1
0
mirror of https://github.com/gsi-upm/sitc synced 2024-11-17 12:02:28 +00:00

Not done reviewing ml2 yet

This commit is contained in:
J. Fernando Sánchez 2016-03-28 14:03:08 +02:00
parent 67bf2f7360
commit 3165eac23c
15 changed files with 17215 additions and 419 deletions

114
ml2/3_0_0_Intro_ML_2.ipynb Normal file
View File

@ -0,0 +1,114 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © 2016 Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Introduction to Machine Learning II\n",
" \n",
"In this lab session, we will go deeper in some aspects that were introduced in the previous session. This time we will delve into a little bit more detail about reading datasets, analysing data and selecting features. In addition, we will explore two additional machine learning algorithms: perceptron and SVM in a binary classification problem provided by the Titanic dataset.\n",
"\n",
"# Objectives\n",
"\n",
"In this lecture we are going to introduce some more details about machine learning aspects. \n",
"\n",
"The main objectives of this session are:\n",
"* Learn how to read data from a file or URL with pandas\n",
"* Learn how to use the pandas DataFrame data structure\n",
"* Learn how to select features\n",
"* Understand better the Perceptron and SVM machine learning algorithms"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Table of Contents"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. [Home](3_0_0_Intro_ML_2.ipynb)\n",
"1. [The Titanic Dataset. Reading Data](3_1_Read_Data.ipynb)\n",
"1. [Introduction to Pandas](3_2_Pandas.ipynb)\n",
"1. [Preprocessing: Data Munging with DataFrames](3_3_Data_Munging_with_Pandas.ipynb)\n",
"2. [Preprocessing: Visualisation and for DataFrames](3_4_Visualisation_Pandas.ipynb)\n",
"3. [Exercise 1](3_5_Exercise_1.ipynb)\n",
"1. [Machine Learning](3_6_Machine_Learning.ipynb)\n",
" 1. [SVM](3_7_SVM.ipynb)\n",
"5. [Exercise 2](3_8_Exercise_2.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* [IPython Notebook Tutorial for Titanic: Machine Learning from Disaster](https://www.kaggle.com/c/titanic/forums/t/5105/ipython-notebook-tutorial-for-titanic-machine-learning-from-disaster)\n",
"* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n",
"* [Learning scikit-learn: Machine Learning in Python](http://proquest.safaribooksonline.com/book/programming/python/9781783281930/1dot-machine-learning-a-gentle-introduction/ch01s02_html), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2013.\n",
"* [Python Machine Learning](http://proquest.safaribooksonline.com/book/programming/python/9781783555130), Sebastian Raschka, Packt Publishing, 2015."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Licence\n",
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© 2016 Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1+"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

