015133005948737871,1.1276461497999999,1.14056688,0.6027519,1.1135821423,1.1625753893,soilent1
python noop/soilent1_pqueue.py,1.3097537665000003,0.018821977712258842,1.3073709358,1.3270259799999997,0.6000067999999998,1.2874580013,1.3381646823,soilent1_pqueue
python noop/soilent2.py,1.5055360476,0.05166674417574119,1.4883118568,1.5121205799999997,0.5817363999999999,1.4490918363,1.6005909333000001,soilent2
python noop/soilent2_pqueue.py,1.6622598218,0.031130739036296016,1.6588702603,1.6862567799999997,0.5854159,1.6289724583,1.7330545383,soilent2_pqueue
1 command mean stddev median user system min max parameter_sim
2 python noop/mesa1_batchrunner.py 1.2559917394000002 0.012031173494887278 1.2572688413000002 1.2168630799999998 0.31825289999999995 1.2346063853 1.2735512493 mesa1_batchrunner
3 python noop/mesa1_simulation.py 1.3024417227 0.022498874113931668 1.2994157323 1.2595484799999999 0.3087897 1.2697029703 1.3350640403 mesa1_simulation
4 python noop/soil1.py 1.8789492443 0.18023367899835044 1.8186795393000001 1.86076288 0.5309521 1.7326687413000001 2.2928370642999996 soil1
5 python noop/soil1_pqueue.py 1.9841675890000001 0.01735524088843906 1.9884363323 2.01830338 0.5787977999999999 1.9592171483 2.0076169282999996 soil1_pqueue
6 python noop/soil2.py 2.0135188921999996 0.02869307129649681 2.0184709453 2.03951308 0.5885591 1.9680417823 2.0567112592999997 soil2
7 python noop/soil2_pqueue.py 2.2367320454999997 0.024339667344486046 2.2357249777999995 2.2515216799999997 0.5978869 2.1957917303 2.2688685033 soil2_pqueue
8 python noop/soilent1.py 1.1309301329 0.015133005948737871 1.1276461497999999 1.14056688 0.6027519 1.1135821423 1.1625753893 soilent1
9 python noop/soilent1_pqueue.py 1.3097537665000003 0.018821977712258842 1.3073709358 1.3270259799999997 0.6000067999999998 1.2874580013 1.3381646823 soilent1_pqueue
10 python noop/soilent2.py 1.5055360476 0.05166674417574119 1.4883118568 1.5121205799999997 0.5817363999999999 1.4490918363 1.6005909333000001 soilent2
11 python noop/soilent2_pqueue.py 1.6622598218 0.031130739036296016 1.6588702603 1.6862567799999997 0.5854159 1.6289724583 1.7330545383 soilent2_pqueue

@ -0,0 +1,25 @@
import os
NUM_AGENTS = int(os.environ.get('NUM_AGENTS', 100))
NUM_ITERS = int(os.environ.get('NUM_ITERS', 10))
MAX_STEPS = int(os.environ.get('MAX_STEPS', 1000))
def run_sim(model, **kwargs):
from soil import Simulation
opts = dict(model=model,
dump=False,
num_processes=1,
parameters={'num_agents': NUM_AGENTS},
max_steps=MAX_STEPS,
iterations=NUM_ITERS)
opts.update(kwargs)
res = Simulation(**opts).run()
total = sum(a.num_calls for e in res for a in e.schedule.agents)
expected = NUM_AGENTS * NUM_ITERS * MAX_STEPS
print(total)
print(expected)
assert total == expected
return res

@ -0,0 +1,44 @@
from mesa import batch_run, DataCollector, Agent, Model
from mesa.time import RandomActivation
class NoopAgent(Agent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_calls = 0
def step(self):
# import pdb;pdb.set_trace()
self.num_calls += 1
class NoopModel(Model):
def __init__(self, N):
super().__init__()
self.schedule = RandomActivation(self)
for i in range(N):
self.schedule.add(NoopAgent(self.next_id(), self))
self.datacollector = DataCollector(model_reporters={"num_agents": lambda m: m.schedule.get_agent_count(),
"time": lambda m: m.schedule.time},
agent_reporters={"num_calls": "num_calls"})
self.datacollector.collect(self)
def step(self):
self.schedule.step()
self.datacollector.collect(self)
if __name__ == "__main__":
from _config import *
res = batch_run(model_cls=NoopModel,
max_steps=MAX_STEPS,
iterations=NUM_ITERS,
number_processes=1,
parameters={'N': NUM_AGENTS})
total = sum(s["num_calls"] for s in res)
total_agents = sum(s["num_agents"] for s in res)
assert len(res) == NUM_AGENTS * NUM_ITERS
assert total == NUM_AGENTS * NUM_ITERS * MAX_STEPS
assert total_agents == NUM_AGENTS * NUM_AGENTS * NUM_ITERS

@ -0,0 +1,38 @@
from mesa import batch_run, DataCollector, Agent, Model
from mesa.time import RandomActivation
from soil import Simulation
from _config import *
class NoopAgent(Agent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_calls = 0
def step(self):
# import pdb;pdb.set_trace()
self.num_calls += 1
class NoopModel(Model):
def __init__(self, num_agents, *args, **kwargs):
super().__init__()
self.schedule = RandomActivation(self)
for i in range(num_agents):
self.schedule.add(NoopAgent(self.next_id(), self))
self.datacollector = DataCollector(model_reporters={"num_agents": lambda m: m.schedule.get_agent_count(),
"time": lambda m: m.schedule.time},
agent_reporters={"num_calls": "num_calls"})
self.datacollector.collect(self)
def step(self):
self.schedule.step()
self.datacollector.collect(self)
def run():
run_sim(model=NoopModel)
if __name__ == "__main__":
run()

@ -0,0 +1,3 @@
command,mean,stddev,median,user,system,min,max,parameter_sim
python mesa1_batchrunner.py,1.2932078178200002,0.05649377020829272,1.2705532802200001,1.25902256,0.27242284,1.22210926572,1.40867459172,mesa1_batchrunner
python mesa1_simulation.py,1.81112963812,0.015491072368938567,1.81342524572,1.8594407599999996,0.8005329399999999,1.78538603972,1.84176361172,mesa1_simulation
1 command mean stddev median user system min max parameter_sim
2 python mesa1_batchrunner.py 1.2932078178200002 0.05649377020829272 1.2705532802200001 1.25902256 0.27242284 1.22210926572 1.40867459172 mesa1_batchrunner
3 python mesa1_simulation.py 1.81112963812 0.015491072368938567 1.81342524572 1.8594407599999996 0.8005329399999999 1.78538603972 1.84176361172 mesa1_simulation

@ -0,0 +1,24 @@
from soil import BaseAgent, Environment, Simulation
class NoopAgent(BaseAgent):
num_calls = 0
async def step(self):
while True:
self.num_calls += 1
await self.delay()
class NoopEnvironment(Environment):
num_agents = 100
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
run_sim(model=NoopEnvironment)

@ -0,0 +1,25 @@
from soil import BaseAgent, Environment, Simulation, PQueueActivation
class NoopAgent(BaseAgent):
num_calls = 0
async def step(self):
while True:
self.num_calls += 1
await self.delay()
class NoopEnvironment(Environment):
num_agents = 100
schedule_class = PQueueActivation
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
run_sim(model=NoopEnvironment)

@ -0,0 +1,24 @@
from soil import BaseAgent, Environment, Simulation
class NoopAgent(BaseAgent):
num_calls = 0
def step(self):
while True:
self.num_calls += 1
yield self.delay()
class NoopEnvironment(Environment):
num_agents = 100
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
run_sim(model=NoopEnvironment)

@ -0,0 +1,25 @@
from soil import BaseAgent, Environment, Simulation, PQueueActivation
class NoopAgent(BaseAgent):
num_calls = 0
def step(self):
while True:
self.num_calls += 1
yield self.delay()
class NoopEnvironment(Environment):
num_agents = 100
schedule_class = PQueueActivation
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
run_sim(model=NoopEnvironment)

@ -0,0 +1,21 @@
from soil import BaseAgent, Environment, Simulation
class NoopAgent(BaseAgent):
num_calls = 0
def step(self):
self.num_calls += 1
class NoopEnvironment(Environment):
num_agents = 100
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
run_sim(model=NoopEnvironment)

@ -0,0 +1,22 @@
from soil import BaseAgent, Environment, Simulation, PQueueActivation
class NoopAgent(BaseAgent):
num_calls = 0
def step(self):
self.num_calls += 1
class NoopEnvironment(Environment):
num_agents = 100
schedule_class = PQueueActivation
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
run_sim(model=NoopEnvironment)

@ -0,0 +1,29 @@
from soil import Agent, Environment, Simulation
from soilent import Scheduler
class NoopAgent(Agent):
num_calls = 0
async def step(self):
while True:
self.num_calls += 1
# yield self.delay(1)
await self.delay()
class NoopEnvironment(Environment):
num_agents = 100
schedule_class = Scheduler
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
res = run_sim(model=NoopEnvironment)
for r in res:
assert isinstance(r.schedule, Scheduler)

