1
0
mirror of https://github.com/gsi-upm/soil synced 2025-08-24 03:52:20 +00:00
* Pandas integration
* Improved environment
* Logging and data dumps
* Tests
* Added Finite State Machine models
* Rewritten ipython notebook and documentation
This commit is contained in:
J. Fernando Sánchez
2017-06-20 17:45:43 +02:00
parent 764177c634
commit e1be3a730e
110 changed files with 32706 additions and 57437 deletions

42
soil/__init__.py Normal file
View File

@@ -0,0 +1,42 @@
import importlib
import sys
import os
__version__ = "0.9.2"
try:
basestring
except NameError:
basestring = str
from . import agents
from . import simulation
from . import environment
from . import utils
from . import settings
def main():
import argparse
from . import simulation
parser = argparse.ArgumentParser(description='Run a SOIL simulation')
parser.add_argument('file', type=str,
nargs="?",
default='simulation.yml',
help='python module containing the simulation configuration.')
parser.add_argument('--module', '-m', type=str,
help='file containing the code of any custom agents.')
args = parser.parse_args()
if args.module:
sys.path.append(os.getcwd())
importlib.import_module(args.module)
print('Loading config file: {}'.format(args.file))
simulation.run_from_config(args.file)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,123 @@
import nxsim
from collections import OrderedDict
from copy import deepcopy
import json
from functools import wraps
class BaseAgent(nxsim.BaseAgent):
"""
A special simpy BaseAgent that keeps track of its state history.
"""
def __init__(self, *args, **kwargs):
self._history = OrderedDict()
self._neighbors = None
super().__init__(*args, **kwargs)
self._history[None] = deepcopy(self.state)
@property
def now(self):
try:
return self.env.now
except AttributeError:
# No environment
return None
def run(self):
while True:
res = self.step()
self._history[self.env.now] = deepcopy(self.state)
yield res or self.env.timeout(self.env.interval)
def step(self):
pass
def to_json(self):
return json.dumps(self._history)
class NetworkAgent(BaseAgent, nxsim.BaseNetworkAgent):
def count_agents(self, state_id=None, limit_neighbors=False):
if limit_neighbors:
agents = self.global_topology.neighbors(self.id)
else:
agents = self.global_topology.nodes()
count = 0
for agent in agents:
if state_id and state_id != self.global_topology.node[agent]['agent'].state['id']:
continue
count += 1
return count
def count_neighboring_agents(self, state_id=None):
return self.count_agents(state_id, limit_neighbors=True)
def state(func):
@wraps(func)
def func_wrapper(self):
when = None
next_state = func(self)
try:
next_state, when = next_state
except TypeError:
pass
if next_state:
try:
self.state['id'] = next_state.id
except AttributeError:
raise NotImplemented('State id %s is not valid.' % next_state)
return when
func_wrapper.id = func.__name__
func_wrapper.is_default = False
return func_wrapper
def default_state(func):
func.is_default = True
return func
class MetaFSM(type):
def __init__(cls, name, bases, nmspc):
super(MetaFSM, cls).__init__(name, bases, nmspc)
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i.states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for name, func in nmspc.items():
if hasattr(func, 'id'):
if func.is_default:
default_state = func
states[func.id] = func
cls.default_state = default_state
cls.states = states
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
if 'id' not in self.state:
self.state['id'] = self.default_state.id
def step(self):
if 'id' in self.state:
next_state = self.state['id']
elif self.default_state:
next_state = self.default_state.id
else:
raise Exception('{} has no valid state id or default state'.format(self))
if next_state not in self.states:
raise Exception('{} is not a valid id for {}'.format(next_state, self))
self.states[next_state](self)

40
soil/agents/BassModel.py Normal file
View File

@@ -0,0 +1,40 @@
import random
from . import NetworkAgent
class BassModel(NetworkAgent):
"""
Settings:
innovation_prob
imitation_prob
"""
def __init__(self, environment, agent_id, state):
super().__init__(environment=environment, agent_id=agent_id, state=state)
env_params = environment.environment_params
self.state['sentimentCorrelation'] = 0
def step(self):
self.behaviour()
def behaviour(self):
# Outside effects
if random.random() < self.state_params['innovation_prob']:
if self.state['id'] == 0:
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
else:
pass
return
# Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (self.state_params['imitation_prob']*num_neighbors_aware):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
else:
pass

