mirror of
https://github.com/gsi-upm/soil
synced 2025-04-10 23:19:15 +00:00
573 lines
17 KiB
Python
573 lines
17 KiB
Python
import logging
|
|
from collections import OrderedDict, defaultdict
|
|
from copy import deepcopy
|
|
from functools import partial, wraps
|
|
from itertools import islice
|
|
import json
|
|
import networkx as nx
|
|
|
|
from .. import serialization, utils, time
|
|
|
|
from tsih import Key
|
|
|
|
from mesa import Agent
|
|
|
|
|
|
def as_node(agent):
|
|
if isinstance(agent, BaseAgent):
|
|
return agent.id
|
|
return agent
|
|
|
|
IGNORED_FIELDS = ('model', 'logger')
|
|
|
|
|
|
class DeadAgent(Exception):
|
|
pass
|
|
|
|
class BaseAgent(Agent):
|
|
"""
|
|
A special Agent that keeps track of its state history.
|
|
"""
|
|
|
|
defaults = {}
|
|
|
|
def __init__(self,
|
|
unique_id,
|
|
model,
|
|
name=None,
|
|
interval=None,
|
|
**kwargs
|
|
):
|
|
# Check for REQUIRED arguments
|
|
# Initialize agent parameters
|
|
if isinstance(unique_id, Agent):
|
|
raise Exception()
|
|
self._saved = set()
|
|
super().__init__(unique_id=unique_id, model=model)
|
|
self.name = name or '{}[{}]'.format(type(self).__name__, self.unique_id)
|
|
|
|
self._neighbors = None
|
|
self.alive = True
|
|
|
|
self.interval = interval or self.get('interval', 1)
|
|
self.logger = logging.getLogger(self.model.name).getChild(self.name)
|
|
|
|
if hasattr(self, 'level'):
|
|
self.logger.setLevel(self.level)
|
|
for (k, v) in self.defaults.items():
|
|
if not hasattr(self, k) or getattr(self, k) is None:
|
|
setattr(self, k, deepcopy(v))
|
|
|
|
for (k, v) in kwargs.items():
|
|
setattr(self, k, v)
|
|
|
|
|
|
# TODO: refactor to clean up mesa compatibility
|
|
@property
|
|
def id(self):
|
|
return self.unique_id
|
|
|
|
@property
|
|
def env(self):
|
|
return self.model
|
|
|
|
@env.setter
|
|
def env(self, model):
|
|
self.model = model
|
|
|
|
@property
|
|
def state(self):
|
|
'''
|
|
Return the agent itself, which behaves as a dictionary.
|
|
Changes made to `agent.state` will be reflected in the history.
|
|
|
|
This method shouldn't be used, but is kept here for backwards compatibility.
|
|
'''
|
|
return self
|
|
|
|
@state.setter
|
|
def state(self, value):
|
|
for k, v in value.items():
|
|
self[k] = v
|
|
|
|
@property
|
|
def environment_params(self):
|
|
return self.model.environment_params
|
|
|
|
@environment_params.setter
|
|
def environment_params(self, value):
|
|
self.model.environment_params = value
|
|
|
|
def __setattr__(self, key, value):
|
|
if not key.startswith('_') and key not in IGNORED_FIELDS:
|
|
try:
|
|
k = Key(t_step=self.now,
|
|
dict_id=self.unique_id,
|
|
key=key)
|
|
self._saved.add(key)
|
|
self.model[k] = value
|
|
except AttributeError:
|
|
pass
|
|
super().__setattr__(key, value)
|
|
|
|
def __getitem__(self, key):
|
|
if isinstance(key, tuple):
|
|
key, t_step = key
|
|
k = Key(key=key, t_step=t_step, dict_id=self.unique_id)
|
|
return self.model[k]
|
|
return getattr(self, key)
|
|
|
|
def __delitem__(self, key):
|
|
return delattr(self, key)
|
|
|
|
def __contains__(self, key):
|
|
return hasattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
setattr(self, key, value)
|
|
|
|
def items(self):
|
|
return ((k, getattr(self, k)) for k in self._saved)
|
|
|
|
def get(self, key, default=None):
|
|
return self[key] if key in self else default
|
|
|
|
@property
|
|
def now(self):
|
|
try:
|
|
return self.model.now
|
|
except AttributeError:
|
|
# No environment
|
|
return None
|
|
|
|
def die(self, remove=False):
|
|
self.info(f'agent {self.unique_id} is dying')
|
|
self.alive = False
|
|
if remove:
|
|
self.remove_node(self.id)
|
|
return time.INFINITY
|
|
|
|
def step(self):
|
|
if not self.alive:
|
|