@ -0,0 +1,27 @@
from soil import Agent, Environment
from soilent import PQueueScheduler
class NoopAgent(Agent):
num_calls = 0
async def step(self):
while True:
self.num_calls += 1
await self.delay()
class NoopEnvironment(Environment):
num_agents = 100
schedule_class = PQueueScheduler
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
res = run_sim(model=NoopEnvironment)
for r in res:
assert isinstance(r.schedule, PQueueScheduler)

@ -0,0 +1,28 @@
from soil import Agent, Environment, Simulation
from soilent import Scheduler
class NoopAgent(Agent):
num_calls = 0
def step(self):
while True:
self.num_calls += 1
# yield self.delay(1)
yield self.delay()
class NoopEnvironment(Environment):
num_agents = 100
schedule_class = Scheduler
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
res = run_sim(model=NoopEnvironment)
for r in res:
assert isinstance(r.schedule, Scheduler)

@ -0,0 +1,28 @@
from soil import Agent, Environment
from soilent import PQueueScheduler
class NoopAgent(Agent):
num_calls = 0
def step(self):
while True:
self.num_calls += 1
# yield self.delay(1)
yield
class NoopEnvironment(Environment):
num_agents = 100
schedule_class = PQueueScheduler
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
res = run_sim(model=NoopEnvironment)
for r in res:
assert isinstance(r.schedule, PQueueScheduler)

@ -0,0 +1,24 @@
from soil import BaseAgent, Environment, Simulation
from soilent import Scheduler
class NoopAgent(BaseAgent):
num_calls = 0
def step(self):
self.num_calls += 1
class NoopEnvironment(Environment):
num_agents = 100
schedule_class = Scheduler
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
res = run_sim(model=NoopEnvironment)
for r in res:
assert isinstance(r.schedule, Scheduler)

@ -0,0 +1,24 @@
from soil import BaseAgent, Environment, Simulation
from soilent import PQueueScheduler
class NoopAgent(BaseAgent):
num_calls = 0
def step(self):
self.num_calls += 1
class NoopEnvironment(Environment):
num_agents = 100
schedule_class = PQueueScheduler
def init(self):
self.add_agents(NoopAgent, k=self.num_agents)
self.add_agent_reporter("num_calls")
if __name__ == "__main__":
from _config import *
res = run_sim(model=NoopEnvironment)
for r in res:
assert isinstance(r.schedule, PQueueScheduler)

@ -0,0 +1,19 @@
#!/bin/env python
import sys
import os
import subprocess
import argparse
parser = argparse.ArgumentParser(
prog='Profiler for soil')
parser.add_argument('--suffix', default=None)
parser.add_argument('files', nargs="+")
args = parser.parse_args()
for fname in args.files:
suffix = ("_" + args.suffix) if args.suffix else ""
simname = f"{fname.replace('/', '-')}{suffix}"
profpath = os.path.join("profs", simname + ".prof")
print(f"Running {fname} and saving profile to {profpath}")
subprocess.call(["python", "-m", "cProfile", "-o", profpath, fname])

@ -0,0 +1,4 @@
command,mean,stddev,median,user,system,min,max,parameter_sim
python virusonnetwork/mesa_basic.py,3.8381473157,0.0518143371442526,3.8475315791,3.873109219999999,0.55102658,3.7523016936,3.9095182436,mesa_basic.py
python virusonnetwork/soil_step.py,3.2167258977000004,0.02337131987357665,3.2257620261,3.28374132,0.51343958,3.1792271306,3.2511521286000002,soil_step.py
python virusonnetwork/soil_states.py,3.4908183217,0.03726734070349347,3.4912775086,3.5684004200000006,0.50416068,3.4272087936,3.5529207346000002,soil_states.py
1 command mean stddev median user system min max parameter_sim
2 python virusonnetwork/mesa_basic.py 3.8381473157 0.0518143371442526 3.8475315791 3.873109219999999 0.55102658 3.7523016936 3.9095182436 mesa_basic.py
3 python virusonnetwork/soil_step.py 3.2167258977000004 0.02337131987357665 3.2257620261 3.28374132 0.51343958 3.1792271306 3.2511521286000002 soil_step.py
4 python virusonnetwork/soil_states.py 3.4908183217 0.03726734070349347 3.4912775086 3.5684004200000006 0.50416068 3.4272087936 3.5529207346000002 soil_states.py

@ -0,0 +1,32 @@
import os
NUM_AGENTS = int(os.environ.get('NUM_AGENTS', 100))
NUM_ITERS = int(os.environ.get('NUM_ITERS', 10))
MAX_STEPS = int(os.environ.get('MAX_STEPS', 1000))
def run_sim(model, **kwargs):
from soil import Simulation
opts = dict(model=model,
dump=False,
num_processes=1,
parameters={'num_nodes': NUM_AGENTS,
"avg_node_degree": 3,
"initial_outbreak_size": 5,
"virus_spread_chance": 0.25,
"virus_check_frequency": 0.25,
"recovery_chance": 0.3,
"gain_resistance_chance": 0.1,
},
max_steps=MAX_STEPS,
iterations=NUM_ITERS)
opts.update(kwargs)
its = Simulation(**opts).run()
assert all(it.schedule.steps == MAX_STEPS for it in its)
ratios = list(it.resistant_susceptible_ratio() for it in its)
print("Max - Avg - Min ratio:", max(ratios), sum(ratios)/len(ratios), min(ratios))
assert all(sum([it.number_susceptible,
it.number_infected,
it.number_resistant]) == NUM_AGENTS for it in its)
return its

@ -0,0 +1,180 @@
# Verbatim copy from mesa
# https://github.com/projectmesa/mesa/blob/976ddfc8a1e5feaaf8007a7abaa9abc7093881a0/examples/virus_on_network/virus_on_network/model.py
import math
from enum import Enum
import networkx as nx
import mesa
class State(Enum):
SUSCEPTIBLE = 0
INFECTED = 1
RESISTANT = 2
def number_state(model, state):
return sum(1 for a in model.grid.get_all_cell_contents() if a.state is state)
def number_infected(model):
return number_state(model, State.INFECTED)
def number_susceptible(model):
return number_state(model, State.SUSCEPTIBLE)
def number_resistant(model):
return number_state(model, State.RESISTANT)
class VirusOnNetwork(mesa.Model):
"""A virus model with some number of agents"""
def __init__(
self,
*args,
num_nodes=10,
avg_node_degree=3,
initial_outbreak_size=1,
virus_spread_chance=0.4,
virus_check_frequency=0.4,
recovery_chance=0.3,
gain_resistance_chance=0.5,
**kwargs,
):
self.num_nodes = num_nodes
prob = avg_node_degree / self.num_nodes
self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
self.grid = mesa.space.NetworkGrid(self.G)
self.schedule = mesa.time.RandomActivation(self)
self.initial_outbreak_size = (
initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes
)
self.virus_spread_chance = virus_spread_chance
self.virus_check_frequency = virus_check_frequency
self.recovery_chance = recovery_chance
self.gain_resistance_chance = gain_resistance_chance
self.datacollector = mesa.DataCollector(
{
"Ratio": "resistant_susceptible_ratio",
"Infected": number_infected,
"Susceptible": number_susceptible,
"Resistant": number_resistant,
}
)
# Create agents
for i, node in enumerate(self.G.nodes()):
a = VirusAgent(
i,
self,
State.SUSCEPTIBLE,
self.virus_spread_chance,
self.virus_check_frequency,
self.recovery_chance,
self.gain_resistance_chance,
)
self.schedule.add(a)
# Add the agent to the node
self.grid.place_agent(a, node)
# Infect some nodes
infected_nodes = self.random.sample(list(self.G), self.initial_outbreak_size)
for a in self.grid.get_cell_list_contents(infected_nodes):
a.state = State.INFECTED
self.running = True
self.datacollector.collect(self)
@property
def number_susceptible(self):
return number_susceptible(self)
@property
def number_resistant(self):
return number_resistant(self)
@property
def number_infected(self):
return number_infected(self)
def resistant_susceptible_ratio(self):
try:
return number_state(self, State.RESISTANT) / number_state(
self, State.SUSCEPTIBLE
)
except ZeroDivisionError:
return math.inf
def step(self):
self.schedule.step()
# collect data
self.datacollector.collect(self)
def run_model(self, n):
for i in range(n):
self.step()
class VirusAgent(mesa.Agent):
def __init__(
self,
unique_id,
model,
initial_state,
virus_spread_chance,
virus_check_frequency,
recovery_chance,
gain_resistance_chance,
):
super().__init__(unique_id, model)
self.state = initial_state
self.virus_spread_chance = virus_spread_chance
self.virus_check_frequency = virus_check_frequency
self.recovery_chance = recovery_chance
self.gain_resistance_chance = gain_resistance_chance
def try_to_infect_neighbors(self):
neighbors_nodes = self.model.grid.get_neighbors(self.pos, include_center=False)
susceptible_neighbors = [
agent
for agent in self.model.grid.get_cell_list_contents(neighbors_nodes)
if agent.state is State.SUSCEPTIBLE
]
for a in susceptible_neighbors:
if self.random.random() < self.virus_spread_chance:
a.state = State.INFECTED
def try_gain_resistance(self):
if self.random.random() < self.gain_resistance_chance:
self.state = State.RESISTANT
def try_remove_infection(self):
# Try to remove
if self.random.random() < self.recovery_chance:
# Success
self.state = State.SUSCEPTIBLE
self.try_gain_resistance()
else:
# Failed
self.state = State.INFECTED
def try_check_situation(self):
if self.random.random() < self.virus_check_frequency:
# Checking...
if self.state is State.INFECTED:
self.try_remove_infection()
def step(self):
if self.state is State.INFECTED:
self.try_to_infect_neighbors()
self.try_check_situation()
from _config import run_sim
run_sim(model=VirusOnNetwork)

