mirror of
https://github.com/gsi-upm/soil
synced 2024-11-12 22:42:28 +00:00
Big refactor v0.30
All test pass, except for the TestConfig suite, which is not too critical as the plan for this version onwards is to avoid configuration as much as possible.
This commit is contained in:
parent
2869b1e1e6
commit
73282530fd
47
docs/notes_v0.30.rst
Normal file
47
docs/notes_v0.30.rst
Normal file
@ -0,0 +1,47 @@
|
||||
|
||||
|
||||
What are the main changes between version 0.3 and 0.2?
|
||||
######################################################
|
||||
|
||||
Version 0.3 is a major rewrite of the Soil system, focused on simplifying the API, aligning it with Mesa, and making it easier to use.
|
||||
Unfortunately, this comes at the cost of backwards compatibility.
|
||||
|
||||
We drew several lessons from the previous version of Soil, and tried to address them in this version.
|
||||
Mainly:
|
||||
|
||||
- The split between simulation configuration and simulation code was overly complicated for most use cases. As a result, most users ended up reusing configuration.
|
||||
- Storing **all** the simulation data in a database is costly and unnecessary for most use cases. For most use cases, only a handful of variables need to be stored. This fits nicely with Mesa's data collection system.
|
||||
- The API was too complex, and it was difficult to understand how to use it.
|
||||
- Most parts of the API were not aligned with Mesa, which made it difficult to use Mesa's features or to integrate Soil modules with Mesa code, especially for newcomers.
|
||||
- Many parts of the API were tightly coupled, which made it difficult to find bugs, test the system and add new features.
|
||||
|
||||
The 0.30 rewrite should provide a middle ground between Soil's opinionated approach and Mesa's flexibility.
|
||||
The new Soil is less configuration-centric.
|
||||
It aims to provide more modular and convenient functions, most of which can be used in vanilla Mesa.
|
||||
|
||||
How are agents assigned to nodes in the network
|
||||
###############################################
|
||||
|
||||
In principle, the generation of the network topology and the assignment of agents to nodes are two separate processes.
|
||||
There is a mechanism to initialize the agents, a mechanism to initialize the topology, and a mechanism to assign agents to nodes.
|
||||
|
||||
However, there are a myriad of ways to do this, and it is not clear which is the best way to do it.
|
||||
Earlier versions of Soil approached it by providing a fairly complex method of agent and node generation.
|
||||
The result was a very complex and difficult to understand system, which is was also prone to bugs and changes between versions.
|
||||
|
||||
Starting with version 0.3, the approach is to provide a simplified yet flexible system for generating the network topology and assigning agents to nodes.
|
||||
This is based on these methods:
|
||||
|
||||
- `create_network`
|
||||
- `add_agents` (and `add_agent`)
|
||||
- `populate_network`
|
||||
|
||||
The default implementation of `soil.Environment` accepts some parameters that will automatically do these steps for the most common case.
|
||||
All other cases can be handled by overriding the `init(self)` method and explicitly using these methods.
|
||||
|
||||
|
||||
Can Soil environments include more than one network / topology?
|
||||
###############################################################
|
||||
|
||||
Yes, but each network has to be included manually.
|
||||
Somewhere between 0.20 and 0.30 we included the ability to include multiple networks, but it was deemed too complex and was removed.
|
File diff suppressed because one or more lines are too long
80808
examples/Untitled.ipynb
80808
examples/Untitled.ipynb
File diff suppressed because it is too large
Load Diff
@ -1,54 +0,0 @@
|
||||
---
|
||||
version: '2'
|
||||
name: simple
|
||||
group: tests
|
||||
dir_path: "/tmp/"
|
||||
num_trials: 3
|
||||
max_steps: 100
|
||||
interval: 1
|
||||
seed: "CompleteSeed!"
|
||||
model_class: Environment
|
||||
model_params:
|
||||
am_i_complete: true
|
||||
topology:
|
||||
params:
|
||||
generator: complete_graph
|
||||
n: 12
|
||||
environment:
|
||||
agents:
|
||||
agent_class: CounterModel
|
||||
topology: true
|
||||
state:
|
||||
times: 1
|
||||
# In this group we are not specifying any topology
|
||||
fixed:
|
||||
- name: 'Environment Agent 1'
|
||||
agent_class: BaseAgent
|
||||
group: environment
|
||||
topology: false
|
||||
hidden: true
|
||||
state:
|
||||
times: 10
|
||||
- agent_class: CounterModel
|
||||
id: 0
|
||||
group: fixed_counters
|
||||
state:
|
||||
times: 1
|
||||
total: 0
|
||||
- agent_class: CounterModel
|
||||
group: fixed_counters
|
||||
id: 1
|
||||
distribution:
|
||||
- agent_class: CounterModel
|
||||
weight: 1
|
||||
group: distro_counters
|
||||
state:
|
||||
times: 3
|
||||
- agent_class: AggregatedCounter
|
||||
weight: 0.2
|
||||
override:
|
||||
- filter:
|
||||
agent_class: AggregatedCounter
|
||||
n: 2
|
||||
state:
|
||||
times: 5
|
@ -1,16 +0,0 @@
|
||||
---
|
||||
name: custom-generator
|
||||
description: Using a custom generator for the network
|
||||
num_trials: 3
|
||||
max_steps: 100
|
||||
interval: 1
|
||||
network_params:
|
||||
generator: mymodule.mygenerator
|
||||
# These are custom parameters
|
||||
n: 10
|
||||
n_edges: 5
|
||||
network_agents:
|
||||
- agent_class: CounterModel
|
||||
weight: 1
|
||||
state:
|
||||
state_id: 0
|
@ -1,6 +1,7 @@
|
||||
from networkx import Graph
|
||||
import random
|
||||
import networkx as nx
|
||||
from soil import Simulation, Environment, CounterModel, parameters
|
||||
|
||||
|
||||
def mygenerator(n=5, n_edges=5):
|
||||
@ -20,3 +21,19 @@ def mygenerator(n=5, n_edges=5):
|
||||
n_out = random.choice(nodes)
|
||||
G.add_edge(n_in, n_out)
|
||||
return G
|
||||
|
||||
|
||||
class GeneratorEnv(Environment):
|
||||
"""Using a custom generator for the network"""
|
||||
|
||||
generator: parameters.function = mygenerator
|
||||
|
||||
def init(self):
|
||||
self.create_network(network_generator=self.generator, n=10, n_edges=5)
|
||||
self.init_agents(CounterModel)
|
||||
|
||||
|
||||
sim = Simulation(model=GeneratorEnv, max_steps=10, interval=1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
sim.run(dry_run=True)
|
@ -4,8 +4,7 @@ from soil.time import Delta
|
||||
|
||||
class Fibonacci(FSM):
|
||||
"""Agent that only executes in t_steps that are Fibonacci numbers"""
|
||||
|
||||
defaults = {"prev": 1}
|
||||
prev = 1
|
||||
|
||||
@default_state
|
||||
@state
|
||||
@ -25,23 +24,18 @@ class Odds(FSM):
|
||||
return None, Delta(1 + self.now % 2)
|
||||
|
||||
|
||||
from soil import Simulation
|
||||
from soil import Environment, Simulation
|
||||
from networkx import complete_graph
|
||||
|
||||
simulation = Simulation(
|
||||
model_params={
|
||||
'agents':[
|
||||
{'agent_class': Fibonacci, 'node_id': 0},
|
||||
{'agent_class': Odds, 'node_id': 1}
|
||||
],
|
||||
'topology': {
|
||||
'params': {
|
||||
'generator': 'complete_graph',
|
||||
'n': 2
|
||||
}
|
||||
},
|
||||
},
|
||||
max_time=100,
|
||||
)
|
||||
|
||||
class TimeoutsEnv(Environment):
|
||||
def init(self):
|
||||
self.init_network(generator=complete_graph, n=2)
|
||||
self.add_agent(agent_class=Fibonacci, node_id=0)
|
||||
self.add_agent(agent_class=Odds, node_id=1)
|
||||
|
||||
|
||||
sim = Simulation(model=TimeoutsEnv, max_steps=10, interval=1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
simulation.run(dry_run=True)
|
||||
sim.run(dry_run=True)
|
@ -232,12 +232,10 @@ class Passenger(Evented, FSM):
|
||||
self.die()
|
||||
|
||||
|
||||
simulation = Simulation(
|
||||
name="RideHailing",
|
||||
model_class=City,
|
||||
model_params={"n_passengers": 2},
|
||||
seed="carsSeed",
|
||||
)
|
||||
simulation = Simulation(name="RideHailing",
|
||||
model=City,
|
||||
seed="carsSeed",
|
||||
model_params=dict(n_passengers=2))
|
||||
|
||||
if __name__ == "__main__":
|
||||
simulation.run()
|
@ -1,19 +0,0 @@
|
||||
---
|
||||
name: mesa_sim
|
||||
group: tests
|
||||
dir_path: "/tmp"
|
||||
num_trials: 3
|
||||
max_steps: 100
|
||||
interval: 1
|
||||
seed: '1'
|
||||
model_class: social_wealth.MoneyEnv
|
||||
model_params:
|
||||
generator: social_wealth.graph_generator
|
||||
agents:
|
||||
topology: true
|
||||
distribution:
|
||||
- agent_class: social_wealth.SocialMoneyAgent
|
||||
weight: 1
|
||||
N: 10
|
||||
width: 50
|
||||
height: 50
|
7
examples/mesa/mesa_sim.py
Normal file
7
examples/mesa/mesa_sim.py
Normal file
@ -0,0 +1,7 @@
|
||||
from soil import Simulation
|
||||
from social_wealth import MoneyEnv, graph_generator
|
||||
|
||||
sim = Simulation(name="mesa_sim", dry_run=True, max_steps=10, interval=2, model=MoneyEnv, model_params=dict(generator=graph_generator, N=10, width=50, height=50))
|
||||
|
||||
if __name__ == "__main__":
|
||||
sim.run()
|
@ -1,5 +1,5 @@
|
||||
from mesa.visualization.ModularVisualization import ModularServer
|
||||
from soil.visualization import UserSettableParameter
|
||||
from mesa.visualization.UserParam import Slider, Choice
|
||||
from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid
|
||||
from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent
|
||||
import networkx as nx
|
||||
@ -64,8 +64,7 @@ chart = ChartModule(
|
||||
)
|
||||
|
||||
model_params = {
|
||||
"N": UserSettableParameter(
|
||||
"slider",
|
||||
"N": Slider(
|
||||
"N",
|
||||
5,
|
||||
1,
|
||||
@ -73,8 +72,7 @@ model_params = {
|
||||
1,
|
||||
description="Choose how many agents to include in the model",
|
||||
),
|
||||
"height": UserSettableParameter(
|
||||
"slider",
|
||||
"height": Slider(
|
||||
"height",
|
||||
5,
|
||||
5,
|
||||
@ -82,8 +80,7 @@ model_params = {
|
||||
1,
|
||||
description="Grid height",
|
||||
),
|
||||
"width": UserSettableParameter(
|
||||
"slider",
|
||||
"width": Slider(
|
||||
"width",
|
||||
5,
|
||||
5,
|
||||
@ -91,8 +88,7 @@ model_params = {
|
||||
1,
|
||||
description="Grid width",
|
||||
),
|
||||
"agent_class": UserSettableParameter(
|
||||
"choice",
|
||||
"agent_class": Choice(
|
||||
"Agent class",
|
||||
value="MoneyAgent",
|
||||
choices=["MoneyAgent", "SocialMoneyAgent"],