raise DeadAgent(self.unique_id)
|
|
return super().step() or time.Delta(self.interval)
|
|
|
|
def log(self, message, *args, level=logging.INFO, **kwargs):
|
|
if not self.logger.isEnabledFor(level):
|
|
return
|
|
message = message + " ".join(str(i) for i in args)
|
|
message = " @{:>3}: {}".format(self.now, message)
|
|
for k, v in kwargs:
|
|
message += " {k}={v} ".format(k, v)
|
|
extra = {}
|
|
extra['now'] = self.now
|
|
extra['unique_id'] = self.unique_id
|
|
extra['agent_name'] = self.name
|
|
return self.logger.log(level, message, extra=extra)
|
|
|
|
def debug(self, *args, **kwargs):
|
|
return self.log(*args, level=logging.DEBUG, **kwargs)
|
|
|
|
def info(self, *args, **kwargs):
|
|
return self.log(*args, level=logging.INFO, **kwargs)
|
|
|
|
|
|
class NetworkAgent(BaseAgent):
|
|
|
|
@property
|
|
def topology(self):
|
|
return self.model.G
|
|
|
|
@property
|
|
def G(self):
|
|
return self.model.G
|
|
|
|
def count_agents(self, **kwargs):
|
|
return len(list(self.get_agents(**kwargs)))
|
|
|
|
def count_neighboring_agents(self, state_id=None, **kwargs):
|
|
return len(self.get_neighboring_agents(state_id=state_id, **kwargs))
|
|
|
|
def get_neighboring_agents(self, state_id=None, **kwargs):
|
|
return self.get_agents(limit_neighbors=True, state_id=state_id, **kwargs)
|
|
|
|
def get_agents(self, *args, limit=None, **kwargs):
|
|
it = self.iter_agents(*args, **kwargs)
|
|
if limit is not None:
|
|
it = islice(it, limit)
|
|
return list(it)
|
|
|
|
def iter_agents(self, agents=None, limit_neighbors=False, **kwargs):
|
|
if limit_neighbors:
|
|
agents = self.topology.neighbors(self.unique_id)
|
|
|
|
agents = self.model.get_agents(agents)
|
|
return select(agents, **kwargs)
|
|
|
|
def subgraph(self, center=True, **kwargs):
|
|
include = [self] if center else []
|
|
return self.topology.subgraph(n.unique_id for n in list(self.get_agents(**kwargs))+include)
|
|
|
|
def remove_node(self, unique_id):
|
|
self.topology.remove_node(unique_id)
|
|
|
|
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
|
|
# return super(NetworkAgent, self).add_edge(node1=self.id, node2=other, **kwargs)
|
|
if self.unique_id not in self.topology.nodes(data=False):
|
|
raise ValueError('{} not in list of existing agents in the network'.format(self.unique_id))
|
|
if other.unique_id not in self.topology.nodes(data=False):
|
|
raise ValueError('{} not in list of existing agents in the network'.format(other))
|
|
|
|
self.topology.add_edge(self.unique_id, other.unique_id, edge_attr_dict=edge_attr_dict, *edge_attrs)
|
|
|
|
|
|
def ego_search(self, steps=1, center=False, node=None, **kwargs):
|
|
'''Get a list of nodes in the ego network of *node* of radius *steps*'''
|
|
node = as_node(node if node is not None else self)
|
|
G = self.subgraph(**kwargs)
|
|
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
|
|
|
|
def degree(self, node, force=False):
|
|
node = as_node(node)
|
|
if force or (not hasattr(self.model, '_degree')) or getattr(self.model, '_last_step', 0) < self.now:
|
|
self.model._degree = nx.degree_centrality(self.topology)
|
|
self.model._last_step = self.now
|
|
return self.model._degree[node]
|
|
|
|
def betweenness(self, node, force=False):
|
|
node = as_node(node)
|
|
if force or (not hasattr(self.model, '_betweenness')) or getattr(self.model, '_last_step', 0) < self.now:
|
|
self.model._betweenness = nx.betweenness_centrality(self.topology)
|
|
self.model._last_step = self.now
|
|
return self.model._betweenness[node]
|
|
|
|
|
|
def state(name=None):
|
|
def decorator(func, name=None):
|
|
'''
|
|
A state function should return either a state id, or a tuple (state_id, when)
|
|
The default value for state_id is the current state id.