View File

@@ -0,0 +1,102 @@
import random
from . import NetworkAgent
class BigMarketModel(NetworkAgent):
"""
Settings:
Names:
enterprises [Array]
tweet_probability_enterprises [Array]
Users:
tweet_probability_users
tweet_relevant_probability
tweet_probability_about [Array]
sentiment_about [Array]
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.enterprises = environment.environment_params['enterprises']
self.type = ""
self.number_of_enterprises = len(environment.environment_params['enterprises'])
if self.id < self.number_of_enterprises: # Enterprises
self.state['id'] = self.id
self.type = "Enterprise"
self.tweet_probability = environment.environment_params['tweet_probability_enterprises'][self.id]
else: # normal users
self.state['id'] = self.number_of_enterprises
self.type = "User"
self.tweet_probability = environment.environment_params['tweet_probability_users']
self.tweet_relevant_probability = environment.environment_params['tweet_relevant_probability']
self.tweet_probability_about = environment.environment_params['tweet_probability_about'] # List
self.sentiment_about = environment.environment_params['sentiment_about'] # List
def step(self):
if self.id < self.number_of_enterprises: # Enterprise
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
for i in range(self.number_of_enterprises): # So that it never is set to 0 if there are not changes (logs)
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
def enterpriseBehaviour(self):
if random.random() < self.tweet_probability: # Tweets
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbour users
for x in aware_neighbors:
if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 # Increments for enterprise
else:
x.sentiment_about[self.id] -= 0.1 # Decrements for enterprise
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id]< -1:
x.sentiment_about[self.id] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
def userBehaviour(self):
if random.random() < self.tweet_probability: # Tweets
if random.random() < self.tweet_relevant_probability: # Tweets something relevant
# Tweet probability per enterprise
for i in range(self.number_of_enterprises):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
# The condition is fulfilled, sentiments are evaluated towards that enterprise
if self.sentiment_about[i] < 0:
# NEGATIVO
self.userTweets("negative",i)
elif self.sentiment_about[i] == 0:
# NEUTRO
pass
else:
# POSITIVO
self.userTweets("positive",i)
def userTweets(self,sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbours users
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[enterprise]] = x.sentiment_about[enterprise]

View File

@@ -0,0 +1,31 @@
from . import NetworkAgent
class CounterModel(NetworkAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
"""
def step(self):
# Outside effects
total = len(self.get_all_agents())
neighbors = len(self.get_neighboring_agents())
self.state['times'] = self.state.get('times', 0) + 1
self.state['neighbors'] = neighbors
self.state['total'] = total
class AggregatedCounter(NetworkAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
"""
def step(self):
# Outside effects
total = len(self.get_all_agents())
neighbors = len(self.get_neighboring_agents())
self.state['times'] = self.state.get('times', 0) + 1
self.state['neighbors'] = self.state.get('neighbors', 0) + neighbors
self.state['total'] = self.state.get('total', 0) + total

View File

@@ -0,0 +1,18 @@
from . import BaseAgent
import os.path
import matplotlib
import matplotlib.pyplot as plt
import networkx as nx
class DrawingAgent(BaseAgent):
"""
Agent that draws the state of the network.
"""
def step(self):
# Outside effects
f = plt.figure()
nx.draw(self.env.G, node_size=10, width=0.2, pos=nx.spring_layout(self.env.G, scale=100), ax=f.add_subplot(111))
f.savefig(os.path.join(self.env.sim().dir_path, "graph-"+str(self.env.now)+".png"))

