1
0
mirror of https://github.com/gsi-upm/soil synced 2024-12-22 08:18:13 +00:00

Visualizacion aparte, codigo reestructurado

This commit is contained in:
JesusMSM 2016-04-13 18:08:41 +02:00
parent 8e45fe9044
commit 0991696241
12 changed files with 17557 additions and 1169 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

74
clase_base.py Normal file
View File

@ -0,0 +1,74 @@
import random
import time
settings = {
"empresas": ["BBVA", "Santander"]
}
class BaseNetworkAgent:
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.id = random.random()
@property
def env(self):
class T(object):
pass
temp = T()
temp.now = time.time()
return temp
def agentes_a_json(agentes):
final = {}
for agente in agentes:
for stamp, attrs in self._attrs.items():
for a in attrs:
if a not in final:
final[a] = {}
final[a][stamp] = attrs[a]
return final
class ComportamientoBase(BaseNetworkAgent):
def __init__(self, *args, **kwargs):
self._attrs = {}
@property
def attrs(self):
now = self.env.now
if now not in self._attrs:
self._attrs[now] = {}
return self._attrs[now]
@attrs.setter
def attrs(self, value):
self._attrs[self.env.now] = value
def run(self):
while True:
self.step(self.env.now)
#yield self.env.timeout(settings.timeout)
def step(self, now):
pass
def a_json(self):
final = {}
for stamp, attrs in self._attrs.items():
for a in attrs:
if a not in final:
final[a] = {}
final[a][stamp] = attrs[a]
return final
class NuevoComportamiento(ComportamientoBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.empresas = settings["empresas"]
def step(self, now):
for i in self.empresas:
self.attrs['sentimiento_empresa_%s' % i] = random.random()

BIN
clase_base.pyc Normal file

Binary file not shown.