|
|
The default value for when is the interval defined in the environment.
|
|
'''
|
|
|
|
@wraps(func)
|
|
def func_wrapper(self):
|
|
next_state = func(self)
|
|
when = None
|
|
if next_state is None:
|
|
return when
|
|
try:
|
|
next_state, when = next_state
|
|
except (ValueError, TypeError):
|
|
pass
|
|
if next_state:
|
|
self.set_state(next_state)
|
|
return when
|
|
|
|
func_wrapper.id = name or func.__name__
|
|
func_wrapper.is_default = False
|
|
return func_wrapper
|
|
|
|
if callable(name):
|
|
return decorator(name)
|
|
else:
|
|
return partial(decorator, name=name)
|
|
|
|
|
|
def default_state(func):
|
|
func.is_default = True
|
|
return func
|
|
|
|
|
|
class MetaFSM(type):
|
|
def __init__(cls, name, bases, nmspc):
|
|
super(MetaFSM, cls).__init__(name, bases, nmspc)
|
|
states = {}
|
|
# Re-use states from inherited classes
|
|
default_state = None
|
|
for i in bases:
|
|
if isinstance(i, MetaFSM):
|
|
for state_id, state in i.states.items():
|
|
if state.is_default:
|
|
default_state = state
|
|
states[state_id] = state
|
|
|
|
# Add new states
|
|
for name, func in nmspc.items():
|
|
if hasattr(func, 'id'):
|
|
if func.is_default:
|
|
default_state = func
|
|
states[func.id] = func
|
|
cls.default_state = default_state
|
|
cls.states = states
|
|
|
|
|
|
class FSM(NetworkAgent, metaclass=MetaFSM):
|
|
def __init__(self, *args, **kwargs):
|
|
super(FSM, self).__init__(*args, **kwargs)
|
|
if not hasattr(self, 'state_id'):
|
|
if not self.default_state:
|
|
raise ValueError('No default state specified for {}'.format(self.unique_id))
|
|
self.state_id = self.default_state.id
|
|
|
|
self.set_state(self.state_id)
|
|
|
|
def step(self):
|
|
self.debug(f'Agent {self.unique_id} @ state {self.state_id}')
|
|
interval = super().step()
|
|
if 'id' not in self.state:
|
|
if self.default_state:
|
|
self.set_state(self.default_state.id)
|
|
else:
|
|
raise Exception('{} has no valid state id or default state'.format(self))
|
|
interval = self.states[self.state_id](self) or interval
|
|
if not self.alive:
|
|
return time.NEVER
|
|
return interval
|
|
|
|
def set_state(self, state):
|
|
if hasattr(state, 'id'):
|
|
state = state.id
|
|
if state not in self.states:
|
|
raise ValueError('{} is not a valid state'.format(state))
|
|
self.state_id = state
|
|
return state
|
|
|
|
|
|
def prob(prob=1):
|
|
'''
|
|
A true/False uniform distribution with a given probability.