|
||||
|
@ -1,133 +0,0 @@
|
||||
---
|
||||
default_state: {}
|
||||
environment_agents: []
|
||||
environment_params:
|
||||
prob_neighbor_spread: 0.0
|
||||
prob_tv_spread: 0.01
|
||||
interval: 1
|
||||
max_steps: 300
|
||||
name: Sim_all_dumb
|
||||
network_agents:
|
||||
- agent_class: newsspread.DumbViewer
|
||||
state:
|
||||
has_tv: false
|
||||
weight: 1
|
||||
- agent_class: newsspread.DumbViewer
|
||||
state:
|
||||
has_tv: true
|
||||
weight: 1
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
num_trials: 50
|
||||
---
|
||||
default_state: {}
|
||||
environment_agents: []
|
||||
environment_params:
|
||||
prob_neighbor_spread: 0.0
|
||||
prob_tv_spread: 0.01
|
||||
interval: 1
|
||||
max_steps: 300
|
||||
name: Sim_half_herd
|
||||
network_agents:
|
||||
- agent_class: newsspread.DumbViewer
|
||||
state:
|
||||
has_tv: false
|
||||
weight: 1
|
||||
- agent_class: newsspread.DumbViewer
|
||||
state:
|
||||
has_tv: true
|
||||
weight: 1
|
||||
- agent_class: newsspread.HerdViewer
|
||||
state:
|
||||
has_tv: false
|
||||
weight: 1
|
||||
- agent_class: newsspread.HerdViewer
|
||||
state:
|
||||
has_tv: true
|
||||
weight: 1
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
num_trials: 50
|
||||
---
|
||||
default_state: {}
|
||||
environment_agents: []
|
||||
environment_params:
|
||||
prob_neighbor_spread: 0.0
|
||||
prob_tv_spread: 0.01
|
||||
interval: 1
|
||||
max_steps: 300
|
||||
name: Sim_all_herd
|
||||
network_agents:
|
||||
- agent_class: newsspread.HerdViewer
|
||||
state:
|
||||
has_tv: true
|
||||
state_id: neutral
|
||||
weight: 1
|
||||
- agent_class: newsspread.HerdViewer
|
||||
state:
|
||||
has_tv: true
|
||||
state_id: neutral
|
||||
weight: 1
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
num_trials: 50
|
||||
---
|
||||
default_state: {}
|
||||
environment_agents: []
|
||||
environment_params:
|
||||
prob_neighbor_spread: 0.0
|
||||
prob_tv_spread: 0.01
|
||||
prob_neighbor_cure: 0.1
|
||||
interval: 1
|
||||
max_steps: 300
|
||||
name: Sim_wise_herd
|
||||
network_agents:
|
||||
- agent_class: newsspread.HerdViewer
|
||||
state:
|
||||
has_tv: true
|
||||
state_id: neutral
|
||||
weight: 1
|
||||
- agent_class: newsspread.WiseViewer
|
||||
state:
|
||||
has_tv: true
|
||||
weight: 1
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
num_trials: 50
|
||||
---
|
||||
default_state: {}
|
||||
environment_agents: []
|
||||
environment_params:
|
||||
prob_neighbor_spread: 0.0
|
||||
prob_tv_spread: 0.01
|
||||
prob_neighbor_cure: 0.1
|
||||
interval: 1
|
||||
max_steps: 300
|
||||
name: Sim_all_wise
|
||||
network_agents:
|
||||
- agent_class: newsspread.WiseViewer
|
||||
state:
|
||||
has_tv: true
|
||||
state_id: neutral
|
||||
weight: 1
|
||||
- agent_class: newsspread.WiseViewer
|
||||
state:
|
||||
has_tv: true
|
||||
weight: 1
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
num_trials: 50
|
@ -1,87 +0,0 @@
|
||||
from soil.agents import FSM, NetworkAgent, state, default_state, prob
|
||||
import logging
|
||||
|
||||
|
||||
class DumbViewer(FSM, NetworkAgent):
|
||||
"""
|
||||
A viewer that gets infected via TV (if it has one) and tries to infect
|
||||
its neighbors once it's infected.
|
||||
"""
|
||||
|
||||
prob_neighbor_spread = 0.5
|
||||
prob_tv_spread = 0.1
|
||||
has_been_infected = False
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def neutral(self):
|
||||
if self["has_tv"]:
|
||||
if self.prob(self.model["prob_tv_spread"]):
|
||||
return self.infected
|
||||
if self.has_been_infected:
|
||||
return self.infected
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
for neighbor in self.get_neighbors(state_id=self.neutral.id):
|
||||
if self.prob(self.model["prob_neighbor_spread"]):
|
||||
neighbor.infect()
|
||||
|
||||
def infect(self):
|
||||
"""
|
||||
This is not a state. It is a function that other agents can use to try to
|
||||
infect this agent. DumbViewer always gets infected, but other agents like
|
||||
HerdViewer might not become infected right away
|
||||
"""
|
||||
|
||||
self.has_been_infected = True
|
||||
|
||||
|
||||
class HerdViewer(DumbViewer):
|
||||
"""
|
||||
A viewer whose probability of infection depends on the state of its neighbors.
|
||||
"""
|
||||
|
||||
def infect(self):
|
||||
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
|
||||
infected = self.count_neighbors(state_id=self.infected.id)
|
||||
total = self.count_neighbors()
|
||||
prob_infect = self.model["prob_neighbor_spread"] * infected / total
|
||||
self.debug("prob_infect", prob_infect)
|
||||
if self.prob(prob_infect):
|
||||
self.has_been_infected = True
|
||||
|
||||
|
||||
class WiseViewer(HerdViewer):
|
||||
"""
|
||||
A viewer that can change its mind.
|
||||
"""
|
||||
|
||||
defaults = {
|
||||
"prob_neighbor_spread": 0.5,
|
||||
"prob_neighbor_cure": 0.25,
|
||||
"prob_tv_spread": 0.1,
|
||||
}
|
||||
|
||||
@state
|
||||
def cured(self):
|
||||
prob_cure = self.model["prob_neighbor_cure"]
|
||||
for neighbor in self.get_neighbors(state_id=self.infected.id):
|
||||
if self.prob(prob_cure):
|
||||
try:
|
||||
neighbor.cure()
|
||||
except AttributeError:
|
||||
self.debug("Viewer {} cannot be cured".format(neighbor.id))
|
||||
|
||||
def cure(self):
|
||||
self.has_been_cured = True
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
if self.has_been_cured:
|
||||
return self.cured
|
||||
cured = max(self.count_neighbors(self.cured.id), 1.0)
|
||||
infected = max(self.count_neighbors(self.infected.id), 1.0)
|
||||
prob_cure = self.model["prob_neighbor_cure"] * (cured / infected)
|
||||
if self.prob(prob_cure):
|
||||
return self.cured
|
129
examples/newsspread/newsspread_sim.py
Normal file
129
examples/newsspread/newsspread_sim.py
Normal file
@ -0,0 +1,129 @@
|
||||
from soil.agents import FSM, NetworkAgent, state, default_state, prob
|
||||
from soil.parameters import *
|
||||
import logging
|
||||
|
||||
from soil.environment import Environment
|
||||
|
||||
|
||||
class DumbViewer(FSM, NetworkAgent):
|
||||
"""
|
||||
A viewer that gets infected via TV (if it has one) and tries to infect
|
||||
its neighbors once it's infected.
|
||||
"""
|
||||
|
||||
has_been_infected: bool = False
|
||||
has_tv: bool = False
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def neutral(self):
|
||||
if self.has_tv:
|
||||
if self.prob(self.get("prob_tv_spread")):
|
||||
return self.infected
|
||||
if self.has_been_infected:
|
||||
return self.infected
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
for neighbor in self.get_neighbors(state_id=self.neutral.id):
|
||||
if self.prob(self.get("prob_neighbor_spread")):
|
||||
neighbor.infect()
|
||||
|
||||
def infect(self):
|
||||
"""
|
||||
This is not a state. It is a function that other agents can use to try to
|
||||
infect this agent. DumbViewer always gets infected, but other agents like
|
||||
HerdViewer might not become infected right away
|
||||
"""
|
||||
self.has_been_infected = True
|
||||
|
||||
|
||||
class HerdViewer(DumbViewer):
|
||||
"""
|
||||
A viewer whose probability of infection depends on the state of its neighbors.
|
||||
"""
|
||||
|
||||
def infect(self):
|
||||
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
|
||||
infected = self.count_neighbors(state_id=self.infected.id)
|
||||
total = self.count_neighbors()
|
||||
prob_infect = self.get("prob_neighbor_spread") * infected / total
|
||||
self.debug("prob_infect", prob_infect)
|
||||
if self.prob(prob_infect):
|
||||
self.has_been_infected = True
|
||||
|
||||
|
||||
class WiseViewer(HerdViewer):
|
||||
"""
|
||||
A viewer that can change its mind.
|
||||
"""
|
||||
|
||||
@state
|
||||
def cured(self):
|
||||
prob_cure = self.get("prob_neighbor_cure")
|
||||
for neighbor in self.get_neighbors(state_id=self.infected.id):
|
||||
if self.prob(prob_cure):
|
||||
try:
|
||||
neighbor.cure()
|
||||
except AttributeError:
|
||||
self.debug("Viewer {} cannot be cured".format(neighbor.id))
|
||||
|
||||
def cure(self):
|
||||
self.has_been_cured = True
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
if self.has_been_cured:
|
||||
return self.cured
|
||||
cured = max(self.count_neighbors(self.cured.id), 1.0)
|
||||
infected = max(self.count_neighbors(self.infected.id), 1.0)
|
||||
prob_cure = self.get("prob_neighbor_cure") * (cured / infected)
|
||||
if self.prob(prob_cure):
|
||||
return self.cured
|
||||
|
||||
|
||||
class NewsSpread(Environment):
|
||||
ratio_dumb: probability = 1,
|
||||
ratio_herd: probability = 0,
|
||||
ratio_wise: probability = 0,
|
||||
prob_tv_spread: probability = 0.1,
|
||||
prob_neighbor_spread: probability = 0.1,
|
||||
prob_neighbor_cure: probability = 0.05,
|
||||
|
||||
def init(self):
|
||||
self.populate_network([DumbViewer, HerdViewer, WiseViewer], [self.ratio_dumb, self.ratio_herd, self.ratio_wise])
|
||||
|
||||
|
||||
from itertools import permutations
|
||||
from soil import Simulation
|
||||
|
||||
|
||||
# We want to investigate the effect of different agent distributions on the spread of news.
|
||||
# To do that, we will run different simulations, with a varying ratio of DumbViewers, HerdViewers, and WiseViewers
|
||||
# Because the effect of these agents might also depend on the network structure, we will run our simulations on two different networks:
|
||||
# one with a small-world structure and one with a connected structure.
|
||||
|
||||
for [r1, r2, r3] in permutations([0, 0.5, 1.0], 3):
|
||||
for (generator, netparams) in {
|
||||
"barabasi_albert_graph": {"m": 5},
|
||||
"erdos_renyi_graph": {"p": 0.1},
|
||||
}.items():
|
||||
print(r1, r2, r3, generator)
|
||||
# Create new simulation
|
||||
netparams["n"] = 500
|
||||
sim = Simulation(
|
||||
model=NewsSpread,
|
||||
model_params={
|
||||
"ratio_dumb": r1,
|
||||
"ratio_herd": r2,
|
||||
"ratio_wise": r3,
|
||||
"network_generator": generator,
|
||||
"network_params": netparams,
|
||||
"prob_neighbor_spread": 0,
|
||||
},
|
||||
num_trials=50,
|
||||
max_steps=300,
|
||||
dry_run=True,
|
||||
)
|
||||
# Run all the necessary instances
|
||||
sim.run()
|
@ -1,7 +1,7 @@
|
||||
"""
|
||||
Example of a fully programmatic simulation, without definition files.