8615
data.txt

File diff suppressed because one or more lines are too long

342
models.py Normal file
View File

@ -0,0 +1,342 @@
from nxsim import NetworkSimulation
from nxsim import BaseNetworkAgent
from nxsim import BaseLoggingAgent
from random import randint
from pprint import pprint
from matplotlib import pyplot as plt
import random
import numpy as np
import networkx as nx
import settings
settings.init()
####################
# Network creation #
####################
if settings.network_type == 0:
G = nx.complete_graph(settings.number_of_nodes)
if settings.network_type == 1:
G = nx.barabasi_albert_graph(settings.number_of_nodes,3)
if settings.network_type == 2:
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
# More types of networks can be added here
##############################
# Variables initializitation #
##############################
def init():
global networkStatus
networkStatus={} # Dict that will contain the status of every agent in the network
sentimentCorrelationNodeArray=[]
for x in range(0, settings.number_of_nodes):
sentimentCorrelationNodeArray.append({'id':x})
# Initialize agent states. Let's assume everyone is normal.
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
####################
# Available models #
####################
class ComportamientoBase(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self._attrs = {}
@property
def attrs(self):
now = self.env.now
if now not in self._attrs:
self._attrs[now] = {}
return self._attrs[now]
@attrs.setter
def attrs(self, value):
self._attrs[self.env.now] = value
def run(self):
while True:
self.step(self.env.now)
yield self.env.timeout(settings.timeout)
def step(self, now):
networkStatus['agente_%s'% self.id] = self.a_json()
def a_json(self):
final = {}
for stamp, attrs in self._attrs.items():
for a in attrs:
if a not in final:
final[a] = {}
final[a][stamp] = attrs[a]
return final
class BigMarketModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.enterprises = settings.enterprises
self.type = ""
self.number_of_enterprises = len(settings.enterprises)
if self.id < self.number_of_enterprises: #Empresas
self.state['id']=self.id
self.type="Enterprise"
self.tweet_probability = settings.tweet_probability_enterprises[self.id]
else: #Usuarios normales
self.state['id']=self.number_of_enterprises
self.type="User"
self.tweet_probability = settings.tweet_probability_users
self.tweet_relevant_probability = settings.tweet_relevant_probability
self.tweet_probability_about = settings.tweet_probability_about #Lista
self.sentiment_about = settings.sentiment_about #Lista
def step(self, now):
if(self.id < self.number_of_enterprises): # Empresa
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
super().step(now)
def enterpriseBehaviour(self):
if random.random()< self.tweet_probability: #Twittea
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodos vecinos usuarios
for x in aware_neighbors:
if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 #Aumenta para empresa
else:
x.sentiment_about[self.id] -= 0.1 #Reduce para empresa
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id]< -1:
x.sentiment_about[self.id] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
def userBehaviour(self):
if random.random() < self.tweet_probability: #Twittea
if random.random() < self.tweet_relevant_probability: #Twittea algo relevante
#Probabilidad de tweet para cada empresa
for i in range(self.number_of_enterprises):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
#Se ha cumplido la condicion, evaluo los sentimientos hacia esa empresa
if self.sentiment_about[i] < 0:
#NEGATIVO
self.userTweets("negative",i)
elif self.sentiment_about[i] == 0:
#NEUTRO
pass
else:
#POSITIVO
self.userTweets("positive",i)
def userTweets(self,sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodos vecinos usuarios
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[enterprise]] = x.sentiment_about[enterprise]
class SentimentCorrelationModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = settings.outside_effects_prob
self.anger_prob = settings.anger_prob
self.joy_prob = settings.joy_prob
self.sadness_prob = settings.sadness_prob
self.disgust_prob = settings.disgust_prob
self.time_awareness=[]
for i in range(4): #En este modelo tenemos 4 sentimientos
self.time_awareness.append(0) #0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self, now):
self.behaviour()
super().step(now)
def behaviour(self):
angry_neighbors_1_time_step=[]
joyful_neighbors_1_time_step=[]
sad_neighbors_1_time_step=[]
disgusted_neighbors_1_time_step=[]
angry_neighbors = self.get_neighboring_agents(state_id=1)
for x in angry_neighbors:
if x.time_awareness[0] > (self.env.now-500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
for x in joyful_neighbors:
if x.time_awareness[1] > (self.env.now-500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
for x in sad_neighbors:
if x.time_awareness[2] > (self.env.now-500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
for x in disgusted_neighbors:
if x.time_awareness[3] > (self.env.now-500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob= settings.anger_prob+(len(angry_neighbors_1_time_step)*settings.anger_prob)
joy_prob= settings.joy_prob+(len(joyful_neighbors_1_time_step)*settings.joy_prob)
sadness_prob = settings.sadness_prob+(len(sad_neighbors_1_time_step)*settings.sadness_prob)
disgust_prob = settings.disgust_prob+(len(disgusted_neighbors_1_time_step)*settings.disgust_prob)
outside_effects_prob= settings.outside_effects_prob
num = random.random()
if(num<outside_effects_prob):
self.state['id'] = random.randint(1,4)
sentimentCorrelationNodeArray[self.id][self.env.now]=self.state['id'] #Almaceno cuando se ha infectado para la red dinamica
self.time_awareness[self.state['id']-1] = self.env.now
self.attrs['sentiment'] = self.state['id']
if(num<anger_prob):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
self.state['id'] = 2
sentimentCorrelationNodeArray[self.id][self.env.now]=2
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
self.state['id'] = 3
sentimentCorrelationNodeArray[self.id][self.env.now]=3
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
self.state['id'] = 4
sentimentCorrelationNodeArray[self.id][self.env.now]=4
self.time_awareness[self.state['id']-1] = self.env.now
self.attrs['sentiment'] = self.state['id']
class BassModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self, now):
self.behaviour()
super().step(now)
def behaviour(self):
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
return
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
class IndependentCascadeModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
self.time_awareness = 0
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self,now):
self.behaviour()
super().step(now)
def behaviour(self):
aware_neighbors_1_time_step=[]
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness = self.env.now #Para saber cuando se han contagiado
else:
pass
self.attrs['status'] = self.state['id']
return
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
for x in aware_neighbors:
if x.time_awareness == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
return

View File

@ -19,34 +19,37 @@ def init():
global tweet_probability_about
global sentiment_about
global tweet_probability_enterprises
global enterprises
network_type=1
number_of_nodes=20
max_time=1000
number_of_nodes=50
max_time=500
num_trials=1
timeout=10
timeout=1
#Zombie model
bite_prob=0.01 # 0-1
heal_prob=0.01 # 0-1
#Bass model
innovation_prob=0.01
imitation_prob=0.01
innovation_prob=0.001
imitation_prob=0.005
#Sentiment Correlation model
outside_effects_prob = 0.2
anger_prob = 0.08
anger_prob = 0.06
joy_prob = 0.05
sadness_prob = 0.02
disgust_prob = 0.02
#Big Market model
##Names
enterprises = ["BBVA","Santander", "Bankia"]
##Users
tweet_probability_users = 0.44
tweet_relevant_probability = 0.25
tweet_probability_about = [0.25, 0.25]
sentiment_about = [0, 0] #Valores por defecto
tweet_probability_about = [0.15, 0.15, 0.15]
sentiment_about = [0, 0, 0] #Valores por defecto
##Enterprises
tweet_probability_enterprises = [0.3, 0.3]
tweet_probability_enterprises = [0.3, 0.3, 0.3]

Binary file not shown.