View File

@@ -0,0 +1,49 @@
import random
from . import BaseAgent
class IndependentCascadeModel(BaseAgent):
"""
Settings:
innovation_prob
imitation_prob
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = environment.environment_params['innovation_prob']
self.imitation_prob = environment.environment_params['imitation_prob']
self.state['time_awareness'] = 0
self.state['sentimentCorrelation'] = 0
def step(self):
self.behaviour()
def behaviour(self):
aware_neighbors_1_time_step = []
# Outside effects
if random.random() < self.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
self.state['time_awareness'] = self.env.now # To know when they have been infected
else:
pass
return
# Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
for x in aware_neighbors:
if x.state['time_awareness'] == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (self.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
else:
pass
return

242
soil/agents/ModelM2.py Normal file
View File

@@ -0,0 +1,242 @@
import random
import numpy as np
from . import NetworkAgent
class SpreadModelM2(NetworkAgent):
"""
Settings:
prob_neutral_making_denier
prob_infect
prob_cured_healing_infected
prob_cured_vaccinate_neutral
prob_vaccinated_healing_infected
prob_vaccinated_vaccinate_neutral
prob_generate_anti_rumor
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
self.prob_infect = np.random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
self.prob_cured_healing_infected = np.random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = np.random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_healing_infected = np.random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = np.random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = np.random.normal(environment.environment_params['prob_generate_anti_rumor'],
environment.environment_params['standard_variance'])
def step(self):
if self.state['id'] == 0: # Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: # Infected
self.infected_behaviour()
elif self.state['id'] == 2: # Cured
self.cured_behaviour()
elif self.state['id'] == 3: # Vaccinated
self.vaccinated_behaviour()
def neutral_behaviour(self):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
def cured_behaviour(self):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
class ControlModelM2(NetworkAgent):
"""
Settings:
prob_neutral_making_denier
prob_infect
prob_cured_healing_infected
prob_cured_vaccinate_neutral
prob_vaccinated_healing_infected
prob_vaccinated_vaccinate_neutral
prob_generate_anti_rumor
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
self.prob_infect = np.random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
self.prob_cured_healing_infected = np.random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = np.random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_healing_infected = np.random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = np.random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = np.random.normal(environment.environment_params['prob_generate_anti_rumor'],
environment.environment_params['standard_variance'])
def step(self):
if self.state['id'] == 0: # Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: # Infected
self.infected_behaviour()
elif self.state['id'] == 2: # Cured
self.cured_behaviour()
elif self.state['id'] == 3: # Vaccinated
self.vaccinated_behaviour()
elif self.state['id'] == 4: # Beacon-off
self.beacon_off_behaviour()
elif self.state['id'] == 5: # Beacon-on
self.beacon_on_behaviour()
def neutral_behaviour(self):
self.state['visible'] = False
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
self.state['visible'] = False
def cured_behaviour(self):
self.state['visible'] = True
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
self.state['visible'] = True
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
def beacon_off_behaviour(self):
self.state['visible'] = False
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
self.state['id'] == 5 # Beacon on
def beacon_on_behaviour(self):
self.state['visible'] = False
# Cure (M2 feature added)
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated

93
soil/agents/SISaModel.py Normal file
View File

@@ -0,0 +1,93 @@
import random
import numpy as np
from . import FSM, state
class SISaModel(FSM):
"""
Settings:
neutral_discontent_spon_prob
neutral_discontent_infected_prob
neutral_content_spong_prob
neutral_content_infected_prob
discontent_neutral
discontent_content
variance_d_c
content_discontent
variance_c_d
content_neutral
standard_variance
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.neutral_discontent_spon_prob = np.random.normal(environment.environment_params['neutral_discontent_spon_prob'],
environment.environment_params['standard_variance'])
self.neutral_discontent_infected_prob = np.random.normal(environment.environment_params['neutral_discontent_infected_prob'],
environment.environment_params['standard_variance'])
self.neutral_content_spon_prob = np.random.normal(environment.environment_params['neutral_content_spon_prob'],
environment.environment_params['standard_variance'])
self.neutral_content_infected_prob = np.random.normal(environment.environment_params['neutral_content_infected_prob'],
environment.environment_params['standard_variance'])
self.discontent_neutral = np.random.normal(environment.environment_params['discontent_neutral'],
environment.environment_params['standard_variance'])
self.discontent_content = np.random.normal(environment.environment_params['discontent_content'],
environment.environment_params['variance_d_c'])
self.content_discontent = np.random.normal(environment.environment_params['content_discontent'],
environment.environment_params['variance_c_d'])
self.content_neutral = np.random.normal(environment.environment_params['content_neutral'],
environment.environment_params['standard_variance'])
@state
def neutral(self):
# Spontaneous effects
if random.random() < self.neutral_discontent_spon_prob:
return self.discontent
if random.random() < self.neutral_content_spon_prob:
return self.content
# Infected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent)
if random.random() < discontent_neighbors * self.neutral_discontent_infected_prob:
return self.discontent
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
if random.random() < content_neighbors * self.neutral_content_infected_prob:
return self.content
return self.neutral
@state
def discontent(self):
# Healing
if random.random() < self.discontent_neutral:
return self.neutral
# Superinfected
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
if random.random() < content_neighbors * self.discontent_content:
return self.content
return self.discontent
@state
def content(self):
# Healing
if random.random() < self.content_neutral:
return self.neutral
# Superinfected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent.id)
if random.random() < discontent_neighbors * self.content_discontent:
self.discontent
return self.content

