mirror of
https://github.com/gsi-upm/soil
synced 2024-12-22 08:18:13 +00:00
Updated readthedocs
This commit is contained in:
parent
f1bb636ca8
commit
23fc9671c3
BIN
docs/_build/doctrees/demo.doctree
vendored
Normal file
BIN
docs/_build/doctrees/demo.doctree
vendored
Normal file
Binary file not shown.
BIN
docs/_build/doctrees/environment.pickle
vendored
BIN
docs/_build/doctrees/environment.pickle
vendored
Binary file not shown.
BIN
docs/_build/doctrees/index.doctree
vendored
BIN
docs/_build/doctrees/index.doctree
vendored
Binary file not shown.
BIN
docs/_build/doctrees/models.doctree
vendored
Normal file
BIN
docs/_build/doctrees/models.doctree
vendored
Normal file
Binary file not shown.
BIN
docs/_build/doctrees/usage.doctree
vendored
Normal file
BIN
docs/_build/doctrees/usage.doctree
vendored
Normal file
Binary file not shown.
0
docs/_build/html/_sources/demo.rst.txt
vendored
Normal file
0
docs/_build/html/_sources/demo.rst.txt
vendored
Normal file
12
docs/_build/html/_sources/index.rst.txt
vendored
12
docs/_build/html/_sources/index.rst.txt
vendored
@ -13,11 +13,13 @@ Soil is an Agent-based Social Simulator in Python for modelling and simulation o
|
||||
:caption: Learn more about soil:
|
||||
|
||||
installation
|
||||
usage
|
||||
models
|
||||
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
||||
.. Indices and tables
|
||||
==================
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
||||
|
112
docs/_build/html/_sources/models.rst.txt
vendored
Normal file
112
docs/_build/html/_sources/models.rst.txt
vendored
Normal file
@ -0,0 +1,112 @@
|
||||
Developing new models
|
||||
---------------------
|
||||
This document describes how to develop a new analysis model.
|
||||
|
||||
What is a model?
|
||||
================
|
||||
|
||||
A model defines the behaviour of the agents with a view to assessing their effects on the system as a whole.
|
||||
In practice, a model consists of at least two parts:
|
||||
|
||||
* Python module: the actual code that describes the behaviour.
|
||||
* Setting up the variables in the Simulation Settings JSON file.
|
||||
|
||||
This separation allows us to run the simulation with different agents.
|
||||
|
||||
Models Code
|
||||
===========
|
||||
|
||||
All the models are imported to the main file. The initialization look like this:
|
||||
|
||||
.. code:: python
|
||||
|
||||
import settings
|
||||
|
||||
networkStatus = {} # Dict that will contain the status of every agent in the network
|
||||
|
||||
sentimentCorrelationNodeArray = []
|
||||
for x in range(0, settings.number_of_nodes):
|
||||
sentimentCorrelationNodeArray.append({'id': x})
|
||||
# Initialize agent states. Let's assume everyone is normal.
|
||||
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)]
|
||||
# add keys as as necessary, but "id" must always refer to that state category
|
||||
|
||||
A new model have to inherit the BaseBehaviour class which is in the same module.
|
||||
There are two basics methods:
|
||||
|
||||
* __init__
|
||||
* step: used to define the behaviour over time.
|
||||
|
||||
Variable Initialization
|
||||
=======================
|
||||
|
||||
The different parameters of the model have to be initialize in the Simulation Settings JSON file which will be
|
||||
passed as a parameter to the simulation.
|
||||
|
||||
.. code:: json
|
||||
|
||||
{
|
||||
"agent": ["SISaModel","ControlModelM2"],
|
||||
|
||||
"neutral_discontent_spon_prob": 0.04,
|
||||
"neutral_discontent_infected_prob": 0.04,
|
||||
"neutral_content_spon_prob": 0.18,
|
||||
"neutral_content_infected_prob": 0.02,
|
||||
|
||||
"discontent_neutral": 0.13,
|
||||
"discontent_content": 0.07,
|
||||
"variance_d_c": 0.02,
|
||||
|
||||
"content_discontent": 0.009,
|
||||
"variance_c_d": 0.003,
|
||||
"content_neutral": 0.088,
|
||||
|
||||
"standard_variance": 0.055,
|
||||
|
||||
|
||||
"prob_neutral_making_denier": 0.035,
|
||||
|
||||
"prob_infect": 0.075,
|
||||
|
||||
"prob_cured_healing_infected": 0.035,
|
||||
"prob_cured_vaccinate_neutral": 0.035,
|
||||
|
||||
"prob_vaccinated_healing_infected": 0.035,
|
||||
"prob_vaccinated_vaccinate_neutral": 0.035,
|
||||
"prob_generate_anti_rumor": 0.035
|
||||
}
|
||||
|
||||
In this file you will also define the models you are going to simulate. You can simulate as many models as you want.
|
||||
The simulation returns one result for each model. For the usage, see :doc:`usage`.
|
||||
|
||||
Example Model
|
||||
=============
|
||||
|
||||
In this section, we will implement a Sentiment Correlation Model.
|
||||
|
||||
The class would look like this:
|
||||
|
||||
.. code:: python
|
||||
|
||||
from ..BaseBehaviour import *
|
||||
from .. import sentimentCorrelationNodeArray
|
||||
|
||||
class SentimentCorrelationModel(BaseBehaviour):
|
||||
|
||||
def __init__(self, environment=None, agent_id=0, state=()):
|
||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
||||
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
|
||||
self.anger_prob = environment.environment_params['anger_prob']
|
||||
self.joy_prob = environment.environment_params['joy_prob']
|
||||
self.sadness_prob = environment.environment_params['sadness_prob']
|
||||
self.disgust_prob = environment.environment_params['disgust_prob']
|
||||
self.time_awareness = []
|
||||
for i in range(4): # In this model we have 4 sentiments
|
||||
self.time_awareness.append(0) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
|
||||
sentimentCorrelationNodeArray[self.id][self.env.now] = 0
|
||||
|
||||
def step(self, now):
|
||||
self.behaviour() # Method which define the behaviour
|
||||
super().step(now)
|
||||
|
||||
The variables will be modified by the user, so you have to include them in the Simulation Settings JSON file.
|
98
docs/_build/html/_sources/usage.rst.txt
vendored
Normal file
98
docs/_build/html/_sources/usage.rst.txt
vendored
Normal file
@ -0,0 +1,98 @@
|
||||
Usage
|
||||
-----
|
||||
|
||||
First of all, you need to install the package. See :doc:`installation` for installation instructions.
|
||||
|
||||
Simulation Settings
|
||||
===================
|
||||
|
||||
Once installed, before running a simulation, you need to configure it.
|
||||
|
||||
* In the settings.py file you will find the configuration of the network.
