mirror of
https://github.com/gsi-upm/soil
synced 2024-11-22 03:02:28 +00:00
Clean-up
* Removed old/unnecessary models * Added a `simulation.{iter_}from_py` method to load simulations from python files * Changed tests of examples to run programmatic simulations * Fixed programmatic examples
This commit is contained in:
parent
d3cee18635
commit
2869b1e1e6
61
README.md
61
README.md
@ -5,8 +5,46 @@ Learn how to run your own simulations with our [documentation](http://soilsim.re
|
||||
|
||||
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
|
||||
|
||||
**Note**: Mesa 0.30 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/migration_0.30.rst)
|
||||
|
||||
# Changes in version 0.3
|
||||
## SOIL vs MESA
|
||||
|
||||
SOIL is a batteries-included platform that builds on top of MESA and provides the following out of the box:
|
||||
|
||||
* Integration with (social) networks
|
||||
* The ability to more easily assign agents to your model (and optionally to its network):
|
||||
* Assigning agents to nodes, and vice versa
|
||||
* Using a description (e.g., 2 agents of type `Foo`, 10% of the network should be agents of type `Bar`)
|
||||
* **Several types of abstractions for agents**:
|
||||
* Finite state machine, where methods can be turned into a state
|
||||
* Network agents, which have convenience methods to access the model's topology
|
||||
* Generator-based agents, whose state is paused though a `yield` and resumed on the next step
|
||||
* **Reporting and data collection**:
|
||||
* Soil models include data collection and record some data by default (# of agents, state of each agent, etc.)
|
||||
* All data collected are exported by default to a SQLite database and a description file
|
||||
* Options to export to other formats, such as CSV, or defining your own exporters
|
||||
* A summary of the data collected is shown in the command line, for easy inspection
|
||||
* **An event-based scheduler**
|
||||
* Agents can be explicit about when their next time/step should be, and not all agents run in every step. This avoids unnecessary computation.
|
||||
* Time intervals between each step are flexible.
|
||||
* There are primitives to specify when the next execution of an agent should be (or conditions)
|
||||
* **Actor-inspired** message-passing
|
||||
* A simulation runner (`soil.Simulation`) that can:
|
||||
* Run models in parallel
|
||||
* Save results to different formats
|
||||
* Simulation configuration files
|
||||
* A command line interface (`soil`), to run multiple
|
||||
* An integrated debugger (`soil --debug`) with custom functions to print agent states and break at specific states
|
||||
|
||||
Nevertheless, most features in SOIL have been designed to integrate with plain Mesa.
|
||||
For instance, it should be possible to run a `mesa.Model` models using a `soil.Simulation` and the `soil` CLI, or to integrate the `soil.TimedActivation` scheduler on a `mesa.Model`.
|
||||
|
||||
Note that some combinations of `mesa` and `soil` components, while technically possible, are much less useful or even wrong.
|
||||
For instance, you may add any `soil.agent` agent (except for the `soil.NetworkAgent`, as it needs a topology) on a regular `mesa.Model` with a vanilla scheduler from `mesa.time`.
|
||||
But in that case the agents will not get any of the advanced event-based scheduling, and most agent behaviors that depend on that will greatly vary.
|
||||
|
||||
|
||||
## Changes in version 0.3
|
||||
|
||||
Version 0.3 came packed with many changes to provide much better integration with MESA.
|
||||
For a long time, we tried to keep soil backwards-compatible, but it turned out to be a big endeavour and the resulting code was less readable.
|
||||
@ -18,27 +56,6 @@ If you have an older Soil simulation, you have two options:
|
||||
* Update the necessary configuration files and code. You may use the examples in the `examples` folder for reference, as well as the documentation.
|
||||
* Keep using a previous `soil` version.
|
||||
|
||||
## Mesa compatibility
|
||||
|
||||
Soil is in the process of becoming fully compatible with MESA.
|
||||
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
|
||||
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
|
||||
|
||||
This is a non-exhaustive list of tasks to achieve compatibility:
|
||||
|
||||
- [ ] Integrate `soil.Simulation` with mesa's runners:
|
||||
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
|
||||
- [ ] Integrate `soil.Environment` with `mesa.Model`:
|
||||
- [x] `Soil.Environment` inherits from `mesa.Model`
|
||||
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
|
||||
- [ ] Allow for `mesa.Model` to be used in a simulation.
|
||||
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
|
||||
- [x] Rename agent.id to unique_id?
|
||||
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
|
||||
- [ ] Provide examples
|
||||
- [ ] Using mesa modules in a soil simulation
|
||||
- [ ] Using soil modules in a mesa simulation
|
||||
- [ ] Document the new APIs and usage
|
||||
|
||||
|
||||
## Citation
|
||||
|
@ -1,262 +0,0 @@
|
||||
Configuring a simulation
|
||||
------------------------
|
||||
|
||||
There are two ways to configure a simulation: programmatically and with a configuration file.
|
||||
In both cases, the parameters used are the same.
|
||||
The advantage of a configuration file is that it is a clean declarative description, and it makes it easier to reproduce.
|
||||
|
||||
Simulation configuration files can be formatted in ``json`` or ``yaml`` and they define all the parameters of a simulation.
|
||||
Here's an example (``example.yml``).
|
||||
|
||||
.. literalinclude:: example.yml
|
||||
:language: yaml
|
||||
|
||||
|
||||
This example configuration will run three trials (``num_trials``) of a simulation containing a randomly generated network (``network_params``).
|
||||
The 100 nodes in the network will be SISaModel agents (``network_agents.agent_class``), which is an agent behavior that is included in Soil.
|
||||
10% of the agents (``weight=1``) will start in the content state, 10% in the discontent state, and the remaining 80% (``weight=8``) in the neutral state.
|
||||
All agents will have access to the environment (``environment_params``), which only contains one variable, ``prob_infected``.
|
||||
The state of the agents will be updated every 2 seconds (``interval``).
|
||||
|
||||
Now run the simulation with the command line tool:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
soil example.yml
|
||||
|
||||
Once the simulation finishes, its results will be stored in a folder named ``MyExampleSimulation``.
|
||||
Three types of objects are saved by default: a pickle of the simulation; a ``YAML`` representation of the simulation (which can be used to re-launch it); and for every trial, a ``sqlite`` file with the content of the state of every network node and the environment parameters at every step of the simulation.
|
||||
|
||||
|
||||
.. code::
|
||||
|
||||
soil_output
|
||||
└── MyExampleSimulation
|
||||
├── MyExampleSimulation.dumped.yml
|
||||
├── MyExampleSimulation.simulation.pickle
|
||||
├── MyExampleSimulation_trial_0.db.sqlite
|
||||
├── MyExampleSimulation_trial_1.db.sqlite
|
||||
└── MyExampleSimulation_trial_2.db.sqlite
|
||||
|
||||
|
||||
You may also ask soil to export the states in a ``csv`` file, and the network in gephi format (``gexf``).
|
||||
|
||||
Network
|
||||
=======
|
||||
|
||||
The network topology for the simulation can be loaded from an existing network file or generated with one of the random network generation methods from networkx.
|
||||
|
||||
Loading a network
|
||||
#################
|
||||
|
||||
To load an existing network, specify its path in the configuration:
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
---
|
||||
network_params:
|
||||
path: /tmp/mynetwork.gexf
|
||||
|
||||
Soil will try to guess what networkx method to use to read the file based on its extension.
|
||||
However, we only test using ``gexf`` files.
|
||||
|
||||
For simple networks, you may also include them in the configuration itself using , using the ``topology`` parameter like so:
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
---
|
||||
topology:
|
||||
nodes:
|
||||
- id: First
|
||||
- id: Second
|
||||
links:
|
||||
- source: First
|
||||
target: Second
|
||||
|
||||
|
||||
Generating a random network
|
||||
###########################
|
||||
|
||||
To generate a random network using one of networkx's built-in methods, specify the `graph generation algorithm <https://networkx.github.io/documentation/development/reference/generators.html>`_ and other parameters.
|
||||
For example, the following configuration is equivalent to :code:`nx.complete_graph(n=100)`:
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
network_params:
|
||||
generator: complete_graph
|
||||
n: 100
|
||||
|
||||
Environment
|
||||
============
|
||||
|
||||
The environment is the place where the shared state of the simulation is stored.
|
||||
That means both global parameters, such as the probability of disease outbreak.
|
||||
But it also means other data, such as a map, or a network topology that connects multiple agents.
|
||||
As a result, it is also typical to add custom functions in an environment that help agents interact with each other and with the state of the simulation.
|
||||
|
||||
Last but not least, an environment controls when and how its agents will be executed.
|
||||
By default, soil environments incorporate a ``soil.time.TimedActivation`` model for agent execution (more on this on the following section).
|
||||
|
||||
Soil environments are very similar, and often interchangeable with, mesa models (``mesa.Model``).
|
||||
|
||||
A configuration may specify the initial value of the environment parameters:
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
environment_params:
|
||||
daily_probability_of_earthquake: 0.001
|
||||
number_of_earthquakes: 0
|
||||
|
||||
All agents have access to the environment (and its parameters).
|
||||
|
||||
In some scenarios, it is useful to have a custom environment, to provide additional methods or to control the way agents update environment state.
|
||||
For example, if our agents play the lottery, the environment could provide a method to decide whether the agent wins, instead of leaving it to the agent.
|
||||
|
||||
Agents
|
||||
======
|
||||
|
||||
Agents are a way of modelling behavior.
|
||||
Agents can be characterized with two variables: agent type (``agent_class``) and state.
|
||||
The agent type is a ``soil.Agent`` class, which contains the code that encapsulates the behavior of the agent.
|
||||
The state is a set of variables, which may change during the simulation, and that the code may use to control the behavior.
|
||||
All agents provide a ``step`` method either explicitly or implicitly (by inheriting it from a superclass), which controls how the agent will behave in each step of the simulation.
|
||||
|
||||
When and how agent steps are executed in a simulation depends entirely on the ``environment``.
|
||||
Most environments will internally use a scheduler (``mesa.time.BaseScheduler``), which controls the activation of agents.
|
||||
|
||||
In soil, we generally used the ``soil.time.TimedActivation`` scheduler, which allows agents to specify when their next activation will happen, defaulting to a
|
||||
|
||||
When an agent's step is executed (generally, every ``interval`` seconds), the agent has access to its state and the environment.
|
||||
Through the environment, it can access the network topology and the state of other agents.
|
||||
|
||||
There are two types of agents according to how they are added to the simulation: network agents and environment agent.
|
||||
|
||||
Network Agents
|
||||
##############
|
||||
|
||||
Network agents are attached to a node in the topology.
|
||||
The configuration file allows you to specify how agents will be mapped to topology nodes.
|
||||
|
||||
The simplest way is to specify a single type of agent.
|
||||
Hence, every node in the network will be associated to an agent of that type.
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
agent_class: SISaModel
|
||||
|
||||
It is also possible to add more than one type of agent to the simulation.
|
||||
|
||||
To control the ratio of each type (using the ``weight`` property).
|
||||
For instance, with following configuration, it is five times more likely for a node to be assigned a CounterModel type than a SISaModel type.