@ -0,0 +1,92 @@
# Verbatim copy from mesa
# https://github.com/projectmesa/mesa/blob/976ddfc8a1e5feaaf8007a7abaa9abc7093881a0/examples/virus_on_network/virus_on_network/model.py
import math
from enum import Enum
import networkx as nx
from soil import *
class VirusOnNetwork(Environment):
"""A virus model with some number of agents"""
num_nodes = 10
avg_node_degree = 3
initial_outbreak_size = 1
virus_spread_chance = 0.4
virus_check_frequency = 0.4
recovery_chance = 0
gain_resistance_chance = 0
def init(self):
prob = self.avg_node_degree / self.num_nodes
# Use internal seed with the networkx generator
self.create_network(generator=nx.erdos_renyi_graph, n=self.num_nodes, p=prob)
self.initial_outbreak_size = min(self.initial_outbreak_size, self.num_nodes)
self.populate_network(VirusAgent)
# Infect some nodes
infected_nodes = self.random.sample(list(self.G), self.initial_outbreak_size)
for a in self.get_agents(node_id=infected_nodes):
a.set_state(VirusAgent.infected)
assert self.number_infected == self.initial_outbreak_size
@report
def resistant_susceptible_ratio(self):
try:
return self.number_resistant / self.number_susceptible
except ZeroDivisionError:
return math.inf
@report
@property
def number_infected(self):
return self.count_agents(state_id=VirusAgent.infected.id)
@report
@property
def number_susceptible(self):
return self.count_agents(state_id=VirusAgent.susceptible.id)
@report
@property
def number_resistant(self):
return self.count_agents(state_id=VirusAgent.resistant.id)
class VirusAgent(Agent):
virus_spread_chance = None # Inherit from model
virus_check_frequency = None # Inherit from model
recovery_chance = None # Inherit from model
gain_resistance_chance = None # Inherit from model
just_been_infected = False
@state(default=True)
def susceptible(self):
if self.just_been_infected:
self.just_been_infected = False
return self.infected
@state
def infected(self):
susceptible_neighbors = self.get_neighbors(state_id=self.susceptible.id)
for a in susceptible_neighbors:
if self.prob(self.virus_spread_chance):
a.just_been_infected = True
if self.prob(self.virus_check_frequency):
if self.prob(self.recovery_chance):
if self.prob(self.gain_resistance_chance):
return self.resistant
else:
return self.susceptible
else:
return self.infected
@state
def resistant(self):
return self.at(INFINITY)
if __name__ == "__main__":
from _config import run_sim
run_sim(model=VirusOnNetwork)

@ -0,0 +1,104 @@
# Verbatim copy from mesa
# https://github.com/projectmesa/mesa/blob/976ddfc8a1e5feaaf8007a7abaa9abc7093881a0/examples/virus_on_network/virus_on_network/model.py
import math
from enum import Enum
import networkx as nx
from soil import *
class State(Enum):
SUSCEPTIBLE = 0
INFECTED = 1
RESISTANT = 2
class VirusOnNetwork(Environment):
"""A virus model with some number of agents"""
num_nodes = 10
avg_node_degree = 3
initial_outbreak_size = 1
virus_spread_chance = 0.4
virus_check_frequency = 0.4
recovery_chance = 0
gain_resistance_chance = 0
def init(self):
prob = self.avg_node_degree / self.num_nodes
# Use internal seed with the networkx generator
self.create_network(generator=nx.erdos_renyi_graph, n=self.num_nodes, p=prob)
self.initial_outbreak_size = min(self.initial_outbreak_size, self.num_nodes)
self.populate_network(VirusAgent)
# Infect some nodes
infected_nodes = self.random.sample(list(self.G), self.initial_outbreak_size)
for a in self.get_agents(node_id=infected_nodes):
a.status = State.INFECTED
assert self.number_infected == self.initial_outbreak_size
@report
def resistant_susceptible_ratio(self):
try:
return self.number_resistant / self.number_susceptible
except ZeroDivisionError:
return math.inf
@report
@property
def number_infected(self):
return self.count_agents(status=State.INFECTED)
@report
@property
def number_susceptible(self):
return self.count_agents(status=State.SUSCEPTIBLE)
@report
@property
def number_resistant(self):
return self.count_agents(status=State.RESISTANT)
class VirusAgent(Agent):
status = State.SUSCEPTIBLE
virus_spread_chance = None # Inherit from model
virus_check_frequency = None # Inherit from model
recovery_chance = None # Inherit from model
gain_resistance_chance = None # Inherit from model
def try_to_infect_neighbors(self):
susceptible_neighbors = self.get_neighbors(status=State.SUSCEPTIBLE)
for a in susceptible_neighbors:
if self.prob(self.virus_spread_chance):
a.status = State.INFECTED
def try_gain_resistance(self):
if self.prob(self.gain_resistance_chance):
self.status = State.RESISTANT
return self.at(INFINITY)
def try_remove_infection(self):
# Try to remove
if self.prob(self.recovery_chance):
# Success
self.status = State.SUSCEPTIBLE
return self.try_gain_resistance()
def try_check_situation(self):
if self.prob(self.virus_check_frequency):
# Checking...
if self.status is State.INFECTED:
return self.try_remove_infection()
def step(self):
if self.status is State.INFECTED:
self.try_to_infect_neighbors()
return self.try_check_situation()
if __name__ == "__main__":
from _config import run_sim
run_sim(model=VirusOnNetwork)

@ -31,7 +31,10 @@
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = []
extensions = [
"IPython.sphinxext.ipython_console_highlighting",
"nbsphinx",
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
@ -64,12 +67,12 @@ release = '0.1'
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
language = "en"
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '**.ipynb_checkpoints']
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
@ -152,6 +155,3 @@ texinfo_documents = [
author, 'Soil', 'One line description of project.',
'Miscellaneous'),
]