|
||||
|
||||
.. code:: python
|
||||
|
||||
# Network settings
|
||||
network_type = 1
|
||||
number_of_nodes = 1000
|
||||
max_time = 50
|
||||
num_trials = 1
|
||||
timeout = 2
|
||||
|
||||
* In the Simulation Settings JSON file, you will find the configuration of the models.
|
||||
|
||||
Network Types
|
||||
=============
|
||||
|
||||
There are three types of network implemented, but you could add more.
|
||||
|
||||
.. code:: python
|
||||
|
||||
if settings.network_type == 0:
|
||||
G = nx.complete_graph(settings.number_of_nodes)
|
||||
if settings.network_type == 1:
|
||||
G = nx.barabasi_albert_graph(settings.number_of_nodes, 10)
|
||||
if settings.network_type == 2:
|
||||
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
|
||||
# More types of networks can be added here
|
||||
|
||||
Models Settings
|
||||
===============
|
||||
|
||||
After having configured the simulation, the next step is setting up the variables of the models.
|
||||
For this, you will need to modify the Simulation Settings JSON file.
|
||||
|
||||
.. code:: json
|
||||
|
||||
{
|
||||
"agent": ["SISaModel","ControlModelM2"],
|
||||
|
||||
"neutral_discontent_spon_prob": 0.04,
|
||||
"neutral_discontent_infected_prob": 0.04,
|
||||
"neutral_content_spon_prob": 0.18,
|
||||
"neutral_content_infected_prob": 0.02,
|
||||
|
||||
"discontent_neutral": 0.13,
|
||||
"discontent_content": 0.07,
|
||||
"variance_d_c": 0.02,
|
||||
|
||||
"content_discontent": 0.009,
|
||||
"variance_c_d": 0.003,
|
||||
"content_neutral": 0.088,
|
||||
|
||||
"standard_variance": 0.055,
|
||||
|
||||
|
||||
"prob_neutral_making_denier": 0.035,
|
||||
|
||||
"prob_infect": 0.075,
|
||||
|
||||
"prob_cured_healing_infected": 0.035,
|
||||
"prob_cured_vaccinate_neutral": 0.035,
|
||||
|
||||
"prob_vaccinated_healing_infected": 0.035,
|
||||
"prob_vaccinated_vaccinate_neutral": 0.035,
|
||||
"prob_generate_anti_rumor": 0.035
|
||||
}
|
||||
|
||||
In this file you will define the different models you are going to simulate. You can simulate as many models
|
||||
as you want.
|
||||
|
||||
After setting up the models, you have to initialize the parameters of each one. You will find the parameters needed
|
||||
in the documentation of each model.
|
||||
|
||||
Parameter validation will fail if a required parameter without a default has not been provided.
|
||||
|
||||
Running the Simulation
|
||||
======================
|
||||
|
||||
After setting all the configuration, you will be able to run the simulation. All you need to do is execute:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
python soil.py
|
||||
|
||||
The simulation will return a dynamic graph .gexf file which could be visualized with
|
||||
`Gephi <https://gephi.org/users/download/>`__.
|
||||
|
||||
It will also return one .png picture for each model simulated.
|
96
docs/_build/html/demo.html
vendored
Normal file
96
docs/_build/html/demo.html
vendored
Normal file
@ -0,0 +1,96 @@
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||||
|
||||
|
||||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
||||
|
||||
<title><no title> — Soil 0.1 documentation</title>
|
||||
|
||||
<link rel="stylesheet" href="_static/alabaster.css" type="text/css" />
|
||||
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
|
||||
|
||||
<script type="text/javascript">
|
||||
var DOCUMENTATION_OPTIONS = {
|
||||
URL_ROOT: './',
|
||||
VERSION: '0.1',
|
||||
COLLAPSE_INDEX: false,
|
||||
FILE_SUFFIX: '.html',
|
||||
HAS_SOURCE: true,
|
||||
SOURCELINK_SUFFIX: '.txt'
|
||||
};
|
||||
</script>
|
||||
<script type="text/javascript" src="_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="_static/doctools.js"></script>
|
||||
<link rel="index" title="Index" href="genindex.html" />
|
||||
<link rel="search" title="Search" href="search.html" />
|
||||
<link rel="prev" title="Models" href="models.html" />
|
||||
|
||||
<link rel="stylesheet" href="_static/custom.css" type="text/css" />
|
||||
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
|
||||
|
||||
</head>
|
||||
<body role="document">
|
||||
|
||||
|
||||
<div class="document">
|
||||
<div class="documentwrapper">
|
||||
<div class="bodywrapper">
|
||||
<div class="body" role="main">
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
||||
<div class="sphinxsidebarwrapper"><div class="relations">
|
||||
<h3>Related Topics</h3>
|
||||
<ul>
|
||||
<li><a href="index.html">Documentation overview</a><ul>
|
||||
<li>Previous: <a href="models.html" title="previous chapter">Models</a></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
</div>
|
||||
<div role="note" aria-label="source link">
|
||||
<h3>This Page</h3>
|
||||
<ul class="this-page-menu">
|
||||
<li><a href="_sources/demo.rst.txt"
|
||||
rel="nofollow">Show Source</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
<div id="searchbox" style="display: none" role="search">
|
||||
<h3>Quick search</h3>
|
||||
<form class="search" action="search.html" method="get">
|
||||
<div><input type="text" name="q" /></div>
|
||||
<div><input type="submit" value="Go" /></div>
|
||||
<input type="hidden" name="check_keywords" value="yes" />
|
||||
<input type="hidden" name="area" value="default" />
|
||||
</form>
|
||||
</div>
|
||||
<script type="text/javascript">$('#searchbox').show(0);</script>
|
||||
</div>
|
||||
</div>
|
||||
<div class="clearer"></div>
|
||||
</div>
|
||||
<div class="footer">
|
||||
©2017, GSI.