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
network_agents:
|
||||
- agent_class: SISaModel
|
||||
weight: 1
|
||||
- agent_class: CounterModel
|
||||
weight: 5
|
||||
|
||||
The third option is to specify the type of agent on the node itself, e.g.:
|
||||
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
topology:
|
||||
nodes:
|
||||
- id: first
|
||||
agent_class: BaseAgent
|
||||
states:
|
||||
first:
|
||||
agent_class: SISaModel
|
||||
|
||||
|
||||
This would also work with a randomly generated network:
|
||||
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
network:
|
||||
generator: complete
|
||||
n: 5
|
||||
agent_class: BaseAgent
|
||||
states:
|
||||
- agent_class: SISaModel
|
||||
|
||||
|
||||
|
||||
In addition to agent type, you may add a custom initial state to the distribution.
|
||||
This is very useful to add the same agent type with different states.
|
||||
e.g., to populate the network with SISaModel, roughly 10% of them with a discontent state:
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
network_agents:
|
||||
- agent_class: SISaModel
|
||||
weight: 9
|
||||
state:
|
||||
id: neutral
|
||||
- agent_class: SISaModel
|
||||
weight: 1
|
||||
state:
|
||||
id: discontent
|
||||
|
||||
Lastly, the configuration may include initial state for one or more nodes.
|
||||
For instance, to add a state for the two nodes in this configuration:
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
agent_class: SISaModel
|
||||
network:
|
||||
generator: complete_graph
|
||||
n: 2
|
||||
states:
|
||||
- id: content
|
||||
- id: discontent
|
||||
|
||||
|
||||
Or to add state only to specific nodes (by ``id``).
|
||||
For example, to apply special skills to Linux Torvalds in a simulation:
|
||||
|
||||
.. literalinclude:: ../examples/torvalds.yml
|
||||
:language: yaml
|
||||
|
||||
|
||||
Environment Agents
|
||||
##################
|
||||
In addition to network agents, more agents can be added to the simulation.
|
||||
These agents are programmed in much the same way as network agents, the only difference is that they will not be assigned to network nodes.
|
||||
|
||||
|
||||
.. code::
|
||||
|
||||
environment_agents:
|
||||
- agent_class: MyAgent
|
||||
state:
|
||||
mood: happy
|
||||
- agent_class: DummyAgent
|
||||
|
||||
|
||||
You may use environment agents to model events that a normal agent cannot control, such as natural disasters or chance.
|
||||
They are also useful to add behavior that has little to do with the network and the interactions within that network.
|
||||
|
||||
Templating
|
||||
==========
|
||||
|
||||
Sometimes, it is useful to parameterize a simulation and run it over a range of values in order to compare each run and measure the effect of those parameters in the simulation.
|
||||
For instance, you may want to run a simulation with different agent distributions.
|
||||
|
||||
This can be done in Soil using **templates**.
|
||||
A template is a configuration where some of the values are specified with a variable.
|
||||
e.g., ``weight: "{{ var1 }}"`` instead of ``weight: 1``.
|
||||
There are two types of variables, depending on how their values are decided:
|
||||
|
||||
* Fixed. A list of values is provided, and a new simulation is run for each possible value. If more than a variable is given, a new simulation will be run per combination of values.
|
||||
* Bounded/Sampled. The bounds of the variable are provided, along with a sampler method, which will be used to compute all the configuration combinations.
|
||||
|
||||
When fixed and bounded variables are mixed, Soil generates a new configuration per combination of fixed values and bounded values.
|
||||
|
||||
Here is an example with a single fixed variable and two bounded variable:
|
||||
|
||||
.. literalinclude:: ../examples/template.yml
|
||||
:language: yaml
|
@ -3,33 +3,38 @@ name: MyExampleSimulation
|
||||
max_time: 50
|
||||
num_trials: 3
|
||||
interval: 2
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 100
|
||||
m: 2
|
||||
network_agents:
|
||||
model_params:
|
||||
topology:
|
||||
params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 100
|
||||
m: 2
|
||||
agents:
|
||||
distribution:
|
||||
- agent_class: SISaModel
|
||||
weight: 1
|
||||
topology: True
|
||||
ratio: 0.1
|
||||
state:
|
||||
id: content
|
||||
state_id: content
|
||||
- agent_class: SISaModel
|
||||
weight: 1
|
||||
topology: True
|
||||
ratio: .1
|
||||
state:
|
||||
id: discontent
|
||||
state_id: discontent
|
||||
- agent_class: SISaModel
|
||||
weight: 8
|
||||
topology: True
|
||||
ratio: 0.8
|
||||
state:
|
||||
id: neutral
|
||||
environment_params:
|
||||
prob_infect: 0.075
|
||||
neutral_discontent_spon_prob: 0.1
|
||||
neutral_discontent_infected_prob: 0.3
|
||||
neutral_content_spon_prob: 0.3
|
||||
neutral_content_infected_prob: 0.4
|
||||
discontent_neutral: 0.5
|
||||
discontent_content: 0.5
|
||||
variance_d_c: 0.2
|
||||
content_discontent: 0.2
|
||||
variance_c_d: 0.2
|
||||
content_neutral: 0.2
|
||||
standard_variance: 1
|
||||
state_id: neutral
|
||||
prob_infect: 0.075
|
||||
neutral_discontent_spon_prob: 0.1
|
||||
neutral_discontent_infected_prob: 0.3
|
||||
neutral_content_spon_prob: 0.3
|
||||
neutral_content_infected_prob: 0.4
|
||||
discontent_neutral: 0.5
|
||||
discontent_content: 0.5
|
||||
variance_d_c: 0.2
|
||||
content_discontent: 0.2
|
||||
variance_c_d: 0.2
|
||||
content_neutral: 0.2
|
||||
standard_variance: 1
|
@ -1,8 +1,3 @@
|
||||
.. Soil documentation master file, created by
|
||||
sphinx-quickstart on Tue Apr 25 12:48:56 2017.
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
Welcome to Soil's documentation!
|
||||
================================
|
||||
|
||||
|
@ -14,6 +14,10 @@ Now test that it worked by running the command line tool
|
||||
|
||||
soil --help
|
||||
|
||||
#or
|
||||
|
||||
python -m soil --help
|
||||
|
||||
Or, if you're using using soil programmatically:
|
||||
|
||||
.. code:: python
|
||||
@ -21,4 +25,4 @@ Or, if you're using using soil programmatically:
|
||||
import soil
|
||||
print(soil.__version__)
|
||||
|
||||
The latest version can be installed through `GitLab <https://lab.gsi.upm.es/soil/soil.git>`_ or `GitHub <https://github.com/gsi-upm/soil>`_.
|
||||
The latest version can be installed through `GitHub <https://github.com/gsi-upm/soil>`_ or `GitLab <https://lab.gsi.upm.es/soil/soil.git>`_.
|
||||
|
@ -12,7 +12,7 @@ set BUILDDIR=_build
|
||||
set SPHINXPROJ=Soil
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
eE
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
|
22
docs/mesa.rst
Normal file
22
docs/mesa.rst
Normal file
@ -0,0 +1,22 @@
|
||||
Mesa compatibility
|
||||
------------------
|
||||
|
||||
Soil is in the process of becoming fully compatible with MESA.
|
||||
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
|
||||
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
|
||||
|
||||
This is a non-exhaustive list of tasks to achieve compatibility:
|
||||
|
||||
- [ ] Integrate `soil.Simulation` with mesa's runners:
|
||||
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
|
||||
- [ ] Integrate `soil.Environment` with `mesa.Model`:
|
||||
- [x] `Soil.Environment` inherits from `mesa.Model`
|
||||
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
|
||||
- [ ] Allow for `mesa.Model` to be used in a simulation.
|
||||
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
|
||||
- [x] Rename agent.id to unique_id?
|
||||
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
|
||||
- [ ] Provide examples
|
||||
- [ ] Using mesa modules in a soil simulation
|
||||
- [ ] Using soil modules in a mesa simulation
|
||||
- [ ] Document the new APIs and usage
|
@ -2,29 +2,32 @@
|
||||
name: quickstart
|
||||
num_trials: 1
|
||||
max_time: 1000
|
||||
network_agents:
|
||||
- agent_class: SISaModel
|
||||
state:
|
||||
id: neutral
|
||||
weight: 1
|
||||
- agent_class: SISaModel
|
||||
state:
|
||||
id: content
|
||||
weight: 2
|
||||
network_params:
|
||||
n: 100
|
||||
k: 5
|
||||
p: 0.2
|
||||
generator: newman_watts_strogatz_graph
|
||||
environment_params:
|
||||
neutral_discontent_spon_prob: 0.05
|
||||
neutral_discontent_infected_prob: 0.1
|
||||
neutral_content_spon_prob: 0.2
|
||||
neutral_content_infected_prob: 0.4
|
||||
discontent_neutral: 0.2
|
||||
discontent_content: 0.05
|
||||
content_discontent: 0.05
|
||||
variance_d_c: 0.05
|
||||
variance_c_d: 0.1
|
||||
content_neutral: 0.1
|
||||
standard_variance: 0.1
|
||||
model_params:
|
||||
agents:
|
||||
- agent_class: SISaModel
|
||||
topology: true
|
||||
state:
|
||||
id: neutral
|
||||
weight: 1
|
||||
- agent_class: SISaModel
|
||||
topology: true
|
||||
state:
|
||||
id: content
|
||||
weight: 2
|
||||
topology:
|
||||
params:
|
||||
n: 100
|
||||
k: 5
|
||||
p: 0.2
|
||||
generator: newman_watts_strogatz_graph
|
||||
neutral_discontent_spon_prob: 0.05
|
||||
neutral_discontent_infected_prob: 0.1
|
||||
neutral_content_spon_prob: 0.2
|
||||
neutral_content_infected_prob: 0.4
|
||||
discontent_neutral: 0.2
|
||||
discontent_content: 0.05
|
||||
content_discontent: 0.05
|
||||
variance_d_c: 0.05
|
||||
variance_c_d: 0.1
|
||||
content_neutral: 0.1
|
||||
standard_variance: 0.1
|
||||
|
@ -115,13 +115,13 @@ Here's the code:
|
||||
@soil.agents.state
|
||||
def neutral(self):
|
||||
r = random.random()
|
||||
if self['has_tv'] and r < self.env['prob_tv_spread']:
|
||||
if self['has_tv'] and r < self.model['prob_tv_spread']:
|
||||
return self.infected
|
||||
return
|
||||
|
||||
@soil.agents.state
|
||||
def infected(self):
|
||||
prob_infect = self.env['prob_neighbor_spread']
|
||||
prob_infect = self.model['prob_neighbor_spread']
|
||||
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
|
||||
r = random.random()
|
||||
if r < prob_infect:
|
||||
@ -146,11 +146,11 @@ spreading the rumor.