|
||||
"""
|
||||
from soil import Simulation, agents
|
||||
from soil import Simulation, Environment, agents
|
||||
from networkx import Graph
|
||||
import logging
|
||||
|
||||
@ -25,23 +25,18 @@ class MyAgent(agents.FSM):
|
||||
self.info("This runs 2/10 times on average")
|
||||
|
||||
|
||||
class ProgrammaticEnv(Environment):
|
||||
|
||||
def init(self):
|
||||
self.create_network(generator=mygenerator)
|
||||
self.populate_network(agent_class=MyAgent)
|
||||
self.add_agent_reporter('times_run')
|
||||
|
||||
|
||||
simulation = Simulation(
|
||||
name="Programmatic",
|
||||
model_params={
|
||||
'topology': {
|
||||
'params': {
|
||||
'generator': mygenerator
|
||||
},
|
||||
},
|
||||
'agents': {
|
||||
'distribution': [{
|
||||
'agent_class': MyAgent,
|
||||
'topology': True,
|
||||
}]
|
||||
}
|
||||
},
|
||||
model=ProgrammaticEnv,
|
||||
seed='Program',
|
||||
agent_reporters={'times_run': 'times_run'},
|
||||
num_trials=1,
|
||||
max_time=100,
|
||||
dry_run=True,
|
@ -1,26 +0,0 @@
|
||||
---
|
||||
name: pubcrawl
|
||||
num_trials: 3
|
||||
max_steps: 10
|
||||
dump: false
|
||||
network_params:
|
||||
# Generate 100 empty nodes. They will be assigned a network agent
|
||||
generator: empty_graph
|
||||
n: 30
|
||||
network_agents:
|
||||
- agent_class: pubcrawl.Patron
|
||||
description: Extroverted patron
|
||||
state:
|
||||
openness: 1.0
|
||||
weight: 9
|
||||
- agent_class: pubcrawl.Patron
|
||||
description: Introverted patron
|
||||
state:
|
||||
openness: 0.1
|
||||
weight: 1
|
||||
environment_agents:
|
||||
- agent_class: pubcrawl.Police
|
||||
environment_class: pubcrawl.CityPubs
|
||||
environment_params:
|
||||
altercations: 0
|
||||
number_of_pubs: 3
|
@ -1,6 +1,7 @@
|
||||
from soil.agents import FSM, NetworkAgent, state, default_state
|
||||
from soil import Environment
|
||||
from soil import Environment, Simulation, parameters
|
||||
from itertools import islice
|
||||
import networkx as nx
|
||||
import logging
|
||||
|
||||
|
||||
@ -8,19 +9,23 @@ class CityPubs(Environment):
|
||||
"""Environment with Pubs"""
|
||||
|
||||
level = logging.INFO
|
||||
|
||||
def __init__(self, *args, number_of_pubs=3, pub_capacity=10, **kwargs):
|
||||
super(CityPubs, self).__init__(*args, **kwargs)
|
||||
number_of_pubs: parameters.Integer = 3
|
||||
ratio_extroverted: parameters.probability = 0.1
|
||||
pub_capacity: parameters.Integer = 10
|
||||
|
||||
def init(self):
|
||||
pubs = {}
|
||||
for i in range(number_of_pubs):
|
||||
for i in range(self.number_of_pubs):
|
||||
newpub = {
|
||||
"name": "The awesome pub #{}".format(i),
|
||||
"open": True,
|
||||
"capacity": pub_capacity,
|
||||
"capacity": self.pub_capacity,
|
||||
"occupancy": 0,
|
||||
}
|
||||
pubs[newpub["name"]] = newpub
|
||||
self.add_agent(agent_class=Police, node_id=0)
|
||||
self["pubs"] = pubs
|
||||
self.populate_network([{"openness": 0.1}, {"openness": 1}], [self.ratio_extroverted, 1-self.ratio_extroverted], agent_class=Patron)
|
||||
|
||||
def enter(self, pub_id, *nodes):
|
||||
"""Agents will try to enter. The pub checks if it is possible"""
|
||||
@ -169,7 +174,20 @@ class Police(FSM):
|
||||
self.info("No trash to take out. Too bad.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from soil import run_from_config
|
||||
sim = Simulation(
|
||||
name="pubcrawl",
|
||||
num_trials=3,
|
||||
max_steps=10,
|
||||
dry_run=True,
|
||||
model_params=dict(
|
||||
generator=nx.empty_graph,
|
||||
network_params={"n": 30},
|
||||
model=CityPubs,
|
||||
altercations=0,
|
||||
number_of_pubs=3,
|
||||
)
|
||||
)
|
||||
|
||||
run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)
|
||||
|
||||
if __name__ == "__main__":
|
||||
sim.run(parallel=False)
|
@ -1,42 +0,0 @@
|
||||
---
|
||||
version: '2'
|
||||
name: rabbits_basic
|
||||
num_trials: 1
|
||||
seed: MySeed
|
||||
description: null
|
||||
group: null
|
||||
interval: 1.0
|
||||
max_time: 100
|
||||
model_class: rabbit_agents.RabbitEnv
|
||||
model_params:
|
||||
agents:
|
||||
topology: true
|
||||
distribution:
|
||||
- agent_class: rabbit_agents.Male
|
||||
weight: 1
|
||||
- agent_class: rabbit_agents.Female
|
||||
weight: 1
|
||||
fixed:
|
||||
- agent_class: rabbit_agents.RandomAccident
|
||||
topology: false
|
||||
hidden: true
|
||||
state:
|
||||
group: environment
|
||||
state:
|
||||
group: network
|
||||
mating_prob: 0.1
|
||||
prob_death: 0.001
|
||||
topology:
|
||||
fixed:
|
||||
directed: true
|
||||
links: []
|
||||
nodes:
|
||||
- id: 1
|
||||
- id: 0
|
||||
model_reporters:
|
||||
num_males: 'num_males'
|
||||
num_females: 'num_females'
|
||||
num_rabbits: |
|
||||
py:lambda env: env.num_males + env.num_females
|
||||
extra:
|
||||
visualization_params: {}
|
@ -1,42 +0,0 @@
|
||||
---
|
||||
version: '2'
|
||||
name: rabbits_improved
|
||||
num_trials: 1
|
||||
seed: MySeed
|
||||
description: null
|
||||
group: null
|
||||
interval: 1.0
|
||||
max_time: 100
|
||||
model_class: rabbit_agents.RabbitEnv
|
||||
model_params:
|
||||
agents:
|
||||
topology: true
|
||||
distribution:
|
||||
- agent_class: rabbit_agents.Male
|
||||
weight: 1
|
||||
- agent_class: rabbit_agents.Female
|
||||
weight: 1
|
||||
fixed:
|
||||
- agent_class: rabbit_agents.RandomAccident
|
||||
topology: false
|
||||
hidden: true
|
||||
state:
|
||||
group: environment
|
||||
state:
|
||||
group: network
|
||||
mating_prob: 0.1
|
||||
prob_death: 0.001
|
||||
topology:
|
||||
fixed:
|
||||
directed: true
|
||||
links: []
|
||||
nodes:
|
||||
- id: 1
|
||||
- id: 0
|
||||
model_reporters:
|
||||
num_males: 'num_males'
|
||||
num_females: 'num_females'
|
||||
num_rabbits: |
|
||||
py:lambda env: env.num_males + env.num_females
|
||||
extra:
|
||||
visualization_params: {}
|
@ -1,23 +1,20 @@
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, Simulation
|
||||
from soil.time import Delta
|
||||
from enum import Enum
|
||||
from collections import Counter
|
||||
import logging
|
||||
import math
|
||||
|
||||
from rabbits_basic_sim import RabbitEnv
|
||||
|
||||
class RabbitEnv(Environment):
|
||||
@property
|
||||
def num_rabbits(self):
|
||||
return self.count_agents(agent_class=Rabbit)
|
||||
|
||||
@property
|
||||
def num_males(self):
|
||||
return self.count_agents(agent_class=Male)
|
||||
|
||||
@property
|
||||
def num_females(self):
|
||||
return self.count_agents(agent_class=Female)
|
||||
class RabbitsImprovedEnv(RabbitEnv):
|
||||
def init(self):
|
||||
"""Initialize the environment with the new versions of the agents"""
|
||||
a1 = self.add_node(Male)
|
||||
a2 = self.add_node(Female)
|
||||
a1.add_edge(a2)
|
||||
self.add_agent(RandomAccident)
|
||||
|
||||
|
||||
class Rabbit(FSM, NetworkAgent):
|
||||
@ -150,8 +147,7 @@ class RandomAccident(BaseAgent):
|
||||
self.debug("Rabbits alive: {}".format(rabbits_alive))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from soil import easy
|
||||
sim = Simulation(model=RabbitsImprovedEnv, max_time=100, seed="MySeed", num_trials=1)
|
||||
|
||||
with easy("rabbits.yml") as sim:
|
||||
sim.run()
|
||||
if __name__ == "__main__":
|
||||
sim.run()
|
@ -1,20 +1,29 @@
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, Simulation, report, parameters as params
|
||||
from collections import Counter
|
||||
import logging
|
||||
import math
|
||||
|
||||
|
||||
class RabbitEnv(Environment):
|
||||
prob_death = 1e-100
|
||||
prob_death: params.probability = 1e-100
|
||||
|
||||
def init(self):
|
||||
a1 = self.add_node(Male)
|
||||
a2 = self.add_node(Female)
|
||||
a1.add_edge(a2)
|
||||
self.add_agent(RandomAccident)
|
||||
|
||||
@report
|
||||
@property
|
||||
def num_rabbits(self):
|
||||
return self.count_agents(agent_class=Rabbit)
|
||||
|
||||
@report
|
||||
@property
|
||||
def num_males(self):
|
||||
return self.count_agents(agent_class=Male)
|
||||
|
||||
@report
|
||||
@property
|
||||
def num_females(self):
|
||||
return self.count_agents(agent_class=Female)
|
||||
@ -145,8 +154,8 @@ class RandomAccident(BaseAgent):
|
||||
self.debug("Rabbits alive: {}".format(rabbits_alive))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from soil import easy
|
||||
|
||||
with easy("rabbits.yml") as sim:
|
||||
sim.run()
|
||||
sim = Simulation(model=RabbitEnv, max_time=100, seed="MySeed", num_trials=1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
sim.run()
|
@ -2,7 +2,7 @@
|
||||
Example of setting a
|
||||
Example of a fully programmatic simulation, without definition files.
