1
0
mirror of https://github.com/gsi-upm/sitc synced 2024-11-24 07:22:29 +00:00
Go to file
Carlos A. Iglesias 75f08ea170
Merge pull request #5 from gsi-upm/dveni-patch-2
Update 4_1_Lexical_Processing.ipynb
2019-11-27 10:19:12 +01:00
lod Fix typos 2019-02-21 18:04:17 +01:00
ml1 Added requirements file 2019-03-06 17:55:22 +01:00
ml2 Update 3_3_Data_Munging_with_Pandas.ipynb 2019-09-18 15:39:16 +02:00
ml3 description about parameter h added 2019-03-21 19:35:50 +01:00
ml4 Updated notebooks 2019-03-06 17:46:12 +01:00
ml5 Updated notebooks 2019-03-06 17:46:12 +01:00
nlp Update 4_1_Lexical_Processing.ipynb 2019-11-26 15:14:40 +01:00
python Updated notebooks 2019-03-06 17:46:12 +01:00
rdf Add print_function for py2 2019-02-15 13:49:49 +01:00
.gitignore Added gitignore 2016-03-28 12:34:10 +02:00
CONTRIBUTING.md Add Makefile 2019-03-06 12:08:34 +01:00
logo.jpg Add SPARQL notebooks 2018-03-13 13:32:29 +01:00
Makefile Makefile updated 2019-03-28 14:13:22 +01:00
README.md Updated README 2018-05-03 11:27:07 +02:00

sitc

Exercises for Intelligent Systems Course at Universidad Politécnica de Madrid, Telecommunication Engineering School. This material is used in the subjects

  • SITC (Sistemas Inteligentes y Tecnologías del Conocimiento) - Master Universitario de Ingeniería de Telecomunicación (MUIT)
  • TIAD (Tecnologías Inteligentes de Análisis de Datos) - Master Universitario en Ingeniera de Redes y Servicios Telemáticos)

For following this course:

Topics

  • Python: quick introduction to Python
  • ML-1: introduction to machine learning with scikit-learn
  • ML-2: introduction to machine learning with pandas and scikit-learn
  • ML-3: introduction to machine learning. Neural Computing
  • ML-4: introduction to Evolutionary Computing
  • ML-5: introduction to Reinforcement Learning
  • NLP: introduction to NLP
  • LOD: Linked Open Data, exercises and example code