mirror of
https://github.com/gsi-upm/sitc
synced 2025-01-08 04:01:27 +00:00
75 lines
2.1 KiB
Python
75 lines
2.1 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from math import cos, sin
|
|
from scipy.constants import golden, pi
|
|
|
|
def gen_spiral_dataset(n_examples=500, n_classes=2, a=None, b=None, pi_space=3):
|
|
n_spirals = n_classes
|
|
|
|
# default: golden spiral
|
|
if a is None:
|
|
a = golden
|
|
if b is None:
|
|
b = 2/pi
|
|
|
|
theta = np.linspace(0,pi_space*pi, num=n_examples)
|
|
xy = np.zeros((n_examples,2))
|
|
|
|
# logaritmic spirals
|
|
x_golden_parametric = lambda a, b, theta: a**(theta*b) * cos(theta)
|
|
y_golden_parametric = lambda a, b, theta: a**(theta*b) * sin(theta)
|
|
x_golden_parametric = np.vectorize(x_golden_parametric)
|
|
y_golden_parametric = np.vectorize(y_golden_parametric)
|
|
|
|
# rotation matrix
|
|
gen_rotation = lambda theta: np.array([[cos(theta), -sin(theta)],[sin(theta), cos(theta)]])
|
|
|
|
# rotation angles
|
|
rot_division = (2*pi) / n_spirals
|
|
rot_thetas = [i * rot_division for i in range(n_spirals)]
|
|
|
|
XY = np.zeros((2, n_examples, n_spirals))
|
|
for i in range(n_spirals):
|
|
x = x_golden_parametric(a, b, theta)
|
|
y = y_golden_parametric(a, b, theta)
|
|
xy = np.vstack((x,y))
|
|
R = gen_rotation(rot_thetas[i])
|
|
xy_ = np.dot(R.T, xy)
|
|
XY[:,:,i] = xy_
|
|
|
|
return XY
|
|
|
|
def load_spiral_dataset(n_examples=300, n_classes=2):
|
|
XY = gen_spiral_dataset(n_examples, n_classes)
|
|
X_s = []
|
|
y_s = []
|
|
for i in range(XY.shape[2]):
|
|
X = XY[:,:,i].T
|
|
X_s.append(X)
|
|
y = np.array([i] * XY.shape[1]).T
|
|
y_s.append(y)
|
|
X = np.vstack(X_s)
|
|
y = np.hstack(y_s)
|
|
|
|
return X, y
|
|
|
|
def plot_dataset(X,y):
|
|
cm = plt.cm.RdBu
|
|
plt.scatter(X[:,0], X[:,1], c=y, cmap=cm, lw=.5, s=10)
|
|
|
|
def plot_decision_surface(X, y, classifier, h=0.02):
|
|
cm = plt.cm.RdBu
|
|
|
|
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
|
|
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
|
|
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
|
|
np.arange(y_min, y_max, h))
|
|
|
|
|
|
z = classifier.predict(np.c_[xx.ravel(), yy.ravel()])#[:, 1]
|
|
|
|
z = z.reshape(xx.shape)
|
|
plt.contourf(xx, yy, z, cmap=cm, alpha=.8)
|
|
|
|
plot_dataset(X, y)
|