3846
ml2/3_1_Read_Data.ipynb Normal file

File diff suppressed because it is too large Load Diff

932
ml2/3_2_Pandas.ipynb Normal file
View File

@ -0,0 +1,932 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © 2016 Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## [Introduction to Machine Learning](2_0_0_Intro_ML.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Table of Contents\n",
"\n",
"* [Introduction to Pandas](#Introduction-to-Pandas)\n",
"* [Series](#Series)\n",
"* [DataFrame](#DataFrame)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Introduction to Pandas\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook provides an overview of the *pandas* library. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[Pandas](http://pandas.pydata.org/) is a Python library that provides easy-to-use data structures and data analysis tools.\n",
"\n",
"The main advantage of *Pandas* is that provides extensive facilities for grouping, merging and querying pandas data structures, and also includes facilities for time series analysis, as well as i/o and visualisation facilities.\n",
"\n",
"Pandas in built on top of *NumPy*, so we will have usually to import both libraries.\n",
"\n",
"Pandas provides two main data structures:\n",
"* **Series** is a one dimensional labelled object, capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.).. It is similar to an array, a list, a dictionary or a column in a table. Every value in a Series object has an index.\n",
"* **DataFrame** is a two dimensional labelled object with columns of potentially different types. It is similar to a database table, or a spreadsheet. It can be seen as a dictionary of Series that share the same index.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Series"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are not going to use Series objects directly as frequently as DataFrames. Here we provide a short introduction"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"0 5\n",
"1 10\n",
"2 15\n",
"dtype: int64"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as pd\n",
"import pandas as pd\n",
"from pandas import Series, DataFrame\n",
"\n",
"# create series object from an array\n",
"s = Series([5, 10, 15])\n",
"s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We see each value has an associated label starting with 0 if no index is specified when the Series object is created. \n",
"\n",
"It is similar to a dictionary. In fact, we can also create a Series object from a dictionary as follows. In this case, the indexes are the keys of the dictionary."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"a 5\n",
"b 10\n",
"c 15\n",
"dtype: int64"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"d = {'a': 5, 'b': 10, 'c': 15}\n",
"s = Series(d)\n",
"s"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Index(['a', 'b', 'c'], dtype='object')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# We can get the list of indexes\n",
"s.index"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([ 5, 10, 15])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# and the values\n",
"s.values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another option is to create the Series object from two lists, for values and indexes."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid 3141991\n",
"Barcelona 1604555\n",
"Valencia 786189\n",
"Sevilla 693878\n",
"Zaragoza 664953\n",
"Malaga 569130\n",
"dtype: int64"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Series with population in 2015 of more populated cities in Spain\n",
"s = Series([3141991, 1604555, 786189, 693878, 664953, 569130], index=['Madrid', 'Barcelona', 'Valencia', 'Sevilla', \n",
" 'Zaragoza', 'Malaga'])\n",
"s"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"3141991"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Population of Madrid\n",
"s['Madrid']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Indexing and slicing"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Until now, we have not seen any advantage in using Panda Series. we are going to show now some examples of their possibilities."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid True\n",
"Barcelona True\n",
"Valencia False\n",
"Sevilla False\n",
"Zaragoza False\n",
"Malaga False\n",
"dtype: bool"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Boolean condition\n",
"s > 1000000"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid 3141991\n",
"Barcelona 1604555\n",
"dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Cities with population greater than 1.000.000\n",
"s[s > 1000000]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Observe that (s > 1000000) returns a Series object. We can use this boolean vector as a filter to get a *slice* of the original series that contains only the elements where the value of the filter is True. The original Series s is not modified. This selection is called *boolean indexing*."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid 3141991\n",
"Barcelona 1604555\n",
"dtype: int64"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Cities with population greater than the mean\n",
"s[s > s.mean()]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid 3141991\n",
"Barcelona 1604555\n",
"Valencia 786189\n",
"dtype: int64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Cities with population greater than the median\n",
"s[s > s.median()]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid True\n",
"Barcelona True\n",
"Valencia True\n",
"Sevilla False\n",
"Zaragoza False\n",
"Malaga False\n",
"dtype: bool"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check cities with a population greater than 700.000\n",