|
||||
class NewsEnvironmentAgent(soil.agents.BaseAgent):
|
||||
def step(self):
|
||||
if self.now == self['event_time']:
|
||||
self.env['prob_tv_spread'] = 1
|
||||
self.env['prob_neighbor_spread'] = 1
|
||||
self.model['prob_tv_spread'] = 1
|
||||
self.model['prob_neighbor_spread'] = 1
|
||||
elif self.now > self['event_time']:
|
||||
self.env['prob_tv_spread'] = self.env['prob_tv_spread'] * TV_FACTOR
|
||||
self.env['prob_neighbor_spread'] = self.env['prob_neighbor_spread'] * NEIGHBOR_FACTOR
|
||||
self.model['prob_tv_spread'] = self.model['prob_tv_spread'] * TV_FACTOR
|
||||
self.model['prob_neighbor_spread'] = self.model['prob_neighbor_spread'] * NEIGHBOR_FACTOR
|
||||
|
||||
Testing the agents
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
@ -1,4 +1,5 @@
|
||||
from soil.agents import FSM, state, default_state
|
||||
from soil.time import Delta
|
||||
|
||||
|
||||
class Fibonacci(FSM):
|
||||
@ -11,7 +12,7 @@ class Fibonacci(FSM):
|
||||
def counting(self):
|
||||
self.log("Stopping at {}".format(self.now))
|
||||
prev, self["prev"] = self["prev"], max([self.now, self["prev"]])
|
||||
return None, self.env.timeout(prev)
|
||||
return None, Delta(prev)
|
||||
|
||||
|
||||
class Odds(FSM):
|
||||
@ -21,18 +22,26 @@ class Odds(FSM):
|
||||
@state
|
||||
def odds(self):
|
||||
self.log("Stopping at {}".format(self.now))
|
||||
return None, self.env.timeout(1 + self.now % 2)
|
||||
return None, Delta(1 + self.now % 2)
|
||||
|
||||
|
||||
from soil import Simulation
|
||||
|
||||
simulation = Simulation(
|
||||
model_params={
|
||||
'agents':[
|
||||
{'agent_class': Fibonacci, 'node_id': 0},
|
||||
{'agent_class': Odds, 'node_id': 1}
|
||||
],
|
||||
'topology': {
|
||||
'params': {
|
||||
'generator': 'complete_graph',
|
||||
'n': 2
|
||||
}
|
||||
},
|
||||
},
|
||||
max_time=100,
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
from soil import Simulation
|
||||
|
||||
s = Simulation(
|
||||
network_agents=[
|
||||
{"ids": [0], "agent_class": Fibonacci},
|
||||
{"ids": [1], "agent_class": Odds},
|
||||
],
|
||||
network_params={"generator": "complete_graph", "n": 2},
|
||||
max_time=100,
|
||||
)
|
||||
s.run(dry_run=True)
|
||||
simulation.run(dry_run=True)
|
||||
|
@ -18,6 +18,7 @@ An example scenario could play like the following:
|
||||
- If there are no more passengers available in the simulation, Drivers die
|
||||
"""
|
||||
from __future__ import annotations
|
||||
from typing import Optional
|
||||
from soil import *
|
||||
from soil import events
|
||||
from mesa.space import MultiGrid
|
||||
@ -39,7 +40,7 @@ class Journey:
|
||||
tip: float
|
||||
|
||||
passenger: Passenger
|
||||
driver: Driver = None
|
||||
driver: Optional[Driver] = None
|
||||
|
||||
|
||||
class City(EventedEnvironment):
|
||||
@ -239,5 +240,4 @@ simulation = Simulation(
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
with easy(simulation) as s:
|
||||
s.run()
|
||||
simulation.run()
|
@ -111,4 +111,5 @@ server = ModularServer(
|
||||
)
|
||||
server.port = 8521
|
||||
|
||||
server.launch(open_browser=False)
|
||||
if __name__ == '__main__':
|
||||
server.launch(open_browser=False)
|
||||
|
@ -28,7 +28,7 @@ class MoneyAgent(MesaAgent):
|
||||
It will only share wealth with neighbors based on grid proximity
|
||||
"""
|
||||
|
||||
def __init__(self, unique_id, model, wealth=1):
|
||||
def __init__(self, unique_id, model, wealth=1, **kwargs):
|
||||
super().__init__(unique_id=unique_id, model=model)
|
||||
self.wealth = wealth
|
||||
|
||||
|
@ -10,32 +10,48 @@ def mygenerator():
|
||||
# Add only a node
|
||||
G = Graph()
|
||||
G.add_node(1)
|
||||
G.add_node(2)
|
||||
return G
|
||||
|
||||
|
||||
class MyAgent(agents.FSM):
|
||||
times_run = 0
|
||||
@agents.default_state
|
||||
@agents.state
|
||||
def neutral(self):
|
||||
self.debug("I am running")
|
||||
if agents.prob(0.2):
|
||||
if self.prob(0.2):
|
||||
self.times_run += 1
|
||||
self.info("This runs 2/10 times on average")
|
||||
|
||||
|
||||
s = Simulation(
|
||||
simulation = Simulation(
|
||||
name="Programmatic",
|
||||
network_params={"generator": mygenerator},
|
||||
model_params={
|
||||
'topology': {
|
||||
'params': {
|
||||
'generator': mygenerator
|
||||
},
|
||||
},
|
||||
'agents': {
|
||||
'distribution': [{
|
||||
'agent_class': MyAgent,
|
||||
'topology': True,
|
||||
}]
|
||||
}
|
||||
},
|
||||
seed='Program',
|
||||
agent_reporters={'times_run': 'times_run'},
|
||||
num_trials=1,
|
||||
max_time=100,
|
||||
agent_class=MyAgent,
|
||||
dry_run=True,
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# By default, logging will only print WARNING logs (and above).
|
||||
# You need to choose a lower logging level to get INFO/DEBUG traces
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
envs = simulation.run()
|
||||
|
||||
# By default, logging will only print WARNING logs (and above).
|
||||
# You need to choose a lower logging level to get INFO/DEBUG traces
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
envs = s.run()
|
||||
|
||||
# Uncomment this to output the simulation to a YAML file
|
||||
# s.dump_yaml('simulation.yaml')
|
||||
for agent in envs[0].agents:
|
||||
print(agent.times_run)
|
||||
|
@ -170,6 +170,6 @@ class Police(FSM):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from soil import simulation
|
||||
from soil import run_from_config
|
||||
|
||||
simulation.run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)
|
||||
run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)
|
||||
|
@ -5,6 +5,8 @@ import math
|
||||
|
||||
|
||||
class RabbitEnv(Environment):
|
||||
prob_death = 1e-100
|
||||
|
||||
@property
|
||||
def num_rabbits(self):
|
||||
return self.count_agents(agent_class=Rabbit)
|
||||
@ -129,7 +131,7 @@ class RandomAccident(BaseAgent):
|
||||
if not rabbits_alive:
|
||||
return self.die()
|
||||
|
||||
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
|
||||
prob_death = self.model.prob_death * math.floor(
|
||||
math.log10(max(1, rabbits_alive))
|
||||
)
|
||||
self.debug("Killing some rabbits with prob={}!".format(prob_death))
|
||||
|
@ -31,11 +31,11 @@ class MyAgent(agents.FSM):
|
||||
|
||||
s = Simulation(
|
||||
name="Programmatic",
|
||||
network_agents=[{"agent_class": MyAgent, "id": 0}],
|
||||
topology={"nodes": [{"id": 0}], "links": []},
|
||||
model_params={
|
||||
'agents': [{'agent_class': MyAgent}],
|
||||
},
|
||||
num_trials=1,
|
||||
max_time=100,
|
||||
agent_class=MyAgent,
|
||||
dry_run=True,
|
||||
)
|
||||
|
||||
|
@ -108,14 +108,14 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
return
|
||||
return self.leader
|
||||
|
||||
def ego_search(self, steps=1, center=False, node=None, **kwargs):
|
||||
def ego_search(self, steps=1, center=False, agent=None, **kwargs):
|
||||
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
|
||||
node = as_node(node if node is not None else self)
|
||||
node = agent.node
|
||||
G = self.subgraph(**kwargs)
|
||||
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
|
||||
|
||||
def degree(self, node, force=False):
|
||||
node = as_node(node)
|
||||
def degree(self, agent, force=False):
|
||||
node = agent.node
|
||||
if (
|
||||
force
|
||||
or (not hasattr(self.model, "_degree"))
|
||||
@ -125,8 +125,8 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
self.model._last_step = self.now
|
||||
return self.model._degree[node]
|
||||
|
||||
def betweenness(self, node, force=False):
|
||||
node = as_node(node)
|
||||
def betweenness(self, agent, force=False):
|
||||
node = agent.node
|
||||
if (
|
||||
force
|
||||
or (not hasattr(self.model, "_betweenness"))
|
||||
|
@ -216,13 +216,13 @@
|
||||
" @soil.agents.state\n",
|
||||
" def neutral(self):\n",
|
||||
" r = random.random()\n",
|
||||
" if self['has_tv'] and r < self.env['prob_tv_spread']:\n",
|
||||
" if self['has_tv'] and r < self.model['prob_tv_spread']:\n",
|
||||
" return self.infected\n",
|
||||
" return\n",
|
||||
" \n",
|
||||
" @soil.agents.state\n",
|
||||
" def infected(self):\n",
|
||||
" prob_infect = self.env['prob_neighbor_spread']\n",
|
||||
" prob_infect = self.model['prob_neighbor_spread']\n",
|
||||
" for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):\n",
|
||||
" r = random.random()\n",
|
||||
" if r < prob_infect:\n",
|
||||
@ -271,11 +271,11 @@
|
||||
"class NewsEnvironmentAgent(soil.agents.NetworkAgent):\n",
|
||||
" def step(self):\n",
|
||||
" if self.now == self['event_time']:\n",
|
||||
" self.env['prob_tv_spread'] = 1\n",
|
||||
" self.env['prob_neighbor_spread'] = 1\n",
|
||||
" self.model['prob_tv_spread'] = 1\n",
|
||||
" self.model['prob_neighbor_spread'] = 1\n",
|
||||
" elif self.now > self['event_time']:\n",
|
||||
" self.env['prob_tv_spread'] = self.env['prob_tv_spread'] * TV_FACTOR\n",
|
||||
" self.env['prob_neighbor_spread'] = self.env['prob_neighbor_spread'] * NEIGHBOR_FACTOR"
|
||||
" self.model['prob_tv_spread'] = self.model['prob_tv_spread'] * TV_FACTOR\n",
|
||||
" self.model['prob_neighbor_spread'] = self.model['prob_neighbor_spread'] * NEIGHBOR_FACTOR"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1 +1 @@
|
||||
0.30.0rc3
|
||||
0.30.0rc4
|
@ -1,6 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import importlib
|
||||
from importlib.resources import path
|
||||
import sys
|
||||
import os
|
||||
import logging
|
||||
@ -14,10 +15,12 @@ try:
|
||||
except NameError:
|
||||
basestring = str
|
||||
|
||||
from pathlib import Path
|
||||
from .agents import *
|
||||
from . import agents
|
||||
from .simulation import *
|
||||
from .environment import Environment, EventedEnvironment
|
||||
from .datacollection import SoilCollector
|
||||
from . import serialization
|
||||
from .utils import logger
|
||||
from .time import *
|
||||
@ -35,8 +38,10 @@ def main(
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
sim = None
|
||||
if isinstance(cfg, Simulation):
|
||||
sim = cfg
|
||||
|
||||
import argparse
|
||||
from . import simulation
|
||||
|
||||
|
@ -22,7 +22,7 @@ class BassModel(FSM):
|
||||
else:
|
||||
