1
0
mirror of https://github.com/gsi-upm/sitc synced 2024-11-24 15:32:29 +00:00
sitc/nlp/4_4_Classification.ipynb
Carlos A. Iglesias 842b6307f1 Updated notebooks
2019-03-06 17:46:12 +01:00

315 lines
8.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Text Classification"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Table of Contents\n",
"* [Objectives](#Objectives)\n",
"* [Corpus](#Corpus)\n",
"* [Classifier](#Classifier)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Objectives"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this session we provide a quick overview of how the vector models we have presented previously can be used for applying machine learning techniques, such as classification.\n",
"\n",
"The main objectives of this session are:\n",
"* Understand how to apply machine learning techniques on textual sources\n",
"* Learn the facilities provided by scikit-learn"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Corpus"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are going to use on of the corpus that come prepackaged with Scikit-learn: the [20 newsgroup datase](http://qwone.com/~jason/20Newsgroups/). The 20 newsgroup dataset contains 20k documents that belong to 20 topics.\n",
"\n",
"We inspect now the corpus using the facilities from Scikit-learn, as explain in [scikit-learn](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html#newsgroups)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import fetch_20newsgroups\n",
"\n",
"# We remove metadata to avoid bias in the classification\n",
"newsgroups_train = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes'))\n",
"newsgroups_test = fetch_20newsgroups(subset='test', remove=('headers', 'footers', 'quotes'))\n",
"\n",
"# print categories\n",
"print(list(newsgroups_train.target_names))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Number of categories\n",
"print(len(newsgroups_train.target_names))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Show a document\n",
"docid = 1\n",
"doc = newsgroups_train.data[docid]\n",
"cat = newsgroups_train.target[docid]\n",
"\n",
"print(\"Category id \" + str(cat) + \" \" + newsgroups_train.target_names[cat])\n",
"print(\"Doc \" + doc)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Number of files\n",
"newsgroups_train.filenames.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Obtain a vector\n",
"\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"\n",
"vectorizer = TfidfVectorizer(analyzer='word', stop_words='english')\n",
"\n",
"vectors_train = vectorizer.fit_transform(newsgroups_train.data)\n",
"vectors_train.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The tf-idf vectors are very sparse with an average of 66 non zero components in 101.323 dimensions (.06%)\n",
"vectors_train.nnz / float(vectors_train.shape[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Classifier"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once we have vectors, we can create classifiers (or other machine learning algorithms such as clustering) as we saw previously in the notebooks of machine learning with scikit-learn."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.naive_bayes import MultinomialNB\n",
"\n",
"from sklearn import metrics\n",
"\n",
"\n",
"# We learn the vocabulary (fit) with the train dataset and transform into vectors (fit_transform)\n",
"# Nevertheless, we only transform the test dataset into vectors (transform, not fit_transform)\n",
"\n",
"model = MultinomialNB(alpha=.01)\n",
"model.fit(vectors_train, newsgroups_train.target)\n",
"\n",
"vectors_test = vectorizer.transform(newsgroups_test.data)\n",
"pred = model.predict(vectors_test)\n",
"\n",
"metrics.f1_score(newsgroups_test.target, pred, average='weighted')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are getting F1 of 0.69 for 20 categories this could be improved (optimization, preprocessing, etc.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.utils.extmath import density\n",
"\n",
"print(\"dimensionality: %d\" % model.coef_.shape[1])\n",
"print(\"density: %f\" % density(model.coef_))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# We can review the top features per topic in Bayes (attribute coef_)\n",
"import numpy as np\n",
"\n",
"def show_top10(classifier, vectorizer, categories):\n",
" feature_names = np.asarray(vectorizer.get_feature_names())\n",
" for i, category in enumerate(categories):\n",
" top10 = np.argsort(classifier.coef_[i])[-10:]\n",
" print(\"%s: %s\" % (category, \" \".join(feature_names[top10])))\n",
"\n",
" \n",
"show_top10(model, vectorizer, newsgroups_train.target_names)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# We try the classifier in two new docs\n",
"\n",
"new_docs = ['This is a survey of PC computers', 'God is love']\n",
"new_vectors = vectorizer.transform(new_docs)\n",
"\n",
"pred_docs = model.predict(new_vectors)\n",
"print(pred_docs)\n",
"print([newsgroups_train.target_names[i] for i in pred_docs])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* [NLTK Book. Natural Language Processing with Python. Steven Bird, Ewan Klein, and Edward Loper. O'Reilly Media, 2009 ](http://www.nltk.org/book_1ed/)\n",
"* [NLTK Essentials, Nitin Hardeniya, Packt Publishing, 2015](http://proquest.safaribooksonline.com/search?q=NLTK%20Essentials)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Licence"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}