453
soil.py
View File

@ -1,16 +1,18 @@
#from clase_base import *
from models import *
from nxsim import NetworkSimulation
from nxsim import BaseNetworkAgent
from nxsim import BaseLoggingAgent
from random import randint
from matplotlib import pyplot as plt
import random
import numpy as np
import networkx as nx
import settings
import models
import math
import json
settings.init() # Loads all the data from settings
models.init() # Loads the models and network variables
####################
# Network creation #
@ -24,397 +26,6 @@ if settings.network_type == 2:
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
# More types of networks can be added here
##############################
# Variables initializitation #
##############################
myList=[] # List just for debugging
networkStatus=[] # This list will contain the status of every node of the network
emotionStatus=[]
enterprise1Status=[]
enterprise2Status=[]
allEnterprisesEmotionList = {}
for x in range(0, settings.number_of_nodes):
networkStatus.append({'id':x})
emotionStatus.append({'id':x})
enterprise1Status.append({'id':x})
enterprise2Status.append({'id':x})
for enterpriseIndex in range(0,len(settings.tweet_probability_about)):
allEnterprisesEmotionList['enterprise'+str(enterpriseIndex)] = enterprise1Status
# for node in range(0, settings.number_of_nodes):
# allEnterprisesEmotionList['enterprise'+str(enterpriseIndex)].update({'id':node})
#print(allEnterprisesEmotionList)
# Initialize agent states. Let's assume everyone is normal.
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
# Seed a zombie, just for zombie model
#init_states[5] = {'id': 1}
#init_states[3] = {'id': 1}
####################
# Available models #
####################
class BigMarketModel(BaseNetworkAgent):
number_of_enterprises = 0
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.time_awareness = 0
self.type = ""
self.number_of_enterprises = len(settings.tweet_probability_about)
if self.id < self.number_of_enterprises: #Empresas
self.state['id']=self.id
self.type="Enterprise"
self.tweet_probability = settings.tweet_probability_enterprises[self.id]
else: #Usuarios normales
self.state['id']=self.number_of_enterprises
self.type="User"
self.tweet_probability = settings.tweet_probability_users
self.tweet_relevant_probability = settings.tweet_relevant_probability
self.tweet_probability_about = settings.tweet_probability_about #Lista
self.sentiment_about = settings.sentiment_about #Lista
#Inicializacion de visualizacion
for enterpriseIndex in range(0,len(settings.tweet_probability_about)):
allEnterprisesEmotionList['enterprise'+str(enterpriseIndex)][self.id].update({0:self.sentiment_about[enterpriseIndex]})
#print(allEnterprisesEmotionList)
#networkStatus[self.id][self.env.now]=self.state['id']
#emotionStatus[self.id][self.env.now]=0
def run(self):
while True:
if(self.id < self.number_of_enterprises): # Empresa
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
yield self.env.timeout(settings.timeout)
def enterpriseBehaviour(self):
if random.random()< self.tweet_probability: #Twittea
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodos vecinos usuarios
for x in aware_neighbors:
if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 #Aumenta para empresa
else:
x.sentiment_about[self.id] -= 0.1 #Reduce para empresa
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id] < -1:
x.sentiment_about[self.id] = -1
#Visualización
enterpriseEmotion=[]
if self.id < self.number_of_enterprises:
#try:
#enterpriseEmotion = allEnterprisesEmotionList[self.id] #Cogemos la lista si ya ha sido creada
#print (enterpriseEmotion)
#except IndexError: # Si no existe la inicializamos
# for y in range(0, settings.number_of_nodes):
# enterpriseEmotion.append({'id':y})
#enterpriseEmotion[x.id][self.env.now]=x.sentiment_about[self.id]
#allEnterprisesEmotionList.insert(self.id,enterpriseEmotion) #Guardamos el valor
#enterpriseEmotion[:] = [] #Vaciamos la lista
allEnterprisesEmotionList['enterprise'+str(self.id)][x.id].update({self.env.now:x.sentiment_about[self.id]})
#if self.id == 0:
# enterprise1Status[x.id][self.env.now]=x.sentiment_about[self.id]
#if self.id == 1:
# enterprise2Status[x.id][self.env.now]=x.sentiment_about[self.id]
def userBehaviour(self):
if random.random() < self.tweet_probability: #Twittea
if random.random() < self.tweet_relevant_probability: #Twittea algo relevante
#Probabilidad de tweet para cada empresa