aware_neighbors = self.get_neighbors(state_id=self.aware.id)
|
||||
num_neighbors_aware = len(aware_neighbors)
|
||||
if self.prob((self["imitation_prob"] * num_neighbors_aware)):
|
||||
if self.prob((self.imitation_prob * num_neighbors_aware)):
|
||||
self.sentimentCorrelation = 1
|
||||
return self.aware
|
||||
|
||||
|
@ -1,118 +0,0 @@
|
||||
from . import FSM, state, default_state
|
||||
|
||||
|
||||
class BigMarketModel(FSM):
|
||||
"""
|
||||
Settings:
|
||||
Names:
|
||||
enterprises [Array]
|
||||
|
||||
tweet_probability_enterprises [Array]
|
||||
Users:
|
||||
tweet_probability_users
|
||||
|
||||
tweet_relevant_probability
|
||||
|
||||
tweet_probability_about [Array]
|
||||
|
||||
sentiment_about [Array]
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.enterprises = self.env.environment_params["enterprises"]
|
||||
self.type = ""
|
||||
|
||||
if self.id < len(self.enterprises): # Enterprises
|
||||
self._set_state(self.enterprise.id)
|
||||
self.type = "Enterprise"
|
||||
self.tweet_probability = environment.environment_params[
|
||||
"tweet_probability_enterprises"
|
||||
][self.id]
|
||||
else: # normal users
|
||||
self.type = "User"
|
||||
self._set_state(self.user.id)
|
||||
self.tweet_probability = environment.environment_params[
|
||||
"tweet_probability_users"
|
||||
]
|
||||
self.tweet_relevant_probability = environment.environment_params[
|
||||
"tweet_relevant_probability"
|
||||
]
|
||||
self.tweet_probability_about = environment.environment_params[
|
||||
"tweet_probability_about"
|
||||
] # List
|
||||
self.sentiment_about = environment.environment_params[
|
||||
"sentiment_about"
|
||||
] # List
|
||||
|
||||
@state
|
||||
def enterprise(self):
|
||||
|
||||
if self.random.random() < self.tweet_probability: # Tweets
|
||||
aware_neighbors = self.get_neighbors(
|
||||
state_id=self.number_of_enterprises
|
||||
) # Nodes neighbour users
|
||||
for x in aware_neighbors:
|
||||
if self.random.uniform(0, 10) < 5:
|
||||
x.sentiment_about[self.id] += 0.1 # Increments for enterprise
|
||||
else:
|
||||
x.sentiment_about[self.id] -= 0.1 # Decrements for enterprise
|
||||
|
||||
# Establecemos limites
|
||||
if x.sentiment_about[self.id] > 1:
|
||||
x.sentiment_about[self.id] = 1
|
||||
if x.sentiment_about[self.id] < -1:
|
||||
x.sentiment_about[self.id] = -1
|
||||
|
||||
x.attrs[
|
||||
"sentiment_enterprise_%s" % self.enterprises[self.id]
|
||||
] = x.sentiment_about[self.id]
|
||||
|
||||
@state
|
||||
def user(self):
|
||||
if self.random.random() < self.tweet_probability: # Tweets
|
||||
if (
|
||||
self.random.random() < self.tweet_relevant_probability
|
||||
): # Tweets something relevant
|
||||
# Tweet probability per enterprise
|
||||
for i in range(len(self.enterprises)):
|
||||
random_num = self.random.random()
|
||||
if random_num < self.tweet_probability_about[i]:
|
||||
# The condition is fulfilled, sentiments are evaluated towards that enterprise
|
||||
if self.sentiment_about[i] < 0:
|
||||
# NEGATIVO
|
||||
self.userTweets("negative", i)
|
||||
elif self.sentiment_about[i] == 0:
|
||||
# NEUTRO
|
||||
pass
|
||||
else:
|
||||
# POSITIVO
|
||||
self.userTweets("positive", i)
|
||||
for i in range(
|
||||
len(self.enterprises)
|
||||
): # So that it never is set to 0 if there are not changes (logs)
|
||||
self.attrs[
|
||||
"sentiment_enterprise_%s" % self.enterprises[i]
|
||||
] = self.sentiment_about[i]
|
||||
|
||||
def userTweets(self, sentiment, enterprise):
|
||||
aware_neighbors = self.get_neighbors(
|
||||
state_id=self.number_of_enterprises
|
||||
) # Nodes neighbours users
|
||||
for x in aware_neighbors:
|
||||
if sentiment == "positive":
|
||||
x.sentiment_about[enterprise] += 0.003
|
||||
elif sentiment == "negative":
|
||||
x.sentiment_about[enterprise] -= 0.003
|
||||
else:
|
||||
pass
|
||||
|
||||
# Establecemos limites
|
||||
if x.sentiment_about[enterprise] > 1:
|
||||
x.sentiment_about[enterprise] = 1
|
||||
if x.sentiment_about[enterprise] < -1:
|
||||
x.sentiment_about[enterprise] = -1
|
||||
|
||||
x.attrs[
|
||||
"sentiment_enterprise_%s" % self.enterprises[enterprise]
|
||||
] = x.sentiment_about[enterprise]
|
@ -1,14 +1,14 @@
|
||||
from scipy.spatial import cKDTree as KDTree
|
||||
import networkx as nx
|
||||
from . import NetworkAgent, as_node
|
||||
from . import NetworkAgent
|
||||
|
||||
|
||||
class Geo(NetworkAgent):
|
||||
"""In this type of network, nodes have a "pos" attribute."""
|
||||
|
||||
def geo_search(self, radius, node=None, center=False, **kwargs):
|
||||
def geo_search(self, radius, agent=None, center=False, **kwargs):
|
||||
"""Get a list of nodes whose coordinates are closer than *radius* to *node*."""
|
||||
node = as_node(node if node is not None else self)
|
||||
node = agent.node
|
||||
|
||||
G = self.subgraph(**kwargs)
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
from . import BaseAgent
|
||||
from . import Agent, state, default_state
|
||||
|
||||
|
||||
class IndependentCascadeModel(BaseAgent):
|
||||
class IndependentCascadeModel(Agent):
|
||||
"""
|
||||
Settings:
|
||||
innovation_prob
|
||||
@ -9,42 +9,22 @@ class IndependentCascadeModel(BaseAgent):
|
||||
imitation_prob
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.innovation_prob = self.env.environment_params["innovation_prob"]
|
||||
self.imitation_prob = self.env.environment_params["imitation_prob"]
|
||||
self.state["time_awareness"] = 0
|
||||
self.state["sentimentCorrelation"] = 0
|
||||
time_awareness = 0
|
||||
sentimentCorrelation = 0
|
||||
|
||||
def step(self):
|
||||
self.behaviour()
|
||||
# Outside effects
|
||||
@default_state
|
||||
@state
|
||||
def outside(self):
|
||||
if self.prob(self.model.innovation_prob):
|
||||
self.sentimentCorrelation = 1
|
||||
self.time_awareness = self.model.now # To know when they have been infected
|
||||
return self.imitate
|
||||
|
||||
def behaviour(self):
|
||||
aware_neighbors_1_time_step = []
|
||||
# Outside effects
|
||||
if self.prob(self.innovation_prob):
|
||||
if self.state["id"] == 0:
|
||||
self.state["id"] = 1
|
||||
self.state["sentimentCorrelation"] = 1
|
||||
self.state[
|
||||
"time_awareness"
|
||||
] = self.env.now # To know when they have been infected
|
||||
else:
|
||||
pass
|
||||
@state
|
||||
def imitate(self):
|
||||
aware_neighbors = self.get_neighbors(state_id=1, time_awareness=self.now-1)
|
||||
|
||||
return
|
||||
|
||||
# Imitation effects
|
||||
if self.state["id"] == 0:
|
||||
aware_neighbors = self.get_neighbors(state_id=1)
|
||||
for x in aware_neighbors:
|
||||
if x.state["time_awareness"] == (self.env.now - 1):
|
||||
aware_neighbors_1_time_step.append(x)
|
||||
num_neighbors_aware = len(aware_neighbors_1_time_step)
|
||||
if self.prob(self.imitation_prob * num_neighbors_aware):
|
||||
self.state["id"] = 1
|
||||
self.state["sentimentCorrelation"] = 1
|
||||
else:
|
||||
pass
|
||||
|
||||
return
|
||||
if self.prob(self.model.imitation_prob * len(aware_neighbors)):
|
||||
self.sentimentCorrelation = 1
|
||||
return self.outside
|
@ -1,270 +0,0 @@
|
||||
import numpy as np
|
||||
from . import BaseAgent
|
||||
|
||||
|
||||
class SpreadModelM2(BaseAgent):
|
||||
"""
|
||||
Settings:
|
||||
prob_neutral_making_denier
|
||||
|
||||
prob_infect
|
||||
|
||||
prob_cured_healing_infected
|
||||
|
||||
prob_cured_vaccinate_neutral
|
||||
|
||||
prob_vaccinated_healing_infected
|
||||
|
||||
prob_vaccinated_vaccinate_neutral
|
||||
|
||||
prob_generate_anti_rumor
|
||||
"""
|
||||
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=environment, unique_id=unique_id, state=state)
|
||||
|
||||
# Use a single generator with the same seed as `self.random`
|
||||
random = np.random.default_rng(seed=self._seed)
|
||||
self.prob_neutral_making_denier = random.normal(
|
||||
environment.environment_params["prob_neutral_making_denier"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
|
||||
self.prob_infect = random.normal(
|
||||
environment.environment_params["prob_infect"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
|
||||
self.prob_cured_healing_infected = random.normal(
|
||||
environment.environment_params["prob_cured_healing_infected"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
self.prob_cured_vaccinate_neutral = random.normal(
|
||||
environment.environment_params["prob_cured_vaccinate_neutral"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
|
||||
self.prob_vaccinated_healing_infected = random.normal(
|
||||
environment.environment_params["prob_vaccinated_healing_infected"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
self.prob_vaccinated_vaccinate_neutral = random.normal(
|
||||
environment.environment_params["prob_vaccinated_vaccinate_neutral"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
self.prob_generate_anti_rumor = random.normal(
|
||||
environment.environment_params["prob_generate_anti_rumor"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
|
||||
def step(self):
|
||||
|
||||
if self.state["id"] == 0: # Neutral
|
||||
self.neutral_behaviour()
|
||||
elif self.state["id"] == 1: # Infected
|
||||
self.infected_behaviour()
|
||||
elif self.state["id"] == 2: # Cured
|
||||
self.cured_behaviour()
|
||||
elif self.state["id"] == 3: # Vaccinated
|
||||
self.vaccinated_behaviour()
|
||||
|
||||
def neutral_behaviour(self):
|
||||
|
||||
# Infected
|
||||
infected_neighbors = self.get_neighbors(state_id=1)
|
||||
if len(infected_neighbors) > 0:
|
||||
if self.prob(self.prob_neutral_making_denier):
|
||||
self.state["id"] = 3 # Vaccinated making denier
|
||||
|
||||
def infected_behaviour(self):
|
||||
|
||||
# Neutral
|
||||
neutral_neighbors = self.get_neighbors(state_id=0)
|
||||
for neighbor in neutral_neighbors:
|
||||
if self.prob(self.prob_infect):
|
||||
neighbor.state["id"] = 1 # Infected
|
||||
|
||||
def cured_behaviour(self):
|
||||
|
||||
# Vaccinate
|
||||
neutral_neighbors = self.get_neighbors(state_id=0)
|
||||
for neighbor in neutral_neighbors:
|
||||
if self.prob(self.prob_cured_vaccinate_neutral):
|
||||