@ -1,244 +0,0 @@
Configuring a simulation
------------------------
There are two ways to configure a simulation: programmatically and with a configuration file.
In both cases, the parameters used are the same.
The advantage of a configuration file is that it is a clean declarative description, and it makes it easier to reproduce.
Simulation configuration files can be formatted in ``json`` or ``yaml`` and they define all the parameters of a simulation.
Here's an example (``example.yml``).
.. code:: yaml
---
name: MyExampleSimulation
max_time: 50
num_trials: 3
interval: 2
network_params:
generator: barabasi_albert_graph
n: 100
m: 2
network_agents:
- agent_type: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
weight: 1
state:
id: discontent
- agent_type: SISaModel
weight: 8
state:
id: neutral
environment_params:
prob_infect: 0.075
This example configuration will run three trials (``num_trials``) of a simulation containing a randomly generated network (``network_params``).
The 100 nodes in the network will be SISaModel agents (``network_agents.agent_type``), which is an agent behavior that is included in Soil.
10% of the agents (``weight=1``) will start in the content state, 10% in the discontent state, and the remaining 80% (``weight=8``) in the neutral state.
All agents will have access to the environment (``environment_params``), which only contains one variable, ``prob_infected``.
The state of the agents will be updated every 2 seconds (``interval``).
Now run the simulation with the command line tool:
.. code:: bash
soil example.yml
Once the simulation finishes, its results will be stored in a folder named ``MyExampleSimulation``.
Three types of objects are saved by default: a pickle of the simulation; a ``YAML`` representation of the simulation (which can be used to re-launch it); and for every trial, a ``sqlite`` file with the content of the state of every network node and the environment parameters at every step of the simulation.
.. code::
soil_output
└── MyExampleSimulation
├── MyExampleSimulation.dumped.yml
├── MyExampleSimulation.simulation.pickle
├── MyExampleSimulation_trial_0.db.sqlite
├── MyExampleSimulation_trial_1.db.sqlite
└── MyExampleSimulation_trial_2.db.sqlite
You may also ask soil to export the states in a ``csv`` file, and the network in gephi format (``gexf``).
Network
=======
The network topology for the simulation can be loaded from an existing network file or generated with one of the random network generation methods from networkx.
Loading a network
#################
To load an existing network, specify its path in the configuration:
.. code:: yaml
---
network_params:
path: /tmp/mynetwork.gexf
Soil will try to guess what networkx method to use to read the file based on its extension.
However, we only test using ``gexf`` files.
For simple networks, you may also include them in the configuration itself using , using the ``topology`` parameter like so:
.. code:: yaml
---
topology:
nodes:
- id: First
- id: Second
links:
- source: First
target: Second
Generating a random network
###########################
To generate a random network using one of networkx's built-in methods, specify the `graph generation algorithm <https://networkx.github.io/documentation/development/reference/generators.html>`_ and other parameters.
For example, the following configuration is equivalent to :code:`nx.complete_graph(n=100)`:
.. code:: yaml
network_params:
generator: complete_graph
n: 100
Environment
============
The environment is the place where the shared state of the simulation is stored.
For instance, the probability of disease outbreak.
The configuration file may specify the initial value of the environment parameters:
.. code:: yaml
environment_params:
daily_probability_of_earthquake: 0.001
number_of_earthquakes: 0
All agents have access to the environment parameters.
In some scenarios, it is useful to have a custom environment, to provide additional methods or to control the way agents update environment state.
For example, if our agents play the lottery, the environment could provide a method to decide whether the agent wins, instead of leaving it to the agent.
Agents
======
Agents are a way of modelling behavior.
Agents can be characterized with two variables: agent type (``agent_type``) and state.
Only one agent is executed at a time (generally, every ``interval`` seconds), and it has access to its state and the environment parameters.
Through the environment, it can access the network topology and the state of other agents.
There are three three types of agents according to how they are added to the simulation: network agents and environment agent.
Network Agents
##############
Network agents are attached to a node in the topology.
The configuration file allows you to specify how agents will be mapped to topology nodes.
The simplest way is to specify a single type of agent.
Hence, every node in the network will be associated to an agent of that type.
.. code:: yaml
agent_type: SISaModel
It is also possible to add more than one type of agent to the simulation, and to control the ratio of each type (using the ``weight`` property).
For instance, with following configuration, it is five times more likely for a node to be assigned a CounterModel type than a SISaModel type.
.. code:: yaml
network_agents:
- agent_type: SISaModel
weight: 1
- agent_type: CounterModel
weight: 5
The third option is to specify the type of agent on the node itself, e.g.:
.. code:: yaml
topology:
nodes:
- id: first
agent_type: BaseAgent
states:
first:
agent_type: SISaModel
This would also work with a randomly generated network:
.. code:: yaml
network:
generator: complete
n: 5
agent_type: BaseAgent
states:
- agent_type: SISaModel
In addition to agent type, you may add a custom initial state to the distribution.
This is very useful to add the same agent type with different states.
e.g., to populate the network with SISaModel, roughly 10% of them with a discontent state:
.. code:: yaml
network_agents:
- agent_type: SISaModel
weight: 9
state:
id: neutral
- agent_type: SISaModel
weight: 1
state:
id: discontent
Lastly, the configuration may include initial state for one or more nodes.
For instance, to add a state for the two nodes in this configuration:
.. code:: yaml
agent_type: SISaModel
network:
generator: complete_graph
n: 2
states:
- id: content
- id: discontent
Or to add state only to specific nodes (by ``id``).
For example, to apply special skills to Linux Torvalds in a simulation:
.. literalinclude:: ../examples/torvalds.yml
:language: yaml
Environment Agents
##################
In addition to network agents, more agents can be added to the simulation.
These agents are programmed in much the same way as network agents, the only difference is that they will not be assigned to network nodes.
.. code::
environment_agents:
- agent_type: MyAgent
state:
mood: happy
- agent_type: DummyAgent
You may use environment agents to model events that a normal agent cannot control, such as natural disasters or chance.
They are also useful to add behavior that has little to do with the network and the interactions within that network.

@ -1,12 +1,21 @@
.. Soil documentation master file, created by
sphinx-quickstart on Tue Apr 25 12:48:56 2017.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to Soil's documentation!
================================
Soil is an Agent-based Social Simulator in Python focused on Social Networks.
Soil is an opinionated Agent-based Social Simulator in Python focused on Social Networks.
To get started developing your own simulations and agent behaviors, check out our :doc:`Tutorial <tutorial/soil_tutorial>` and the `examples on GitHub <https://github.com/gsi-upm/soil/tree/master/examples>`.
Soil can be installed through pip (see more details in the :doc:`installation` page):.
.. image:: soil.png
:width: 80%
:align: center
.. code:: bash
pip install soil
If you use Soil in your research, do not forget to cite this paper:
@ -38,9 +47,9 @@ If you use Soil in your research, do not forget to cite this paper:
:caption: Learn more about soil:
installation
quickstart
configuration
Tutorial <soil_tutorial>
Tutorial <tutorial/soil_tutorial>
notes_v1.0
soil-vs
..

@ -1,7 +1,10 @@
Installation
------------
The easiest way to install Soil is through pip, with Python >= 3.4:
Through pip
===========
The easiest way to install Soil is through pip, with Python >= 3.8:
.. code:: bash
@ -14,11 +17,49 @@ Now test that it worked by running the command line tool
soil --help
Or using soil programmatically:
#or
python -m soil --help
Or, if you're using using soil programmatically:
.. code:: python
import soil
print(soil.__version__)
The latest version can be installed through `GitLab <https://lab.cluster.gsi.dit.upm.es/soil/soil.git>`_.
Web UI
======
Soil also includes a web server that allows you to upload your simulations, change parameters, and visualize the results, including a timeline of the network.
To make it work, you have to install soil like this:
.. code::
pip install soil[web]
Once installed, the soil web UI can be run in two ways:
.. code::
soil-web
# OR
python -m soil.web
Development
===========
The latest version can be downloaded from `GitHub <https://github.com/gsi-upm/soil>`_ and installed manually:
.. code:: bash
git clone https://github.com/gsi-upm/soil
cd soil
python -m venv .venv
source .venv/bin/activate
pip install --editable .

@ -12,7 +12,7 @@ set BUILDDIR=_build
set SPHINXPROJ=Soil
if "%1" == "" goto help
eE
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.

@ -0,0 +1,38 @@
Upgrading to Soil 1.0
---------------------
What are the main changes in version 1.0?
#########################################
Version 1.0 is a major rewrite of the Soil system, focused on simplifying the API, aligning it with Mesa, and making it easier to use.
Unfortunately, this comes at the cost of backwards compatibility.
We drew several lessons from the previous version of Soil, and tried to address them in this version.
Mainly:
- The split between simulation configuration and simulation code was overly complicated for most use cases. As a result, most users ended up reusing configuration.
- Storing **all** the simulation data in a database is costly and unnecessary for most use cases. For most use cases, only a handful of variables need to be stored. This fits nicely with Mesa's data collection system.
- The API was too complex, and it was difficult to understand how to use it.
- Most parts of the API were not aligned with Mesa, which made it difficult to use Mesa's features or to integrate Soil modules with Mesa code, especially for newcomers.
- Many parts of the API were tightly coupled, which made it difficult to find bugs, test the system and add new features.
The 0.30 rewrite should provide a middle ground between Soil's opinionated approach and Mesa's flexibility.
The new Soil is less configuration-centric.
It aims to provide more modular and convenient functions, most of which can be used in vanilla Mesa.
How are agents assigned to nodes in the network
###############################################
The constructor of the `NetworkAgent` class has two arguments: `node_id` and `topology`.
If `topology` is not provided, it will default to `self.model.topology`.
This assignment might err if the model does not have a `topology` attribute, but most Soil environments derive from `NetworkEnvironment`, so they include a topology by default.
If `node_id` is not provided, a random node will be selected from the topology, until a node with no agent is found.
Then, the `node_id` of that node is assigned to the agent.
If no node with no agent is found, a new node is automatically added to the topology.
Can Soil environments include more than one network / topology?
###############################################################
Yes, but each network has to be included manually.
Somewhere between 0.20 and 0.30 we included the ability to include multiple networks, but it was deemed too complex and was removed.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 19 KiB

@ -1,93 +0,0 @@
Quickstart
----------
This section shows how to run your first simulation with Soil.
For installation instructions, see :doc:`installation`.
There are mainly two parts in a simulation: agent classes and simulation configuration.
An agent class defines how the agent will behave throughout the simulation.
The configuration includes things such as number of agents to use and their type, network topology to use, etc.
.. image:: soil.png
:width: 80%
:align: center
Soil includes several agent classes in the ``soil.agents`` module, and we will use them in this quickstart.
If you are interested in developing your own agents classes, see :doc:`soil_tutorial`.
Configuration
=============
To get you started, we will use this configuration (:download:`download the file <quickstart.yml>` directly):
.. literalinclude:: quickstart.yml
:language: yaml
The agent type used, SISa, is a very simple model.
It only has three states (neutral, content and discontent),
Its parameters are the probabilities to change from one state to another, either spontaneously or because of contagion from neighboring agents.
Running the simulation
======================
To see the simulation in action, simply point soil to the configuration, and tell it to store the graph and the history of agent states and environment parameters at every point.
.. code::
soil --graph --csv quickstart.yml [13:35:29]
INFO:soil:Using config(s): quickstart
INFO:soil:Dumping results to soil_output/quickstart : ['csv', 'gexf']
INFO:soil:Starting simulation quickstart at 13:35:30.
INFO:soil:Starting Simulation quickstart trial 0 at 13:35:30.
INFO:soil:Finished Simulation quickstart trial 0 at 13:35:49 in 19.43677067756653 seconds
INFO:soil:Starting Dumping simulation quickstart trial 0 at 13:35:49.
INFO:soil:Finished Dumping simulation quickstart trial 0 at 13:35:51 in 1.7733407020568848 seconds
INFO:soil:Dumping results to soil_output/quickstart
INFO:soil:Finished simulation quickstart at 13:35:51 in 21.29862952232361 seconds
The ``CSV`` file should look like this:
.. code::
agent_id,t_step,key,value
env,0,neutral_discontent_spon_prob,0.05
env,0,neutral_discontent_infected_prob,0.1
env,0,neutral_content_spon_prob,0.2
env,0,neutral_content_infected_prob,0.4
env,0,discontent_neutral,0.2
env,0,discontent_content,0.05
env,0,content_discontent,0.05
env,0,variance_d_c,0.05
env,0,variance_c_d,0.1
Results and visualization
=========================
The environment variables are marked as ``agent_id`` env.
Th exported values are only stored when they change.
To find out how to get every key and value at every point in the simulation, check out the :doc:`soil_tutorial`.
The dynamic graph is exported as a .gexf file which could be visualized with
`Gephi <https://gephi.org/users/download/>`__.
Now it is your turn to experiment with the simulation.
Change some of the parameters, such as the number of agents, the probability of becoming content, or the type of network, and see how the results change.
Soil also includes a web server that allows you to upload your simulations, change parameters, and visualize the results, including a timeline of the network.
To make it work, you have to install soil like this:
.. code::
pip install soil[web]
Once installed, the soil web UI can be run in two ways:
.. code::
soil-web
# OR
python -m soil.web