|
||||
|
||||
|
|
||||
Powered by <a href="http://sphinx-doc.org/">Sphinx 1.5.1</a>
|
||||
& <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.9</a>
|
||||
|
||||
|
|
||||
<a href="_sources/demo.rst.txt"
|
||||
rel="nofollow">Page source</a>
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
30
docs/_build/html/index.html
vendored
30
docs/_build/html/index.html
vendored
@ -49,16 +49,22 @@
|
||||
<p class="caption"><span class="caption-text">Learn more about soil:</span></p>
|
||||
<ul>
|
||||
<li class="toctree-l1"><a class="reference internal" href="installation.html">Installation</a></li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="usage.html">Usage</a><ul>
|
||||
<li class="toctree-l2"><a class="reference internal" href="usage.html#simulation-settings">Simulation Settings</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="usage.html#network-types">Network Types</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="usage.html#models-settings">Models Settings</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="usage.html#running-the-simulation">Running the Simulation</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li class="toctree-l1"><a class="reference internal" href="models.html">Developing new models</a><ul>
|
||||
<li class="toctree-l2"><a class="reference internal" href="models.html#what-is-a-model">What is a model?</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="models.html#models-code">Models Code</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="models.html#variable-initialization">Variable Initialization</a></li>
|
||||
<li class="toctree-l2"><a class="reference internal" href="models.html#example-model">Example Model</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
<div class="section" id="indices-and-tables">
|
||||
<h1>Indices and tables<a class="headerlink" href="#indices-and-tables" title="Permalink to this headline">¶</a></h1>
|
||||
<ul class="simple">
|
||||
<li><a class="reference internal" href="genindex.html"><span class="std std-ref">Index</span></a></li>
|
||||
<li><a class="reference internal" href="py-modindex.html"><span class="std std-ref">Module Index</span></a></li>
|
||||
<li><a class="reference internal" href="search.html"><span class="std std-ref">Search Page</span></a></li>
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
|
||||
@ -66,13 +72,7 @@
|
||||
</div>
|
||||
</div>
|
||||
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
||||
<div class="sphinxsidebarwrapper">
|
||||
<h3><a href="#">Table Of Contents</a></h3>
|
||||
<ul>
|
||||
<li><a class="reference internal" href="#">Welcome to Soil’s documentation!</a></li>
|
||||
<li><a class="reference internal" href="#indices-and-tables">Indices and tables</a></li>
|
||||
</ul>
|
||||
<div class="relations">
|
||||
<div class="sphinxsidebarwrapper"><div class="relations">
|
||||
<h3>Related Topics</h3>
|
||||
<ul>
|
||||
<li><a href="#">Documentation overview</a><ul>
|
||||
|
210
docs/_build/html/models.html
vendored
Normal file
210
docs/_build/html/models.html
vendored
Normal file
@ -0,0 +1,210 @@
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||||
|
||||
|
||||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
||||
|
||||
<title>Developing new models — Soil 0.1 documentation</title>
|
||||
|
||||
<link rel="stylesheet" href="_static/alabaster.css" type="text/css" />
|
||||
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
|
||||
|
||||
<script type="text/javascript">
|
||||
var DOCUMENTATION_OPTIONS = {
|
||||
URL_ROOT: './',
|
||||
VERSION: '0.1',
|
||||
COLLAPSE_INDEX: false,
|
||||
FILE_SUFFIX: '.html',
|
||||
HAS_SOURCE: true,
|
||||
SOURCELINK_SUFFIX: '.txt'
|
||||
};
|
||||
</script>
|
||||
<script type="text/javascript" src="_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="_static/doctools.js"></script>
|
||||
<link rel="index" title="Index" href="genindex.html" />
|
||||
<link rel="search" title="Search" href="search.html" />
|
||||
<link rel="prev" title="Usage" href="usage.html" />
|
||||
|
||||
<link rel="stylesheet" href="_static/custom.css" type="text/css" />
|
||||
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
|
||||
|
||||
</head>
|
||||
<body role="document">
|
||||
|
||||
|
||||
<div class="document">
|
||||
<div class="documentwrapper">
|
||||
<div class="bodywrapper">
|
||||
<div class="body" role="main">
|
||||
|
||||
<div class="section" id="developing-new-models">
|
||||
<h1>Developing new models<a class="headerlink" href="#developing-new-models" title="Permalink to this headline">¶</a></h1>
|
||||
<p>This document describes how to develop a new analysis model.</p>
|
||||
<div class="section" id="what-is-a-model">
|
||||
<h2>What is a model?<a class="headerlink" href="#what-is-a-model" title="Permalink to this headline">¶</a></h2>
|
||||
<p>A model defines the behaviour of the agents with a view to assessing their effects on the system as a whole.
|
||||
In practice, a model consists of at least two parts:</p>
|
||||
<ul class="simple">
|
||||
<li>Python module: the actual code that describes the behaviour.</li>
|
||||
<li>Setting up the variables in the Simulation Settings JSON file.</li>
|
||||
</ul>
|
||||
<p>This separation allows us to run the simulation with different agents.</p>
|
||||
</div>
|
||||
<div class="section" id="models-code">
|
||||
<h2>Models Code<a class="headerlink" href="#models-code" title="Permalink to this headline">¶</a></h2>
|
||||
<p>All the models are imported to the main file. The initialization look like this:</p>
|
||||
<div class="code python highlight-default"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">settings</span>
|
||||
|
||||
<span class="n">networkStatus</span> <span class="o">=</span> <span class="p">{}</span> <span class="c1"># Dict that will contain the status of every agent in the network</span>
|
||||
|
||||
<span class="n">sentimentCorrelationNodeArray</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">settings</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">):</span>
|
||||
<span class="n">sentimentCorrelationNodeArray</span><span class="o">.</span><span class="n">append</span><span class="p">({</span><span class="s1">'id'</span><span class="p">:</span> <span class="n">x</span><span class="p">})</span>
|
||||
<span class="c1"># Initialize agent states. Let's assume everyone is normal.</span>
|
||||
<span class="n">init_states</span> <span class="o">=</span> <span class="p">[{</span><span class="s1">'id'</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="p">}</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">settings</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">)]</span>
|
||||
<span class="c1"># add keys as as necessary, but "id" must always refer to that state category</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
<p>A new model have to inherit the BaseBehaviour class which is in the same module.
|
||||
There are two basics methods:</p>
|
||||
<ul class="simple">
|
||||
<li>__init__</li>
|
||||
<li>step: used to define the behaviour over time.</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div class="section" id="variable-initialization">
|
||||
<h2>Variable Initialization<a class="headerlink" href="#variable-initialization" title="Permalink to this headline">¶</a></h2>
|
||||
<p>The different parameters of the model have to be initialize in the Simulation Settings JSON file which will be
|
||||
passed as a parameter to the simulation.</p>
|
||||
<div class="code json highlight-default"><div class="highlight"><pre><span></span><span class="p">{</span>
|
||||
<span class="s2">"agent"</span><span class="p">:</span> <span class="p">[</span><span class="s2">"SISaModel"</span><span class="p">,</span><span class="s2">"ControlModelM2"</span><span class="p">],</span>
|
||||
|
||||
<span class="s2">"neutral_discontent_spon_prob"</span><span class="p">:</span> <span class="mf">0.04</span><span class="p">,</span>
|
||||
<span class="s2">"neutral_discontent_infected_prob"</span><span class="p">:</span> <span class="mf">0.04</span><span class="p">,</span>
|
||||
<span class="s2">"neutral_content_spon_prob"</span><span class="p">:</span> <span class="mf">0.18</span><span class="p">,</span>
|
||||
<span class="s2">"neutral_content_infected_prob"</span><span class="p">:</span> <span class="mf">0.02</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"discontent_neutral"</span><span class="p">:</span> <span class="mf">0.13</span><span class="p">,</span>
|
||||
<span class="s2">"discontent_content"</span><span class="p">:</span> <span class="mf">0.07</span><span class="p">,</span>
|
||||
<span class="s2">"variance_d_c"</span><span class="p">:</span> <span class="mf">0.02</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"content_discontent"</span><span class="p">:</span> <span class="mf">0.009</span><span class="p">,</span>
|
||||
<span class="s2">"variance_c_d"</span><span class="p">:</span> <span class="mf">0.003</span><span class="p">,</span>
|
||||
<span class="s2">"content_neutral"</span><span class="p">:</span> <span class="mf">0.088</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"standard_variance"</span><span class="p">:</span> <span class="mf">0.055</span><span class="p">,</span>
|
||||
|
||||
|
||||
<span class="s2">"prob_neutral_making_denier"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"prob_infect"</span><span class="p">:</span> <span class="mf">0.075</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"prob_cured_healing_infected"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
||||
<span class="s2">"prob_cured_vaccinate_neutral"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"prob_vaccinated_healing_infected"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
||||
<span class="s2">"prob_vaccinated_vaccinate_neutral"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
||||
<span class="s2">"prob_generate_anti_rumor"</span><span class="p">:</span> <span class="mf">0.035</span>
|
||||
<span class="p">}</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
<p>In this file you will also define the models you are going to simulate. You can simulate as many models as you want.