|
||||
"""
|
||||
from soil import Simulation, agents
|
||||
from soil import Simulation, agents, Environment
|
||||
from soil.time import Delta
|
||||
|
||||
|
||||
@ -29,11 +29,15 @@ class MyAgent(agents.FSM):
|
||||
return None, Delta(self.random.expovariate(1 / 16))
|
||||
|
||||
|
||||
class RandomEnv(Environment):
|
||||
|
||||
def init(self):
|
||||
self.add_agent(agent_class=MyAgent)
|
||||
|
||||
|
||||
s = Simulation(
|
||||
name="Programmatic",
|
||||
model_params={
|
||||
'agents': [{'agent_class': MyAgent}],
|
||||
},
|
||||
model=RandomEnv,
|
||||
num_trials=1,
|
||||
max_time=100,
|
||||
dry_run=True,
|
@ -1,30 +0,0 @@
|
||||
---
|
||||
sampler:
|
||||
method: "SALib.sample.morris.sample"
|
||||
N: 10
|
||||
template:
|
||||
group: simple
|
||||
num_trials: 1
|
||||
interval: 1
|
||||
max_steps: 2
|
||||
seed: "CompleteSeed!"
|
||||
dump: false
|
||||
model_params:
|
||||
network_params:
|
||||
generator: complete_graph
|
||||
n: 10
|
||||
network_agents:
|
||||
- agent_class: CounterModel
|
||||
weight: "{{ x1 }}"
|
||||
state:
|
||||
state_id: 0
|
||||
- agent_class: AggregatedCounter
|
||||
weight: "{{ 1 - x1 }}"
|
||||
name: "{{ x3 }}"
|
||||
skip_test: true
|
||||
vars:
|
||||
bounds:
|
||||
x1: [0, 1]
|
||||
x2: [1, 2]
|
||||
fixed:
|
||||
x3: ["a", "b", "c"]
|
@ -1,62 +0,0 @@
|
||||
name: TerroristNetworkModel_sim
|
||||
max_steps: 150
|
||||
num_trials: 1
|
||||
model_params:
|
||||
network_params:
|
||||
generator: random_geometric_graph
|
||||
radius: 0.2
|
||||
# generator: geographical_threshold_graph
|
||||
# theta: 20
|
||||
n: 100
|
||||
network_agents:
|
||||
- agent_class: TerroristNetworkModel.TerroristNetworkModel
|
||||
weight: 0.8
|
||||
state:
|
||||
id: civilian # Civilians
|
||||
- agent_class: TerroristNetworkModel.TerroristNetworkModel
|
||||
weight: 0.1
|
||||
state:
|
||||
id: leader # Leaders
|
||||
- agent_class: TerroristNetworkModel.TrainingAreaModel
|
||||
weight: 0.05
|
||||
state:
|
||||
id: terrorist # Terrorism
|
||||
- agent_class: TerroristNetworkModel.HavenModel
|
||||
weight: 0.05
|
||||
state:
|
||||
id: civilian # Civilian
|
||||
|
||||
# TerroristSpreadModel
|
||||
information_spread_intensity: 0.7
|
||||
terrorist_additional_influence: 0.035
|
||||
max_vulnerability: 0.7
|
||||
prob_interaction: 0.5
|
||||
|
||||
# TrainingAreaModel and HavenModel
|
||||
training_influence: 0.20
|
||||
haven_influence: 0.20
|
||||
|
||||
# TerroristNetworkModel
|
||||
vision_range: 0.30
|
||||
sphere_influence: 2
|
||||
weight_social_distance: 0.035
|
||||
weight_link_distance: 0.035
|
||||
|
||||
visualization_params:
|
||||
# Icons downloaded from https://www.iconfinder.com/
|
||||
shape_property: agent
|
||||
shapes:
|
||||
TrainingAreaModel: target
|
||||
HavenModel: home
|
||||
TerroristNetworkModel: person
|
||||
colors:
|
||||
- attr_id: civilian
|
||||
color: '#40de40'
|
||||
- attr_id: terrorist
|
||||
color: red
|
||||
- attr_id: leader
|
||||
color: '#c16a6a'
|
||||
background_image: 'map_4800x2860.jpg'
|
||||
background_opacity: '0.9'
|
||||
background_filter_color: 'blue'
|
||||
skip_test: true # This simulation takes too long for automated tests.
|
@ -1,6 +1,43 @@
|
||||
import networkx as nx
|
||||
from soil.agents import Geo, NetworkAgent, FSM, state, default_state
|
||||
from soil import Environment
|
||||
from soil.agents import Geo, NetworkAgent, FSM, custom, state, default_state
|
||||
from soil import Environment, Simulation
|
||||
from soil.parameters import *
|
||||
|
||||
|
||||
class TerroristEnvironment(Environment):
|
||||
generator: function = nx.random_geometric_graph
|
||||
n: Integer = 100
|
||||
radius: Float = 0.2
|
||||
|
||||
information_spread_intensity: probability = 0.7
|
||||
terrorist_additional_influence: probability = 0.03
|
||||
terrorist_additional_influence: probability = 0.035
|
||||
max_vulnerability: probability = 0.7
|
||||
prob_interaction: probability = 0.5
|
||||
|
||||
# TrainingAreaModel and HavenModel
|
||||
training_influence: probability = 0.20
|
||||
haven_influence: probability = 0.20
|
||||
|
||||
# TerroristNetworkModel
|
||||
vision_range: Float = 0.30
|
||||
sphere_influence: Integer = 2
|
||||
weight_social_distance: Float = 0.035
|
||||
weight_link_distance: Float = 0.035
|
||||
|
||||
ratio_civil: probability = 0.8
|
||||
ratio_leader: probability = 0.1
|
||||
ratio_training: probability = 0.05
|
||||
ratio_haven: probability = 0.05
|
||||
|
||||
def init(self):
|
||||
self.create_network(generator=self.generator, n=self.n, radius=self.radius)
|
||||
self.populate_network([
|
||||
TerroristNetworkModel.w(state_id='civilian'),
|
||||
TerroristNetworkModel.w(state_id='leader'),
|
||||
TrainingAreaModel,
|
||||
HavenModel
|
||||
], [self.ratio_civil, self.ratio_leader, self.ratio_trainig, self.ratio_heaven])
|
||||
|
||||
|
||||
class TerroristSpreadModel(FSM, Geo):
|
||||
@ -17,36 +54,21 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
prob_interaction
|
||||
"""
|
||||
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||
|
||||
self.information_spread_intensity = model.environment_params[
|
||||
"information_spread_intensity"
|
||||
]
|
||||
self.terrorist_additional_influence = model.environment_params[
|
||||
"terrorist_additional_influence"
|
||||
]
|
||||
self.prob_interaction = model.environment_params["prob_interaction"]
|
||||
|
||||
if self["id"] == self.civilian.id: # Civilian
|
||||
self.mean_belief = self.random.uniform(0.00, 0.5)
|
||||
elif self["id"] == self.terrorist.id: # Terrorist
|
||||
def init(self):
|
||||
if self.state_id == self.civilian.id: # Civilian
|
||||
self.mean_belief = self.model.random.uniform(0.00, 0.5)
|
||||
elif self.state_id == self.terrorist.id: # Terrorist
|
||||
self.mean_belief = self.random.uniform(0.8, 1.00)
|
||||
elif self["id"] == self.leader.id: # Leader
|
||||
elif self.state_id == self.leader.id: # Leader
|
||||
self.mean_belief = 1.00
|
||||
else:
|
||||
raise Exception("Invalid state id: {}".format(self["id"]))
|
||||
|
||||
if "min_vulnerability" in model.environment_params:
|
||||
self.vulnerability = self.random.uniform(
|
||||
model.environment_params["min_vulnerability"],
|
||||
model.environment_params["max_vulnerability"],
|
||||
)
|
||||
else:
|
||||
self.vulnerability = self.random.uniform(
|
||||
0, model.environment_params["max_vulnerability"]
|
||||
)
|
||||
self.vulnerability = self.random.uniform(
|
||||
self.get("min_vulnerability", 0), self.get("max_vulnerability", 1)
|
||||
)
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def civilian(self):
|
||||
neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel))
|
||||
@ -287,3 +309,32 @@ class TerroristNetworkModel(TerroristSpreadModel):
|
||||
return nx.shortest_path_length(self.G, self.id, target)
|
||||
except nx.NetworkXNoPath:
|
||||
return float("inf")
|
||||
|
||||
|
||||
sim = Simulation(
|
||||
model=TerroristEnvironment,
|
||||
num_trials=1,
|
||||
name="TerroristNetworkModel_sim",
|
||||
max_steps=150,
|
||||
skip_test=True,
|
||||
dry_run=True,
|
||||
)
|
||||
|
||||
# TODO: integrate visualization
|
||||
# visualization_params:
|
||||
# # Icons downloaded from https://www.iconfinder.com/
|
||||
# shape_property: agent
|
||||
# shapes:
|
||||
# TrainingAreaModel: target
|
||||
# HavenModel: home
|
||||
# TerroristNetworkModel: person
|
||||
# colors:
|
||||
# - attr_id: civilian
|
||||
# color: '#40de40'
|
||||
# - attr_id: terrorist
|
||||
# color: red
|
||||
# - attr_id: leader
|
||||
# color: '#c16a6a'
|
||||
# background_image: 'map_4800x2860.jpg'
|
||||
# background_opacity: '0.9'
|
||||
# background_filter_color: 'blue'
|
@ -1,15 +0,0 @@
|
||||
---
|
||||
name: torvalds_example
|
||||
max_steps: 10
|
||||
interval: 2
|
||||
model_params:
|
||||
agent_class: CounterModel
|
||||
default_state:
|
||||
skill_level: 'beginner'
|
||||
network_params:
|
||||
path: 'torvalds.edgelist'
|
||||
states:
|
||||
Torvalds:
|
||||
skill_level: 'God'
|
||||
balkian:
|
||||
skill_level: 'developer'
|
16
examples/torvalds_sim.py
Normal file
16
examples/torvalds_sim.py
Normal file
@ -0,0 +1,16 @@
|
||||
