1
0
mirror of https://github.com/gsi-upm/sitc synced 2024-12-25 04:58:13 +00:00
Go to file
2021-04-19 17:47:22 +02:00
lod LOD: minor changes 2021-02-22 17:32:31 +01:00
ml1 updated ml1/2_6: using scorer to avoid traning warnings 2021-03-11 16:28:14 +01:00
ml2 Fixed bug in substrings_in_string and set default df[AgeGroup] to np.nan 2021-04-06 10:20:29 +02:00
ml3 description about parameter h added 2019-03-21 19:35:50 +01:00
ml4 Fixed broken link and bug of sklearn-deap with scikit 0.24 2021-04-19 17:47:22 +02:00
ml5 Updated notebooks 2019-03-06 17:46:12 +01:00
nlp Update 4_7_Exercises.ipynb 2020-04-29 18:46:31 +02:00
python Update 1_1_Notebooks.ipynb 2021-02-09 19:53:14 +01:00
rdf fix typo 2020-02-20 17:38:02 +01:00
.gitignore Added gitignore 2016-03-28 12:34:10 +02:00
CONTRIBUTING.md Add Makefile 2019-03-06 12:08:34 +01:00
logo.jpg Add SPARQL notebooks 2018-03-13 13:32:29 +01:00
Makefile Makefile updated 2019-03-28 14:13:22 +01:00
README.md Update README.md 2021-02-09 19:54:56 +01:00

sitc

Exercises for Intelligent Systems Course at Universidad Politécnica de Madrid, Telecommunication Engineering School. This material is used in the subjects

  • SITC (Sistemas Inteligentes y Tecnologías del Conocimiento) - Master Universitario de Ingeniería de Telecomunicación (MUIT)
  • TIAD (Tecnologías Inteligentes de Análisis de Datos) - Master Universitario en Ingeniera de Redes y Servicios Telemáticos)

For following this course:

Topics

  • Python: quick introduction to Python
  • ML-1: introduction to machine learning with scikit-learn
  • ML-2: introduction to machine learning with pandas and scikit-learn
  • ML-3: introduction to machine learning. Neural Computing
  • ML-4: introduction to Evolutionary Computing
  • ML-5: introduction to Reinforcement Learning
  • NLP: introduction to NLP
  • LOD: Linked Open Data, exercises and example code