neighbor.state["id"] = 3 # Vaccinated
|
||||
|
||||
# Cure
|
||||
infected_neighbors = self.get_neighbors(state_id=1)
|
||||
for neighbor in infected_neighbors:
|
||||
if self.prob(self.prob_cured_healing_infected):
|
||||
neighbor.state["id"] = 2 # Cured
|
||||
|
||||
def vaccinated_behaviour(self):
|
||||
|
||||
# Cure
|
||||
infected_neighbors = self.get_neighbors(state_id=1)
|
||||
for neighbor in infected_neighbors:
|
||||
if self.prob(self.prob_cured_healing_infected):
|
||||
neighbor.state["id"] = 2 # Cured
|
||||
|
||||
# Vaccinate
|
||||
neutral_neighbors = self.get_neighbors(state_id=0)
|
||||
for neighbor in neutral_neighbors:
|
||||
if self.prob(self.prob_cured_vaccinate_neutral):
|
||||
neighbor.state["id"] = 3 # Vaccinated
|
||||
|
||||
# Generate anti-rumor
|
||||
infected_neighbors_2 = self.get_neighbors(state_id=1)
|
||||
for neighbor in infected_neighbors_2:
|
||||
if self.prob(self.prob_generate_anti_rumor):
|
||||
neighbor.state["id"] = 2 # Cured
|
||||
|
||||
|
||||
class ControlModelM2(BaseAgent):
|
||||
"""
|
||||
Settings:
|
||||
prob_neutral_making_denier
|
||||
|
||||
prob_infect
|
||||
|
||||
prob_cured_healing_infected
|
||||
|
||||
prob_cured_vaccinate_neutral
|
||||
|
||||
prob_vaccinated_healing_infected
|
||||
|
||||
prob_vaccinated_vaccinate_neutral
|
||||
|
||||
prob_generate_anti_rumor
|
||||
"""
|
||||
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=environment, unique_id=unique_id, state=state)
|
||||
|
||||
self.prob_neutral_making_denier = np.random.normal(
|
||||
environment.environment_params["prob_neutral_making_denier"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
|
||||
self.prob_infect = np.random.normal(
|
||||
environment.environment_params["prob_infect"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
|
||||
self.prob_cured_healing_infected = np.random.normal(
|
||||
environment.environment_params["prob_cured_healing_infected"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
self.prob_cured_vaccinate_neutral = np.random.normal(
|
||||
environment.environment_params["prob_cured_vaccinate_neutral"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
|
||||
self.prob_vaccinated_healing_infected = np.random.normal(
|
||||
environment.environment_params["prob_vaccinated_healing_infected"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
self.prob_vaccinated_vaccinate_neutral = np.random.normal(
|
||||
environment.environment_params["prob_vaccinated_vaccinate_neutral"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
self.prob_generate_anti_rumor = np.random.normal(
|
||||
environment.environment_params["prob_generate_anti_rumor"],
|
||||
environment.environment_params["standard_variance"],
|
||||
)
|
||||
|
||||
def step(self):
|
||||
|
||||
if self.state["id"] == 0: # Neutral
|
||||
self.neutral_behaviour()
|
||||
elif self.state["id"] == 1: # Infected
|
||||
self.infected_behaviour()
|
||||
elif self.state["id"] == 2: # Cured
|
||||
self.cured_behaviour()
|
||||
elif self.state["id"] == 3: # Vaccinated
|
||||
self.vaccinated_behaviour()
|
||||
elif self.state["id"] == 4: # Beacon-off
|
||||
self.beacon_off_behaviour()
|
||||
elif self.state["id"] == 5: # Beacon-on
|
||||
self.beacon_on_behaviour()
|
||||
|
||||
def neutral_behaviour(self):
|
||||
self.state["visible"] = False
|
||||
|
||||
# Infected
|
||||
infected_neighbors = self.get_neighbors(state_id=1)
|
||||
if len(infected_neighbors) > 0:
|
||||
if self.random(self.prob_neutral_making_denier):
|
||||
self.state["id"] = 3 # Vaccinated making denier
|
||||
|
||||
def infected_behaviour(self):
|
||||
|
||||
# Neutral
|
||||
neutral_neighbors = self.get_neighbors(state_id=0)
|
||||
for neighbor in neutral_neighbors:
|
||||
if self.prob(self.prob_infect):
|
||||
neighbor.state["id"] = 1 # Infected
|
||||
self.state["visible"] = False
|
||||
|
||||
def cured_behaviour(self):
|
||||
|
||||
self.state["visible"] = True
|
||||
# Vaccinate
|
||||
neutral_neighbors = self.get_neighbors(state_id=0)
|
||||
for neighbor in neutral_neighbors:
|
||||
if self.prob(self.prob_cured_vaccinate_neutral):
|
||||
neighbor.state["id"] = 3 # Vaccinated
|
||||
|
||||
# Cure
|
||||
infected_neighbors = self.get_neighbors(state_id=1)
|
||||
for neighbor in infected_neighbors:
|
||||
if self.prob(self.prob_cured_healing_infected):
|
||||
neighbor.state["id"] = 2 # Cured
|
||||
|
||||
def vaccinated_behaviour(self):
|
||||
self.state["visible"] = True
|
||||
|
||||
# Cure
|
||||
infected_neighbors = self.get_neighbors(state_id=1)
|
||||
for neighbor in infected_neighbors:
|
||||
if self.prob(self.prob_cured_healing_infected):
|
||||
neighbor.state["id"] = 2 # Cured
|
||||
|
||||
# Vaccinate
|
||||
neutral_neighbors = self.get_neighbors(state_id=0)
|
||||
for neighbor in neutral_neighbors:
|
||||
if self.prob(self.prob_cured_vaccinate_neutral):
|
||||
neighbor.state["id"] = 3 # Vaccinated
|
||||
|
||||
# Generate anti-rumor
|
||||
infected_neighbors_2 = self.get_neighbors(state_id=1)
|
||||
for neighbor in infected_neighbors_2:
|
||||
if self.prob(self.prob_generate_anti_rumor):
|
||||
neighbor.state["id"] = 2 # Cured
|
||||
|
||||
def beacon_off_behaviour(self):
|
||||
self.state["visible"] = False
|
||||
infected_neighbors = self.get_neighbors(state_id=1)
|
||||
if len(infected_neighbors) > 0:
|
||||
self.state["id"] == 5 # Beacon on
|
||||
|
||||
def beacon_on_behaviour(self):
|
||||
self.state["visible"] = False
|
||||
# Cure (M2 feature added)
|
||||
infected_neighbors = self.get_neighbors(state_id=1)
|
||||
for neighbor in infected_neighbors:
|
||||
if self.prob(self.prob_generate_anti_rumor):
|
||||
neighbor.state["id"] = 2 # Cured
|
||||
neutral_neighbors_infected = neighbor.get_neighbors(state_id=0)
|
||||
for neighbor in neutral_neighbors_infected:
|
||||
if self.prob(self.prob_generate_anti_rumor):
|
||||
neighbor.state["id"] = 3 # Vaccinated
|
||||
infected_neighbors_infected = neighbor.get_neighbors(state_id=1)
|
||||
for neighbor in infected_neighbors_infected:
|
||||
if self.prob(self.prob_generate_anti_rumor):
|
||||
neighbor.state["id"] = 2 # Cured
|
||||
|
||||
# Vaccinate
|
||||
neutral_neighbors = self.get_neighbors(state_id=0)
|
||||
for neighbor in neutral_neighbors:
|
||||
if self.prob(self.prob_cured_vaccinate_neutral):
|
||||
neighbor.state["id"] = 3 # Vaccinated
|
@ -1,8 +1,9 @@
|
||||
import numpy as np
|
||||
from . import FSM, state
|
||||
from hashlib import sha512
|
||||
from . import Agent, state, default_state
|
||||
|
||||
|
||||
class SISaModel(FSM):
|
||||
class SISaModel(Agent):
|
||||
"""
|
||||
Settings:
|
||||
neutral_discontent_spon_prob
|
||||
@ -28,38 +29,45 @@ class SISaModel(FSM):
|
||||
standard_variance
|
||||
"""
|
||||
|
||||
def __init__(self, environment, unique_id=0, state=()):
|
||||
super().__init__(model=environment, unique_id=unique_id, state=state)
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
random = np.random.default_rng(seed=self._seed)
|
||||
seed = self.model._seed
|
||||
if isinstance(seed, (str, bytes, bytearray)):
|
||||
if isinstance(seed, str):
|
||||
seed = seed.encode()
|
||||
seed = int.from_bytes(seed + sha512(seed).digest(), 'big')
|
||||
|
||||
random = np.random.default_rng(seed=seed)
|
||||
|
||||
self.neutral_discontent_spon_prob = random.normal(
|
||||
self.env["neutral_discontent_spon_prob"], self.env["standard_variance"]
|
||||
self.model.neutral_discontent_spon_prob, self.model.standard_variance
|
||||
)
|
||||
self.neutral_discontent_infected_prob = random.normal(
|
||||
self.env["neutral_discontent_infected_prob"], self.env["standard_variance"]
|
||||
self.model.neutral_discontent_infected_prob, self.model.standard_variance
|
||||
)
|
||||
self.neutral_content_spon_prob = random.normal(
|
||||
self.env["neutral_content_spon_prob"], self.env["standard_variance"]
|
||||
self.model.neutral_content_spon_prob, self.model.standard_variance
|
||||
)
|
||||
self.neutral_content_infected_prob = random.normal(
|
||||
self.env["neutral_content_infected_prob"], self.env["standard_variance"]
|
||||
self.model.neutral_content_infected_prob, self.model.standard_variance
|
||||
)
|
||||
|
||||
self.discontent_neutral = random.normal(
|
||||
self.env["discontent_neutral"], self.env["standard_variance"]
|
||||
self.model.discontent_neutral, self.model.standard_variance
|
||||
)
|
||||
self.discontent_content = random.normal(
|
||||
self.env["discontent_content"], self.env["variance_d_c"]
|
||||
self.model.discontent_content, self.model.variance_d_c
|
||||
)
|
||||
|
||||
self.content_discontent = random.normal(
|
||||
self.env["content_discontent"], self.env["variance_c_d"]
|
||||
self.model.content_discontent, self.model.variance_c_d
|
||||
)
|
||||
self.content_neutral = random.normal(
|
||||
self.env["content_neutral"], self.env["standard_variance"]
|
||||
self.model.discontent_neutral, self.model.standard_variance
|
||||
)
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def neutral(self):
|
||||
# Spontaneous effects
|
||||
@ -70,10 +78,10 @@ class SISaModel(FSM):
|
||||
|
||||
# Infected
|
||||
discontent_neighbors = self.count_neighbors(state_id=self.discontent)
|
||||
if self.prob(scontent_neighbors * self.neutral_discontent_infected_prob):
|
||||
if self.prob(discontent_neighbors * self.neutral_discontent_infected_prob):
|
||||
return self.discontent
|
||||
content_neighbors = self.count_neighbors(state_id=self.content.id)
|
||||
if self.prob(s * self.neutral_content_infected_prob):
|
||||
if self.prob(content_neighbors * self.neutral_content_infected_prob):
|
||||
return self.content
|
||||
return self.neutral
|
||||
|
||||
@ -85,7 +93,7 @@ class SISaModel(FSM):
|
||||
|
||||
# Superinfected
|
||||
content_neighbors = self.count_neighbors(state_id=self.content.id)
|
||||
if self.prob(s * self.discontent_content):
|
||||
if self.prob(content_neighbors * self.discontent_content):
|
||||
return self.content
|
||||
return self.discontent
|
||||
|
||||
@ -97,6 +105,6 @@ class SISaModel(FSM):
|
||||
|
||||
# Superinfected
|
||||
discontent_neighbors = self.count_neighbors(state_id=self.discontent.id)