"s > 700000"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid 3141991\n",
"Barcelona 1604555\n",
"Valencia 786189\n",
"dtype: int64"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# List cities with a population greater than 700.000\n",
"s[s > 700000]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid True\n",
"Barcelona True\n",
"Valencia True\n",
"Sevilla False\n",
"Zaragoza False\n",
"Malaga False\n",
"dtype: bool"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Another way to write the same boolean indexing selection\n",
"bigger_than_700000 = s > 700000\n",
"bigger_than_700000"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid 3141991\n",
"Barcelona 1604555\n",
"Valencia 786189\n",
"dtype: int64"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Cities with population > 700000\n",
"s[bigger_than_700000]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Operations on series"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also carry out other mathematical operations."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid 1570995.5\n",
"Barcelona 802277.5\n",
"Valencia 393094.5\n",
"Sevilla 346939.0\n",
"Zaragoza 332476.5\n",
"Malaga 284565.0\n",
"dtype: float64"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Divide population by 2\n",
"s / 2"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"1243449.3333333333"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get the average population\n",
"s.mean()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"3141991"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get the highest population\n",
"s.max()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Item assignment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also change values directly or based on a condition. You can consult additional feautures in the manual."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid 3320000\n",
"Barcelona 1604555\n",
"Valencia 786189\n",
"Sevilla 693878\n",
"Zaragoza 664953\n",
"Malaga 569130\n",
"dtype: int64"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Change population of one city\n",
"s['Madrid'] = 3320000\n",
"s"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Madrid 3652000.0\n",
"Barcelona 1765010.5\n",
"Valencia 864807.9\n",
"Sevilla 693878.0\n",
"Zaragoza 664953.0\n",
"Malaga 569130.0\n",
"dtype: float64"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Increase by 10% cities with population greater than 700000\n",
"s[s > 700000] = 1.1 * s[s > 700000]\n",
"s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# DataFrame"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we said previously, **DataFrames** are two-dimensional data structures. You can see like a dict of Series that share the index."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>one</th>\n",
" <th>two</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>2.0</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>c</th>\n",
" <td>3.0</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>d</th>\n",
" <td>NaN</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" one two\n",
"a 1.0 1.0\n",
"b 2.0 2.0\n",
"c 3.0 3.0\n",
"d NaN 4.0"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# We are going to create a DataFrame from a dict of Series\n",
"d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),\n",
" 'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}\n",
"df = DataFrame(d)\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this dataframe, the *indexes* (row labels) are *a*, *b*, *c* and *d* and the *columns* (column labels) are *one* and *two*.\n",
"\n",
"We see that the resulting DataFrame is the union of indexes, and missing values are included as NaN (to write this value we will use *np.nan*).\n",
"\n",
"If we specify an index, the dictionary is filtered."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>one</th>\n",
" <th>two</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>d</th>\n",
" <td>NaN</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>2.0</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" one two\n",
"d NaN 4.0\n",
"b 2.0 2.0\n",
"a 1.0 1.0"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# We can filter\n",
"df = DataFrame(d, index=['d', 'b', 'a'])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another option is to use the constructor with *index* and *columns*."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>two</th>\n",
" <th>three</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>d</th>\n",
" <td>4.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>2.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>1.0</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" two three\n",
"d 4.0 NaN\n",
"b 2.0 NaN\n",
"a 1.0 NaN"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the next notebook we are going to learn more about dataframes."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* [Pandas](http://pandas.pydata.org/)\n",
"* [Learning Pandas, Michael Heydt, Packt Publishing, 2015](http://proquest.safaribooksonline.com/book/programming/python/9781783985128)\n",
"* [Pandas. Introduction to Data Structures](http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dsintro)\n",
"* [Introducing Pandas Objects](https://www.oreilly.com/learning/introducing-pandas-objects)\n",
"* [Boolean Operators in Pandas](http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-operators)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Licence"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© 2016 Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1+"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