from soil import Environment, Simulation, CounterModel
|
||||
|
||||
class TorvaldsEnv(Environment):
|
||||
|
||||
def init(self):
|
||||
self.create_network(path='torvalds.edgelist')
|
||||
self.populate_network(CounterModel, skill_level='beginner')
|
||||
print("Agentes: ", list(self.network_agents))
|
||||
self.find_one(node_id="Torvalds").skill_level = 'God'
|
||||
self.find_one(node_id="balkian").skill_level = 'developer'
|
||||
|
||||
|
||||
sim = Simulation(name='torvalds_example',
|
||||
max_steps=10,
|
||||
interval=2,
|
||||
model=TorvaldsEnv)
|
@ -5,6 +5,8 @@ pyyaml>=5.1
|
||||
pandas>=1
|
||||
SALib>=1.3
|
||||
Jinja2
|
||||
Mesa>=1.1
|
||||
Mesa>=1.2
|
||||
pydantic>=1.9
|
||||
sqlalchemy>=1.4
|
||||
typing-extensions>=4.4
|
||||
annotated-types>=0.4
|
@ -24,6 +24,7 @@ from .datacollection import SoilCollector
|
||||
from . import serialization
|
||||
from .utils import logger
|
||||
from .time import *
|
||||
from .decorators import *
|
||||
|
||||
|
||||
def main(
|
||||
@ -184,7 +185,7 @@ def main(
|
||||
return
|
||||
|
||||
sims = list(
|
||||
simulation.iter_from_config(
|
||||
simulation.iter_from_file(
|
||||
args.file,
|
||||
dry_run=args.dry_run,
|
||||
exporters=exporters,
|
||||
|
@ -1,6 +1,12 @@
|
||||
from . import NetworkAgent
|
||||
from . import BaseAgent, NetworkAgent
|
||||
|
||||
|
||||
class Ticker(BaseAgent):
|
||||
times = 0
|
||||
|
||||
def step(self):
|
||||
self.times += 1
|
||||
|
||||
class CounterModel(NetworkAgent):
|
||||
"""
|
||||
Dummy behaviour. It counts the number of nodes in the network and neighbors
|
||||
|
@ -14,10 +14,10 @@ import networkx as nx
|
||||
|
||||
from typing import Any
|
||||
|
||||
from mesa import Agent as MesaAgent
|
||||
from mesa import Agent as MesaAgent, Model
|
||||
from typing import Dict, List
|
||||
|
||||
from .. import serialization, utils, time, config
|
||||
from .. import serialization, network, utils, time, config
|
||||
|
||||
|
||||
IGNORED_FIELDS = ("model", "logger")
|
||||
@ -123,10 +123,18 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
def prob(self, probability):
|
||||
return prob(probability, self.model.random)
|
||||
|
||||
@classmethod
|
||||
def w(cls, **kwargs):
|
||||
return custom(cls, **kwargs)
|
||||
|
||||
# TODO: refactor to clean up mesa compatibility
|
||||
@property
|
||||
def id(self):
|
||||
return self.unique_id
|
||||
|
||||
@id.setter
|
||||
def id(self, value):
|
||||
self.unique_id = value
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, model, attrs, warn_extra=True):
|
||||
@ -175,7 +183,11 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
return it
|
||||
|
||||
def get(self, key, default=None):
|
||||
return self[key] if key in self else default
|
||||
if key in self:
|
||||
return self[key]
|
||||
elif key in self.model:
|
||||
return self.model[key]
|
||||
return default
|
||||
|
||||
@property
|
||||
def now(self):
|
||||
@ -621,12 +633,16 @@ def _from_distro(
|
||||
from .network_agents import *
|
||||
from .fsm import *
|
||||
from .evented import *
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class Agent(NetworkAgent, FSM, EventedAgent):
|
||||
"""Default agent class, has both network and event capabilities"""
|
||||
|
||||
|
||||
from ..environment import NetworkEnvironment
|
||||
|
||||
|
||||
from .BassModel import *
|
||||
from .IndependentCascadeModel import *
|
||||
from .SISaModel import *
|
||||
@ -640,3 +656,8 @@ except ImportError:
|
||||
import sys
|
||||
|
||||
print("Could not load the Geo Agent, scipy is not installed", file=sys.stderr)
|
||||
|
||||
|
||||
def custom(cls, **kwargs):
|
||||
"""Create a new class from a template class and keyword arguments"""
|
||||
return type(cls.__name__, (cls,), kwargs)
|
@ -38,8 +38,9 @@ class NetworkAgent(BaseAgent):
|
||||
if limit_neighbors:
|
||||
neighbor_ids = set()
|
||||
for node_id in self.G.neighbors(self.node_id):
|
||||
if self.G.nodes[node_id].get("agent") is not None:
|
||||
neighbor_ids.add(node_id)
|
||||
agent = self.G.nodes[node_id].get("agent")
|
||||
if agent is not None:
|
||||
neighbor_ids.add(agent.id)
|
||||
if unique_ids:
|
||||
unique_ids = unique_ids & neighbor_ids
|
||||
else:
|
||||
|
4
soil/decorators.py
Normal file
4
soil/decorators.py
Normal file
@ -0,0 +1,4 @@
|
||||
def report(f: property):
|
||||
print(f.fget)
|
||||
setattr(f.fget, "add_to_report", True)
|
||||
return f
|
@ -6,20 +6,22 @@ import math
|
||||
import logging
|
||||
import inspect
|
||||
|
||||
from typing import Any, Dict, Optional, Union, List
|
||||
from typing import Any, Callable, Dict, Optional, Union, List, Type
|
||||
from collections import namedtuple
|
||||
from time import time as current_time
|
||||
from copy import deepcopy
|
||||
from networkx.readwrite import json_graph
|
||||
|
||||
|
||||
import networkx as nx
|
||||
|
||||
from mesa import Model
|
||||
from mesa import Model, Agent
|
||||
|
||||
from . import agents as agentmod, config, datacollection, serialization, utils, time, network, events
|
||||
from . import agents as agentmod, datacollection, serialization, utils, time, network, events
|
||||
|
||||
|
||||
# TODO: add metaclass to read attributes of a model
|
||||
# TODO: read "report" attributes from the model
|
||||
|
||||
class BaseEnvironment(Model):
|
||||
"""
|
||||
The environment is key in a simulation. It controls how agents interact,
|
||||
@ -33,29 +35,35 @@ class BaseEnvironment(Model):
|
||||
:meth:`soil.environment.Environment.get` method.
|
||||
"""
|
||||
|
||||
def __new__(cls, *args: Any, seed="default", dir_path=None, **kwargs: Any) -> Any:
|
||||
"""Create a new model with a default seed value"""
|
||||
self = super().__new__(cls, *args, seed=seed, **kwargs)
|
||||
self.dir_path = dir_path or os.getcwd()
|
||||
return self
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
id="unnamed_env",
|
||||
seed="default",
|
||||
schedule_class=time.TimedActivation,
|
||||
dir_path=None,
|
||||
schedule_class=time.TimedActivation,
|
||||
interval=1,
|
||||
agent_class=None,
|
||||
agents: List[tuple[type, Dict[str, Any]]] = {},
|
||||
agents: Optional[Dict] = None,
|
||||
collector_class: type = datacollection.SoilCollector,
|
||||
agent_reporters: Optional[Any] = None,
|
||||
model_reporters: Optional[Any] = None,
|
||||
tables: Optional[Any] = None,
|
||||
init: bool = True,
|
||||
**env_params,
|
||||
):
|
||||
|
||||
super().__init__(seed=seed)
|
||||
super().__init__()
|
||||
|
||||
self.current_id = -1
|
||||
|
||||
self.id = id
|
||||
|
||||
self.dir_path = dir_path or os.getcwd()
|
||||
|
||||
if schedule_class is None:
|
||||
schedule_class = time.TimedActivation
|
||||
@ -63,10 +71,7 @@ class BaseEnvironment(Model):
|
||||
schedule_class = serialization.deserialize(schedule_class)
|
||||
self.schedule = schedule_class(self)
|
||||
|
||||
self.agent_class = agent_class or agentmod.BaseAgent
|
||||
|
||||
self.interval = interval
|
||||
self.init_agents(agents)
|
||||
|
||||
self.logger = utils.logger.getChild(self.id)
|
||||
|
||||
@ -79,53 +84,13 @@ class BaseEnvironment(Model):
|
||||
for (k, v) in env_params.items():
|
||||
self[k] = v
|
||||
|
||||
def _agent_from_dict(self, agent):
|
||||
"""
|
||||
Translate an agent dictionary into an agent
|
||||
"""
|
||||
agent = dict(**agent)
|
||||
cls = agent.pop("agent_class", None) or self.agent_class
|
||||
unique_id = agent.pop("unique_id", None)
|
||||
if unique_id is None:
|
||||
unique_id = self.next_id()
|
||||
if agents:
|
||||
self.add_agents(**agents)
|
||||
if init:
|
||||
self.init()
|
||||
|
||||
return serialization.deserialize(cls)(unique_id=unique_id, model=self, **agent)
|
||||
|
||||
def init_agents(self, agents: Union[config.AgentConfig, List[Dict[str, Any]]] = {}):
|
||||
"""
|
||||
Initialize the agents in the model from either a `soil.config.AgentConfig` or a list of
|
||||
dictionaries that each describes an agent.
|
||||
|
||||
If given a list of dictionaries, an agent will be created for each dictionary. The agent
|
||||
class can be specified through the `agent_class` key. The rest of the items will be used
|
||||
as parameters to the agent.