|
||||
if self.prob(scontent_neighbors * self.content_discontent):
|
||||
if self.prob(discontent_neighbors * self.content_discontent):
|
||||
self.discontent
|
||||
return self.content
|
||||
|
@ -1,115 +0,0 @@
|
||||
from . import BaseAgent
|
||||
|
||||
|
||||
class SentimentCorrelationModel(BaseAgent):
|
||||
"""
|
||||
Settings:
|
||||
outside_effects_prob
|
||||
|
||||
anger_prob
|
||||
|
||||
joy_prob
|
||||
|
||||
sadness_prob
|
||||
|
||||
disgust_prob
|
||||
"""
|
||||
|
||||
def __init__(self, environment, unique_id=0, state=()):
|
||||
super().__init__(model=environment, unique_id=unique_id, state=state)
|
||||
self.outside_effects_prob = environment.environment_params[
|
||||
"outside_effects_prob"
|
||||
]
|
||||
self.anger_prob = environment.environment_params["anger_prob"]
|
||||
self.joy_prob = environment.environment_params["joy_prob"]
|
||||
self.sadness_prob = environment.environment_params["sadness_prob"]
|
||||
self.disgust_prob = environment.environment_params["disgust_prob"]
|
||||
self.state["time_awareness"] = []
|
||||
for i in range(4): # In this model we have 4 sentiments
|
||||
self.state["time_awareness"].append(
|
||||
0
|
||||
) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
|
||||
self.state["sentimentCorrelation"] = 0
|
||||
|
||||
def step(self):
|
||||
self.behaviour()
|
||||
|
||||
def behaviour(self):
|
||||
|
||||
angry_neighbors_1_time_step = []
|
||||
joyful_neighbors_1_time_step = []
|
||||
sad_neighbors_1_time_step = []
|
||||
disgusted_neighbors_1_time_step = []
|
||||
|
||||
angry_neighbors = self.get_neighbors(state_id=1)
|
||||
for x in angry_neighbors:
|
||||
if x.state["time_awareness"][0] > (self.env.now - 500):
|
||||
angry_neighbors_1_time_step.append(x)
|
||||
num_neighbors_angry = len(angry_neighbors_1_time_step)
|
||||
|
||||
joyful_neighbors = self.get_neighbors(state_id=2)
|
||||
for x in joyful_neighbors:
|
||||
if x.state["time_awareness"][1] > (self.env.now - 500):
|
||||
joyful_neighbors_1_time_step.append(x)
|
||||
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
|
||||
|
||||
sad_neighbors = self.get_neighbors(state_id=3)
|
||||
for x in sad_neighbors:
|
||||
if x.state["time_awareness"][2] > (self.env.now - 500):
|
||||
sad_neighbors_1_time_step.append(x)
|
||||
num_neighbors_sad = len(sad_neighbors_1_time_step)
|
||||
|
||||
disgusted_neighbors = self.get_neighbors(state_id=4)
|
||||
for x in disgusted_neighbors:
|
||||
if x.state["time_awareness"][3] > (self.env.now - 500):
|
||||
disgusted_neighbors_1_time_step.append(x)
|
||||
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
|
||||
|
||||
anger_prob = self.anger_prob + (
|
||||
len(angry_neighbors_1_time_step) * self.anger_prob
|
||||
)
|
||||
joy_prob = self.joy_prob + (len(joyful_neighbors_1_time_step) * self.joy_prob)
|
||||
sadness_prob = self.sadness_prob + (
|
||||
len(sad_neighbors_1_time_step) * self.sadness_prob
|
||||
)
|
||||
disgust_prob = self.disgust_prob + (
|
||||
len(disgusted_neighbors_1_time_step) * self.disgust_prob
|
||||
)
|
||||
outside_effects_prob = self.outside_effects_prob
|
||||
|
||||
num = self.random.random()
|
||||
|
||||
if num < outside_effects_prob:
|
||||
self.state["id"] = self.random.randint(1, 4)
|
||||
|
||||
self.state["sentimentCorrelation"] = self.state[
|
||||
"id"
|
||||
] # It is stored when it has been infected for the dynamic network
|
||||
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
|
||||
self.state["sentiment"] = self.state["id"]
|
||||
|
||||
if num < anger_prob:
|
||||
|
||||
self.state["id"] = 1
|
||||
self.state["sentimentCorrelation"] = 1
|
||||
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
|
||||
elif num < joy_prob + anger_prob and num > anger_prob:
|
||||
|
||||
self.state["id"] = 2
|
||||
self.state["sentimentCorrelation"] = 2
|
||||
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
|
||||
elif num < sadness_prob + anger_prob + joy_prob and num > joy_prob + anger_prob:
|
||||
|
||||
self.state["id"] = 3
|
||||
self.state["sentimentCorrelation"] = 3
|
||||
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
|
||||
elif (
|
||||
num < disgust_prob + sadness_prob + anger_prob + joy_prob
|
||||
and num > sadness_prob + anger_prob + joy_prob
|
||||
):
|
||||
|
||||
self.state["id"] = 4
|
||||
self.state["sentimentCorrelation"] = 4
|
||||
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
|
||||
|
||||
self.state["sentiment"] = self.state["id"]
|
@ -555,9 +555,9 @@ def _from_fixed(
|
||||
def _from_distro(
|
||||
distro: List[config.AgentDistro],
|
||||
n: int,
|
||||
topology: str,
|
||||
default: config.SingleAgentConfig,
|
||||
random,
|
||||
topology: str = None
|
||||
) -> List[Dict[str, Any]]:
|
||||
|
||||
agents = []
|
||||
@ -621,19 +621,18 @@ def _from_distro(
|
||||
from .network_agents import *
|
||||
from .fsm import *
|
||||
from .evented import *
|
||||
|
||||
|
||||
class Agent(NetworkAgent, FSM, EventedAgent):
|
||||
"""Default agent class, has both network and event capabilities"""
|
||||
|
||||
|
||||
from .BassModel import *
|
||||
from .BigMarketModel import *
|
||||
from .IndependentCascadeModel import *
|
||||
from .ModelM2 import *
|
||||
from .SentimentCorrelationModel import *
|
||||
from .SISaModel import *
|
||||
from .CounterModel import *
|
||||
|
||||
|
||||
class Agent(NetworkAgent, EventedAgent):
|
||||
"""Default agent class, has both network and event capabilities"""
|
||||
|
||||
|
||||
try:
|
||||
import scipy
|
||||
from .Geo import Geo
|
||||
|
@ -14,8 +14,11 @@ class NetworkAgent(BaseAgent):
|
||||
def count_neighbors(self, state_id=None, **kwargs):
|
||||
return len(self.get_neighbors(state_id=state_id, **kwargs))
|
||||
|
||||
def iter_neighbors(self, **kwargs):
|
||||
return self.iter_agents(limit_neighbors=True, **kwargs)
|
||||
|
||||
def get_neighbors(self, **kwargs):
|
||||
return list(self.iter_agents(limit_neighbors=True, **kwargs))
|
||||
return list(self.iter_neighbors())
|
||||
|
||||
@property
|
||||
def node(self):
|
||||
|
@ -37,13 +37,8 @@ class Topology(BaseModel):
|
||||
links: List[Edge]
|
||||
|
||||
|
||||
class NetParams(BaseModel, extra=Extra.allow):
|
||||
generator: Union[Callable, str]
|
||||
n: int
|
||||
|
||||
|
||||
class NetConfig(BaseModel):
|
||||
params: Optional[NetParams]
|
||||
params: Optional[Dict[str, Any]]
|
||||
fixed: Optional[Union[Topology, nx.Graph]]
|
||||
path: Optional[str]
|
||||
|
||||
@ -135,9 +130,11 @@ class Config(BaseModel, extra=Extra.allow):
|
||||
num_trials: int = 1
|
||||
max_time: float = 100
|
||||
max_steps: int = -1
|
||||
num_processes: int = 1
|
||||
interval: float = 1
|
||||
seed: str = ""
|
||||
dry_run: bool = False
|
||||
skip_test: bool = False
|
||||
|
||||
model_class: Union[Type, str] = environment.Environment
|
||||
model_params: Optional[Dict[str, Any]] = {}
|
||||
|
@ -1,6 +1,17 @@
|
||||
from mesa import DataCollector as MDC
|
||||
|
||||
|
||||
class SoilDataCollector(MDC):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
class SoilCollector(MDC):
|
||||
def __init__(self, model_reporters=None, agent_reporters=None, tables=None, **kwargs):
|
||||
model_reporters = model_reporters or {}
|
||||
agent_reporters = agent_reporters or {}
|
||||
tables = tables or {}
|
||||
if 'agent_count' not in model_reporters:
|
||||
model_reporters['agent_count'] = lambda m: m.schedule.get_agent_count()
|
||||
if 'state_id' not in agent_reporters:
|
||||
agent_reporters['agent_id'] = lambda agent: agent.get('state_id', None)
|
||||
|
||||
super().__init__(model_reporters=model_reporters,
|
||||
agent_reporters=agent_reporters,
|
||||
tables=tables,
|
||||
**kwargs)
|
||||
|
@ -6,7 +6,7 @@ import math
|
||||
import logging
|
||||
import inspect
|
||||
|
||||
from typing import Any, Dict, Optional, Union
|
||||
from typing import Any, Dict, Optional, Union, List
|
||||
from collections import namedtuple
|
||||
from time import time as current_time
|
||||
from copy import deepcopy
|
||||
@ -16,9 +16,8 @@ from networkx.readwrite import json_graph
|
||||
import networkx as nx
|
||||
|
||||
from mesa import Model
|
||||
from mesa.datacollection import DataCollector
|
||||
|
||||
from . import agents as agentmod, config, serialization, utils, time, network, events
|
||||
from . import agents as agentmod, config, datacollection, serialization, utils, time, network, events
|
||||
|
||||
|
||||
class BaseEnvironment(Model):
|
||||
@ -42,7 +41,8 @@ class BaseEnvironment(Model):
|
||||
dir_path=None,
|
||||
interval=1,
|
||||
agent_class=None,
|
||||
agents: [tuple[type, Dict[str, Any]]] = {},
|
||||
agents: List[tuple[type, Dict[str, Any]]] = {},
|
||||
collector_class: type = datacollection.SoilCollector,
|
||||
agent_reporters: Optional[Any] = None,
|
||||
model_reporters: Optional[Any] = None,
|
||||
tables: Optional[Any] = None,
|
||||
@ -50,7 +50,6 @@ class BaseEnvironment(Model):
|
||||
):
|
||||
|
||||
super().__init__(seed=seed)
|
||||
self.env_params = env_params or {}
|
||||
|
||||
self.current_id = -1
|
||||
|
||||
@ -71,11 +70,14 @@ class BaseEnvironment(Model):
|
||||
|
||||
self.logger = utils.logger.getChild(self.id)
|
||||
|
||||
self.datacollector = DataCollector(
|
||||
collector_class = serialization.deserialize(collector_class)
|
||||
self.datacollector = collector_class(
|
||||
model_reporters=model_reporters,
|
||||
agent_reporters=agent_reporters,
|
||||
tables=tables,
|
||||
)
|
||||
for (k, v) in env_params.items():
|
||||
self[k] = v
|
||||
|
||||
def _agent_from_dict(self, agent):
|
||||
"""
|
||||
@ -89,7 +91,7 @@ class BaseEnvironment(Model):
|
||||
|
||||
return serialization.deserialize(cls)(unique_id=unique_id, model=self, **agent)
|
||||
|
||||
def init_agents(self, agents: Union[config.AgentConfig, [Dict[str, Any]]] = {}):
|
||||
def init_agents(self, agents: Union[config.AgentConfig, List[Dict[str, Any]]] = {}):
|
||||
"""
|
||||
Initialize the agents in the model from either a `soil.config.AgentConfig` or a list of
|
||||
dictionaries that each describes an agent.
