1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-14 07:22:29 +00:00
soil/soil.py

128 lines
4.4 KiB
Python
Raw Normal View History

from models import *
2015-12-04 10:41:42 +00:00
from nxsim import NetworkSimulation
2016-04-18 10:23:24 +00:00
import numpy
from matplotlib import pyplot as plt
2015-12-04 10:41:42 +00:00
import networkx as nx
import settings
import models
2015-12-18 12:03:58 +00:00
import math
import json
2015-12-04 10:41:42 +00:00
2017-04-27 11:15:56 +00:00
#################
# Visualization #
#################
def visualization(graph_name):
for x in range(0, settings.number_of_nodes):
for attribute in models.networkStatus["agent_%s" % x]:
emotionStatusAux = []
for t_step in models.networkStatus["agent_%s" % x][attribute]:
prec = 2
output = math.floor(models.networkStatus["agent_%s" % x][attribute][t_step] * (10 ** prec)) / (10 ** prec) # 2 decimals
2017-05-04 12:11:22 +00:00
emotionStatusAux.append((output, t_step, t_step+settings.timeout))
attributes = {}
attributes[attribute] = emotionStatusAux
G.add_node(x, attributes)
print("Done!")
with open('data.txt', 'w') as outfile:
json.dump(models.networkStatus, outfile, sort_keys=True, indent=4, separators=(',', ': '))
nx.write_gexf(G, graph_name+".gexf", version="1.2draft")
2017-04-27 11:15:56 +00:00
###########
# Results #
###########
2017-04-27 11:15:56 +00:00
def results(model_name):
x_values = []
infected_values = []
neutral_values = []
cured_values = []
vaccinated_values = []
attribute_plot = 'status'
for time in range(0, settings.max_time):
value_infectados = 0
value_neutral = 0
value_cured = 0
value_vaccinated = 0
real_time = time * settings.timeout
activity = False
for x in range(0, settings.number_of_nodes):
if attribute_plot in models.networkStatus["agent_%s" % x]:
if real_time in models.networkStatus["agent_%s" % x][attribute_plot]:
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == 1: ## Infected
value_infectados += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == 0: ## Neutral
value_neutral += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == 2: ## Cured
value_cured += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == 3: ## Vaccinated
value_vaccinated += 1
activity = True
if activity:
x_values.append(real_time)
infected_values.append(value_infectados)
neutral_values.append(value_neutral)
cured_values.append(value_cured)
vaccinated_values.append(value_vaccinated)
activity = False
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
infected_line = ax1.plot(x_values, infected_values, label='Infected')
neutral_line = ax1.plot(x_values, neutral_values, label='Neutral')
cured_line = ax1.plot(x_values, cured_values, label='Cured')
vaccinated_line = ax1.plot(x_values, vaccinated_values, label='Vaccinated')
ax1.legend()
fig1.savefig(model_name+'.png')
# plt.show()
2015-12-04 10:41:42 +00:00
2015-12-04 11:32:24 +00:00
####################
# Network creation #
####################
2015-12-04 10:41:42 +00:00
if settings.network_type == 0:
G = nx.complete_graph(settings.number_of_nodes)
if settings.network_type == 1:
2017-04-21 11:55:42 +00:00
G = nx.barabasi_albert_graph(settings.number_of_nodes, 10)
2015-12-04 10:41:42 +00:00
if settings.network_type == 2:
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
2015-12-04 11:32:24 +00:00
# More types of networks can be added here
2015-12-04 10:41:42 +00:00
2017-04-21 11:55:42 +00:00
2015-12-04 11:32:24 +00:00
##############
# Simulation #
##############
2015-12-04 10:41:42 +00:00
agents = settings.environment_params['agent']
2017-04-21 11:55:42 +00:00
print("Using Agent(s): {agents}".format(agents=agents))
2015-12-04 10:41:42 +00:00
if len(agents) > 1:
for agent in agents:
sim = NetworkSimulation(topology=G, states=init_states, agent_type=locals()[agent], max_time=settings.max_time,
2017-04-27 11:15:56 +00:00
num_trials=settings.num_trials, logging_interval=1.0, **settings.environment_params)
sim.run_simulation()
print(str(agent))
results(str(agent))
visualization(str(agent))
else:
agent = agents[0]
sim = NetworkSimulation(topology=G, states=init_states, agent_type=locals()[agent], max_time=settings.max_time,
2017-04-27 11:15:56 +00:00
num_trials=settings.num_trials, logging_interval=1.0, **settings.environment_params)
sim.run_simulation()
results(str(agent))
visualization(str(agent))