View File

@@ -0,0 +1,102 @@
import random
from . import NetworkAgent
class SentimentCorrelationModel(NetworkAgent):
"""
Settings:
outside_effects_prob
anger_prob
joy_prob
sadness_prob
disgust_prob
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
self.anger_prob = environment.environment_params['anger_prob']
self.joy_prob = environment.environment_params['joy_prob']
self.sadness_prob = environment.environment_params['sadness_prob']
self.disgust_prob = environment.environment_params['disgust_prob']
self.state['time_awareness'] = []
for i in range(4): # In this model we have 4 sentiments
self.state['time_awareness'].append(0) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
self.state['sentimentCorrelation'] = 0
def step(self):
self.behaviour()
def behaviour(self):
angry_neighbors_1_time_step = []
joyful_neighbors_1_time_step = []
sad_neighbors_1_time_step = []
disgusted_neighbors_1_time_step = []
angry_neighbors = self.get_neighboring_agents(state_id=1)
for x in angry_neighbors:
if x.state['time_awareness'][0] > (self.env.now-500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
for x in joyful_neighbors:
if x.state['time_awareness'][1] > (self.env.now-500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
for x in sad_neighbors:
if x.state['time_awareness'][2] > (self.env.now-500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
for x in disgusted_neighbors:
if x.state['time_awareness'][3] > (self.env.now-500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob = self.anger_prob+(len(angry_neighbors_1_time_step)*self.anger_prob)
joy_prob = self.joy_prob+(len(joyful_neighbors_1_time_step)*self.joy_prob)
sadness_prob = self.sadness_prob+(len(sad_neighbors_1_time_step)*self.sadness_prob)
disgust_prob = self.disgust_prob+(len(disgusted_neighbors_1_time_step)*self.disgust_prob)
outside_effects_prob = self.outside_effects_prob
num = random.random()
if num<outside_effects_prob:
self.state['id'] = random.randint(1, 4)
self.state['sentimentCorrelation'] = self.state['id'] # It is stored when it has been infected for the dynamic network
self.state['time_awareness'][self.state['id']-1] = self.env.now
self.state['sentiment'] = self.state['id']
if(num<anger_prob):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
self.state['id'] = 2
self.state['sentimentCorrelation'] = 2
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
self.state['id'] = 3
self.state['sentimentCorrelation'] = 3
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
self.state['id'] = 4
self.state['sentimentCorrelation'] = 4
self.state['time_awareness'][self.state['id']-1] = self.env.now
self.state['sentiment'] = self.state['id']