|
||||
The simulation returns one result for each model. For the usage, see <a class="reference internal" href="usage.html"><span class="doc">Usage</span></a>.</p>
|
||||
</div>
|
||||
<div class="section" id="example-model">
|
||||
<h2>Example Model<a class="headerlink" href="#example-model" title="Permalink to this headline">¶</a></h2>
|
||||
<p>In this section, we will implement a Sentiment Correlation Model.</p>
|
||||
<p>The class would look like this:</p>
|
||||
<div class="code python highlight-default"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">..BaseBehaviour</span> <span class="k">import</span> <span class="o">*</span>
|
||||
<span class="kn">from</span> <span class="nn">..</span> <span class="k">import</span> <span class="n">sentimentCorrelationNodeArray</span>
|
||||
|
||||
<span class="k">class</span> <span class="nc">SentimentCorrelationModel</span><span class="p">(</span><span class="n">BaseBehaviour</span><span class="p">):</span>
|
||||
|
||||
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">environment</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">agent_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">state</span><span class="o">=</span><span class="p">()):</span>
|
||||
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="n">environment</span><span class="o">=</span><span class="n">environment</span><span class="p">,</span> <span class="n">agent_id</span><span class="o">=</span><span class="n">agent_id</span><span class="p">,</span> <span class="n">state</span><span class="o">=</span><span class="n">state</span><span class="p">)</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">outside_effects_prob</span> <span class="o">=</span> <span class="n">environment</span><span class="o">.</span><span class="n">environment_params</span><span class="p">[</span><span class="s1">'outside_effects_prob'</span><span class="p">]</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">anger_prob</span> <span class="o">=</span> <span class="n">environment</span><span class="o">.</span><span class="n">environment_params</span><span class="p">[</span><span class="s1">'anger_prob'</span><span class="p">]</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">joy_prob</span> <span class="o">=</span> <span class="n">environment</span><span class="o">.</span><span class="n">environment_params</span><span class="p">[</span><span class="s1">'joy_prob'</span><span class="p">]</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">sadness_prob</span> <span class="o">=</span> <span class="n">environment</span><span class="o">.</span><span class="n">environment_params</span><span class="p">[</span><span class="s1">'sadness_prob'</span><span class="p">]</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">disgust_prob</span> <span class="o">=</span> <span class="n">environment</span><span class="o">.</span><span class="n">environment_params</span><span class="p">[</span><span class="s1">'disgust_prob'</span><span class="p">]</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">time_awareness</span> <span class="o">=</span> <span class="p">[]</span>
|
||||
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">):</span> <span class="c1"># In this model we have 4 sentiments</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">time_awareness</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust</span>
|
||||
<span class="n">sentimentCorrelationNodeArray</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">id</span><span class="p">][</span><span class="bp">self</span><span class="o">.</span><span class="n">env</span><span class="o">.</span><span class="n">now</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span>
|
||||
|
||||
<span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">now</span><span class="p">):</span>
|
||||
<span class="bp">self</span><span class="o">.</span><span class="n">behaviour</span><span class="p">()</span> <span class="c1"># Method which define the behaviour</span>
|
||||
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">now</span><span class="p">)</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
<p>The variables will be modified by the user, so you have to include them in the Simulation Settings JSON file.</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
||||
<div class="sphinxsidebarwrapper">
|
||||
<h3><a href="index.html">Table Of Contents</a></h3>
|
||||
<ul>
|
||||
<li><a class="reference internal" href="#">Developing new models</a><ul>
|
||||
<li><a class="reference internal" href="#what-is-a-model">What is a model?</a></li>
|
||||
<li><a class="reference internal" href="#models-code">Models Code</a></li>
|
||||
<li><a class="reference internal" href="#variable-initialization">Variable Initialization</a></li>
|
||||
<li><a class="reference internal" href="#example-model">Example Model</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
<div class="relations">
|
||||
<h3>Related Topics</h3>
|
||||
<ul>
|
||||
<li><a href="index.html">Documentation overview</a><ul>
|
||||
<li>Previous: <a href="usage.html" title="previous chapter">Usage</a></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
</div>
|
||||
<div role="note" aria-label="source link">
|
||||
<h3>This Page</h3>
|
||||
<ul class="this-page-menu">
|
||||
<li><a href="_sources/models.rst.txt"
|
||||
rel="nofollow">Show Source</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
<div id="searchbox" style="display: none" role="search">
|
||||
<h3>Quick search</h3>
|
||||
<form class="search" action="search.html" method="get">
|
||||
<div><input type="text" name="q" /></div>
|
||||
<div><input type="submit" value="Go" /></div>
|
||||
<input type="hidden" name="check_keywords" value="yes" />
|
||||
<input type="hidden" name="area" value="default" />
|
||||
</form>
|
||||
</div>
|
||||
<script type="text/javascript">$('#searchbox').show(0);</script>
|
||||
</div>
|
||||
</div>
|
||||
<div class="clearer"></div>
|
||||
</div>
|
||||
<div class="footer">
|
||||
©2017, GSI.
