mirror of
https://github.com/gsi-upm/sitc
synced 2024-11-13 02:12:28 +00:00
Updated visualization
This commit is contained in:
parent
7d71ba5f7a
commit
4d87b07ed9
@ -535,13 +535,13 @@
|
||||
"source": [
|
||||
"# This step will take some time\n",
|
||||
"# Cross-validationt\n",
|
||||
"cv = KFold(n_splits=5, shuffle=False, random_state=33)\n",
|
||||
"cv = KFold(n_splits=5, shuffle=True, random_state=33)\n",
|
||||
"# StratifiedKFold has is a variation of k-fold which returns stratified folds:\n",
|
||||
"# each set contains approximately the same percentage of samples of each target class as the complete set.\n",
|
||||
"#cv = StratifiedKFold(y, n_folds=3, shuffle=False, random_state=33)\n",
|
||||
"#cv = StratifiedKFold(y, n_folds=3, shuffle=True, random_state=33)\n",
|
||||
"scores = cross_val_score(model, X, y, cv=cv)\n",
|
||||
"print(\"Scores in every iteration\", scores)\n",
|
||||
"print(\"Accuracy: %0.2f (+/- %0.2f)\" % (scores.mean(), scores.std() * 2))\n"
|
||||
"print(\"Accuracy: %0.2f (+/- %0.2f)\" % (scores.mean(), scores.std() * 2))"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -644,7 +644,7 @@
|
||||
"source": [
|
||||
"* [Titanic Machine Learning from Disaster](https://www.kaggle.com/c/titanic/forums/t/5105/ipython-notebook-tutorial-for-titanic-machine-learning-from-disaster)\n",
|
||||
"* [API SVC scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html)\n",
|
||||
"* [Better evaluation of classification models](http://blog.kaggle.com/2015/10/23/scikit-learn-video-9-better-evaluation-of-classification-models/)"
|
||||
"* [How to choose the right metric for evaluating an ML model](https://www.kaggle.com/vipulgandhi/how-to-choose-right-metric-for-evaluating-ml-model)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -666,7 +666,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@ -680,7 +680,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.1"
|
||||
"version": "3.8.12"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
|
@ -1,21 +1,21 @@
|
||||
"""
|
||||
Taken from http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
|
||||
|
||||
========================
|
||||
Plotting Learning Curves
|
||||
========================
|
||||
In the first column, first row the learning curve of a naive Bayes classifier
|
||||
is shown for the digits dataset. Note that the training score and the
|
||||
cross-validation score are both not very good at the end. However, the shape
|
||||
of the curve can be found in more complex datasets very often: the training
|
||||
score is very high at the beginning and decreases and the cross-validation
|
||||
score is very low at the beginning and increases. In the second column, first
|
||||
row we see the learning curve of an SVM with RBF kernel. We can see clearly
|
||||
that the training score is still around the maximum and the validation score
|
||||
could be increased with more training samples. The plots in the second row
|
||||
show the times required by the models to train with various sizes of training
|
||||
dataset. The plots in the third row show how much time was required to train
|
||||
the models for each training sizes.
|
||||
|
||||
On the left side the learning curve of a naive Bayes classifier is shown for
|
||||
the digits dataset. Note that the training score and the cross-validation score
|
||||
are both not very good at the end. However, the shape of the curve can be found
|
||||
in more complex datasets very often: the training score is very high at the
|
||||
beginning and decreases and the cross-validation score is very low at the
|
||||
beginning and increases. On the right side we see the learning curve of an SVM
|
||||
with RBF kernel. We can see clearly that the training score is still around
|
||||
the maximum and the validation score could be increased with more training
|
||||
samples.
|
||||
"""
|
||||
#print(__doc__)
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
@ -23,86 +23,181 @@ from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.model_selection import learning_curve
|
||||
from sklearn.model_selection import ShuffleSplit
|
||||
|
||||
|
||||
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
|
||||
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
|
||||
def plot_learning_curve(
|
||||
estimator,
|
||||
title,
|
||||
X,
|
||||
y,
|
||||
axes=None,
|
||||
ylim=None,
|
||||
cv=None,
|
||||
n_jobs=None,
|
||||
train_sizes=np.linspace(0.1, 1.0, 5),
|
||||
):
|
||||
"""
|
||||
Generate a simple plot of the test and traning learning curve.
|
||||
Generate 3 plots: the test and training learning curve, the training
|
||||
samples vs fit times curve, the fit times vs score curve.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
estimator : object type that implements the "fit" and "predict" methods
|
||||
An object of that type which is cloned for each validation.
|
||||
estimator : estimator instance
|
||||
An estimator instance implementing `fit` and `predict` methods which
|
||||
will be cloned for each validation.