|
||||
"""
|
||||
if not agents:
|
||||
return
|
||||
|
||||
lst = agents
|
||||
override = []
|
||||
if not isinstance(lst, list):
|
||||
if not isinstance(agents, config.AgentConfig):
|
||||
lst = config.AgentConfig(**agents)
|
||||
if lst.override:
|
||||
override = lst.override
|
||||
lst = self._agent_dict_from_config(lst)
|
||||
|
||||
# TODO: check override is working again. It cannot (easily) be part of agents.from_config anymore,
|
||||
# because it needs attribute such as unique_id, which are only present after init
|
||||
new_agents = [self._agent_from_dict(agent) for agent in lst]
|
||||
|
||||
for a in new_agents:
|
||||
self.schedule.add(a)
|
||||
|
||||
for rule in override:
|
||||
for agent in agentmod.filter_agents(self.schedule._agents, **rule.filter):
|
||||
for attr, value in rule.state.items():
|
||||
setattr(agent, attr, value)
|
||||
|
||||
def _agent_dict_from_config(self, cfg):
|
||||
return agentmod.from_config(cfg, random=self.random)
|
||||
def init(self):
|
||||
pass
|
||||
|
||||
@property
|
||||
def agents(self):
|
||||
@ -145,16 +110,29 @@ class BaseEnvironment(Model):
|
||||
"The environment has not been scheduled, so it has no sense of time"
|
||||
)
|
||||
|
||||
def add_agent(self, unique_id=None, **kwargs):
|
||||
def add_agent(self, agent_class, unique_id=None, **agent):
|
||||
if unique_id is None:
|
||||
unique_id = self.next_id()
|
||||
|
||||
kwargs["unique_id"] = unique_id
|
||||
a = self._agent_from_dict(kwargs)
|
||||
agent["unique_id"] = unique_id
|
||||
|
||||
agent = dict(**agent)
|
||||
unique_id = agent.pop("unique_id", None)
|
||||
if unique_id is None:
|
||||
unique_id = self.next_id()
|
||||
|
||||
a = serialization.deserialize(agent_class)(unique_id=unique_id, model=self, **agent)
|
||||
|
||||
self.schedule.add(a)
|
||||
return a
|
||||
|
||||
def add_agents(self, agent_classes: List[type], k, weights: Optional[List[float]] = None, **kwargs):
|
||||
if weights is None:
|
||||
weights = [1] * len(agent_classes)
|
||||
|
||||
for cls in self.random.choices(agent_classes, weights=weights, k=k):
|
||||
self.add_agent(agent_class=cls, **kwargs)
|
||||
|
||||
def log(self, message, *args, level=logging.INFO, **kwargs):
|
||||
if not self.logger.isEnabledFor(level):
|
||||
return
|
||||
@ -215,61 +193,58 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, *args, topology: Union[config.NetConfig, nx.Graph] = None, **kwargs
|
||||
self, *args,
|
||||
topology: Optional[Union[nx.Graph, str]] = None,
|
||||
agent_class: Optional[Type[agentmod.Agent]] = None,
|
||||
network_generator: Optional[Callable] = None,
|
||||
network_params: Optional[Dict] = None, **kwargs
|
||||
):
|
||||
agents = kwargs.pop("agents", None)
|
||||
super().__init__(*args, agents=None, **kwargs)
|
||||
self.topology = topology
|
||||
self.network_generator = network_generator
|
||||
self.network_params = network_params
|
||||
if topology or network_params or network_generator:
|
||||
self.create_network(topology, network_params=network_params, network_generator=network_generator)
|
||||
else:
|
||||
self.G = nx.Graph()
|
||||
super().__init__(*args, **kwargs, init=False)
|
||||
|
||||
if topology is None:
|
||||
topology = nx.Graph()
|
||||
elif not isinstance(topology, nx.Graph):
|
||||
topology = network.from_config(topology, dir_path=self.dir_path)
|
||||
self.agent_class = agent_class
|
||||
if agent_class:
|
||||
self.agent_class = serialization.deserialize(agent_class)
|
||||
self.init()
|
||||
if self.agent_class:
|
||||
self.populate_network(self.agent_class)
|
||||
|
||||
|
||||
def add_agents(self, *args, k=None, **kwargs):
|
||||
if not k and not self.G:
|
||||
raise ValueError("Cannot add agents to an empty network")
|
||||
super().add_agents(*args, k=k or len(self.G), **kwargs)
|
||||
|
||||
def create_network(self, topology=None, network_generator=None, path=None, network_params=None):
|
||||
if topology is not None:
|
||||
topology = network.from_topology(topology, dir_path=self.dir_path)
|
||||
elif path is not None:
|
||||
topology = network.from_topology(path, dir_path=self.dir_path)
|
||||
elif network_generator is not None:
|
||||
topology = network.from_params(network_generator, dir_path=self.dir_path, **network_params)
|
||||
else:
|
||||
raise ValueError("topology must be a networkx.Graph or a string, or network_generator must be provided")
|
||||
self.G = topology
|
||||
|
||||
self.init_agents(agents)
|
||||
|
||||
def init_agents(self, *args, **kwargs):
|
||||
"""Initialize the agents from a"""
|
||||
super().init_agents(*args, **kwargs)
|
||||
for agent in self.schedule._agents.values():
|
||||
self._init_node(agent)
|
||||
self._assign_node(agent)
|
||||
|
||||
def _init_node(self, agent):
|
||||
def _assign_node(self, agent):
|
||||
"""
|
||||
Make sure the node for a given agent has the proper attributes.
|
||||
"""
|
||||
if hasattr(agent, "node_id"):
|
||||
self.G.nodes[agent.node_id]["agent"] = agent
|
||||
|
||||
def _agent_dict_from_config(self, cfg):
|
||||
return agentmod.from_config(cfg, topology=self.G, random=self.random)
|
||||
|
||||
def _agent_from_dict(self, agent, unique_id=None):
|
||||
agent = dict(agent)
|
||||
|
||||
if not agent.get("topology", False):
|
||||
return super()._agent_from_dict(agent)
|
||||
|
||||
if unique_id is None:
|
||||
unique_id = self.next_id()
|
||||
node_id = agent.get("node_id", None)
|
||||
if node_id is None:
|
||||
node_id = network.find_unassigned(self.G, random=self.random)
|
||||
self.G.nodes[node_id]["agent"] = None
|
||||
agent["node_id"] = node_id
|
||||
agent["unique_id"] = unique_id
|
||||
agent["topology"] = self.G
|
||||
node_attrs = self.G.nodes[node_id]
|
||||
node_attrs.pop('agent', None)
|
||||
node_attrs.update(agent)
|
||||
agent = node_attrs
|
||||
|
||||
a = super()._agent_from_dict(agent)
|
||||
self._init_node(a)
|
||||
|
||||
return a
|
||||
|
||||
@property
|
||||
def network_agents(self):
|
||||
for a in self.schedule._agents.values():
|
||||
@ -302,24 +277,37 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
a["visible"] = True
|
||||
return a
|
||||
|
||||
def add_agent(self, *args, **kwargs):
|
||||
a = super().add_agent(*args, **kwargs)
|
||||
def add_agent(self, agent_class, *args, **kwargs):
|
||||
if issubclass(agent_class, agentmod.NetworkAgent) and "node_id" not in kwargs:
|
||||
return self.add_node(agent_class, *args, **kwargs)
|
||||
a = super().add_agent(agent_class, *args, **kwargs)
|
||||
if hasattr(a, "node_id"):
|
||||
assert self.G.nodes[a.node_id]["agent"] == a
|
||||
assigned = self.G.nodes[a.node_id].get("agent")
|
||||
if not assigned:
|
||||
self.G.nodes[a.node_id]["agent"] = a
|
||||
elif assigned != a:
|
||||
raise ValueError(f"Node {a.node_id} already has an agent assigned: {assigned}")
|
||||
return a
|
||||
|
||||
def agent_for_node_id(self, node_id):
|
||||
return self.G.nodes[node_id].get("agent")
|
||||
|
||||
def populate_network(self, agent_class, weights=None, **agent_params):
|
||||
if not hasattr(agent_class, "len"):
|
||||
def populate_network(self, agent_class: List[Model], weights: List[float] = None, **agent_params):
|
||||
if isinstance(agent_class, type):
|
||||
agent_class = [agent_class]
|
||||
weights = None
|
||||
for (node_id, node) in self.G.nodes(data=True):
|
||||
else:
|
||||
agent_class = list(agent_class)
|
||||
if not weights:
|
||||
weights = [1] * len(agent_class)
|
||||
assert len(self.G)
|
||||
classes = self.random.choices(agent_class, weights, k=len(self.G))
|
||||
for (cls, (node_id, node)) in zip(classes, self.G.nodes(data=True)):
|
||||
if "agent" in node:
|
||||
continue
|
||||
a_class = self.random.choices(agent_class, weights)[0]
|
||||
self.add_agent(node_id=node_id, topology=self.G, agent_class=a_class, **agent_params)
|
||||
a = self.add_agent(node_id=node_id, topology=self.G, agent_class=cls, **agent_params)
|
||||
node["agent"] = a
|
||||
assert all("agent" in node for (_, node) in self.G.nodes(data=True))
|
||||
assert len(list(self.network_agents))
|
||||
|
||||
|
||||
class EventedEnvironment(BaseEnvironment):
|
||||
|
@ -10,47 +10,47 @@ import networkx as nx
|
||||
from . import config, serialization, basestring
|
||||
|
||||
|
||||
def from_config(cfg: config.NetConfig, dir_path: str = None):
|
||||
if not isinstance(cfg, config.NetConfig):
|
||||
cfg = config.NetConfig(**cfg)
|
||||
def from_topology(topology, dir_path: str = None):
|
||||
if topology is None:
|
||||
return nx.Graph()
|
||||
if isinstance(topology, nx.Graph):
|
||||
return topology
|
||||
|
||||
if cfg.path:
|
||||
path = cfg.path
|
||||
if dir_path and not os.path.isabs(path):
|
||||
path = os.path.join(dir_path, path)
|
||||
extension = os.path.splitext(path)[1][1:]
|
||||
kwargs = {}
|
||||
if extension == "gexf":
|
||||
kwargs["version"] = "1.2draft"
|
||||
kwargs["node_type"] = int
|
||||
# If it's a dict, assume it's a node-link graph
|
||||
if isinstance(topology, dict):
|
||||
try:
|
||||
method = getattr(nx.readwrite, "read_" + extension)
|
||||
except AttributeError:
|
||||
raise AttributeError("Unknown format")
|
||||
return method(path, **kwargs)
|
||||
return nx.json_graph.node_link_graph(topology)
|
||||
except Exception as ex:
|
||||
raise ValueError("Unknown topology format")
|
||||
|
||||
# Otherwise, treat like a path
|
||||
path = topology
|
||||
if dir_path and not os.path.isabs(path):
|
||||
path = os.path.join(dir_path, path)
|
||||
extension = os.path.splitext(path)[1][1:]
|
||||
kwargs = {}
|
||||
if extension == "gexf":
|
||||
kwargs["version"] = "1.2draft"
|
||||
kwargs["node_type"] = int
|
||||
try:
|
||||
method = getattr(nx.readwrite, "read_" + extension)
|
||||
except AttributeError:
|
||||
raise AttributeError("Unknown format")
|
||||
return method(path, **kwargs)
|
||||
|
||||
if cfg.params:
|
||||
net_args = dict(cfg.params)
|
||||
net_gen = net_args.pop("generator")
|
||||
|
||||
if dir_path not in sys.path:
|
||||
sys.path.append(dir_path)
|
||||
def from_params(generator, dir_path: str = None, **params):
|
||||
|
||||
method = serialization.deserializer(
|
||||
net_gen,
|
||||
known_modules=[
|
||||
"networkx.generators",
|
||||
],
|
||||
)
|
||||
return method(**net_args)
|
||||
if dir_path not in sys.path:
|
||||
sys.path.append(dir_path)
|
||||
|
||||
if isinstance(cfg.fixed, config.Topology):
|
||||
cfg = cfg.fixed.dict()
|
||||
|
||||
if isinstance(cfg, str) or isinstance(cfg, dict):
|
||||
return nx.json_graph.node_link_graph(cfg)
|
||||
|
||||
return nx.Graph()
|
||||
method = serialization.deserializer(
|
||||
generator,
|
||||
known_modules=[
|
||||
"networkx.generators",
|
||||
],
|
||||
)
|
||||
return method(**params)
|
||||
|
||||
|
||||
def find_unassigned(G, shuffle=False, random=random):
|
||||
|
32