|
||||
|
||||
|
|
||||
Powered by <a href="http://sphinx-doc.org/">Sphinx 1.5.1</a>
|
||||
& <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.9</a>
|
||||
|
||||
|
|
||||
<a href="_sources/models.rst.txt"
|
||||
rel="nofollow">Page source</a>
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
4
docs/_build/html/objects.inv
vendored
4
docs/_build/html/objects.inv
vendored
@ -2,5 +2,5 @@
|
||||
# Project: Soil
|
||||
# Version: 0.1
|
||||
# The remainder of this file is compressed using zlib.
|
||||
xÚmŽ±Â0D÷|…™<E280A6>ŠÄĘ0 !u`6±•FrbD\ ţž–´
|
||||
•Řě»wöÎ1ż ťď,Đ!,ęa°$pžG×0R?C?ÄŤĹkb0…^ŁěLĚ<4C>8ZÔĽ›ÂĹPä»mo4}}Ö—”ţ´{Ľ»Ő¨™‹Ň(Ľô,ŚO?lU«p_ý+v…ţZÝ
|
||||
xÚm<EFBFBD>Á
|
||||
Â0†ï}Šxò4Á«g/aˆçº†®<E280A0>6öSßÞuÙØ^JúåûÓÆbpÁàb2'ÒO$¨Ž`'zh“'¸”R-šá¦H+ã<>Ô°GH5;ÚGœì1$<24>‡ÝŽI<13>·íŒ…Ï<E280A6>-Dy6Hq"ê{$î\°ð=µJæÏFÝ·š¾²É„Ónõ«i· a"×Ò¿i‹*Çá\iâÝK©~my+
|
2
docs/_build/html/searchindex.js
vendored
2
docs/_build/html/searchindex.js
vendored
@ -1 +1 @@
|
||||
Search.setIndex({docnames:["index","installation"],envversion:51,filenames:["index.rst","installation.rst"],objects:{},objnames:{},objtypes:{},terms:{The:1,about:0,agent:0,base:0,can:1,clone:1,cluster:1,content:[],dit:1,git:1,gitlab:1,gsi:1,http:1,index:0,instal:0,lab:1,latest:1,learn:0,model:0,modul:0,more:0,network:0,page:0,python:0,search:0,simul:0,social:0,soil:1,through:1,upm:1,version:1},titles:["Welcome to Soil’s documentation!","Installation"],titleterms:{document:0,indic:0,instal:1,soil:0,tabl:0,welcom:0}})
|
||||
Search.setIndex({docnames:["index","usage"],envversion:51,filenames:["index.rst","usage.rst"],objects:{},objnames:{},objtypes:{},terms:{"class":[],"default":1,"import":[],"new":0,"return":1,"super":[],For:1,The:1,There:1,__init__:[],abl:1,about:0,actual:[],add:1,added:1,after:1,agent:[0,1],agent_id:[],all:1,allow:[],also:1,alwai:[],analysi:[],anger:[],anger_prob:[],append:[],assess:[],assum:[],barabasi_albert_graph:1,base:0,basebehaviour:[],basic:[],been:1,befor:1,behaviour:[],can:1,categori:[],clone:[],cluster:[],code:0,complete_graph:1,configur:1,consist:[],contain:[],content:[],content_discont:1,content_neutr:1,controlmodelm2:1,correl:[],could:1,def:[],defin:1,describ:[],develop:0,dict:[],differ:1,discontent_cont:1,discontent_neutr:1,disgust:[],disgust_prob:[],dit:[],doc:[],document:1,dynam:1,each:1,effect:[],env:[],environ:[],environment_param:[],everi:[],everyon:[],exampl:0,execut:1,fail:1,file:1,fill:[],find:1,first:1,from:[],gephi:1,gexf:1,git:[],gitlab:[],going:1,graph:1,gsi:[],has:1,have:1,here:1,how:[],http:[],implement:1,includ:[],index:[],inherit:[],init_st:[],initi:[0,1],instal:[0,1],instruct:1,joi:[],joy_prob:[],json:1,kei:[],lab:[],latest:[],learn:0,least:[],let:[],like:[],look:[],main:[],mani:1,margulis_gabber_galil_graph:1,max_tim:1,method:[],model:0,modifi:1,modul:[],more:[0,1],must:[],necessari:[],need:1,network:0,network_typ:1,networkstatu:[],neutral_content_infected_prob:1,neutral_content_spon_prob:1,neutral_discontent_infected_prob:1,neutral_discontent_spon_prob:1,next:1,none:1,normal:[],now:[],num_trial:1,number_of_nod:1,onc:1,one:1,outside_effects_prob:[],over:[],packag:1,page:[],paramet:1,part:[],pass:[],pictur:1,plugin:[],png:1,practic:[],prob_cured_healing_infect:1,prob_cured_vaccinate_neutr:1,prob_generate_anti_rumor:1,prob_infect:1,prob_neutral_making_deni:1,prob_vaccinated_healing_infect:1,prob_vaccinated_vaccinate_neutr:1,provid:1,python:[0,1],rang:[],refer:[],requir:1,result:[],run:0,sad:[],sadness_prob:[],same:[],search:[],section:[],see:1,self:[],sentiment:[],sentimentcorrelationmodel:[],sentimentcorrelationnodearrai:[],separ:[],set:0,simul:0,sisamodel:1,social:0,soil:1,standard_vari:1,state:[],statu:[],step:1,system:[],them:[],thi:1,three:1,through:[],time:[],time_awar:[],timeout:1,two:[],type:0,upm:[],usag:0,used:[],user:[],valid:1,variabl:[0,1],variance_c_d:1,variance_d_c:1,version:[],view:[],visual:1,want:1,what:0,which:1,whole:[],without:1,would:[],you:1},titles:["Welcome to Soil’s documentation!","Usage"],titleterms:{"new":[],code:[],develop:[],document:0,exampl:[],indic:[],initi:[],instal:[],model:1,network:1,run:1,set:1,simul:1,soil:0,tabl:[],type:1,usag:1,variabl:[],welcom:0,what:[]}})
|
196
docs/_build/html/usage.html
vendored
Normal file
196
docs/_build/html/usage.html
vendored
Normal file
@ -0,0 +1,196 @@
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||||
|
||||
|
||||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
||||
|
||||
<title>Usage — Soil 0.1 documentation</title>
|
||||
|
||||
<link rel="stylesheet" href="_static/alabaster.css" type="text/css" />
|
||||
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
|
||||
|
||||
<script type="text/javascript">
|
||||
var DOCUMENTATION_OPTIONS = {
|
||||
URL_ROOT: './',
|
||||
VERSION: '0.1',
|
||||
COLLAPSE_INDEX: false,
|
||||
FILE_SUFFIX: '.html',
|
||||
HAS_SOURCE: true,
|
||||
SOURCELINK_SUFFIX: '.txt'
|
||||
};
|
||||
</script>
|
||||
<script type="text/javascript" src="_static/jquery.js"></script>
|
||||
<script type="text/javascript" src="_static/underscore.js"></script>
|
||||
<script type="text/javascript" src="_static/doctools.js"></script>
|
||||
<link rel="index" title="Index" href="genindex.html" />
|
||||
<link rel="search" title="Search" href="search.html" />
|
||||
<link rel="next" title="Developing new models" href="models.html" />
|
||||
<link rel="prev" title="Installation" href="installation.html" />
|
||||
|
||||
<link rel="stylesheet" href="_static/custom.css" type="text/css" />
|
||||
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
|
||||
|
||||
</head>
|
||||
<body role="document">
|
||||
|
||||
|
||||
<div class="document">
|
||||
<div class="documentwrapper">
|
||||
<div class="bodywrapper">
|
||||
<div class="body" role="main">
|
||||
|
||||
<div class="section" id="usage">
|
||||
<h1>Usage<a class="headerlink" href="#usage" title="Permalink to this headline">¶</a></h1>
|
||||
<p>First of all, you need to install the package. See <a class="reference internal" href="installation.html"><span class="doc">Installation</span></a> for installation instructions.</p>
|
||||
<div class="section" id="simulation-settings">
|
||||
<h2>Simulation Settings<a class="headerlink" href="#simulation-settings" title="Permalink to this headline">¶</a></h2>
|
||||
<p>Once installed, before running a simulation, you need to configure it.</p>
|
||||
<ul>
|
||||
<li><p class="first">In the settings.py file you will find the configuration of the network.</p>
|
||||
<div class="code python highlight-default"><div class="highlight"><pre><span></span><span class="c1"># Network settings</span>
|
||||
<span class="n">network_type</span> <span class="o">=</span> <span class="mi">1</span>
|
||||
<span class="n">number_of_nodes</span> <span class="o">=</span> <span class="mi">1000</span>
|
||||
<span class="n">max_time</span> <span class="o">=</span> <span class="mi">50</span>
|
||||
<span class="n">num_trials</span> <span class="o">=</span> <span class="mi">1</span>
|
||||
<span class="n">timeout</span> <span class="o">=</span> <span class="mi">2</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
</li>
|
||||
<li><p class="first">In the Simulation Settings JSON file, you will find the configuration of the models.</p>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
<div class="section" id="network-types">
|
||||
<h2>Network Types<a class="headerlink" href="#network-types" title="Permalink to this headline">¶</a></h2>
|
||||
<p>There are three types of network implemented, but you could add more.</p>