|
||||
|
||||
title : string
|
||||
title : str
|
||||
Title for the chart.
|
||||
|
||||
X : array-like, shape (n_samples, n_features)
|
||||
Training vector, where n_samples is the number of samples and
|
||||
n_features is the number of features.
|
||||
X : array-like of shape (n_samples, n_features)
|
||||
Training vector, where ``n_samples`` is the number of samples and
|
||||
``n_features`` is the number of features.
|
||||
|
||||
y : array-like, shape (n_samples) or (n_samples, n_features), optional
|
||||
Target relative to X for classification or regression;
|
||||
y : array-like of shape (n_samples) or (n_samples, n_features)
|
||||
Target relative to ``X`` for classification or regression;
|
||||
None for unsupervised learning.
|
||||
|
||||
ylim : tuple, shape (ymin, ymax), optional
|
||||
Defines minimum and maximum yvalues plotted.
|
||||
axes : array-like of shape (3,), default=None
|
||||
Axes to use for plotting the curves.
|
||||
|
||||
cv : integer, cross-validation generator, optional
|
||||
If an integer is passed, it is the number of folds (defaults to 3).
|
||||
Specific cross-validation objects can be passed, see
|
||||
sklearn.model_selection module for the list of possible objects
|
||||
ylim : tuple of shape (2,), default=None
|
||||
Defines minimum and maximum y-values plotted, e.g. (ymin, ymax).
|
||||
|
||||
n_jobs : integer, optional
|
||||
Number of jobs to run in parallel (default 1).
|
||||
cv : int, cross-validation generator or an iterable, default=None
|
||||
Determines the cross-validation splitting strategy.
|
||||
Possible inputs for cv are:
|
||||
|
||||
- None, to use the default 5-fold cross-validation,
|
||||
- integer, to specify the number of folds.
|
||||
- :term:`CV splitter`,
|
||||
- An iterable yielding (train, test) splits as arrays of indices.
|
||||
|
||||
For integer/None inputs, if ``y`` is binary or multiclass,
|
||||
:class:`StratifiedKFold` used. If the estimator is not a classifier
|
||||
or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.
|
||||
|
||||
Refer :ref:`User Guide <cross_validation>` for the various
|
||||
cross-validators that can be used here.
|
||||
|
||||
n_jobs : int or None, default=None
|
||||
Number of jobs to run in parallel.
|
||||
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
||||
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
||||
for more details.
|
||||
|
||||
train_sizes : array-like of shape (n_ticks,)
|
||||
Relative or absolute numbers of training examples that will be used to
|
||||
generate the learning curve. If the ``dtype`` is float, it is regarded
|
||||
as a fraction of the maximum size of the training set (that is
|
||||
determined by the selected validation method), i.e. it has to be within
|
||||
(0, 1]. Otherwise it is interpreted as absolute sizes of the training
|
||||
sets. Note that for classification the number of samples usually have
|
||||
to be big enough to contain at least one sample from each class.
|
||||
(default: np.linspace(0.1, 1.0, 5))
|
||||
"""
|
||||
plt.figure()
|
||||
plt.title(title)
|
||||
if axes is None:
|
||||
_, axes = plt.subplots(1, 3, figsize=(20, 5))
|
||||
|
||||
axes[0].set_title(title)
|
||||
if ylim is not None:
|
||||
plt.ylim(*ylim)
|
||||
plt.xlabel("Training examples")
|
||||
plt.ylabel("Score")
|
||||
train_sizes, train_scores, test_scores = learning_curve(
|
||||
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
|
||||
axes[0].set_ylim(*ylim)
|
||||
axes[0].set_xlabel("Training examples")
|
||||
axes[0].set_ylabel("Score")
|
||||
|
||||
train_sizes, train_scores, test_scores, fit_times, _ = learning_curve(
|
||||
estimator,
|
||||
X,
|
||||
y,
|
||||
cv=cv,
|
||||
n_jobs=n_jobs,
|
||||
train_sizes=train_sizes,
|
||||
return_times=True,
|
||||
)
|
||||
train_scores_mean = np.mean(train_scores, axis=1)
|
||||
train_scores_std = np.std(train_scores, axis=1)
|
||||
test_scores_mean = np.mean(test_scores, axis=1)
|
||||
test_scores_std = np.std(test_scores, axis=1)
|
||||
plt.grid()
|
||||
fit_times_mean = np.mean(fit_times, axis=1)