soil/parameters.py
Normal file
32
soil/parameters.py
Normal file
@ -0,0 +1,32 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing_extensions import Annotated
|
||||
import annotated_types
|
||||
from typing import *
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
class Parameter:
|
||||
pass
|
||||
|
||||
|
||||
def floatrange(
|
||||
*,
|
||||
gt: Optional[float] = None,
|
||||
ge: Optional[float] = None,
|
||||
lt: Optional[float] = None,
|
||||
le: Optional[float] = None,
|
||||
multiple_of: Optional[float] = None,
|
||||
) -> type[float]:
|
||||
return Annotated[
|
||||
float,
|
||||
annotated_types.Interval(gt=gt, ge=ge, lt=lt, le=le),
|
||||
annotated_types.MultipleOf(multiple_of) if multiple_of is not None else None,
|
||||
]
|
||||
|
||||
function = Annotated[Callable, Parameter]
|
||||
Integer = Annotated[int, Parameter]
|
||||
Float = Annotated[float, Parameter]
|
||||
|
||||
|
||||
probability = floatrange(ge=0, le=1)
|
@ -16,6 +16,7 @@ from typing import Any, Dict, Union, Optional, List
|
||||
|
||||
from networkx.readwrite import json_graph
|
||||
from functools import partial
|
||||
from contextlib import contextmanager
|
||||
import pickle
|
||||
|
||||
from . import serialization, exporters, utils, basestring, agents
|
||||
@ -23,6 +24,16 @@ from .environment import Environment
|
||||
from .utils import logger, run_and_return_exceptions
|
||||
from .config import Config, convert_old
|
||||
|
||||
_AVOID_RUNNING = False
|
||||
_QUEUED = []
|
||||
|
||||
@contextmanager
|
||||
def do_not_run():
|
||||
global _AVOID_RUNNING
|
||||
_AVOID_RUNNING = True
|
||||
yield
|
||||
_AVOID_RUNNING = False
|
||||
|
||||
|
||||
# TODO: change documentation for simulation
|
||||
@dataclass
|
||||
@ -40,7 +51,7 @@ class Simulation:
|
||||
name: str = "Unnamed simulation"
|
||||
description: Optional[str] = ""
|
||||
group: str = None
|
||||
model_class: Union[str, type] = "soil.Environment"
|
||||
model: Union[str, type] = "soil.Environment"
|
||||
model_params: dict = field(default_factory=dict)
|
||||
seed: str = field(default_factory=lambda: current_time())
|
||||
dir_path: str = field(default_factory=lambda: os.getcwd())
|
||||
@ -49,7 +60,6 @@ class Simulation:
|
||||
interval: int = 1
|
||||
num_trials: int = 1
|
||||
num_processes: Optional[int] = 1
|
||||
parallel: Optional[bool] = False
|
||||
exporters: Optional[List[str]] = field(default_factory=lambda: [exporters.default])
|
||||
model_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
|
||||
agent_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
|
||||
@ -90,6 +100,9 @@ class Simulation:
|
||||
)
|
||||
+ self.to_yaml()
|
||||
)
|
||||
if _AVOID_RUNNING:
|
||||
_QUEUED.append((self, args, kwargs))
|
||||
return list()
|
||||
return list(self.run_gen(*args, **kwargs))
|
||||
|
||||
def run_gen(
|
||||
@ -170,7 +183,7 @@ class Simulation:
|
||||
tables = self.tables.copy()
|
||||
tables.update(deserialize_reporters(params.pop("tables", {})))
|
||||
|
||||
env = serialization.deserialize(self.model_class)
|
||||
env = serialization.deserialize(self.model)
|
||||
return env(
|
||||
id=f"{self.name}_trial_{trial_id}",
|
||||
seed=f"{self.seed}_trial_{trial_id}",
|
||||
@ -250,6 +263,14 @@ Model stats:
|
||||
return yaml.dump(self.to_dict())
|
||||
|
||||
|
||||
def iter_from_file(*files, **kwargs):
|
||||
for f in files:
|
||||
try:
|
||||
yield from iter_from_py(f, **kwargs)
|
||||
except ValueError as ex:
|
||||
yield from iter_from_config(f, **kwargs)
|
||||
|
||||
|
||||
def iter_from_config(*cfgs, **kwargs):
|
||||
for config in cfgs:
|
||||
configs = list(serialization.load_config(config))
|
||||
@ -266,18 +287,38 @@ def from_config(conf_or_path):
|
||||
raise AttributeError("Provide only one configuration")
|
||||
return lst[0]
|
||||
|
||||
def iter_from_py(pyfile, module_name='custom_simulation'):
|
||||
|
||||
def iter_from_py(pyfile, module_name='custom_simulation', **kwargs):
|
||||
"""Try to load every Simulation instance in a given Python file"""
|
||||
import importlib
|
||||
import inspect
|
||||
spec = importlib.util.spec_from_file_location(module_name, pyfile)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
sys.modules[module_name] = module
|
||||
spec.loader.exec_module(module)
|
||||
# import pdb;pdb.set_trace()
|
||||
for (_name, sim) in inspect.getmembers(module, lambda x: isinstance(x, Simulation)):
|
||||
yield sim
|
||||
del sys.modules[module_name]
|
||||
added = False
|
||||
with do_not_run():
|
||||
spec = importlib.util.spec_from_file_location(module_name, pyfile)
|
||||
folder = os.path.dirname(pyfile)
|
||||
if folder not in sys.path:
|
||||
added = True
|
||||
sys.path.append(folder)
|
||||
if not spec:
|
||||
raise ValueError(f"{pyfile} does not seem to be a Python module")
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
sys.modules[module_name] = module
|
||||
spec.loader.exec_module(module)
|
||||
# import pdb;pdb.set_trace()
|
||||
loaded = False
|
||||
sims = []
|
||||
for (_name, sim) in inspect.getmembers(module, lambda x: isinstance(x, Simulation)):
|
||||
loaded = True
|
||||
sims.append(sim)
|
||||
for (_name, sim) in inspect.getmembers(module, lambda x: inspect.isclass(x) and issubclass(x, Simulation)):
|
||||
loaded = True
|
||||
sims.append(sim(**kwargs))
|
||||
if not loaded:
|
||||
raise AttributeError(f"No valid configurations found in {pyfile}")
|
||||
del sys.modules[module_name]
|
||||
if added:
|
||||
sys.path.remove(folder)
|
||||
yield from sims
|
||||
|
||||
|
||||
def from_py(pyfile):
|
||||
@ -285,7 +326,7 @@ def from_py(pyfile):
|
||||
|
||||
|
||||
|
||||
def run_from_config(*configs, **kwargs):
|
||||
for sim in iter_from_config(*configs):
|
||||
def run_from_file(*files, **kwargs):
|
||||
for sim in iter_from_file(*files):
|
||||
logger.info(f"Using config(s): {sim.name}")
|
||||
sim.run_simulation(**kwargs)
|
||||
|
@ -1,6 +0,0 @@
|
||||
from mesa.visualization.UserParam import UserSettableParameter
|
||||
|
||||
|
||||
class UserSettableParameter(UserSettableParameter):
|
||||
def __str__(self):
|
||||
return self.value
|
@ -106,7 +106,7 @@ class TestAgents(TestCase):
|
||||
"""
|
||||
|
||||
# There are two agents, they try to send pings
|
||||
# This is arguably a very contrived example. In practice, the or
|
||||
# This is arguably a very contrived example.
|
||||
# There should be a delay of one step between agent 0 and 1
|
||||
# On the first step:
|
||||
# Agent 0 sends a PING, but blocks before a PONG
|
||||
|
@ -1,4 +1,4 @@
|
||||
from unittest import TestCase
|
||||
from unittest import TestCase, skip
|
||||
import os
|
||||
import yaml
|
||||
import copy
|
||||
@ -23,6 +23,7 @@ def isequal(a, b):
|
||||
assert a == b
|
||||
|
||||
|
||||
@skip("new versions of soil do not rely on configuration files")
|
||||
class TestConfig(TestCase):
|
||||
def test_conversion(self):
|
||||
expected = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
|
||||
@ -59,16 +60,16 @@ class TestConfig(TestCase):
|
||||
"""
|
||||
cfg = {
|
||||
"name": "CounterAgent",
|
||||
"network_params": {"path": join(ROOT, "test.gexf")},
|
||||
"agent_class": "CounterModel",
|
||||
"model_params": {
|
||||
"topology": join(ROOT, "test.gexf"),
|
||||
"agent_class": "CounterModel",
|
||||
},
|
||||
# 'states': [{'times': 10}, {'times': 20}],
|
||||
"max_time": 2,
|
||||
"dry_run": True,
|
||||
"num_trials": 1,
|
||||
"environment_params": {},
|
||||
}
|
||||
conf = config.convert_old(cfg)
|
||||
s = simulation.from_config(conf)
|
||||
s = simulation.from_config(cfg)
|
||||
|
||||
env = s.get_env()
|
||||
assert len(env.G.nodes) == 2
|
||||
|
@ -3,7 +3,7 @@ import os
|
||||
from os.path import join
|
||||
from glob import glob
|
||||
|
||||
from soil import simulation, config
|
||||
from soil import simulation, config, do_not_run
|
||||
|
||||
ROOT = os.path.abspath(os.path.dirname(__file__))
|
||||
EXAMPLES = join(ROOT, "..", "examples")
|
||||
@ -12,6 +12,7 @@ FORCE_TESTS = os.environ.get("FORCE_TESTS", "")
|
||||
|
||||
|
||||
class TestExamples(TestCase):
|
||||
"""Empty class that will be populated with auto-discovery tests for every example"""
|
||||
pass
|
||||
|
||||
|
||||
@ -45,7 +46,7 @@ def add_example_tests():
|
||||
continue
|
||||
for sim in simulation.iter_from_config(path):
|
||||
sim_paths.append((sim, path))
|
||||
for path in glob(join(EXAMPLES, '**', '*.py')):
|
||||
for path in glob(join(EXAMPLES, '**', '*_sim.py')):
|
||||
for sim in simulation.iter_from_py(path):
|
||||
sim_paths.append((sim, path))
|
||||
|
||||
|
@ -6,6 +6,7 @@ import sqlite3
|
||||
|
||||
from unittest import TestCase
|
||||
from soil import exporters
|
||||
from soil import environment
|
||||
from soil import simulation
|
||||
from soil import agents
|
||||
|
||||
@ -38,15 +39,14 @@ class Exporters(TestCase):
|
||||
def test_basic(self):
|
||||
# We need to add at least one agent to make sure the scheduler
|
||||
# ticks every step
|
||||
class SimpleEnv(environment.Environment):
|
||||
def init(self):
|
||||
self.add_agent(agent_class=agents.BaseAgent)
|
||||
|
||||
|
||||
num_trials = 5
|
||||
max_time = 2
|
||||
config = {
|
||||
"name": "exporter_sim",
|
||||
"model_params": {"agents": [{"agent_class": agents.BaseAgent}]},
|
||||
"max_time": max_time,
|
||||
"num_trials": num_trials,
|
||||
}
|
||||
s = simulation.from_config(config)
|
||||
s = simulation.Simulation(num_trials=num_trials, max_time=max_time, name="exporter_sim", dry_run=True, model=SimpleEnv)
|
||||
|
||||
for env in s.run_simulation(exporters=[Dummy], dry_run=True):
|
||||
assert len(env.agents) == 1
|
||||
@ -64,12 +64,14 @@ class Exporters(TestCase):
|
||||
n_trials = 5
|
||||
config = {
|
||||
"name": "exporter_sim",
|
||||
"network_params": {"generator": "complete_graph", "n": 4},
|
||||
"agent_class": "CounterModel",
|
||||
"model_params": {
|
||||
"network_generator": "complete_graph",
|
||||
"network_params": {"n": 4},
|
||||
"agent_class": "CounterModel",
|
||||
},
|
||||
"max_time": 2,
|
||||
"num_trials": n_trials,
|
||||
"dry_run": False,
|
||||
"environment_params": {},
|
||||
}
|
||||
output = io.StringIO()
|
||||
s = simulation.from_config(config)
|
||||
|
@ -29,8 +29,8 @@ class TestMain(TestCase):
|
||||
"""A simulation with a base behaviour should do nothing"""
|
||||
config = {
|
||||
"model_params": {
|
||||
"network_params": {"path": join(ROOT, "test.gexf")},
|
||||
"agent_class": "BaseAgent",
|
||||
"topology": join(ROOT, "test.gexf"),
|
||||
"agent_class": "NetworkAgent",
|
||||
}
|
||||
}
|
||||
s = simulation.from_config(config)
|
||||
@ -62,27 +62,13 @@ class TestMain(TestCase):
|
||||
"""
|
||||
The initial states should be applied to the agent and the
|
||||
agent should be able to update its state."""