|
||||
<div class="code python highlight-default"><div class="highlight"><pre><span></span><span class="k">if</span> <span class="n">settings</span><span class="o">.</span><span class="n">network_type</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
||||
<span class="n">G</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">complete_graph</span><span class="p">(</span><span class="n">settings</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">)</span>
|
||||
<span class="k">if</span> <span class="n">settings</span><span class="o">.</span><span class="n">network_type</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
|
||||
<span class="n">G</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">barabasi_albert_graph</span><span class="p">(</span><span class="n">settings</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
|
||||
<span class="k">if</span> <span class="n">settings</span><span class="o">.</span><span class="n">network_type</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
|
||||
<span class="n">G</span> <span class="o">=</span> <span class="n">nx</span><span class="o">.</span><span class="n">margulis_gabber_galil_graph</span><span class="p">(</span><span class="n">settings</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
|
||||
<span class="c1"># More types of networks can be added here</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="section" id="models-settings">
|
||||
<h2>Models Settings<a class="headerlink" href="#models-settings" title="Permalink to this headline">¶</a></h2>
|
||||
<p>After having configured the simulation, the next step is setting up the variables of the models.
|
||||
For this, you will need to modify the Simulation Settings JSON file.</p>
|
||||
<div class="code json highlight-default"><div class="highlight"><pre><span></span><span class="p">{</span>
|
||||
<span class="s2">"agent"</span><span class="p">:</span> <span class="p">[</span><span class="s2">"SISaModel"</span><span class="p">,</span><span class="s2">"ControlModelM2"</span><span class="p">],</span>
|
||||
|
||||
<span class="s2">"neutral_discontent_spon_prob"</span><span class="p">:</span> <span class="mf">0.04</span><span class="p">,</span>
|
||||
<span class="s2">"neutral_discontent_infected_prob"</span><span class="p">:</span> <span class="mf">0.04</span><span class="p">,</span>
|
||||
<span class="s2">"neutral_content_spon_prob"</span><span class="p">:</span> <span class="mf">0.18</span><span class="p">,</span>
|
||||
<span class="s2">"neutral_content_infected_prob"</span><span class="p">:</span> <span class="mf">0.02</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"discontent_neutral"</span><span class="p">:</span> <span class="mf">0.13</span><span class="p">,</span>
|
||||
<span class="s2">"discontent_content"</span><span class="p">:</span> <span class="mf">0.07</span><span class="p">,</span>
|
||||
<span class="s2">"variance_d_c"</span><span class="p">:</span> <span class="mf">0.02</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"content_discontent"</span><span class="p">:</span> <span class="mf">0.009</span><span class="p">,</span>
|
||||
<span class="s2">"variance_c_d"</span><span class="p">:</span> <span class="mf">0.003</span><span class="p">,</span>
|
||||
<span class="s2">"content_neutral"</span><span class="p">:</span> <span class="mf">0.088</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"standard_variance"</span><span class="p">:</span> <span class="mf">0.055</span><span class="p">,</span>
|
||||
|
||||
|
||||
<span class="s2">"prob_neutral_making_denier"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"prob_infect"</span><span class="p">:</span> <span class="mf">0.075</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"prob_cured_healing_infected"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
||||
<span class="s2">"prob_cured_vaccinate_neutral"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
||||
|
||||
<span class="s2">"prob_vaccinated_healing_infected"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
||||
<span class="s2">"prob_vaccinated_vaccinate_neutral"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
||||
<span class="s2">"prob_generate_anti_rumor"</span><span class="p">:</span> <span class="mf">0.035</span>
|
||||
<span class="p">}</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
<p>In this file you will define the different models you are going to simulate. You can simulate as many models
|
||||
as you want.</p>
|
||||
<p>After setting up the models, you have to initialize the parameters of each one. You will find the parameters needed
|
||||
in the documentation of each model.</p>
|
||||
<p>Parameter validation will fail if a required parameter without a default has not been provided.</p>
|
||||
</div>
|
||||
<div class="section" id="running-the-simulation">
|
||||
<h2>Running the Simulation<a class="headerlink" href="#running-the-simulation" title="Permalink to this headline">¶</a></h2>
|
||||
<p>After setting all the configuration, you will be able to run the simulation. All you need to do is execute:</p>
|
||||
<div class="code bash highlight-default"><div class="highlight"><pre><span></span><span class="n">python</span> <span class="n">soil</span><span class="o">.</span><span class="n">py</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
<p>The simulation will return a dynamic graph .gexf file which could be visualized with
|
||||
<a class="reference external" href="https://gephi.org/users/download/">Gephi</a>.</p>
|
||||
<p>It will also return one .png picture for each model simulated.</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
||||
<div class="sphinxsidebarwrapper">
|
||||
<h3><a href="index.html">Table Of Contents</a></h3>
|
||||
<ul>
|
||||
<li><a class="reference internal" href="#">Usage</a><ul>
|
||||
<li><a class="reference internal" href="#simulation-settings">Simulation Settings</a></li>
|
||||
<li><a class="reference internal" href="#network-types">Network Types</a></li>
|
||||
<li><a class="reference internal" href="#models-settings">Models Settings</a></li>
|
||||
<li><a class="reference internal" href="#running-the-simulation">Running the Simulation</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
</ul>
|
||||
<div class="relations">
|
||||
<h3>Related Topics</h3>
|
||||
<ul>
|
||||
<li><a href="index.html">Documentation overview</a><ul>
|
||||
<li>Previous: <a href="installation.html" title="previous chapter">Installation</a></li>
|
||||
<li>Next: <a href="models.html" title="next chapter">Developing new models</a></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
</div>
|
||||
<div role="note" aria-label="source link">
|
||||
<h3>This Page</h3>
|
||||
<ul class="this-page-menu">
|
||||
<li><a href="_sources/usage.rst.txt"
|
||||
rel="nofollow">Show Source</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
<div id="searchbox" style="display: none" role="search">
|
||||
<h3>Quick search</h3>
|
||||
<form class="search" action="search.html" method="get">
|
||||
<div><input type="text" name="q" /></div>
|
||||
<div><input type="submit" value="Go" /></div>
|
||||
<input type="hidden" name="check_keywords" value="yes" />
|
||||
<input type="hidden" name="area" value="default" />
|
||||
</form>
|
||||
</div>
|
||||
<script type="text/javascript">$('#searchbox').show(0);</script>
|
||||
</div>
|
||||
</div>
|
||||
<div class="clearer"></div>
|
||||
</div>
|
||||
<div class="footer">
|
||||
©2017, GSI.