|
||||
@ -170,31 +172,41 @@ class BaseEnvironment(Model):
|
||||
Advance one step in the simulation, and update the data collection and scheduler appropriately
|
||||
"""
|
||||
super().step()
|
||||
self.logger.info(
|
||||
f"--- Step: {self.schedule.steps:^5} - Time: {self.now:^5} ---"
|
||||
)
|
||||
# self.logger.info(
|
||||
# "--- Step: {:^5} - Time: {now:^5} ---", steps=self.schedule.steps, now=self.now
|
||||
# )
|
||||
self.schedule.step()
|
||||
self.datacollector.collect(self)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.env_params
|
||||
|
||||
def get(self, key, default=None):
|
||||
"""
|
||||
Get the value of an environment attribute.
|
||||
Return `default` if the value is not set.
|
||||
"""
|
||||
return self.env_params.get(key, default)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return self.env_params.get(key)
|
||||
try:
|
||||
return getattr(self, key)
|
||||
except AttributeError:
|
||||
raise KeyError(f"key {key} not found in environment")
|
||||
|
||||
def __delitem__(self, key):
|
||||
return delattr(self, key)
|
||||
|
||||
def __contains__(self, key):
|
||||
return hasattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
return self.env_params.__setitem__(key, value)
|
||||
setattr(self, key, value)
|
||||
|
||||
def __str__(self):
|
||||
return str(self.env_params)
|
||||
return str(dict(self))
|
||||
|
||||
def __len__(self):
|
||||
return sum(1 for n in self.keys())
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self.agents())
|
||||
|
||||
def get(self, key, default=None):
|
||||
return self[key] if key in self else default
|
||||
|
||||
def keys(self):
|
||||
return (k for k in self.__dict__ if k[0] != "_")
|
||||
|
||||
class NetworkEnvironment(BaseEnvironment):
|
||||
"""
|
||||
@ -208,7 +220,12 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
agents = kwargs.pop("agents", None)
|
||||
super().__init__(*args, agents=None, **kwargs)
|
||||
|
||||
self._set_topology(topology)
|
||||
if topology is None:
|
||||
topology = nx.Graph()
|
||||
elif not isinstance(topology, nx.Graph):
|
||||
topology = network.from_config(topology, dir_path=self.dir_path)
|
||||
|
||||
self.G = topology
|
||||
|
||||
self.init_agents(agents)
|
||||
|
||||
@ -216,14 +233,14 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
"""Initialize the agents from a"""
|
||||
super().init_agents(*args, **kwargs)
|
||||
for agent in self.schedule._agents.values():
|
||||
if hasattr(agent, "node_id"):
|
||||
self._init_node(agent)
|
||||
self._init_node(agent)
|
||||
|
||||
def _init_node(self, agent):
|
||||
"""
|
||||
Make sure the node for a given agent has the proper attributes.
|
||||
"""
|
||||
self.G.nodes[agent.node_id]["agent"] = agent
|
||||
if hasattr(agent, "node_id"):
|
||||
self.G.nodes[agent.node_id]["agent"] = agent
|
||||
|
||||
def _agent_dict_from_config(self, cfg):
|
||||
return agentmod.from_config(cfg, topology=self.G, random=self.random)
|
||||
@ -244,6 +261,7 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
agent["unique_id"] = unique_id
|
||||
agent["topology"] = self.G
|
||||
node_attrs = self.G.nodes[node_id]
|
||||
node_attrs.pop('agent', None)
|
||||
node_attrs.update(agent)
|
||||
agent = node_attrs
|
||||
|
||||
@ -252,17 +270,9 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
|
||||
return a
|
||||
|
||||
def _set_topology(self, cfg=None, dir_path=None):
|
||||
if cfg is None:
|
||||
cfg = nx.Graph()
|
||||
elif not isinstance(cfg, nx.Graph):
|
||||
cfg = network.from_config(cfg, dir_path=dir_path or self.dir_path)
|
||||
|
||||
self.G = cfg
|
||||
|
||||
@property
|
||||
def network_agents(self):
|
||||
for a in self.schedule._agents:
|
||||
for a in self.schedule._agents.values():
|
||||
if isinstance(a, agentmod.NetworkAgent):
|
||||
yield a
|
||||
|
||||
@ -294,7 +304,7 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
|
||||
def add_agent(self, *args, **kwargs):
|
||||
a = super().add_agent(*args, **kwargs)
|
||||
if "node_id" in a:
|
||||
if hasattr(a, "node_id"):
|
||||
assert self.G.nodes[a.node_id]["agent"] == a
|
||||
return a
|
||||
|
||||
@ -309,7 +319,7 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
if "agent" in node:
|
||||
continue
|
||||
a_class = self.random.choices(agent_class, weights)[0]
|
||||
self.add_agent(node_id=node_id, agent_class=a_class, **agent_params)
|
||||
self.add_agent(node_id=node_id, topology=self.G, agent_class=a_class, **agent_params)
|
||||
|
||||
|
||||
class EventedEnvironment(BaseEnvironment):
|
||||
|
@ -104,17 +104,15 @@ def get_dc_dfs(dc, trial_id=None):
|
||||
yield from dfs.items()
|
||||
|
||||
|
||||
class default(Exporter):
|
||||
"""Default exporter. Writes sqlite results, as well as the simulation YAML"""
|
||||
class SQLite(Exporter):
|
||||
"""Writes sqlite results"""
|
||||
|
||||
def sim_start(self):
|
||||
if self.dry_run:
|
||||
logger.info("NOT dumping results")
|
||||
return
|
||||
logger.info("Dumping results to %s", self.outdir)
|
||||
with self.output(self.simulation.name + ".dumped.yml") as f:
|
||||
f.write(self.simulation.to_yaml())
|
||||
self.dbpath = os.path.join(self.outdir, f"{self.simulation.name}.sqlite")
|
||||
logger.info("Dumping results to %s", self.dbpath)
|
||||
try_backup(self.dbpath, remove=True)
|
||||
|
||||
def trial_end(self, env):
|
||||
@ -131,7 +129,6 @@ class default(Exporter):
|
||||
for (t, df) in self.get_dfs(env):
|
||||
df.to_sql(t, con=engine, if_exists="append")
|
||||
|
||||
|
||||
class csv(Exporter):
|
||||
|
||||
"""Export the state of each environment (and its agents) in a separate CSV file"""
|
||||
@ -199,15 +196,61 @@ class summary(Exporter):
|
||||
"""Print a summary of each trial to sys.stdout"""
|
||||
|
||||
def trial_end(self, env):
|
||||
msg = ""
|
||||
for (t, df) in self.get_dfs(env):
|
||||
if not len(df):
|
||||
continue
|
||||
msg = indent(str(df.describe()), " ")
|
||||
logger.info(
|
||||
dedent(
|
||||
f"""
|
||||
tabs = "\t" * 2
|
||||
description = indent(str(df.describe()), tabs)
|
||||
last_line = indent(str(df.iloc[-1:]), tabs)
|
||||
# value_counts = indent(str(df.value_counts()), tabs)
|
||||
value_counts = indent(str(df.apply(lambda x: x.value_counts()).T.stack()), tabs)
|
||||
|
||||
msg += dedent("""
|
||||
Dataframe {t}:
|
||||
"""
|
||||
)
|
||||
+ msg
|
||||
)
|
||||
Last line: :
|
||||
{last_line}
|
||||
|
||||
Description:
|
||||
{description}
|
||||
|
||||
Value counts:
|
||||
{value_counts}
|
||||
|
||||
""").format(**locals())
|
||||
logger.info(msg)
|
||||
|
||||
class YAML(Exporter):
|
||||
"""Writes the configuration of the simulation to a YAML file"""
|
||||
|
||||
def sim_start(self):
|
||||
if self.dry_run:
|
||||
logger.info("NOT dumping results")
|
||||
return
|
||||
with self.output(self.simulation.name + ".dumped.yml") as f:
|
||||
logger.info(f"Dumping simulation configuration to {self.outdir}")
|
||||
f.write(self.simulation.to_yaml())
|
||||
|
||||
class default(Exporter):
|
||||
"""Default exporter. Writes sqlite results, as well as the simulation YAML"""
|
||||
|
||||
def __init__(self, *args, exporter_cls=[], **kwargs):
|
||||
exporter_cls = exporter_cls or [YAML, SQLite, summary]
|
||||
self.inner = [cls(*args, **kwargs) for cls in exporter_cls]
|
||||
|
||||
def sim_start(self):
|
||||
for exporter in self.inner:
|
||||
exporter.sim_start()
|
||||
|
||||
def sim_end(self):
|
||||
for exporter in self.inner:
|
||||
exporter.sim_end()
|
||||
|
||||
def trial_start(self, env):
|
||||
for exporter in self.inner:
|
||||
exporter.trial_start(env)
|
||||
|
||||
|
||||
def trial_end(self, env):
|
||||
for exporter in self.inner:
|
||||
exporter.trial_end(env)
|
@ -30,7 +30,7 @@ def from_config(cfg: config.NetConfig, dir_path: str = None):
|
||||
return method(path, **kwargs)
|
||||
|
||||
if cfg.params:
|
||||
net_args = cfg.params.dict()
|
||||
net_args = dict(cfg.params)
|
||||
net_gen = net_args.pop("generator")
|
||||
|
||||
if dir_path not in sys.path:
|
||||
|
@ -146,7 +146,10 @@ def serialize(v, known_modules=KNOWN_MODULES):
|
||||
|
||||
|
||||
def serialize_dict(d, known_modules=KNOWN_MODULES):
|
||||
d = dict(d)
|
||||
try:
|
||||
d = dict(d)
|
||||
except (ValueError, TypeError) as ex:
|
||||
return serialize(d)[0]
|
||||
for (k, v) in d.items():
|
||||
if isinstance(v, dict):
|
||||
d[k] = serialize_dict(v, known_modules=known_modules)
|
||||
|
@ -48,12 +48,17 @@ class Simulation:
|
||||
max_steps: int = -1
|
||||
interval: int = 1
|
||||
num_trials: int = 1
|
||||
parallel: Optional[bool] = None
|
||||
exporters: Optional[List[str]] = field(default_factory=list)
|
||||
num_processes: Optional[int] = 1
|
||||
parallel: Optional[bool] = False
|
||||
exporters: Optional[List[str]] = field(default_factory=lambda: [exporters.default])
|
||||
model_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
|
||||
agent_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
|
||||
tables: Optional[Dict[str, Any]] = field(default_factory=dict)
|
||||
outdir: Optional[str] = None
|
||||
exporter_params: Optional[Dict[str, Any]] = field(default_factory=dict)
|
||||
dry_run: bool = False
|
||||
extra: Dict[str, Any] = field(default_factory=dict)
|
||||
skip_test: Optional[bool] = False
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, env, **kwargs):
|
||||
@ -89,7 +94,7 @@ class Simulation:
|
||||
|
||||
def run_gen(
|
||||
self,
|
||||
parallel=False,
|
||||
num_processes=1,
|
||||
dry_run=None,
|
||||
exporters=None,
|
||||
outdir=None,
|
||||
@ -128,7 +133,7 @@ class Simulation:
|
||||
for env in utils.run_parallel(
|
||||
func=self.run_trial,
|
||||
iterable=range(int(self.num_trials)),
|
||||
parallel=parallel,
|
||||
num_processes=num_processes,
|
||||
