mirror of
https://github.com/gsi-upm/sitc
synced 2024-11-17 20:12:28 +00:00
186 lines
4.6 KiB
Plaintext
186 lines
4.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "skip"
|
|
}
|
|
},
|
|
"source": [
|
|
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "skip"
|
|
}
|
|
},
|
|
"source": [
|
|
"# Course Notes for Learning Intelligent Systems"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "skip"
|
|
}
|
|
},
|
|
"source": [
|
|
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "slide"
|
|
}
|
|
},
|
|
"source": [
|
|
"# Introduction to Visualization\n",
|
|
" \n",
|
|
"In this session, we will get more insight regarding how to visualize data.\n",
|
|
"\n",
|
|
"# Objectives\n",
|
|
"\n",
|
|
"The main objectives of this session are:\n",
|
|
"* Understanding how to visualize data\n",
|
|
"* Understanding the purpose of different charts \n",
|
|
"* Experimenting with several environments for visualizing data\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "slide"
|
|
}
|
|
},
|
|
"source": [
|
|
"# Seaborn\n",
|
|
"\n",
|
|
"Seaborn is a library that visualizes data in Python. The main characteristics are:\n",
|
|
"\n",
|
|
"* A dataset-oriented API for examining relationships between multiple variables\n",
|
|
"* Specialized support for using categorical variables to show observations or aggregate statistics\n",
|
|
"* Options for visualizing univariate or bivariate distributions and for comparing them between subsets of data\n",
|
|
"* Automatic estimation and plotting of linear regression models for different kinds of dependent variables\n",
|
|
"* Convenient views of the overall structure of complex datasets\n",
|
|
"* High-level abstractions for structuring multi-plot grids that let you quickly build complex visualizations\n",
|
|
"* Concise control over matplotlib figure styling with several built-in themes\n",
|
|
"* Tools for choosing color palettes that faithfully reveal patterns in your data\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "slide"
|
|
}
|
|
},
|
|
"source": [
|
|
"## Install\n",
|
|
"Use:\n",
|
|
"\n",
|
|
"**conda install seaborn**\n",
|
|
"\n",
|
|
"or \n",
|
|
"\n",
|
|
"**pip install seaborn**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "slide"
|
|
}
|
|
},
|
|
"source": [
|
|
"# Table of Contents"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "fragment"
|
|
}
|
|
},
|
|
"source": [
|
|
"1. [Home](00_Intro_Visualization.ipynb)\n",
|
|
"2. [Dataset](01_Dataset.ipynb)\n",
|
|
"3. [Comparison Charts](02_Comparison_Charts.ipynb)\n",
|
|
" 1. [More Comparison Charts](02_01_More_Comparison_Charts.ipynb)\n",
|
|
"4. [Distribution Charts](03_Distribution_Charts.ipynb)\n",
|
|
"5. [Hierarchical charts](04_Hierarchical_Charts.ipynb)\n",
|
|
"6. [Relational charts](05_Relational_Charts.ipynb)\n",
|
|
"7. [Spatial charts](06_Spatial_Charts.ipynb)\n",
|
|
"8. [Temporal charts](07_Temporal_Charts.ipynb)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Licence\n",
|
|
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
|
"\n",
|
|
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"datacleaner": {
|
|
"position": {
|
|
"top": "50px"
|
|
},
|
|
"python": {
|
|
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
|
},
|
|
"window_display": false
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.7"
|
|
},
|
|
"latex_envs": {
|
|
"LaTeX_envs_menu_present": true,
|
|
"autocomplete": true,
|
|
"bibliofile": "biblio.bib",
|
|
"cite_by": "apalike",
|
|
"current_citInitial": 1,
|
|
"eqLabelWithNumbers": true,
|
|
"eqNumInitial": 1,
|
|
"hotkeys": {
|
|
"equation": "Ctrl-E",
|
|
"itemize": "Ctrl-I"
|
|
},
|
|
"labels_anchors": false,
|
|
"latex_user_defs": false,
|
|
"report_style_numbering": false,
|
|
"user_envs_cfg": false
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|