|
||||
fit_times_std = np.std(fit_times, axis=1)
|
||||
|
||||
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
|
||||
train_scores_mean + train_scores_std, alpha=0.1,
|
||||
color="r")
|
||||
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
|
||||
test_scores_mean + test_scores_std, alpha=0.1, color="g")
|
||||
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
|
||||
label="Training score")
|
||||
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
|
||||
label="Cross-validation score")
|
||||
# Plot learning curve
|
||||
axes[0].grid()
|
||||
axes[0].fill_between(
|
||||
train_sizes,
|
||||
train_scores_mean - train_scores_std,
|
||||
train_scores_mean + train_scores_std,
|
||||
alpha=0.1,
|
||||
color="r",
|
||||
)
|
||||
axes[0].fill_between(
|
||||
train_sizes,
|
||||
test_scores_mean - test_scores_std,
|
||||
test_scores_mean + test_scores_std,
|
||||
alpha=0.1,
|
||||
color="g",
|
||||
)
|
||||
axes[0].plot(
|
||||
train_sizes, train_scores_mean, "o-", color="r", label="Training score"
|
||||
)
|
||||
axes[0].plot(
|
||||
train_sizes, test_scores_mean, "o-", color="g", label="Cross-validation score"
|
||||
)
|
||||
axes[0].legend(loc="best")
|
||||
|
||||
# Plot n_samples vs fit_times
|
||||
axes[1].grid()
|
||||
axes[1].plot(train_sizes, fit_times_mean, "o-")
|
||||
axes[1].fill_between(
|
||||
train_sizes,
|
||||
fit_times_mean - fit_times_std,
|
||||
fit_times_mean + fit_times_std,
|
||||
alpha=0.1,
|
||||
)
|
||||
axes[1].set_xlabel("Training examples")
|
||||
axes[1].set_ylabel("fit_times")
|
||||
axes[1].set_title("Scalability of the model")
|
||||
|
||||
# Plot fit_time vs score
|
||||
fit_time_argsort = fit_times_mean.argsort()
|
||||
fit_time_sorted = fit_times_mean[fit_time_argsort]
|
||||
test_scores_mean_sorted = test_scores_mean[fit_time_argsort]
|
||||
test_scores_std_sorted = test_scores_std[fit_time_argsort]
|
||||
axes[2].grid()
|
||||
axes[2].plot(fit_time_sorted, test_scores_mean_sorted, "o-")
|
||||
axes[2].fill_between(
|
||||
fit_time_sorted,
|
||||
test_scores_mean_sorted - test_scores_std_sorted,
|
||||
test_scores_mean_sorted + test_scores_std_sorted,
|
||||
alpha=0.1,
|
||||
)
|
||||
axes[2].set_xlabel("fit_times")
|
||||
axes[2].set_ylabel("Score")
|
||||
axes[2].set_title("Performance of the model")
|
||||
|
||||
plt.legend(loc="best")
|
||||
return plt
|
||||
|
||||
|
||||
#digits = load_digits()
|
||||
#X, y = digits.data, digits.target
|
||||
fig, axes = plt.subplots(3, 2, figsize=(10, 15))
|
||||
|
||||
X, y = load_digits(return_X_y=True)
|
||||
|
||||
#title = "Learning Curves (Naive Bayes)"
|
||||
# Cross validation with 100 iterations to get smoother mean test and train
|
||||
title = "Learning Curves (Naive Bayes)"
|
||||
# Cross validation with 50 iterations to get smoother mean test and train
|
||||
# score curves, each time with 20% data randomly selected as a validation set.
|
||||
#cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=100,
|
||||
# test_size=0.2, random_state=0)
|
||||
cv = ShuffleSplit(n_splits=50, test_size=0.2, random_state=0)
|
||||
|
||||
#estimator = GaussianNB()
|
||||
#plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4)
|
||||
estimator = GaussianNB()
|
||||
plot_learning_curve(
|
||||
estimator, title, X, y, axes=axes[:, 0], ylim=(0.7, 1.01), cv=cv, n_jobs=4
|
||||
)
|
||||
|
||||
#title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)"
|
||||
title = r"Learning Curves (SVM, RBF kernel, $\gamma=0.001$)"
|
||||
# SVC is more expensive so we do a lower number of CV iterations:
|
||||
#cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=10,
|
||||
# test_size=0.2, random_state=0)
|
||||
#estimator = SVC(gamma=0.001)
|
||||
#plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4)
|
||||
cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
|
||||
estimator = SVC(gamma=0.001)
|
||||
plot_learning_curve(
|
||||
estimator, title, X, y, axes=axes[:, 1], ylim=(0.7, 1.01), cv=cv, n_jobs=4
|
||||
)
|
||||
|
||||
#plt.show()
|
||||
plt.show()
|
||||
|
Loading…
Reference in New Issue
Block a user