log_level=log_level,
|
||||
**kwargs,
|
||||
):
|
||||
@ -158,8 +163,12 @@ class Simulation:
|
||||
params.update(model_params)
|
||||
params.update(kwargs)
|
||||
|
||||
agent_reporters = deserialize_reporters(params.pop("agent_reporters", {}))
|
||||
model_reporters = deserialize_reporters(params.pop("model_reporters", {}))
|
||||
agent_reporters = self.agent_reporters.copy()
|
||||
agent_reporters.update(deserialize_reporters(params.pop("agent_reporters", {})))
|
||||
model_reporters = self.model_reporters.copy()
|
||||
model_reporters.update(deserialize_reporters(params.pop("model_reporters", {})))
|
||||
tables = self.tables.copy()
|
||||
tables.update(deserialize_reporters(params.pop("tables", {})))
|
||||
|
||||
env = serialization.deserialize(self.model_class)
|
||||
return env(
|
||||
@ -168,6 +177,7 @@ class Simulation:
|
||||
dir_path=self.dir_path,
|
||||
agent_reporters=agent_reporters,
|
||||
model_reporters=model_reporters,
|
||||
tables=tables,
|
||||
**params,
|
||||
)
|
||||
|
||||
@ -234,12 +244,7 @@ Model stats:
|
||||
|
||||
def to_dict(self):
|
||||
d = asdict(self)
|
||||
if not isinstance(d["model_class"], str):
|
||||
d["model_class"] = serialization.name(d["model_class"])
|
||||
d["model_params"] = serialization.serialize_dict(d["model_params"])
|
||||
d["dir_path"] = str(d["dir_path"])
|
||||
d["version"] = "2"
|
||||
return d
|
||||
return serialization.serialize_dict(d)
|
||||
|
||||
def to_yaml(self):
|
||||
return yaml.dump(self.to_dict())
|
||||
@ -261,6 +266,24 @@ def from_config(conf_or_path):
|
||||
raise AttributeError("Provide only one configuration")
|
||||
return lst[0]
|
||||
|
||||
def iter_from_py(pyfile, module_name='custom_simulation'):
|
||||
"""Try to load every Simulation instance in a given Python file"""
|
||||
import importlib
|
||||
import inspect
|
||||
spec = importlib.util.spec_from_file_location(module_name, pyfile)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
sys.modules[module_name] = module
|
||||
spec.loader.exec_module(module)
|
||||
# import pdb;pdb.set_trace()
|
||||
for (_name, sim) in inspect.getmembers(module, lambda x: isinstance(x, Simulation)):
|
||||
yield sim
|
||||
del sys.modules[module_name]
|
||||
|
||||
|
||||
def from_py(pyfile):
|
||||
return next(iter_from_py(pyfile))
|
||||
|
||||
|
||||
|
||||
def run_from_config(*configs, **kwargs):
|
||||
for sim in iter_from_config(*configs):
|
||||
|
@ -133,10 +133,10 @@ class TimedActivation(BaseScheduler):
|
||||
"""
|
||||
|
||||
self.logger.debug(f"Simulation step {self.time}")
|
||||
if not self.model.running:
|
||||
if not self.model.running or self.time == INFINITY:
|
||||
return
|
||||
|
||||
self.logger.debug(f"Queue length: {len(self._queue)}")
|
||||
self.logger.debug("Queue length: {ql}", ql=len(self._queue))
|
||||
|
||||
while self._queue:
|
||||
((when, _id, cond), agent) = self._queue[0]
|
||||
@ -156,7 +156,7 @@ class TimedActivation(BaseScheduler):
|
||||
agent._last_return = None
|
||||
agent._last_except = None
|
||||
|
||||
self.logger.debug(f"Stepping agent {agent}")
|
||||
self.logger.debug("Stepping agent {agent}", agent=agent)
|
||||
self._next.pop(agent.unique_id, None)
|
||||
|
||||
try:
|
||||
@ -187,6 +187,7 @@ class TimedActivation(BaseScheduler):
|
||||
return self.time
|
||||
|
||||
next_time = self._queue[0][0][0]
|
||||
|
||||
if next_time < self.time:
|
||||
raise Exception(
|
||||
f"An agent has been scheduled for a time in the past, there is probably an error ({when} < {self.time})"
|
||||
|
@ -5,7 +5,7 @@ import traceback
|
||||
|
||||
from functools import partial
|
||||
from shutil import copyfile, move
|
||||
from multiprocessing import Pool
|
||||
from multiprocessing import Pool, cpu_count
|
||||
|
||||
from contextlib import contextmanager
|
||||
|
||||
@ -24,7 +24,7 @@ consoleHandler = logging.StreamHandler()
|
||||
consoleHandler.setFormatter(logFormatter)
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
level=logging.DEBUG,
|
||||
handlers=[
|
||||
consoleHandler,
|
||||
],
|
||||
@ -140,9 +140,11 @@ def run_and_return_exceptions(func, *args, **kwargs):
|
||||
return ex
|
||||
|
||||
|
||||
def run_parallel(func, iterable, parallel=False, **kwargs):
|
||||
if parallel and not os.environ.get("SOIL_DEBUG", None):
|
||||
p = Pool()
|
||||
def run_parallel(func, iterable, num_processes=1, **kwargs):
|
||||
if num_processes > 1 and not os.environ.get("SOIL_DEBUG", None):
|
||||
if num_processes < 1:
|
||||
num_processes = cpu_count() - num_processes
|
||||
p = Pool(processes=num_processes)
|
||||
wrapped_func = partial(run_and_return_exceptions, func, **kwargs)
|
||||
for i in p.imap_unordered(wrapped_func, iterable):
|
||||
if isinstance(i, Exception):
|
||||
|
@ -99,7 +99,7 @@ class TestConfig(TestCase):
|
||||
with utils.timer("serializing"):
|
||||
serial = s.to_yaml()
|
||||
with utils.timer("recovering"):
|
||||
recovered = yaml.load(serial, Loader=yaml.SafeLoader)
|
||||
recovered = yaml.load(serial, Loader=yaml.FullLoader)
|
||||
for (k, v) in config.items():
|
||||
assert recovered[k] == v
|
||||
|
||||
@ -109,24 +109,23 @@ def make_example_test(path, cfg):
|
||||
root = os.getcwd()
|
||||
print(path)
|
||||
s = simulation.from_config(cfg)
|
||||
# for s in simulation.all_from_config(path):
|
||||
# iterations = s.config.max_time * s.config.num_trials
|
||||
# if iterations > 1000:
|
||||
# s.config.max_time = 100
|
||||
# s.config.num_trials = 1
|
||||
# if config.get('skip_test', False) and not FORCE_TESTS:
|
||||
# self.skipTest('Example ignored.')
|
||||
# envs = s.run_simulation(dry_run=True)
|
||||
# assert envs
|
||||
# for env in envs:
|
||||
# assert env
|
||||
# try:
|
||||
# n = config['network_params']['n']
|
||||
# assert len(list(env.network_agents)) == n
|
||||
# assert env.now > 0 # It has run
|
||||
# assert env.now <= config['max_time'] # But not further than allowed
|
||||
# except KeyError:
|
||||
# pass
|
||||
iterations = s.max_time * s.num_trials
|
||||
if iterations > 1000:
|
||||
s.max_time = 100
|
||||
s.num_trials = 1
|
||||
if cfg.skip_test and not FORCE_TESTS:
|
||||
self.skipTest('Example ignored.')
|
||||
envs = s.run_simulation(dry_run=True)
|
||||
assert envs
|
||||
for env in envs:
|
||||
assert env
|
||||
try:
|
||||
n = cfg.model_params['topology']['params']['n']
|
||||
assert len(list(env.network_agents)) == n
|
||||
assert env.now > 0 # It has run
|
||||
assert env.now <= cfg.max_time # But not further than allowed
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
return wrapped
|
||||
|
||||
|
@ -1,8 +1,9 @@
|
||||
from unittest import TestCase
|
||||
import os
|
||||
from os.path import join
|
||||
from glob import glob
|
||||
|
||||
from soil import serialization, simulation, config
|
||||
from soil import simulation, config
|
||||
|
||||
ROOT = os.path.abspath(os.path.dirname(__file__))
|
||||
EXAMPLES = join(ROOT, "..", "examples")
|
||||
@ -14,44 +15,49 @@ class TestExamples(TestCase):
|
||||
pass
|
||||
|
||||
|
||||
def make_example_test(path, cfg):
|
||||
def get_test_for_sim(sim, path):
|
||||
root = os.getcwd()
|
||||
iterations = sim.max_steps * sim.num_trials
|
||||
if iterations < 0 or iterations > 1000:
|
||||
sim.max_steps = 100
|
||||
sim.num_trials = 1
|
||||
|
||||
def wrapped(self):
|
||||
root = os.getcwd()
|
||||
for s in simulation.iter_from_config(cfg):
|
||||
iterations = s.max_steps * s.num_trials
|
||||
if iterations < 0 or iterations > 1000:
|
||||
s.max_steps = 100
|
||||
s.num_trials = 1
|
||||
assert isinstance(cfg, config.Config)
|
||||
if getattr(cfg, "skip_test", False) and not FORCE_TESTS:
|
||||
self.skipTest("Example ignored.")
|
||||
envs = s.run_simulation(dry_run=True)
|
||||
assert envs
|
||||
for env in envs:
|
||||
assert env
|
||||
try:
|
||||
n = cfg.model_params["network_params"]["n"]
|
||||
assert len(list(env.network_agents)) == n
|
||||
except KeyError:
|
||||
pass
|
||||
assert env.schedule.steps > 0 # It has run
|
||||
assert env.schedule.steps <= s.max_steps # But not further than allowed
|
||||
envs = sim.run_simulation(dry_run=True)
|
||||
assert envs
|
||||
for env in envs:
|
||||
assert env
|
||||
try:
|
||||
n = sim.model_params["network_params"]["n"]
|
||||
assert len(list(env.network_agents)) == n
|
||||
except KeyError:
|
||||
pass
|
||||
assert env.schedule.steps > 0 # It has run
|
||||
assert env.schedule.steps <= sim.max_steps # But not further than allowed
|
||||
|
||||
return wrapped
|
||||
|
||||
|
||||
def add_example_tests():
|
||||
for cfg, path in serialization.load_files(
|
||||
join(EXAMPLES, "**", "*.yml"),
|
||||
):
|
||||
sim_paths = []
|
||||
for path in glob(join(EXAMPLES, '**', '*.yml')):
|
||||
if "soil_output" in path:
|
||||
continue
|
||||
p = make_example_test(path=path, cfg=config.Config.from_raw(cfg))
|
||||
for sim in simulation.iter_from_config(path):
|
||||
sim_paths.append((sim, path))
|
||||
for path in glob(join(EXAMPLES, '**', '*.py')):
|
||||
for sim in simulation.iter_from_py(path):
|
||||
sim_paths.append((sim, path))
|
||||
|
||||
for (sim, path) in sim_paths:
|
||||
if sim.skip_test and not FORCE_TESTS:
|
||||
continue
|
||||
test_case = get_test_for_sim(sim, path)
|
||||
fname = os.path.basename(path)
|
||||
p.__name__ = "test_example_file_%s" % fname
|
||||
p.__doc__ = "%s should be a valid configuration" % fname
|
||||
setattr(TestExamples, p.__name__, p)
|
||||
del p
|
||||
test_case.__name__ = "test_example_file_%s" % fname
|
||||
test_case.__doc__ = "%s should be a valid configuration" % fname
|
||||
setattr(TestExamples, test_case.__name__, test_case)
|
||||
del test_case
|
||||
|
||||
|
||||
add_example_tests()
|
||||
|
Loading…
Reference in New Issue
Block a user