for i in range(len(self.tweet_probability_about)):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
#Se ha cumplido la condicion, evaluo los sentimientos hacia esa empresa
if self.sentiment_about[i] < 0:
#NEGATIVO
self.userTweets("negative",i)
elif self.sentiment_about[i] == 0:
#NEUTRO
pass
else:
#POSITIVO
self.userTweets("positive",i)
def userTweets(self,sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=2) #Nodos vecinos usuarios
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
#Visualización
# enterpriseEmotion=[]
# try:
# enterpriseEmotion = allEnterprisesEmotionList[self.id] #Cogemos la lista si ya ha sido creada
# except IndexError: # Si no existe la inicializamos
# for y in range(0, settings.number_of_nodes):
# enterpriseEmotion.append({'id':y})
# enterpriseEmotion[x.id][self.env.now]=x.sentiment_about[enterprise]
# allEnterprisesEmotionList.insert(enterprise,enterpriseEmotion) #Guardamos el valor
# enterpriseEmotion[:] = [] #Vaciamos la lista
#if enterprise == 0:
# enterprise1Status[x.id][self.env.now]=x.sentiment_about[enterprise]
#if enterprise == 1:
# enterprise2Status[x.id][self.env.now]=x.sentiment_about[enterprise]
allEnterprisesEmotionList['enterprise'+str(enterprise)][x.id].update({self.env.now:x.sentiment_about[enterprise]})
def checkLimits(sentimentValue):
if sentimentValue > 1:
return 1
if sentimentValue < -1:
return -1
################################################
class SentimentCorrelationModel(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = settings.outside_effects_prob
self.anger_prob = settings.anger_prob
self.joy_prob = settings.joy_prob
self.sadness_prob = settings.sadness_prob
self.disgust_prob = settings.disgust_prob
self.time_awareness=[]
for i in range(4): #En este modelo tenemos 4 sentimientos
self.time_awareness.append(0) #0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
networkStatus[self.id][self.env.now]=0
def run(self):
while True:
angry_neighbors_1_time_step=[]
joyful_neighbors_1_time_step=[]
sad_neighbors_1_time_step=[]
disgusted_neighbors_1_time_step=[]
angry_neighbors = self.get_neighboring_agents(state_id=1)
for x in angry_neighbors:
if x.time_awareness[0] > (self.env.now-500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
for x in joyful_neighbors:
if x.time_awareness[1] > (self.env.now-500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
for x in sad_neighbors:
if x.time_awareness[2] > (self.env.now-500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
for x in disgusted_neighbors:
if x.time_awareness[3] > (self.env.now-500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob= settings.anger_prob+(len(angry_neighbors_1_time_step)*settings.anger_prob)
joy_prob= settings.joy_prob+(len(joyful_neighbors_1_time_step)*settings.joy_prob)
sadness_prob = settings.sadness_prob+(len(sad_neighbors_1_time_step)*settings.sadness_prob)
disgust_prob = settings.disgust_prob+(len(disgusted_neighbors_1_time_step)*settings.disgust_prob)
outside_effects_prob= settings.outside_effects_prob
num = random.random()
if(num<outside_effects_prob):
self.state['id'] = random.randint(1,4)
myList.append(self.id)
networkStatus[self.id][self.env.now]=self.state['id'] #Almaceno cuando se ha infectado para la red dinamica
self.time_awareness[self.state['id']-1] = self.env.now
yield self.env.timeout(settings.timeout)
if(num<anger_prob):
myList.append(self.id)
self.state['id'] = 1
networkStatus[self.id][self.env.now]=1
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
myList.append(self.id)
self.state['id'] = 2
networkStatus[self.id][self.env.now]=2
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
myList.append(self.id)
self.state['id'] = 3
networkStatus[self.id][self.env.now]=3
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
myList.append(self.id)
self.state['id'] = 4
networkStatus[self.id][self.env.now]=4
self.time_awareness[self.state['id']-1] = self.env.now
yield self.env.timeout(settings.timeout)
class BassModel(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
networkStatus[self.id][self.env.now]=0
def run(self):
while True:
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
myList.append(self.id)
networkStatus[self.id][self.env.now]=1
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
myList.append(self.id)
self.state['id'] = 1
networkStatus[self.id][self.env.now]=1
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
class IndependentCascadeModel(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