166
soil/agents/__init__.py Normal file
View File

@@ -0,0 +1,166 @@
# networkStatus = {} # Dict that will contain the status of every agent in the network
# sentimentCorrelationNodeArray = []
# for x in range(0, settings.network_params["number_of_nodes"]):
# sentimentCorrelationNodeArray.append({'id': x})
# Initialize agent states. Let's assume everyone is normal.
import nxsim
from collections import OrderedDict
from copy import deepcopy
import json
from functools import wraps
agent_types = {}
class MetaAgent(type):
def __init__(cls, name, bases, nmspc):
super(MetaAgent, cls).__init__(name, bases, nmspc)
agent_types[name] = cls
class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
"""
A special simpy BaseAgent that keeps track of its state history.
"""
def __init__(self, *args, **kwargs):
self._history = OrderedDict()
self._neighbors = None
super().__init__(*args, **kwargs)
def __getitem__(self, key):
if isinstance(key, tuple):
k, t_step = key
if k is not None:
if t_step is not None:
return self._history[t_step][k]
else:
return {tt: tv.get(k, None) for tt, tv in self._history.items()}
else:
return self._history[t_step]
return self.state[key]
def __setitem__(self, key, value):
self.state[key] = value
def save_state(self):
self._history[self.now] = deepcopy(self.state)
@property
def now(self):
try:
return self.env.now
except AttributeError:
# No environment
return None
def run(self):
while True:
res = self.step()
yield res or self.env.timeout(self.env.interval)
def step(self):
pass
def to_json(self):
return json.dumps(self._history)
class NetworkAgent(BaseAgent, nxsim.BaseNetworkAgent):
def count_agents(self, state_id=None, limit_neighbors=False):
if limit_neighbors:
agents = self.global_topology.neighbors(self.id)
else:
agents = self.global_topology.nodes()
count = 0
for agent in agents:
if state_id and state_id != self.global_topology.node[agent]['agent'].state['id']:
continue
count += 1
return count
def count_neighboring_agents(self, state_id=None):
return self.count_agents(state_id, limit_neighbors=True)
def state(func):
@wraps(func)
def func_wrapper(self):
when = None
next_state = func(self)
try:
next_state, when = next_state
except TypeError:
pass
if next_state:
try:
self.state['id'] = next_state.id
except AttributeError:
raise NotImplemented('State id %s is not valid.' % next_state)
return when
func_wrapper.id = func.__name__
func_wrapper.is_default = False
return func_wrapper
def default_state(func):
func.is_default = True
return func
class MetaFSM(MetaAgent):
def __init__(cls, name, bases, nmspc):
super(MetaFSM, cls).__init__(name, bases, nmspc)
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i.states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for name, func in nmspc.items():
if hasattr(func, 'id'):
if func.is_default:
default_state = func
states[func.id] = func
cls.default_state = default_state
cls.states = states
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
if 'id' not in self.state:
self.state['id'] = self.default_state.id
def step(self):
if 'id' in self.state:
next_state = self.state['id']
elif self.default_state:
next_state = self.default_state.id
else:
raise Exception('{} has no valid state id or default state'.format(self))
if next_state not in self.states:
raise Exception('{} is not a valid id for {}'.format(next_state, self))
self.states[next_state](self)
from .BassModel import *
from .BigMarketModel import *
from .IndependentCascadeModel import *
from .ModelM2 import *
from .SentimentCorrelationModel import *
from .SISaModel import *
from .CounterModel import *
from .DrawingAgent import *

23
soil/analysis.py Normal file
View File

@@ -0,0 +1,23 @@
import pandas as pd
import glob
import yaml
from os.path import join
def get_data(pattern, process=True, attributes=None):
for folder in glob.glob(pattern):
config_file = glob.glob(join(folder, '*.yml'))[0]
config = yaml.load(open(config_file))
for trial_data in sorted(glob.glob(join(folder, '*.environment.csv'))):
df = pd.read_csv(trial_data)
if process:
if attributes is not None:
df = df[df['attribute'].isin(attributes)]
df = df.pivot_table(values='attribute', index='tstep', columns=['value'], aggfunc='count').fillna(0)
yield config_file, df, config
def plot_all(*args, **kwargs):
for config_file, df, config in sorted(get_data(*args, **kwargs)):
df.plot(title=config['name'])