@ -1,30 +0,0 @@
---
name: quickstart
num_trials: 1
max_time: 1000
network_agents:
- agent_type: SISaModel
state:
id: neutral
weight: 1
- agent_type: SISaModel
state:
id: content
weight: 2
network_params:
n: 100
k: 5
p: 0.2
generator: newman_watts_strogatz_graph
environment_params:
neutral_discontent_spon_prob: 0.05
neutral_discontent_infected_prob: 0.1
neutral_content_spon_prob: 0.2
neutral_content_infected_prob: 0.4
discontent_neutral: 0.2
discontent_content: 0.05
content_discontent: 0.05
variance_d_c: 0.05
variance_c_d: 0.1
content_neutral: 0.1
standard_variance: 0.1

@ -0,0 +1,2 @@
ipython>=7.31.1
nbsphinx==0.9.1

@ -0,0 +1,55 @@
Soil vs other ABM frameworks
============================
MESA
----
Starting with version 0.3, Soil has been redesigned to complement Mesa, while remaining compatible with it.
That means that every component in Soil (i.e., Models, Environments, etc.) can be mixed with existing mesa components.
In fact, there are examples that show how that integration may be used, in the `examples/mesa` folder in the repository.
Here are some reasons to use Soil instead of plain mesa:
- Less boilerplate for common scenarios (by some definitions of common)
- Functions to automatically populate a topology with an agent distribution (i.e., different ratios of agent class and state)
- The `soil.Simulation` class allows you to run multiple instances of the same experiment (i.e., multiple trials with the same parameters but a different randomness seed)
- Reporting functions that aggregate multiple
Mesa compatibility
~~~~~~~~~~~~~~~~~~
Soil is in the process of becoming fully compatible with MESA.
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
This is a non-exhaustive list of tasks to achieve compatibility:
.. |check| raw:: html
.. |uncheck| raw:: html
- |check| Integrate `soil.Simulation` with mesa's runners:
- |check| `soil.Simulation` can replace `mesa.batchrunner`
- |check| Integrate `soil.Environment` with `mesa.Model`:
- |check| `Soil.Environment` inherits from `mesa.Model`
- |check| `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
- |check| Allow for `mesa.Model` to be used in a simulation.
- |check| Integrate `soil.Agent` with `mesa.Agent`:
- |check| Rename agent.id to unique_id
- |check| mesa agents can be used in soil simulations (see `examples/mesa`)
- |check| Provide examples
- |check| Using mesa modules in a soil simulation (see `examples/mesa`)
- |uncheck| Using soil modules in a mesa simulation (see `examples/mesa`)
- |uncheck| Document the new APIs and usage

File diff suppressed because it is too large Load Diff

@ -12330,11 +12330,11 @@ Notice how node 0 is the only one with a TV.</p>
<span class="n">sim</span> <span class="o">=</span> <span class="n">soil</span><span class="o">.</span><span class="n">Simulation</span><span class="p">(</span><span class="n">topology</span><span class="o">=</span><span class="n">G</span><span class="p">,</span>
<span class="n">num_trials</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">max_time</span><span class="o">=</span><span class="n">MAX_TIME</span><span class="p">,</span>
<span class="n">environment_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="n">environment_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;event_time&#39;</span><span class="p">:</span> <span class="n">EVENT_TIME</span>
<span class="p">}}],</span>
<span class="n">network_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="n">network_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">}],</span>
<span class="n">states</span><span class="o">=</span><span class="p">{</span><span class="mi">0</span><span class="p">:</span> <span class="p">{</span><span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">True</span><span class="p">}},</span>
<span class="n">default_state</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">False</span><span class="p">},</span>
@ -12468,14 +12468,14 @@ For this demo, we will use a python dictionary:</p>
<span class="p">},</span>
<span class="s1">&#39;network_agents&#39;</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">False</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="p">{</span>
<span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">True</span>
@ -12483,7 +12483,7 @@ For this demo, we will use a python dictionary:</p>
<span class="p">}</span>
<span class="p">],</span>
<span class="s1">&#39;environment_agents&#39;</span><span class="p">:[</span>
<span class="p">{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="p">{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;event_time&#39;</span><span class="p">:</span> <span class="mi">10</span>
<span class="p">}</span>

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

@ -0,0 +1 @@
Some of these examples are close to real life simulations, whereas some others are only a demonstration of Soil's capatibilities.

File diff suppressed because it is too large Load Diff

@ -0,0 +1,9 @@
This example can be run like with command-line options, like this:
```bash
python cars.py --level DEBUG -e summary --csv
#or
soil cars.py -e summary
```
This will set the `CSV` (save the agent and model data to a CSV) and `summary` (print the a summary of the data to stdout) exporters, and set the log level to DEBUG.

@ -0,0 +1,232 @@
"""
This is an example of a simplified city, where there are Passengers and Drivers that can take those passengers
from their location to their desired location.
An example scenario could play like the following:
- Drivers start in the `wandering` state, where they wander around the city until they have been assigned a journey
- Passenger(1) tells every driver that it wants to request a Journey.
- Each driver receives the request.
If Driver(2) is interested in providing the Journey, it asks Passenger(1) to confirm that it accepts Driver(2)'s request
- When Passenger(1) accepts the request, two things happen:
- Passenger(1) changes its state to `driving_home`
- Driver(2) starts moving towards the origin of the Journey
- Once Driver(2) reaches the origin, it starts moving itself and Passenger(1) to the destination of the Journey
- When Driver(2) reaches the destination (carrying Passenger(1) along):
- Driver(2) starts wondering again
- Passenger(1) dies, and is removed from the simulation
- If there are no more passengers available in the simulation, Drivers die
"""
from __future__ import annotations
from typing import Optional
from soil import *
from soil import events
from mesa.space import MultiGrid
# More complex scenarios may use more than one type of message between objects.
# A common pattern is to use `enum.Enum` to represent state changes in a request.
@dataclass
class Journey:
"""
This represents a request for a journey. Passengers and drivers exchange this object.
A journey may have a driver assigned or not. If the driver has not been assigned, this
object is considered a "request for a journey".
"""
origin: (int, int)
destination: (int, int)
tip: float
passenger: Passenger
driver: Optional[Driver] = None
class City(EventedEnvironment):
"""
An environment with a grid where drivers and passengers will be placed.
The number of drivers and riders is configurable through its parameters:
:param str n_cars: The total number of drivers to add
:param str n_passengers: The number of passengers in the simulation
:param list agents: Specific agents to use in the simulation. It overrides the `n_passengers`
and `n_cars` params.
:param int height: Height of the internal grid
:param int width: Width of the internal grid
"""
n_cars = 1
n_passengers = 10
height = 100
width = 100
def init(self):
self.grid = MultiGrid(width=self.width, height=self.height, torus=False)
if not self.get_agents():
self.add_agents(Driver, k=self.n_cars)
self.add_agents(Passenger, k=self.n_passengers)
for agent in self.get_agents():
self.grid.place_agent(agent, (0, 0))
self.grid.move_to_empty(agent)
self.total_earnings = 0
self.add_model_reporter("total_earnings")
@report
@property
def number_passengers(self):
return self.count_agents(agent_class=Passenger)
class Driver(Evented, FSM):
pos = None
journey = None
earnings = 0
def on_receive(self, msg, sender):
"""This is not a state. It will run (and block) every time process_messages is invoked"""
if self.journey is None and isinstance(msg, Journey) and msg.driver is None:
msg.driver = self
self.journey = msg
def check_passengers(self):
"""If there are no more passengers, stop forever"""
c = self.count_agents(agent_class=Passenger)
self.debug(f"Passengers left {c}")
return c
@state(default=True)
async def wandering(self):
"""Move around the city until a journey is accepted"""
target = None
if not self.check_passengers():
return self.die("No passengers left")
self.journey = None