|
||||
|
||||
|
|
||||
Powered by <a href="http://sphinx-doc.org/">Sphinx 1.5.1</a>
|
||||
& <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.9</a>
|
||||
|
||||
|
|
||||
<a href="_sources/usage.rst.txt"
|
||||
rel="nofollow">Page source</a>
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
@ -13,11 +13,13 @@ Soil is an Agent-based Social Simulator in Python for modelling and simulation o
|
||||
:caption: Learn more about soil:
|
||||
|
||||
installation
|
||||
usage
|
||||
models
|
||||
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
||||
.. Indices and tables
|
||||
==================
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
||||
|
112
docs/models.rst
Normal file
112
docs/models.rst
Normal file
@ -0,0 +1,112 @@
|
||||
Developing new models
|
||||
---------------------
|
||||
This document describes how to develop a new analysis model.
|
||||
|
||||
What is a model?
|
||||
================
|
||||
|
||||
A model defines the behaviour of the agents with a view to assessing their effects on the system as a whole.
|
||||
In practice, a model consists of at least two parts:
|
||||
|
||||
* Python module: the actual code that describes the behaviour.
|
||||
* Setting up the variables in the Simulation Settings JSON file.
|
||||
|
||||
This separation allows us to run the simulation with different agents.
|
||||
|
||||
Models Code
|
||||
===========
|
||||
|
||||
All the models are imported to the main file. The initialization look like this:
|
||||
|
||||
.. code:: python
|
||||
|
||||
import settings
|
||||
|
||||
networkStatus = {} # Dict that will contain the status of every agent in the network
|
||||
|
||||
sentimentCorrelationNodeArray = []
|
||||
for x in range(0, settings.number_of_nodes):
|
||||
sentimentCorrelationNodeArray.append({'id': x})
|
||||
# Initialize agent states. Let's assume everyone is normal.
|
||||
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)]
|
||||
# add keys as as necessary, but "id" must always refer to that state category
|
||||
|
||||
A new model have to inherit the BaseBehaviour class which is in the same module.
|
||||
There are two basics methods:
|
||||
|
||||
* __init__
|
||||
* step: used to define the behaviour over time.
|
||||
|
||||
Variable Initialization
|
||||
=======================
|
||||
|
||||
The different parameters of the model have to be initialize in the Simulation Settings JSON file which will be
|
||||
passed as a parameter to the simulation.
|
||||
|
||||
.. code:: json
|
||||
|
||||
{
|
||||
"agent": ["SISaModel","ControlModelM2"],
|
||||
|
||||
"neutral_discontent_spon_prob": 0.04,
|
||||
"neutral_discontent_infected_prob": 0.04,
|
||||
"neutral_content_spon_prob": 0.18,
|
||||
"neutral_content_infected_prob": 0.02,
|
||||
|
||||
"discontent_neutral": 0.13,
|
||||
"discontent_content": 0.07,
|
||||
"variance_d_c": 0.02,
|
||||
|
||||
"content_discontent": 0.009,
|
||||
"variance_c_d": 0.003,
|
||||
"content_neutral": 0.088,
|
||||
|
||||
"standard_variance": 0.055,
|
||||
|
||||
|
||||
"prob_neutral_making_denier": 0.035,
|
||||
|
||||
"prob_infect": 0.075,
|
||||
|
||||
"prob_cured_healing_infected": 0.035,
|
||||
"prob_cured_vaccinate_neutral": 0.035,
|
||||
|
||||
"prob_vaccinated_healing_infected": 0.035,
|
||||
"prob_vaccinated_vaccinate_neutral": 0.035,
|
||||
"prob_generate_anti_rumor": 0.035
|
||||
}
|
||||
|
||||
In this file you will also define the models you are going to simulate. You can simulate as many models as you want.
|
||||
The simulation returns one result for each model. For the usage, see :doc:`usage`.
|
||||
|
||||
Example Model
|
||||
=============
|
||||
|
||||
In this section, we will implement a Sentiment Correlation Model.
|
||||
|
||||
The class would look like this:
|
||||
|
||||
.. code:: python
|
||||
|
||||
from ..BaseBehaviour import *
|
||||
from .. import sentimentCorrelationNodeArray
|
||||
|
||||
class SentimentCorrelationModel(BaseBehaviour):
|
||||
|
||||
def __init__(self, environment=None, agent_id=0, state=()):
|
||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
||||
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
|
||||
self.anger_prob = environment.environment_params['anger_prob']
|
||||
self.joy_prob = environment.environment_params['joy_prob']
|
||||
self.sadness_prob = environment.environment_params['sadness_prob']
|
||||
self.disgust_prob = environment.environment_params['disgust_prob']
|
||||
self.time_awareness = []
|
||||
for i in range(4): # In this model we have 4 sentiments
|
||||
self.time_awareness.append(0) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
|
||||
sentimentCorrelationNodeArray[self.id][self.env.now] = 0
|
||||
|
||||
def step(self, now):
|
||||
self.behaviour() # Method which define the behaviour
|
||||
super().step(now)
|
||||
|
||||
The variables will be modified by the user, so you have to include them in the Simulation Settings JSON file.