190
soil/environment.py Normal file
View File

@@ -0,0 +1,190 @@
import os
import csv
import weakref
from random import random
from copy import deepcopy
import networkx as nx
import nxsim
class SoilEnvironment(nxsim.NetworkEnvironment):
def __init__(self, name=None,
network_agents=None,
environment_agents=None,
states=None,
default_state=None,
interval=1,
*args, **kwargs):
self.name = name or 'UnnamedEnvironment'
self.states = deepcopy(states) or {}
self.default_state = deepcopy(default_state) or {}
super().__init__(*args, **kwargs)
self._env_agents = {}
self._history = {}
self.interval = interval
self.logger = None
# Add environment agents first, so their events get
# executed before network agents
self.environment_agents = environment_agents or []
self.network_agents = network_agents or []
self.process(self.save_state())
@property
def agents(self):
yield from self.environment_agents
yield from self.network_agents
@property
def environment_agents(self):
for ref in self._env_agents.values():
yield ref()
@environment_agents.setter
def environment_agents(self, environment_agents):
# Set up environmental agent
self._env_agents = {}
for item in environment_agents:
kwargs = deepcopy(item)
atype = kwargs.pop('agent_type')
kwargs['agent_id'] = kwargs.get('agent_id', atype.__name__)
kwargs['state'] = kwargs.get('state', {})
a = atype(**kwargs,
environment=self)
self._env_agents[a.id] = weakref.ref(a)
@property
def network_agents(self):
for i in self.G.nodes():
node = self.G.node[i]
if 'agent' in node:
yield node['agent']
@network_agents.setter
def network_agents(self, network_agents):
for ix in self.G.nodes():
i = ix
node = self.G.node[i]
v = random()
found = False
for d in network_agents:
threshold = d['threshold']
if v >= threshold[0] and v < threshold[1]:
agent = d['agent_type']
state = None
if 'state' in d:
state = deepcopy(d['state'])
else:
try:
state = self.states[i]
except (IndexError, KeyError):
state = deepcopy(self.default_state)
node['agent'] = agent(environment=self,
agent_id=i,
state=state)
found = True
break
assert found
def run(self, *args, **kwargs):
self._save_state()
super().run(*args, **kwargs)
self._save_state()
def _save_state(self):
for agent in self.agents:
agent.save_state()
self._history[self.now] = deepcopy(self.environment_params)
def save_state(self):
while True:
ev = self.event()
ev._ok = True
# Schedule the event with minimum priority so
# that it executes after all agents are done
self.schedule(ev, -1, self.interval)
yield ev
self._save_state()
def __getitem__(self, key):
return self.environment_params[key]
def __setitem__(self, key, value):
self.environment_params[key] = value
def get_path(self, dir_path=None):
dir_path = dir_path or self.sim().dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
return dir_path
def get_agent(self, agent_id):
return self.G.node[agent_id]['agent']
def get_agents(self):
return list(self.agents)
def dump_csv(self, dir_path=None):
csv_name = os.path.join(self.get_path(dir_path),
'{}.environment.csv'.format(self.name))
with open(csv_name, 'w') as f:
cr = csv.writer(f)
cr.writerow(('agent_id', 'tstep', 'attribute', 'value'))
for i in self.history_to_tuples():
cr.writerow(i)
def dump_gexf(self, dir_path=None):
G = self.history_to_graph()
graph_path = os.path.join(self.get_path(dir_path),
self.name+".gexf")
nx.write_gexf(G, graph_path, version="1.2draft")
def history_to_tuples(self):
for tstep, state in self._history.items():
for attribute, value in state.items():
yield ('env', tstep, attribute, value)
for agent in self.agents:
for tstep, state in agent._history.items():
for attribute, value in state.items():
yield (agent.id, tstep, attribute, value)
def history_to_graph(self):
G = nx.Graph(self.G)
for agent in self.agents:
attributes = {'agent': str(agent.__class__)}
lastattributes = {}
spells = []
lastvisible = False
laststep = None
for t_step, state in reversed(agent._history.items()):
for attribute, value in state.items():
if attribute == 'visible':
nowvisible = state[attribute]
if nowvisible and not lastvisible:
laststep = t_step
if not nowvisible and lastvisible:
spells.append((laststep, t_step))
lastvisible = nowvisible
else:
if attribute not in lastattributes or lastattributes[attribute][0] != value:
laststep = lastattributes.get(attribute,
(None, None))[1]
value = (state[attribute], t_step, laststep)
key = 'attr_' + attribute
if key not in attributes:
attributes[key] = list()
attributes[key].append(value)
lastattributes[attribute] = (state[attribute], t_step)
if lastvisible:
spells.append((laststep, None))
if spells:
G.add_node(agent.id, attributes, spells=spells)
else:
G.add_node(agent.id, attributes)
return G