while self.journey is None: # No potential journeys detected (see on_receive)
if target is None or not self.move_towards(target):
target = self.random.choice(
self.model.grid.get_neighborhood(self.pos, moore=False)
)
if not self.check_passengers():
return self.die("No passengers left")
# This will call on_receive behind the scenes, and the agent's status will be updated
self.process_messages()
await self.delay(30) # Wait at least 30 seconds before checking again
try:
# Re-send the journey to the passenger, to confirm that we have been selected
self.journey = await self.journey.passenger.ask(self.journey, timeout=60, delay=5)
except events.TimedOut:
# No journey has been accepted. Try again
self.journey = None
return
return self.driving
@state
async def driving(self):
"""The journey has been accepted. Pick them up and take them to their destination"""
self.info(f"Driving towards Passenger {self.journey.passenger.unique_id}")
while self.move_towards(self.journey.origin):
await self.delay()
self.info(f"Driving {self.journey.passenger.unique_id} from {self.journey.origin} to {self.journey.destination}")
while self.move_towards(self.journey.destination, with_passenger=True):
await self.delay()
self.info("Arrived at destination")
self.earnings += self.journey.tip
self.model.total_earnings += self.journey.tip
if not self.check_passengers():
return self.die("No passengers left")
return self.wandering
def move_towards(self, target, with_passenger=False):
"""Move one cell at a time towards a target"""
self.debug(f"Moving { self.pos } -> { target }")
if target[0] == self.pos[0] and target[1] == self.pos[1]:
return False
next_pos = [self.pos[0], self.pos[1]]
for idx in [0, 1]:
if self.pos[idx] < target[idx]:
next_pos[idx] += 1
break
if self.pos[idx] > target[idx]:
next_pos[idx] -= 1
break
self.model.grid.move_agent(self, tuple(next_pos))
if with_passenger:
self.journey.passenger.pos = (
self.pos
) # This could be communicated through messages
return True
class Passenger(Evented, FSM):
pos = None
def on_receive(self, msg, sender):
"""This is not a state. It will be run synchronously every time `process_messages` is run"""
if isinstance(msg, Journey):
self.journey = msg
return msg
@default_state
@state
async def asking(self):
destination = (
self.random.randint(0, self.model.grid.height-1),
self.random.randint(0, self.model.grid.width-1),
)
self.journey = None
journey = Journey(
origin=self.pos,
destination=destination,
tip=self.random.randint(10, 100),
passenger=self,
)
timeout = 60
expiration = self.now + timeout
self.info(f"Asking for journey at: { self.pos }")
self.model.broadcast(journey, ttl=timeout, sender=self, agent_class=Driver)
while not self.journey:
self.debug(f"Waiting for responses at: { self.pos }")
try:
# This will call process_messages behind the scenes, and the agent's status will be updated
# If you want to avoid that, you can call it with: check=False
await self.received(expiration=expiration, delay=10)
except events.TimedOut:
self.info(f"Still no response. Waiting at: { self.pos }")
self.model.broadcast(
journey, ttl=timeout, sender=self, agent_class=Driver
)
expiration = self.now + timeout
self.info(f"Got a response! Waiting for driver")
return self.driving_home
@state
async def driving_home(self):
while (
self.pos[0] != self.journey.destination[0]
or self.pos[1] != self.journey.destination[1]
):
try:
await self.received(timeout=60)
except events.TimedOut:
pass
self.die("Got home safe!")
simulation = Simulation(name="RideHailing",
model=City,
seed="carsSeed",
max_time=1000,
parameters=dict(n_passengers=2))
if __name__ == "__main__":
easy(simulation)

@ -1,27 +0,0 @@
---
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_type: CounterModel
weight: 1
state:
id: 0
- agent_type: AggregatedCounter
weight: 0.2
environment_agents: []
environment_class: Environment
environment_params:
am_i_complete: true
default_state:
incidents: 0
states:
- name: 'The first node'
- name: 'The second node'

@ -1,16 +0,0 @@
---
name: custom-generator
description: Using a custom generator for the network
num_trials: 3
max_time: 100
interval: 1
network_params:
generator: mymodule.mygenerator
# These are custom parameters
n: 10
n_edges: 5
network_agents:
- agent_type: CounterModel
weight: 1
state:
id: 0

@ -0,0 +1,39 @@
from networkx import Graph
import random
import networkx as nx
from soil import Simulation, Environment, CounterModel, parameters
def mygenerator(n=5, n_edges=5):
"""
Just a simple generator that creates a network with n nodes and
n_edges edges. Edges are assigned randomly, only avoiding self loops.
"""
G = nx.Graph()
for i in range(n):
G.add_node(i)
for i in range(n_edges):
nodes = list(G.nodes)
n_in = random.choice(nodes)
nodes.remove(n_in) # Avoid loops
n_out = random.choice(nodes)
G.add_edge(n_in, n_out)
return G
class GeneratorEnv(Environment):
"""Using a custom generator for the network"""
generator: parameters.function = staticmethod(mygenerator)
def init(self):
self.create_network(generator=self.generator, n=10, n_edges=5)
self.add_agents(CounterModel)
sim = Simulation(model=GeneratorEnv, max_steps=10)
if __name__ == '__main__':
sim.run(dump=False)

@ -1,27 +0,0 @@
from networkx import Graph
import networkx as nx
from random import choice
def mygenerator(n=5, n_edges=5):
'''
Just a simple generator that creates a network with n nodes and
n_edges edges. Edges are assigned randomly, only avoiding self loops.
'''
G = nx.Graph()
for i in range(n):
G.add_node(i)
for i in range(n_edges):
nodes = list(G.nodes)
n_in = choice(nodes)
nodes.remove(n_in) # Avoid loops
n_out = choice(nodes)
G.add_edge(n_in, n_out)
return G

@ -1,35 +0,0 @@
from soil.agents import FSM, state, default_state
class Fibonacci(FSM):
'''Agent that only executes in t_steps that are Fibonacci numbers'''
defaults = {
'prev': 1
}
@default_state
@state
def counting(self):
self.log('Stopping at {}'.format(self.now))
prev, self['prev'] = self['prev'], max([self.now, self['prev']])
return None, self.env.timeout(prev)
class Odds(FSM):
'''Agent that only executes in odd t_steps'''
@default_state
@state
def odds(self):
self.log('Stopping at {}'.format(self.now))
return None, self.env.timeout(1+self.now%2)
if __name__ == '__main__':
import logging
logging.basicConfig(level=logging.INFO)
from soil import Simulation
s = Simulation(network_agents=[{'ids': [0], 'agent_type': Fibonacci},
{'ids': [1], 'agent_type': Odds}],
network_params={"generator": "complete_graph", "n": 2},
max_time=100,
)
s.run(dry_run=True)

@ -0,0 +1,40 @@
from soil.agents import FSM, state, default_state
class Fibonacci(FSM):
"""Agent that only executes in t_steps that are Fibonacci numbers"""
prev = 1
@default_state
@state
def counting(self):
self.log("Stopping at {}".format(self.now))
prev, self["prev"] = self["prev"], max([self.now, self["prev"]])
return self.delay(prev)
class Odds(FSM):
"""Agent that only executes in odd t_steps"""
@state(default=True)
def odds(self):
self.log("Stopping at {}".format(self.now))
return self.delay(1 + (self.now % 2))
from soil import Environment, Simulation
from networkx import complete_graph
class TimeoutsEnv(Environment):
def init(self):
self.create_network(generator=complete_graph, n=2)
self.add_agent(agent_class=Fibonacci, node_id=0)
self.add_agent(agent_class=Odds, node_id=1)
sim = Simulation(model=TimeoutsEnv, max_steps=10)
if __name__ == "__main__":
sim.run(dump=False)

@ -0,0 +1,355 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "7641396c-a602-477e-bf03-09e1191ff549",
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4f12285c-78db-4ee8-b9c6-7799d34f10f5",
"metadata": {},
"outputs": [],
"source": [
"%autoreload 1"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "7710bb03-0cb9-413a-a407-fe48855ff917",
"metadata": {},
"outputs": [],
"source": [
"%aimport markov_sim"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2dffca0f-da9e-4f69-ac43-7afe52ad2d32",
"metadata": {},
"outputs": [],
"source": [
"%aimport soil\n",
"%aimport soil.visualization"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "12871006-70ca-4c6f-8a3e-0aae1d0bce31",
"metadata": {},
"outputs": [],
"source": [
"G = markov_sim.load_city_graph(\"Chamberi, Madrid\", network_type=\"drive\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "31e96cc5-b703-4d2a-a006-7b9a2cedc365",
"metadata": {},
"outputs": [],
"source": [
"# env = markov_sim.CityEnv(G=G, n_assets=20, side=10, max_weight=1, seed=10)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "5e070b36-0ba6-4780-8fd4-3c72fa3bb240",
"metadata": {},
"outputs": [],
"source": [
"# for i in range(2):\n",
"# env.step()"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "56f8b997-65b0-431d-9517-b93edb1cfcd8",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/j/.cache/pypoetry/virtualenvs/soil-cCX5yKRx-py3.10/lib/python3.10/site-packages/osmnx/plot.py:955: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