self.time_awareness = 0
networkStatus[self.id][self.env.now]=0
def run(self):
while True:
aware_neighbors_1_time_step=[]
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
myList.append(self.id)
networkStatus[self.id][self.env.now]=1
self.time_awareness = self.env.now #Para saber cuando se han contagiado
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
for x in aware_neighbors:
if x.time_awareness == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
myList.append(self.id)
self.state['id'] = 1
networkStatus[self.id][self.env.now]=1
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
class ZombieOutbreak(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.bite_prob = settings.bite_prob
networkStatus[self.id][self.env.now]=0
def run(self):
while True:
if random.random() < settings.heal_prob:
if self.state['id'] == 1:
self.zombify()
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
else:
if self.state['id'] == 1:
print("Soy el zombie " + str(self.id) + " y me voy a curar porque el num aleatorio ha sido " + str(num))
networkStatus[self.id][self.env.now]=0
if self.id in myList:
myList.remove(self.id)
self.state['id'] = 0
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
def zombify(self):
normal_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in normal_neighbors:
if random.random() < self.bite_prob:
print("Soy el zombie " + str(self.id) + " y voy a contagiar a " + str(neighbor.id))
neighbor.state['id'] = 1 # zombie
myList.append(neighbor.id)
networkStatus[self.id][self.env.now]=1
networkStatus[neighbor.id][self.env.now]=1
print(self.env.now, "Soy el zombie: "+ str(self.id), "Mi vecino es: "+ str(neighbor.id), sep='\t')
break
##############
# Simulation #
##############
@ -429,8 +40,6 @@ sim.run_simulation()
# Results #
###########
myList = sorted(myList, key=int)
#print("Los zombies son: " + str(myList))
trial = BaseLoggingAgent.open_trial_state_history(dir_path='sim_01', trial_id=0)
status_census = [sum([1 for node_id, state in g.items() if state['id'] == 1]) for t,g in trial.items()]
@ -440,53 +49,23 @@ status_census = [sum([1 for node_id, state in g.items() if state['id'] == 1]) fo
# Visualization #
#################
# print("Empresa1")
# print (enterprise1Status)
# print("Empresa2")
# print (enterprise2Status)
for y in allEnterprisesEmotionList:
for x in range(0, settings.number_of_nodes):
emotionStatusAux=[]
enterpriseStatus = allEnterprisesEmotionList[y]
for tiempo in enterpriseStatus[x]:
if tiempo != 'id':
prec = 2
output = math.floor(enterpriseStatus[x][tiempo] * (10 ** prec)) / (10 ** prec) #Para tener 2 decimales solo
emotionStatusAux.append((output,tiempo,None))
keyword = 'enterprise'+str(y)+'Emotion'
G.add_node(x, keyword = emotionStatusAux)
# for x in range(0, settings.number_of_nodes):
# emotionStatusAux2=[]
# for tiempo in enterprise2Status[x]:
# if tiempo != 'id':
# prec = 2
# output = math.floor(enterprise2Status[x][tiempo] * (10 ** prec)) / (10 ** prec) #Para tener 2 decimales solo
# emotionStatusAux2.append((output,tiempo,None))
# G.add_node(x, enterprise2emotion= emotionStatusAux2)
for x in range(0, settings.number_of_nodes):
for empresa in models.networkStatus["agente_%s"%x]:
emotionStatusAux=[]
for tiempo in models.networkStatus["agente_%s"%x][empresa]:
prec = 2
output = math.floor(models.networkStatus["agente_%s"%x][empresa][tiempo] * (10 ** prec)) / (10 ** prec) #Para tener 2 decimales solo
emotionStatusAux.append((output,tiempo,None))
attributes = {}
attributes[empresa] = emotionStatusAux
G.add_node(x, attributes)
print("Done!")
#lista = nx.nodes(G)
#print('Nodos: ' + str(lista))
# for x in range(0, settings.number_of_nodes):
# networkStatusAux=[]
# for tiempo in networkStatus[x]:
# if tiempo != 'id':
# networkStatusAux.append((networkStatus[x][tiempo],tiempo,None))
# G.add_node(x, status= networkStatusAux)
#print(networkStatus)
print(allEnterprisesEmotionList)
with open('data.txt', 'w') as outfile:
json.dump(allEnterprisesEmotionList, outfile)
json.dump(models.networkStatus, outfile, sort_keys=True, indent=4, separators=(',', ': '))
nx.write_gexf(G,"test.gexf", version="1.2draft")
plt.plot(status_census)
plt.draw() # pyplot draw()
plt.savefig("status.png")
#print(networkStatus)
#nx.draw(G)
#plt.show()
#plt.savefig("path.png")

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

After

Width:  |  Height:  |  Size: 13 KiB

9221
test.gexf

File diff suppressed because it is too large Load Diff