|
|
To be used like this:
|
|
|
|
.. code-block:: python
|
|
|
|
if prob(0.3):
|
|
do_something()
|
|
|
|
'''
|
|
r = random.random()
|
|
return r < prob
|
|
|
|
|
|
def calculate_distribution(network_agents=None,
|
|
agent_type=None):
|
|
'''
|
|
Calculate the threshold values (thresholds for a uniform distribution)
|
|
of an agent distribution given the weights of each agent type.
|
|
|
|
The input has this form: ::
|
|
|
|
[
|
|
{'agent_type': 'agent_type_1',
|
|
'weight': 0.2,
|
|
'state': {
|
|
'id': 0
|
|
}
|
|
},
|
|
{'agent_type': 'agent_type_2',
|
|
'weight': 0.8,
|
|
'state': {
|
|
'id': 1
|
|
}
|
|
}
|
|
]
|
|
|
|
In this example, 20% of the nodes will be marked as type
|
|
'agent_type_1'.
|
|
'''
|
|
if network_agents:
|
|
network_agents = [deepcopy(agent) for agent in network_agents if not hasattr(agent, 'id')]
|
|
elif agent_type:
|
|
network_agents = [{'agent_type': agent_type}]
|
|
else:
|
|
raise ValueError('Specify a distribution or a default agent type')
|
|
|
|
# Fix missing weights and incompatible types
|
|
for x in network_agents:
|
|
x['weight'] = float(x.get('weight', 1))
|
|
|
|
# Calculate the thresholds
|
|
total = sum(x['weight'] for x in network_agents)
|
|
acc = 0
|
|
for v in network_agents:
|
|
if 'ids' in v:
|
|
continue
|
|
upper = acc + (v['weight']/total)
|
|
v['threshold'] = [acc, upper]
|
|
acc = upper
|
|
return network_agents
|
|
|
|
|
|
def serialize_type(agent_type, known_modules=[], **kwargs):
|
|
if isinstance(agent_type, str):
|
|
return agent_type
|
|
known_modules += ['soil.agents']
|
|
return serialization.serialize(agent_type, known_modules=known_modules, **kwargs)[1] # Get the name of the class
|
|
|
|
|
|
def serialize_definition(network_agents, known_modules=[]):
|
|
'''
|
|
When serializing an agent distribution, remove the thresholds, in order
|
|
to avoid cluttering the YAML definition file.
|
|
'''
|
|
d = deepcopy(list(network_agents))
|
|
for v in d:
|
|
if 'threshold' in v:
|
|
del v['threshold']
|
|
v['agent_type'] = serialize_type(v['agent_type'],
|
|
known_modules=known_modules)
|
|
return d
|
|
|
|
|
|
def deserialize_type(agent_type, known_modules=[]):
|
|
if not isinstance(agent_type, str):
|
|
return agent_type
|
|
known = known_modules + ['soil.agents', 'soil.agents.custom' ]
|
|
agent_type = serialization.deserializer(agent_type, known_modules=known)
|
|
return agent_type
|
|
|
|
|
|
def deserialize_definition(ind, **kwargs):
|
|
d = deepcopy(ind)
|
|
for v in d:
|
|
v['agent_type'] = deserialize_type(v['agent_type'], **kwargs)
|
|
return d
|
|
|
|
|
|
def _validate_states(states, topology):
|
|
'''Validate states to avoid ignoring states during initialization'''
|
|
states = states or []
|
|
if isinstance(states, dict):
|
|
for x in states:
|
|
assert x in topology.nodes
|
|
else:
|
|
assert len(states) <= len(topology)
|
|
return states
|
|
|
|
|
|
def _convert_agent_types(ind, to_string=False, **kwargs):
|
|
'''Convenience method to allow specifying agents by class or class name.'''
|
|
if to_string:
|
|
return serialize_definition(ind, **kwargs)
|
|
return deserialize_definition(ind, **kwargs)
|
|
|
|
|
|
def _agent_from_definition(definition, value=-1, unique_id=None):
|
|
"""Used in the initialization of agents given an agent distribution."""