" plt.show()\n",
"/home/j/.cache/pypoetry/virtualenvs/soil-cCX5yKRx-py3.10/lib/python3.10/site-packages/osmnx/plot.py:955: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n",
" plt.show()\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "86e45bd44e434674b11805fd94e98414",
"version_major": 2,
"version_minor": 0
},
"text/html": [
"Cannot show widget. You probably want to rerun the code cell above (<i>Click in the code cell, and press Shift+Enter <kbd>⇧</kbd>+<kbd>↩</kbd></i>)."
],
"text/plain": [
"Cannot show ipywidgets in text"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from soil.visualization import JupyterViz, GeoNetworkDrawer, Controller\n",
"from soil import visualization\n",
"from matplotlib import colors\n",
"from matplotlib import colormaps\n",
"plasma = colormaps.get_cmap('plasma')\n",
"model_params = {\n",
" \"n_assets\": {\n",
" \"type\": \"SliderInt\",\n",
" \"value\": 100,\n",
" \"label\": \"Number of assets:\",\n",
" \"min\": 1,\n",
" \"max\": 1000,\n",
" \"step\": 1,\n",
" },\n",
" \"max_weight\": {\n",
" \"type\": \"SliderInt\",\n",
" \"value\": 3,\n",
" \"label\": \"Maximum edge weight:\",\n",
" \"min\": 1,\n",
" \"max\": 20,\n",
" \"step\": 1,\n",
" },\n",
" \"ratio_lazy\": {\n",
" \"type\": \"SliderFloat\",\n",
" \"value\": 0,\n",
" \"label\": \"Ratio of lazy agents (they prefer shorter streets):\",\n",
" \"min\": 0,\n",
" \"max\": 1,\n",
" \"step\": 0.05,\n",
" },\n",
" \"side\": {\n",
" \"type\": \"SliderInt\",\n",
" \"value\": 10,\n",
" \"label\": \"Size of the side:\",\n",
" \"min\": 2,\n",
" \"max\": 20,\n",
" \"step\": 1,\n",
" },\n",
" \"gradual_move\": {\n",
" \"type\": \"Checkbox\",\n",
" \"value\": True,\n",
" \"label\": \"Use gradual movement\",\n",
" }, \n",
" \"lockstep\": {\n",
" \"type\": \"Checkbox\",\n",
" \"value\": True,\n",
" \"label\": \"Run in locksteps\",\n",
" },\n",
" \"G\": G,\n",
" # \"width\": 10,\n",
"}\n",
"\n",
"def colorize(d):\n",
" # print(d)\n",
" if any(a.waiting for a in d):\n",
" return 'red'\n",
" else:\n",
" return 'blue'\n",
"\n",
"def network_portrayal(graph, spring=True):\n",
" global pos, l\n",
" node_size = [10*(len(node[1][\"agent\"])) for node in graph.nodes(data=True)]\n",
" node_color = [colorize(d[\"agent\"]) for (k, d) in graph.nodes(data=True)]\n",
" # pos = {node: (d[\"x\"], d[\"y\"]) for node, d in graph.nodes(data=True)}\n",
" edge_width = [graph.edges[k]['travel_time']/100 for k in graph.edges]\n",
" # print(edge_width)\n",
" weights = [graph.edges[k]['occupation'] for k in graph.edges]\n",
" norm = colors.Normalize(vmin=0, vmax=max(weights))\n",
" color = plasma(norm(weights))\n",
" # print(color)\n",
" return dict(node_size=node_size, node_color=node_color, edge_linewidth=edge_width, edge_color=color)\n",
"\n",
"page = visualization.JupyterViz(\n",
" markov_sim.CityEnv,\n",
" model_params,\n",
" measures=[\"NodeGini\", \"EdgeGini\", \"EdgeOccupation\"],\n",
" name=\"City Environment\",\n",
" space_drawer=GeoNetworkDrawer,\n",
" agent_portrayal=network_portrayal,\n",
" columns=3,\n",
")\n",
"# This is required to render the visualization in the Jupyter notebook\n",
"page"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "70da18d7-66bd-4710-89a6-aca14707c56e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>NodeGini</th>\n",
" <th>EdgeGini</th>\n",
" <th>EdgeOccupation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.866567</td>\n",
" <td>0.927276</td>\n",
" <td>0.087624</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.866567</td>\n",
" <td>0.933494</td>\n",
" <td>0.081301</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.863867</td>\n",
" <td>0.933163</td>\n",
" <td>0.078591</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.866567</td>\n",
" <td>0.929943</td>\n",
" <td>0.084914</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.869433</td>\n",
" <td>0.934949</td>\n",
" <td>0.076784</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>127</th>\n",
" <td>0.880367</td>\n",
" <td>0.934185</td>\n",
" <td>0.075881</td>\n",
" </tr>\n",
" <tr>\n",
" <th>128</th>\n",
" <td>0.881400</td>\n",
" <td>0.933038</td>\n",
" <td>0.078591</td>\n",
" </tr>\n",
" <tr>\n",
" <th>129</th>\n",
" <td>0.881400</td>\n",
" <td>0.936299</td>\n",
" <td>0.078591</td>\n",
" </tr>\n",
" <tr>\n",
" <th>130</th>\n",
" <td>0.881400</td>\n",
" <td>0.929784</td>\n",
" <td>0.086721</td>\n",
" </tr>\n",
" <tr>\n",
" <th>131</th>\n",
" <td>0.876733</td>\n",
" <td>0.932746</td>\n",
" <td>0.082204</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>132 rows × 3 columns</p>\n",
"</div>"
],
"text/plain": [
" NodeGini EdgeGini EdgeOccupation\n",
"0 0.866567 0.927276 0.087624\n",
"1 0.866567 0.933494 0.081301\n",
"2 0.863867 0.933163 0.078591\n",
"3 0.866567 0.929943 0.084914\n",
"4 0.869433 0.934949 0.076784\n",
".. ... ... ...\n",
"127 0.880367 0.934185 0.075881\n",
"128 0.881400 0.933038 0.078591\n",
"129 0.881400 0.936299 0.078591\n",
"130 0.881400 0.929784 0.086721\n",
"131 0.876733 0.932746 0.082204\n",
"\n",
"[132 rows x 3 columns]"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"page.controller.model.datacollector.get_model_vars_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9a7d3c8-2f87-47d5-8d27-a7387ea3457d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

@ -0,0 +1,11 @@
from flask import Flask
import solara.server.flask
app = Flask(__name__)
app.register_blueprint(solara.server.flask.blueprint, url_prefix="/solara/")
@app.route("/")
def hello_world():
return "<p>Hello, World!</p>"

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

@ -0,0 +1,159 @@
'''
This scenario has drivers driving around a city.
In this model, drivers can only be at intersections, which are treated as nodes in the City Graph (grid).
At the start of the simulation, drivers are randomly positioned in the city grid.
The following models for agent behavior are included:
* DummyDriver: In each simulation step, this type of driver can instantly move to any of the neighboring nodes in the grid, or stay in its place.
'''
import networkx as nx
from soil import Environment, BaseAgent, state, time
from mesa.space import NetworkGrid
import mesa
import statistics
class CityGrid(NetworkGrid):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
for (u, v, d) in self.G.edges(data=True):
d["occupation"] = 0
# self.dijkstras = dict(nx.all_pairs_dijkstra(self.G, weight="length"))
# def eta(self, pos1, pos2):
# return self.dijkstras[pos1][0][pos2]
def travel_time(self, pos1, pos2):
return float(min(d["travel_time"] for d in self.G.adj[pos1][pos2].values()))
def node_occupation(self):
return {k: len(v.get("agent", [])) for (k, v) in self.G.nodes(data=True)}
def edge_occupation(self):
return {(u,v): d.get('occupation', 1) for (u, v, d) in self.G.edges(data=True)}
class Roamer(BaseAgent):
waiting = False
def step(self):
'''
A simple driver that just moves to a neighboring cell in the city
'''
yield from self.move_to(None)
return self.delay(0)
def choose_next(self):
opts = self.model.grid.get_neighborhood(self.pos, include_center=False)
pos = self.random.choice(opts)
delay = self.model.grid.travel_time(self.pos, pos)
return pos, delay
def move_to(self, pos=None):
self.waiting = True
if pos is None:
pos, delay = self.choose_next()
if self.model.gradual_move:
# Calculate how long it will take, and wait for that long
if pos != self.pos:
self.model.grid.G.edges[self.pos,pos,0]["occupation"] += 1
yield delay
if self.model.gradual_move and pos != self.pos:
w1 = self.model.grid.G.edges[self.pos,pos,0]["occupation"]
oldpos = self.pos
self.model.grid.G.edges[self.pos,pos,0]["occupation"] = w1 - 1
assert self.model.grid.G.edges[self.pos,pos,0]["occupation"] == w1-1
self.model.grid.move_agent(self, pos)
self.waiting = False
class LazyRoamer(Roamer):
waiting = False
def choose_next(self):
opts = self.model.grid.get_neighborhood(self.pos, include_center=False)
times = [self.model.grid.travel_time(self.pos, other) for other in opts]
idx = self.random.choices(range(len(times)), k=1, weights=[1/time for time in times])[0]
return opts[idx], times[idx]
def gini(values):
s = sum(values)
N = len(values)
if s == 0:
return 0
x = sorted(values)
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * s)
return 1 + (1 / N) - 2 * B
class CityEnv(Environment):
def __init__(self, *, G, side=20, n_assets=100, ratio_lazy=1, lockstep=True, gradual_move=True, max_weight=1, **kwargs):
super().__init__(**kwargs)
if lockstep:
self.schedule = time.Lockstepper(self.schedule)
self.n_assets = n_assets
self.side = side
self.max_weight = max_weight
self.gradual_move = gradual_move
self.grid = CityGrid(g=G)
n_lazy = round(self.n_assets * ratio_lazy)
