1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-13 06:52:28 +00:00
soil/settings.py

104 lines
2.5 KiB
Python
Raw Normal View History

2015-12-04 10:41:42 +00:00
# settings.py
def init():
global number_of_nodes
global max_time
global num_trials
global bite_prob
global network_type
global heal_prob
global innovation_prob
global imitation_prob
global timeout
global outside_effects_prob
global anger_prob
global joy_prob
global sadness_prob
global disgust_prob
2015-12-17 11:56:39 +00:00
global tweet_probability_users
global tweet_relevant_probability
global tweet_probability_about
global sentiment_about
global tweet_probability_enterprises
global enterprises
2016-04-18 10:23:24 +00:00
global neutral_discontent_spon_prob
global neutral_discontent_infected_prob
global neutral_content_spon_prob
global neutral_content_infected_prob
global discontent_content
global discontent_neutral
global content_discontent
global content_neutral
global variance_d_c
global variance_c_d
global standard_variance
2016-04-21 10:56:06 +00:00
global prob_neutral_making_denier
global prob_infect
global prob_cured_healing_infected
global prob_cured_vaccinate_neutral
global prob_vaccinated_healing_infected
global prob_vaccinated_vaccinate_neutral
global prob_generate_anti_rumor
2015-12-04 10:41:42 +00:00
network_type=1
2016-05-04 10:20:23 +00:00
number_of_nodes=1000
max_time=50
2015-12-04 10:41:42 +00:00
num_trials=1
2016-05-04 10:20:23 +00:00
timeout=2
2015-12-04 10:41:42 +00:00
#Zombie model
bite_prob=0.01 # 0-1
heal_prob=0.01 # 0-1
#Bass model
innovation_prob=0.001
imitation_prob=0.005
2015-12-04 10:41:42 +00:00
2015-12-17 11:56:39 +00:00
#Sentiment Correlation model
2015-12-04 10:41:42 +00:00
outside_effects_prob = 0.2
anger_prob = 0.06
2015-12-04 10:41:42 +00:00
joy_prob = 0.05
sadness_prob = 0.02
disgust_prob = 0.02
2015-12-17 11:56:39 +00:00
#Big Market model
##Names
enterprises = ["BBVA","Santander", "Bankia"]
2015-12-17 11:56:39 +00:00
##Users
tweet_probability_users = 0.44
tweet_relevant_probability = 0.25
tweet_probability_about = [0.15, 0.15, 0.15]
sentiment_about = [0, 0, 0] #Valores por defecto
2015-12-17 11:56:39 +00:00
##Enterprises
tweet_probability_enterprises = [0.3, 0.3, 0.3]
2015-12-17 11:56:39 +00:00
2016-04-18 10:23:24 +00:00
#SISa
neutral_discontent_spon_prob = 0.04
neutral_discontent_infected_prob = 0.04
neutral_content_spon_prob = 0.18
neutral_content_infected_prob = 0.02
discontent_neutral = 0.13
discontent_content = 0.07
variance_d_c = 0.02
content_discontent = 0.009
variance_c_d = 0.003
content_neutral = 0.088
2016-04-21 10:56:06 +00:00
standard_variance = 0.055
2016-05-04 10:20:23 +00:00
#Spread Model M2 and Control Model M2
2016-04-27 11:30:31 +00:00
prob_neutral_making_denier = 0.035
2016-04-21 10:56:06 +00:00
2016-04-27 11:30:31 +00:00
prob_infect = 0.075
2016-04-21 10:56:06 +00:00
2016-04-27 11:30:31 +00:00
prob_cured_healing_infected = 0.035
prob_cured_vaccinate_neutral = 0.035
2016-04-21 10:56:06 +00:00
2016-04-27 11:30:31 +00:00
prob_vaccinated_healing_infected = 0.035
prob_vaccinated_vaccinate_neutral = 0.035
prob_generate_anti_rumor = 0.035
2016-04-21 10:56:06 +00:00
2016-04-18 10:23:24 +00:00