|
|
if value < 0:
|
|
value = random.random()
|
|
for d in sorted(definition, key=lambda x: x.get('threshold')):
|
|
threshold = d.get('threshold', (-1, -1))
|
|
# Check if the definition matches by id (first) or by threshold
|
|
if (unique_id is not None and unique_id in d.get('ids', [])) or \
|
|
(value >= threshold[0] and value < threshold[1]):
|
|
state = {}
|
|
if 'state' in d:
|
|
state = deepcopy(d['state'])
|
|
return d['agent_type'], state
|
|
|
|
raise Exception('Definition for value {} not found in: {}'.format(value, definition))
|
|
|
|
|
|
def _definition_to_dict(definition, size=None, default_state=None):
|
|
state = default_state or {}
|
|
agents = {}
|
|
remaining = {}
|
|
if size:
|
|
for ix in range(size):
|
|
remaining[ix] = copy(state)
|
|
else:
|
|
remaining = defaultdict(lambda x: copy(state))
|
|
|
|
distro = sorted([item for item in definition if 'weight' in item])
|
|
|
|
ix = 0
|
|
def init_agent(item, id=ix):
|
|
while id in agents:
|
|
id += 1
|
|
|
|
agent = remaining[id]
|
|
agent['state'].update(copy(item.get('state', {})))
|
|
agents[id] = agent
|
|
del remaining[id]
|
|
return agent
|
|
|
|
for item in definition:
|
|
if 'ids' in item:
|
|
ids = item['ids']
|
|
del item['ids']
|
|
for id in ids:
|
|
agent = init_agent(item, id)
|
|
|
|
for item in definition:
|
|
if 'number' in item:
|
|
times = item['number']
|
|
del item['number']
|
|
for times in range(times):
|
|
if size:
|
|
ix = random.choice(remaining.keys())
|
|
agent = init_agent(item, id)
|
|
else:
|
|
agent = init_agent(item)
|
|
if not size:
|
|
return agents
|
|
|
|
if len(remaining) < 0:
|
|
raise Exception('Invalid definition. Too many agents to add')
|
|
|
|
|
|
total_weight = float(sum(s['weight'] for s in distro))
|
|
unit = size / total_weight
|
|
|
|
for item in distro:
|
|
times = unit * item['weight']
|
|
del item['weight']
|
|
for times in range(times):
|
|
ix = random.choice(remaining.keys())
|
|
agent = init_agent(item, id)
|
|
return agents
|
|
|
|
|
|
def select(agents, state_id=None, agent_type=None, ignore=None, iterator=False, **kwargs):
|
|
|
|
if state_id is not None and not isinstance(state_id, (tuple, list)):
|
|
state_id = tuple([state_id])
|
|
if agent_type is not None:
|
|
try:
|
|
agent_type = tuple(agent_type)
|
|
except TypeError:
|
|
agent_type = tuple([agent_type])
|
|
|
|
f = agents
|
|
|
|
if ignore:
|
|
f = filter(lambda x: x not in ignore, f)
|
|
|
|
if state_id is not None:
|
|
f = filter(lambda agent: agent.get('state_id', None) in state_id, f)
|
|
|
|
if agent_type is not None:
|
|
f = filter(lambda agent: isinstance(agent, agent_type), f)
|
|
for k, v in kwargs.items():
|
|
f = filter(lambda agent: agent.state.get(k, None) == v, f)
|
|
|
|
if iterator:
|
|
return f
|
|
return f
|
|
|
|
|
|
from .BassModel import *
|
|
from .BigMarketModel import *
|
|
from .IndependentCascadeModel import *
|
|
from .ModelM2 import *
|
|
from .SentimentCorrelationModel import *
|
|
from .SISaModel import *
|
|
from .CounterModel import *
|
|
|
|
try:
|
|
import scipy
|
|
from .Geo import Geo
|
|
except ImportError:
|
|
import sys
|
|
print('Could not load the Geo Agent, scipy is not installed', file=sys.stderr)
|