n_other = self.n_assets - n_lazy
self.add_agents(Roamer, k=n_other)
self.add_agents(LazyRoamer, k=n_lazy)
positions = list(self.grid.G.nodes)
for agent in self.get_agents():
pos = self.random.choice(positions)
self.grid.place_agent(agent, pos)
self.datacollector = mesa.DataCollector(
model_reporters={
"NodeGini": lambda model: gini(model.grid.node_occupation().values()),
"EdgeGini": lambda model: gini(model.grid.edge_occupation().values()),
"EdgeOccupation": lambda model: statistics.mean(model.grid.edge_occupation().values()),
}#, agent_reporters={"Wealth": "wealth"}
)
class SquareCityEnv(CityEnv):
def __init__(self, *, side=20, **kwargs):
self.side = side
G = nx.grid_graph(dim=[side, side])
for (_, _, d) in G.edges(data=True):
d["travel_time"] = self.random.randint(1, self.max_weight)
for (k, d) in G.nodes(data=True):
d["pos"] = k
super().__init__(**kwargs, G=G)
import osmnx as ox
class NamedCityEnv(CityEnv):
def __init__(self, *, location="Chamberi, Madrid", **kwargs):
self.location = location
super().__init__(**kwargs, G=load_city_graph(location))
def load_city_graph(location='Chamberi, Madrid', **kwargs):
G = ox.graph.graph_from_place(location, **kwargs)
G = ox.add_edge_speeds(G)
G = ox.add_edge_travel_times(G)
largest = sorted(nx.strongly_connected_components(G), key=lambda x: len(x))[-1]
G = G.subgraph(largest)
return G
if __name__ == "__main__":
env = CityEnv()
for i in range(100):
env.step()

@ -0,0 +1,26 @@
import solara
@solara.component
def MainPage(clicks):
color = "green"
if clicks.value >= 5:
color = "red"
def increment():
clicks.value += 1
print("clicks", clicks) # noqa
solara.Button(label=f"Clicked: {clicks}", on_click=increment, color=color)
@solara.component
def Page():
v = Visualization()
v.viz()
class Visualization:
def __init__(self):
self.clicks = solara.reactive(0)
def viz(self):
from sol_lib import MainPage
return MainPage(self.clicks)

@ -0,0 +1,13 @@
import solara
@solara.component
def MainPage(clicks):
color = "green"
if clicks.value >= 5:
color = "red"
def increment():
clicks.value += 1
print("clicks", clicks) # noqa
solara.Button(label=f"Clicked: {clicks}", on_click=increment, color=color)

@ -0,0 +1,7 @@
from soil import Simulation
from social_wealth import MoneyEnv, graph_generator
sim = Simulation(name="mesa_sim", dump=False, max_steps=10, model=MoneyEnv, parameters=dict(generator=graph_generator, N=10, width=50, height=50))
if __name__ == "__main__":
sim.run()

@ -0,0 +1,111 @@
from mesa.visualization.ModularVisualization import ModularServer
from mesa.visualization.UserParam import Slider, Choice
from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid
from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent
import networkx as nx
class MyNetwork(NetworkModule):
def render(self, model):
return self.portrayal_method(model)
def network_portrayal(env):
# The model ensures there is 0 or 1 agent per node
portrayal = dict()
wealths = {
node_id: data["agent"].wealth for (node_id, data) in env.G.nodes(data=True)
}
portrayal["nodes"] = [
{
"id": node_id,
"size": 2 * (wealth + 1),
"color": "#CC0000" if wealth == 0 else "#007959",
# "color": "#CC0000",
"label": f"{node_id}: {wealth}",
}
for (node_id, wealth) in wealths.items()
]
portrayal["edges"] = [
{"id": edge_id, "source": source, "target": target, "color": "#000000"}
for edge_id, (source, target) in enumerate(env.G.edges)
]
return portrayal
def gridPortrayal(agent):
"""
This function is registered with the visualization server to be called
each tick to indicate how to draw the agent in its current state.
:param agent: the agent in the simulation
:return: the portrayal dictionary
"""
color = max(10, min(agent.wealth * 10, 100))
return {
"Shape": "rect",
"w": 1,
"h": 1,
"Filled": "true",
"Layer": 0,
"Label": agent.unique_id,
"Text": agent.unique_id,
"x": agent.pos[0],
"y": agent.pos[1],
"Color": f"rgba(31, 10, 255, 0.{color})",
}
grid = MyNetwork(network_portrayal, 500, 500)
chart = ChartModule(
[{"Label": "Gini", "Color": "Black"}], data_collector_name="datacollector"
)
parameters = {
"N": Slider(
"N",
5,
1,
10,
1,
description="Choose how many agents to include in the model",
),
"height": Slider(
"height",
5,
5,
10,
1,
description="Grid height",
),
"width": Slider(
"width",
5,
5,
10,
1,
description="Grid width",
),
"agent_class": Choice(
"Agent class",
value="MoneyAgent",
choices=["MoneyAgent", "SocialMoneyAgent"],
),
"generator": graph_generator,
}
canvas_element = CanvasGrid(
gridPortrayal, parameters["width"].value, parameters["height"].value, 500, 500
)
server = ModularServer(
MoneyEnv, [grid, chart, canvas_element], "Money Model", parameters
)
server.port = 8521
if __name__ == '__main__':
server.launch(open_browser=False)

@ -0,0 +1,135 @@
"""
This is an example that adds soil agents and environment in a normal
mesa workflow.
"""
from mesa import Agent as MesaAgent
from mesa.space import MultiGrid
# from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import batch_run
import networkx as nx
from soil import NetworkAgent, Environment, serialization
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.agents]
x = sorted(agent_wealths)
N = len(list(model.agents))
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
class MoneyAgent(MesaAgent):
"""
A MESA agent with fixed initial wealth.
It will only share wealth with neighbors based on grid proximity
"""
def __init__(self, unique_id, model, wealth=1, **kwargs):
super().__init__(unique_id=unique_id, model=model)
self.wealth = wealth
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:
other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1
def step(self):
print("Crying wolf", self.pos)
self.move()
if self.wealth > 0:
self.give_money()
class SocialMoneyAgent(MoneyAgent, NetworkAgent):
wealth = 1
def give_money(self):
cellmates = set(self.model.grid.get_cell_list_contents([self.pos]))
friends = set(self.get_neighbors())
self.info("Trying to give money")
self.info("Cellmates: ", cellmates)
self.info("Friends: ", friends)
nearby_friends = list(cellmates & friends)
if len(nearby_friends):
other = self.random.choice(nearby_friends)
other.wealth += 1
self.wealth -= 1
def graph_generator(n=5):
G = nx.Graph()
for ix in range(n):
G.add_edge(0, ix)
return G
class MoneyEnv(Environment):
"""A model with some number of agents."""
def __init__(
self,
width,
height,
N,
generator=graph_generator,
agent_class=SocialMoneyAgent,
topology=None,
**kwargs
):
generator = serialization.deserialize(generator)
agent_class = serialization.deserialize(agent_class, globs=globals())
topology = generator(n=N)
super().__init__(topology=topology, N=N, **kwargs)
self.grid = MultiGrid(width, height, False)
self.populate_network(agent_class=agent_class)
# Create agents
for agent in self.get_agents():
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(agent, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
if __name__ == "__main__":
fixed_params = {
"generator": nx.complete_graph,
"width": 10,
"network_agents": [{"agent_class": SocialMoneyAgent, "weight": 1}],
"height": 10,
}
variable_params = {"N": range(10, 100, 10)}
results = batch_run(
MoneyEnv,
variable_parameters=variable_params,
fixed_parameters=fixed_params,
iterations=5,
max_steps=100
)
run_data = pd.DataFrame(results)
print(run_data.head())
print(run_data.Gini)

@ -0,0 +1,87 @@
from mesa import Agent, Model
from mesa.space import MultiGrid
from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.schedule.agents]
x = sorted(agent_wealths)
N = model.num_agents
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
class MoneyAgent(Agent):
"""An agent with fixed initial wealth."""
def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
def give_money(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:
other = self.random.choice(cellmates)
other.wealth += 1
self.wealth -= 1
def step(self):
self.move()
if self.wealth > 0:
self.give_money()
class MoneyModel(Model):
"""A model with some number of agents."""
def __init__(self, N, width, height):
self.num_agents = N
self.grid = MultiGrid(width, height, True)
self.schedule = RandomActivation(self)
self.running = True
# Create agents
for i in range(self.num_agents):
a = MoneyAgent(i, self)
self.schedule.add(a)
# Add the agent to a random grid cell
x = self.random.randrange(self.grid.width)
y = self.random.randrange(self.grid.height)
self.grid.place_agent(a, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
def step(self):
self.datacollector.collect(self)
self.schedule.step()
if __name__ == "__main__":
fixed_params = {"width": 10, "height": 10}
variable_params = {"N": range(10, 500, 10)}
batch_run = BatchRunner(
MoneyModel,
variable_params,
fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini},
)
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save