mirror of
https://github.com/gsi-upm/sitc
synced 2024-11-21 22:12:30 +00:00
Exercise 3 included
This commit is contained in:
parent
5d682702ef
commit
b01fea23de
754
ml2/3_9_Exercise_3.ipynb
Normal file
754
ml2/3_9_Exercise_3.ipynb
Normal file
File diff suppressed because one or more lines are too long
BIN
ml2/images/multilayerperceptron_network.png
Normal file
BIN
ml2/images/multilayerperceptron_network.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 87 KiB |
75
ml2/spiral.py
Normal file
75
ml2/spiral.py
Normal file
@ -0,0 +1,75 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from math import cos, sin
|
||||
from scipy.constants import golden, pi
|
||||
|
||||
def gen_spiral_dataset(n_examples=500, n_classes=2, a=None, b=None, pi_space=3):
|
||||
n_spirals = n_classes
|
||||
|
||||
# default: golden spiral
|
||||
if a is None:
|
||||
a = golden
|
||||
if b is None:
|
||||
b = 2/pi
|
||||
|
||||
theta = np.linspace(0,pi_space*pi, num=n_examples)
|
||||
xy = np.zeros((n_examples,2))
|
||||
|
||||
# logaritmic spirals
|
||||
x_golden_parametric = lambda a, b, theta: a**(theta*b) * cos(theta)
|
||||
y_golden_parametric = lambda a, b, theta: a**(theta*b) * sin(theta)
|
||||
x_golden_parametric = np.vectorize(x_golden_parametric)
|
||||
y_golden_parametric = np.vectorize(y_golden_parametric)
|
||||
|
||||
# rotation matrix
|
||||
gen_rotation = lambda theta: np.array([[cos(theta), -sin(theta)],[sin(theta), cos(theta)]])
|
||||
|
||||
# rotation angles
|
||||
rot_division = (2*pi) / n_spirals
|
||||
rot_thetas = [i * rot_division for i in range(n_spirals)]
|
||||
|
||||
XY = np.zeros((2, n_examples, n_spirals))
|
||||
for i in range(n_spirals):
|
||||
x = x_golden_parametric(a, b, theta)
|
||||
y = y_golden_parametric(a, b, theta)
|
||||
xy = np.vstack((x,y))
|
||||
R = gen_rotation(rot_thetas[i])
|
||||
xy_ = np.dot(R.T, xy)
|
||||
XY[:,:,i] = xy_
|
||||
|
||||
return XY
|
||||
|
||||
def load_spiral_dataset(n_examples=300, n_classes=2):
|
||||
XY = gen_spiral_dataset(n_examples, n_classes)
|
||||
X_s = []
|
||||
y_s = []
|
||||
for i in range(XY.shape[2]):
|
||||
X = XY[:,:,i].T
|
||||
X_s.append(X)
|
||||
y = np.array([i] * XY.shape[1]).T
|
||||
y_s.append(y)
|
||||
X = np.vstack(X_s)
|
||||
y = np.hstack(y_s)
|
||||
|
||||
return X, y
|
||||
|
||||
def plot_dataset(X,y):
|
||||
cm = plt.cm.RdBu
|
||||
plt.scatter(X[:,0], X[:,1], c=y, cmap=cm, lw=.5, s=10)
|
||||
|
||||
def plot_decision_surface(X, y, classifier):
|
||||
h = .02
|
||||
cm = plt.cm.RdBu
|
||||
|
||||
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
|
||||
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
|
||||
np.arange(y_min, y_max, h))
|
||||
|
||||
|
||||
z = classifier.predict(np.c_[xx.ravel(), yy.ravel()])#[:, 1]
|
||||
|
||||
z = z.reshape(xx.shape)
|
||||
plt.contourf(xx, yy, z, cmap=cm, alpha=.8)
|
||||
|
||||
plot_dataset(X, y)
|
Loading…
Reference in New Issue
Block a user