|
||||
config = {
|
||||
"version": "2",
|
||||
"name": "CounterAgent",
|
||||
"dry_run": True,
|
||||
"num_trials": 1,
|
||||
"max_time": 2,
|
||||
"model_params": {
|
||||
"topology": {"path": join(ROOT, "test.gexf")},
|
||||
"agents": {
|
||||
"agent_class": "CounterModel",
|
||||
"topology": True,
|
||||
"fixed": [{"state": {"times": 10}}, {"state": {"times": 20}}],
|
||||
},
|
||||
},
|
||||
}
|
||||
s = simulation.from_config(config)
|
||||
env = s.get_env()
|
||||
assert isinstance(env.agents[0], agents.CounterModel)
|
||||
assert env.agents[0].G == env.G
|
||||
assert env.agents[0]["times"] == 10
|
||||
env = Environment()
|
||||
env.add_agent(agents.Ticker, times=10)
|
||||
env.add_agent(agents.Ticker, times=20)
|
||||
|
||||
assert isinstance(env.agents[0], agents.Ticker)
|
||||
assert env.agents[0]["times"] == 10
|
||||
assert env.agents[1]["times"] == 20
|
||||
env.step()
|
||||
assert env.agents[0]["times"] == 11
|
||||
assert env.agents[1]["times"] == 21
|
||||
@ -90,18 +76,8 @@ class TestMain(TestCase):
|
||||
def test_init_and_count_agents(self):
|
||||
"""Agents should be properly initialized and counting should filter them properly"""
|
||||
# TODO: separate this test into two or more test cases
|
||||
config = {
|
||||
"max_time": 10,
|
||||
"model_params": {
|
||||
"agents": [
|
||||
{"agent_class": CustomAgent, "weight": 1, "topology": True},
|
||||
{"agent_class": CustomAgent, "weight": 3, "topology": True},
|
||||
],
|
||||
"topology": {"path": join(ROOT, "test.gexf")},
|
||||
},
|
||||
}
|
||||
s = simulation.from_config(config)
|
||||
env = s.run_simulation(dry_run=True)[0]
|
||||
env = Environment(topology=join(ROOT, "test.gexf"))
|
||||
env.populate_network([CustomAgent.w(weight=1), CustomAgent.w(weight=3)])
|
||||
assert env.agents[0].weight == 1
|
||||
assert env.count_agents() == 2
|
||||
assert env.count_agents(weight=1) == 1
|
||||
@ -110,26 +86,28 @@ class TestMain(TestCase):
|
||||
|
||||
def test_torvalds_example(self):
|
||||
"""A complete example from a documentation should work."""
|
||||
config = serialization.load_file(join(EXAMPLES, "torvalds.yml"))[0]
|
||||
config["model_params"]["network_params"]["path"] = join(
|
||||
EXAMPLES, config["model_params"]["network_params"]["path"]
|
||||
)
|
||||
s = simulation.from_config(config)
|
||||
env = s.run_simulation(dry_run=True)[0]
|
||||
for a in env.network_agents:
|
||||
skill_level = a.state["skill_level"]
|
||||
if a.id == "Torvalds":
|
||||
assert skill_level == "God"
|
||||
assert a.state["total"] == 3
|
||||
assert a.state["neighbors"] == 2
|
||||
elif a.id == "balkian":
|
||||
assert skill_level == "developer"
|
||||
assert a.state["total"] == 3
|
||||
assert a.state["neighbors"] == 1
|
||||
else:
|
||||
assert skill_level == "beginner"
|
||||
assert a.state["total"] == 3
|
||||
assert a.state["neighbors"] == 1
|
||||
owd = os.getcwd()
|
||||
pyfile = join(EXAMPLES, "torvalds_sim.py")
|
||||
try:
|
||||
os.chdir(os.path.dirname(pyfile))
|
||||
s = simulation.from_py(pyfile)
|
||||
env = s.run_simulation(dry_run=True)[0]
|
||||
for a in env.network_agents:
|
||||
skill_level = a["skill_level"]
|
||||
if a.node_id == "Torvalds":
|
||||
assert skill_level == "God"
|
||||
assert a["total"] == 3
|
||||
assert a["neighbors"] == 2
|
||||
elif a.node_id == "balkian":
|
||||
assert skill_level == "developer"
|
||||
assert a["total"] == 3
|
||||
assert a["neighbors"] == 1
|
||||
else:
|
||||
assert skill_level == "beginner"
|
||||
assert a["total"] == 3
|
||||
assert a["neighbors"] == 1
|
||||
finally:
|
||||
os.chdir(owd)
|
||||
|
||||
def test_serialize_class(self):
|
||||
ser, name = serialization.serialize(agents.BaseAgent, known_modules=[])
|
||||
@ -166,11 +144,6 @@ class TestMain(TestCase):
|
||||
assert ser == "BaseAgent"
|
||||
pickle.dumps(ser)
|
||||
|
||||
def test_templates(self):
|
||||
"""Loading a template should result in several configs"""
|
||||
configs = serialization.load_file(join(EXAMPLES, "template.yml"))
|
||||
assert len(configs) > 0
|
||||
|
||||
def test_until(self):
|
||||
n_runs = 0
|
||||
|
||||
@ -183,7 +156,7 @@ class TestMain(TestCase):
|
||||
n_trials = 50
|
||||
max_time = 2
|
||||
s = simulation.Simulation(
|
||||
model_params={"agents": [{"agent_class": CheckRun}]},
|
||||
model_params=dict(agents=dict(agent_classes=[CheckRun], k=1)),
|
||||
num_trials=n_trials,
|
||||
max_time=max_time,
|
||||
)
|
||||
|
@ -19,13 +19,11 @@ class TestNetwork(TestCase):
|
||||
Load a graph from file if the extension is known.
|
||||
Raise an exception otherwise.
|
||||
"""
|
||||
config = {"network_params": {"path": join(ROOT, "test.gexf")}}
|
||||
G = network.from_config(config["network_params"])
|
||||
G = network.from_topology(join(ROOT, "test.gexf"))
|
||||
assert G
|
||||
assert len(G) == 2
|
||||
with self.assertRaises(AttributeError):
|
||||
config = {"network_params": {"path": join(ROOT, "unknown.extension")}}
|
||||
G = network.from_config(config["network_params"])
|
||||
G = network.from_topology(join(ROOT, "unknown.extension"))
|
||||
print(G)
|
||||
|
||||
def test_generate_barabasi(self):
|
||||
@ -33,12 +31,12 @@ class TestNetwork(TestCase):
|
||||
If no path is given, a generator and network parameters
|
||||
should be used to generate a network
|
||||
"""
|
||||
cfg = {"params": {"generator": "barabasi_albert_graph"}}
|
||||
cfg = {"generator": "barabasi_albert_graph"}
|
||||
with self.assertRaises(Exception):
|
||||
G = network.from_config(cfg)
|
||||
cfg["params"]["n"] = 100
|
||||
cfg["params"]["m"] = 10
|
||||
G = network.from_config(cfg)
|
||||
G = network.from_params(**cfg)
|
||||
cfg["n"] = 100
|
||||
cfg["m"] = 10
|
||||
G = network.from_params(**cfg)
|
||||
assert len(G) == 100
|
||||
|
||||
def test_save_geometric(self):
|
||||
@ -54,18 +52,8 @@ class TestNetwork(TestCase):
|
||||
|
||||
def test_networkenvironment_creation(self):
|
||||
"""Networkenvironment should accept netconfig as parameters"""
|
||||
model_params = {
|
||||
"topology": {"path": join(ROOT, "test.gexf")},
|
||||
"agents": {
|
||||
"topology": True,
|
||||
"distribution": [
|
||||
{
|
||||
"agent_class": CustomAgent,
|
||||
}
|
||||
],
|
||||
},
|
||||
}
|
||||
env = environment.Environment(**model_params)
|
||||
env = environment.Environment(topology=join(ROOT, "test.gexf"))
|
||||
env.populate_network(CustomAgent)
|
||||
assert env.G
|
||||
env.step()
|
||||
assert len(env.G) == 2
|
||||
@ -76,18 +64,9 @@ class TestNetwork(TestCase):
|
||||
|
||||
def test_custom_agent_neighbors(self):
|
||||
"""Allow for search of neighbors with a certain state_id"""
|
||||
config = {
|
||||
"model_params": {
|
||||
"topology": {"path": join(ROOT, "test.gexf")},
|
||||
"agents": {
|
||||
"topology": True,
|
||||
"distribution": [{"weight": 1, "agent_class": CustomAgent}],
|
||||
},
|
||||
},
|
||||
"max_time": 10,
|
||||
}
|
||||
s = simulation.from_config(config)
|
||||
env = s.run_simulation(dry_run=True)[0]
|
||||
env = environment.Environment()
|
||||
env.create_network(join(ROOT, "test.gexf"))
|
||||
env.populate_network(CustomAgent)
|
||||
assert env.agents[1].count_agents(state_id="normal") == 2
|
||||
assert env.agents[1].count_agents(state_id="normal", limit_neighbors=True) == 1
|
||||
assert env.agents[0].count_neighbors() == 1
|
||||
@ -97,10 +76,8 @@ class TestNetwork(TestCase):
|
||||
G = nx.Graph()
|
||||
G.add_node(3)
|
||||
G.add_edge(1, 2)
|
||||
distro = agents.calculate_distribution(agent_class=agents.NetworkAgent)
|
||||
aconfig = config.AgentConfig(distribution=distro, topology=True)
|
||||
env = environment.Environment(name="Test", topology=G, agents=aconfig)
|
||||
lst = list(env.network_agents)
|
||||
env = environment.Environment(name="Test", topology=G)
|
||||
env.populate_network(agents.NetworkAgent)
|
||||
|
||||
a2 = env.find_one(node_id=2)
|
||||
a3 = env.find_one(node_id=3)
|
||||
|
@ -46,7 +46,8 @@ class TestMain(TestCase):
|
||||
break
|
||||
done.append(self.now)
|
||||
|
||||
env = environment.Environment(agents=[{"agent_class": CondAgent}])
|
||||
env = environment.Environment()
|
||||
env.add_agent(CondAgent)
|
||||
|
||||
while env.schedule.time < 11:
|
||||
times.append(env.now)
|
||||
|
Loading…
Reference in New Issue
Block a user