1
soil/settings.py Normal file
View File

@@ -0,0 +1 @@
# General configuration

241
soil/simulation.py Normal file
View File

@@ -0,0 +1,241 @@
import weakref
import os
import csv
import time
import yaml
import networkx as nx
from networkx.readwrite import json_graph
from copy import deepcopy
from random import random
from matplotlib import pyplot as plt
import pickle
from nxsim import NetworkSimulation
from . import agents, utils, environment, basestring
class SoilSimulation(NetworkSimulation):
"""
Subclass of nsim.NetworkSimulation with three main differences:
1) agent type can be specified by name or by class.
2) instead of just one type, an network_agents can be used.
The distribution specifies the weight (or probability) of each
agent type in the topology. This is an example distribution: ::
[
{'agent_type': 'agent_type_1',
'weight': 0.2,
'state': {
'id': 0
}
},
{'agent_type': 'agent_type_2',
'weight': 0.8,
'state': {
'id': 1
}
}
]
In this example, 20% of the nodes will be marked as type
'agent_type_1'.
3) if no initial state is given, each node's state will be set
to `{'id': 0}`.
"""
def __init__(self, name=None, topology=None, network_params=None,
network_agents=None, agent_type=None, states=None,
default_state=None, interval=1,
dir_path=None, num_trials=3, max_time=100,
agent_module=None,
environment_agents=None, environment_params=None):
if topology is None:
topology = utils.load_network(network_params,
dir_path=dir_path)
elif isinstance(topology, basestring) or isinstance(topology, dict):
topology = json_graph.node_link_graph(topology)
self.topology = nx.Graph(topology)
self.network_params = network_params
self.name = name or 'UnnamedSimulation'
self.num_trials = num_trials
self.max_time = max_time
self.default_state = default_state or {}
self.dir_path = dir_path or os.getcwd()
self.interval = interval
self.environment_params = environment_params or {}
environment_agents = environment_agents or []
self.environment_agents = self._convert_agent_types(environment_agents)
distro = self.calculate_distribution(network_agents,
agent_type)
self.network_agents = self._convert_agent_types(distro)
self.states = self.validate_states(states,
topology)
def calculate_distribution(self,
network_agents=None,
agent_type=None):
if network_agents:
network_agents = deepcopy(network_agents)
elif agent_type:
network_agents = [{'agent_type': agent_type}]
else:
return []
# Calculate the thresholds
total = sum(x.get('weight', 1) for x in network_agents)
acc = 0
for v in network_agents:
upper = acc + (v.get('weight', 1)/total)
v['threshold'] = [acc, upper]
acc = upper
return network_agents
def serialize_distribution(self):
d = self._convert_agent_types(self.network_agents,
to_string=True)
for v in d:
if 'threshold' in v:
del v['threshold']
return d
def _convert_agent_types(self, ind, to_string=False):
d = deepcopy(ind)
for v in d:
agent_type = v['agent_type']
if to_string and not isinstance(agent_type, str):
v['agent_type'] = str(agent_type.__name__)
elif not to_string and isinstance(agent_type, str):
v['agent_type'] = agents.agent_types[agent_type]
return d
def validate_states(self, states, topology):
states = states or []
# Validate states to avoid ignoring states during
# initialization
if isinstance(states, dict):
for x in states:
assert x in self.topology.node
else:
assert len(states) <= len(self.topology)
return states
def run_simulation(self):
return self.run()
def run(self):
return list(self.run_simulation_gen())
def run_simulation_gen(self):
with utils.timer('simulation'):
for i in range(self.num_trials):
yield self.run_trial(i)
def run_trial(self, trial_id=0):
"""Run a single trial of the simulation
Parameters
----------
trial_id : int
"""
# Set-up trial environment and graph
print('Trial: {}'.format(trial_id))
env_name = '{}_trial_{}'.format(self.name, trial_id)
env = environment.SoilEnvironment(name=env_name,
topology=self.topology.copy(),
initial_time=0,
interval=self.interval,
network_agents=self.network_agents,
states=self.states,
default_state=self.default_state,
environment_agents=self.environment_agents,
**self.environment_params)
env.sim = weakref.ref(self)
# Set up agents on nodes
print('\tRunning')
with utils.timer('trial'):
env.run(until=self.max_time)
return env
def to_dict(self):
return self.__getstate__()
def to_yaml(self):
return yaml.dump(self.to_dict())
def dump_yaml(self, dir_path=None, file_name=None):
dir_path = dir_path or self.dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
if not file_name:
file_name = os.path.join(dir_path,
'{}.dumped.yml'.format(self.name))
with open(file_name, 'w') as f:
f.write(self.to_yaml())
def dump_pickle(self, dir_path=None, pickle_name=None):
dir_path = dir_path or self.dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
if not pickle_name:
pickle_name = os.path.join(dir_path,
'{}.simulation.pickle'.format(self.name))
with open(pickle_name, 'wb') as f:
pickle.dump(self, f)
def __getstate__(self):
state = self.__dict__.copy()
state['topology'] = json_graph.node_link_data(self.topology)
state['network_agents'] = self.serialize_distribution()
state['environment_agents'] = self._convert_agent_types(self.environment_agents,
to_string=True)
return state
def __setstate__(self, state):
self.__dict__ = state
self.topology = json_graph.node_link_graph(state['topology'])
self.network_agents = self._convert_agent_types(self.network_agents)
self.environment_agents = self._convert_agent_types(self.environment_agents)
return state
def from_config(config, G=None):
config = list(utils.load_config(config))
if len(config) > 1:
raise AttributeError('Provide only one configuration')
config = config[0][0]
sim = SoilSimulation(**config)
return sim
def run_from_config(*configs, dump=True, results_dir=None, timestamp=False):
if not results_dir:
results_dir = 'soil_output'
for config_def in configs:
for config, cpath in utils.load_config(config_def):
name = config.get('name', 'unnamed')
print("Using config(s): {name}".format(name=name))
sim = SoilSimulation(**config)
if timestamp:
sim_folder = '{}_{}'.format(sim.name,
time.strftime("%Y-%m-%d_%H:%M:%S"))
else:
sim_folder = sim.name
dir_path = os.path.join(results_dir,
sim_folder)
results = sim.run_simulation()
if dump:
sim.dump_pickle(dir_path)
sim.dump_yaml(dir_path)
for env in results:
env.dump_gexf(dir_path)
env.dump_csv(dir_path)