|
98
docs/usage.rst
Normal file
98
docs/usage.rst
Normal file
@ -0,0 +1,98 @@
|
||||
Usage
|
||||
-----
|
||||
|
||||
First of all, you need to install the package. See :doc:`installation` for installation instructions.
|
||||
|
||||
Simulation Settings
|
||||
===================
|
||||
|
||||
Once installed, before running a simulation, you need to configure it.
|
||||
|
||||
* In the settings.py file you will find the configuration of the network.
|
||||
|
||||
.. code:: python
|
||||
|
||||
# Network settings
|
||||
network_type = 1
|
||||
number_of_nodes = 1000
|
||||
max_time = 50
|
||||
num_trials = 1
|
||||
timeout = 2
|
||||
|
||||
* In the Simulation Settings JSON file, you will find the configuration of the models.
|
||||
|
||||
Network Types
|
||||
=============
|
||||
|
||||
There are three types of network implemented, but you could add more.
|
||||
|
||||
.. code:: python
|
||||
|
||||
if settings.network_type == 0:
|
||||
G = nx.complete_graph(settings.number_of_nodes)
|
||||
if settings.network_type == 1:
|
||||
G = nx.barabasi_albert_graph(settings.number_of_nodes, 10)
|
||||
if settings.network_type == 2:
|
||||
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
|
||||
# More types of networks can be added here
|
||||
|
||||
Models Settings
|
||||
===============
|
||||
|
||||
After having configured the simulation, the next step is setting up the variables of the models.
|
||||
For this, you will need to modify the Simulation Settings JSON file.
|
||||
|
||||
.. code:: json
|
||||
|
||||
{
|
||||
"agent": ["SISaModel","ControlModelM2"],
|
||||
|
||||
"neutral_discontent_spon_prob": 0.04,
|
||||
"neutral_discontent_infected_prob": 0.04,
|
||||
"neutral_content_spon_prob": 0.18,
|
||||
"neutral_content_infected_prob": 0.02,
|
||||
|
||||
"discontent_neutral": 0.13,
|
||||
"discontent_content": 0.07,
|
||||
"variance_d_c": 0.02,
|
||||
|
||||
"content_discontent": 0.009,
|
||||
"variance_c_d": 0.003,
|
||||
"content_neutral": 0.088,
|
||||
|
||||
"standard_variance": 0.055,
|
||||
|
||||
|
||||
"prob_neutral_making_denier": 0.035,
|
||||
|
||||
"prob_infect": 0.075,
|
||||
|
||||
"prob_cured_healing_infected": 0.035,
|
||||
"prob_cured_vaccinate_neutral": 0.035,
|
||||
|
||||
"prob_vaccinated_healing_infected": 0.035,
|
||||
"prob_vaccinated_vaccinate_neutral": 0.035,
|
||||
"prob_generate_anti_rumor": 0.035
|
||||
}
|
||||
|
||||
In this file you will define the different models you are going to simulate. You can simulate as many models
|
||||
as you want.
|
||||
|
||||
After setting up the models, you have to initialize the parameters of each one. You will find the parameters needed
|
||||
in the documentation of each model.
|
||||
|
||||
Parameter validation will fail if a required parameter without a default has not been provided.
|
||||
|
||||
Running the Simulation
|
||||
======================
|
||||
|
||||
After setting all the configuration, you will be able to run the simulation. All you need to do is execute:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
python soil.py
|
||||
|
||||
The simulation will return a dynamic graph .gexf file which could be visualized with
|
||||
`Gephi <https://gephi.org/users/download/>`__.
|
||||
|
||||
It will also return one .png picture for each model simulated.
|
@ -1,5 +1,4 @@
|
||||
# General configuration
|
||||
|
||||
import json
|
||||
|
||||
# Network settings
|
||||
@ -9,12 +8,11 @@ max_time = 50
|
||||
num_trials = 1
|
||||
timeout = 2
|
||||
|
||||
|
||||
with open('simulation_settings.json', 'r') as f:
|
||||
environment_params = json.load(f)
|
||||
|
||||
'''
|
||||
|
||||
'''
|
||||
environment_params = {
|
||||
# Zombie model
|
||||
'bite_prob': 0.01, # 0-1
|
||||
|
@ -1,5 +1,4 @@
|
||||
{
|
||||
|
||||
"agent": ["BaseBehaviour","SISaModel","ControlModelM2"],
|
||||
|
||||
|
||||
|
16
soil.py
16
soil.py
@ -8,6 +8,7 @@ import models
|
||||
import math
|
||||
import json
|
||||
|
||||
|
||||
#################
|
||||
# Visualization #
|
||||
#################
|
||||
@ -25,7 +26,6 @@ def visualization(graph_name):
|
||||
attributes[attribute] = emotionStatusAux
|
||||
G.add_node(x, attributes)
|
||||
|
||||
|
||||
print("Done!")
|
||||
|
||||
with open('data.txt', 'w') as outfile:
|
||||
@ -33,9 +33,11 @@ def visualization(graph_name):
|
||||
|
||||
nx.write_gexf(G, graph_name+".gexf", version="1.2draft")
|
||||
|
||||
|
||||
###########
|
||||
# Results #
|
||||
###########
|
||||
|
||||
def results(model_name):
|
||||
x_values = []
|
||||
infected_values = []
|
||||
@ -106,14 +108,12 @@ if settings.network_type == 2:
|
||||
|
||||
agents = settings.environment_params['agent']
|
||||
|
||||
|
||||
|
||||
print("Using Agent(s): {agents}".format(agents=agents))
|
||||
|
||||
if len(agents) > 1:
|
||||
for agent in agents:
|
||||
sim = NetworkSimulation(topology=G, states=init_states, agent_type=locals()[agent], max_time=settings.max_time,
|
||||
num_trials=settings.num_trials, logging_interval=1.0, **settings.environment_params)
|
||||
num_trials=settings.num_trials, logging_interval=1.0, **settings.environment_params)
|
||||
sim.run_simulation()
|
||||
print(str(agent))
|
||||
results(str(agent))
|
||||
@ -121,13 +121,7 @@ if len(agents) > 1:
|
||||
else:
|
||||
agent = agents[0]
|
||||
sim = NetworkSimulation(topology=G, states=init_states, agent_type=locals()[agent], max_time=settings.max_time,
|
||||
num_trials=settings.num_trials, logging_interval=1.0, **settings.environment_params)
|
||||
num_trials=settings.num_trials, logging_interval=1.0, **settings.environment_params)
|
||||
sim.run_simulation()
|
||||
results(str(agent))
|
||||
visualization(str(agent))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user