61
soil/utils.py Normal file
View File

@@ -0,0 +1,61 @@
import os
import yaml
from time import time
from glob import glob
import networkx as nx
from contextlib import contextmanager
def load_network(network_params, dir_path=None):
path = network_params.get('path', None)
if path:
if dir_path and not os.path.isabs(path):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
kwargs = {}
if extension == 'gexf':
kwargs['version'] = '1.2draft'
kwargs['node_type'] = int
try:
method = getattr(nx.readwrite, 'read_' + extension)
except AttributeError:
raise AttributeError('Unknown format')
return method(path, **kwargs)
net_args = network_params.copy()
net_type = net_args.pop('generator')
method = getattr(nx.generators, net_type)
return method(**net_args)
def load_file(infile):
with open(infile, 'r') as f:
return list(yaml.load_all(f))
def load_files(*patterns):
for pattern in patterns:
for i in glob(pattern):
for config in load_file(i):
yield config, os.path.abspath(i)
def load_config(config):
if isinstance(config, dict):
yield config, None
else:
yield from load_files(config)
@contextmanager
def timer(name='task', pre="", function=print, to_object=None):
start = time()
yield start
end = time()
function('{}Finished {} in {} seconds'.format(pre, name, str(end-start)))
if to_object:
to_object.start = start
to_object.end = end