539
ml2/3_5_Exercise_1.ipynb Normal file
View File

@ -0,0 +1,539 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © 2016 Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## [Introduction to Machine Learning II](3_0_0_Intro_ML_2.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exercise - The Titanic Dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this exercise we are going to put in practice what we have learnt in the notebooks of the session. \n",
"\n",
"Answer directly in your copy of the exercise and submit it as a moodle task."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"sns.set(color_codes=True)\n",
"\n",
"# if matplotlib is not set inline, you will not see plots\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Reading Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Assign the variable *df* a Dataframe with the Titanic Dataset from the URL https://raw.githubusercontent.com/cif2cif/sitc/master/ml2/data-titanic/train.csv\"\n",
"\n",
"Print *df*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Munging and Exploratory visualisation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Obtain number of passengers and features of the dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Obtain general statistics (count, mean, std, min, max, 25%, 50%, 75%) about the column Age"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Obtain the median of the age of the passengers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Obtain number of missing values per feature"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"How many passsengers have survived? List them grouped by Sex and Pclass.\n",
"\n",
"Assign the result to a variable df_1 and print it"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Visualise df_1 as an histogram."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Feature Engineering"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here you can find some features that have been proposed for this dataset. Your task is to analyse them and provide some insights. \n",
"\n",
"Use pandas and visualisation to justify your conclusions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature FamilySize "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Regarding SbSp and Parch, we can define a new feature, 'FamilySize' that is the combination of both."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df['FamilySize'] = df['SibSp'] + df['Parch']\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature Alone"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It seems many people who went alone survived. We can define a new feature 'Alone'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df['Alone'] = (df.FamilySize == 0)\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature Salutation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we observe well in the name variable, there is a 'title' (Mr., Miss., Mrs.). We can add a feature wit this title."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"#Taken from http://www.analyticsvidhya.com/blog/2014/09/data-munging-python-using-pandas-baby-steps-python/\n",
"def name_extract(word):\n",
" return word.split(',')[1].split('.')[0].strip()\n",
"\n",
"df['Salutation'] = df['Name'].apply(name_extract)\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can list the different salutations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df['Salutation'].unique()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df.groupby(['Salutation']).size()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There only 4 main salutations, so we combine the rest of salutations in 'Others'."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def group_salutation(old_salutation):\n",
" if old_salutation == 'Mr':\n",
" return('Mr')\n",
" else:\n",
" if old_salutation == 'Mrs':\n",
" return('Mrs')\n",
" else:\n",
" if old_salutation == 'Master':\n",
" return('Master')\n",
" else: \n",
" if old_salutation == 'Miss':\n",
" return('Miss')\n",
" else:\n",
" return('Others')\n",
"df['Salutation'] = df['Salutation'].apply(group_salutation)\n",
"df.groupby(['Salutation']).size()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Distribution\n",
"colors_sex = ['#ff69b4', 'b', 'r', 'y', 'm', 'c']\n",
"df.groupby('Salutation').size().plot(kind='bar', color=colors_sex)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df.boxplot(column='Age', by = 'Salutation', sym='k.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Features Children and Female"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Specific features for Children and Female since there are more survivors\n",
"df['Children'] = df['Age'].map(lambda x: 1 if x < 6.0 else 0)\n",
"df['Female'] = df['Gender'].map(lambda x: 1 if x == 0 else 0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature AgeGroup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Group ages to simplify machine learning algorithms. 0: 0-5, 1: 6-10, 2: 11-15, 3: 16-59 and 4: 60-80\n",
"df['AgeGroup'] = 0\n",
"df.loc[(.AgeFill<6),'AgeGroup'] = 0\n",
"df.loc[(df.AgeFill>=6) & (df.AgeFill < 11),'AgeGroup'] = 1\n",
"df.loc[(df.AgeFill>=11) & (df.AgeFill < 16),'AgeGroup'] = 2\n",
"df.loc[(df.AgeFill>=16) & (df.AgeFill < 60),'AgeGroup'] = 3\n",
"df.loc[(df.AgeFill>=60),'AgeGroup'] = 4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature Deck\n",
"Only 1st class passengers have cabins, the rest are Unknown. A cabin number looks like C123. The letter refers to the deck."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"#Turning cabin number into Deck\n",
"cabin_list = ['A', 'B', 'C', 'D', 'E', 'F', 'T', 'G', 'Unknown']\n",
"df['Deck']=df['Cabin'].map(lambda x: substrings_in_string(x, cabin_list))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature FarePerPerson"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This feature is created from two previous features: Fare and FamilySize."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df['FarePerPerson']= df['Fare'] / (df['FamilySize'] + 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature AgeClass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Since age and class are both numbers we can just multiply them and get a new feature.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"df['AgeClass']=df['Age']*df['Pclass']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Licence"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© 2016 Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1+"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -0,0 +1,122 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © 2016 Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## [Introduction to Machine Learning II](3_0_0_Intro_ML_2.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Machine Learning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the previous session, we learnt how to apply machine learning algorithms to the Iris dataset.\n",
"\n",
"We are going now to review the full process. As probably you have notice, data preparation, cleaning and transformation takes more than 90 % of data mining effort.\n",
"\n",
"The phases are:\n",
"\n",
"* **Data ingestion**: reading the data from the data lake\n",
"* **Preprocessing**: \n",
" * **Data cleaning (munging)**: fill missing values, smooth noisy data (binning methods), identify or remove outlier, and resolve inconsistencies \n",
" * **Data integration**: Integrate multiple datasets\n",
" * **Data transformation**: normalization (rescale numeric values between 0 and 1), standardisation (rescale values to have mean of 0 and std of 1), transformation for smoothing a variable (e.g. square toot, ...), aggregation of data from several datasets\n",
" * **Data reduction**: dimensionality reduction, clustering and sampling. \n",
" * **Data discretization**: for numerical values and algorithms that do not accept continuous variables\n",
" * **Feature engineering**: selection of most relevant features, creation of new features and delete non relevant features\n",
" * Apply Sampling for dividing the dataset into training and test datasets.\n",
"* **Machine learning**: apply machine learning algorithms and obtain an estimator, tuning its parameters.\n",
"* **Evaluation** of the model\n",
"* **Prediction**: use the model for new data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"![Machine Learning Process from *Python Machine Learning* book](images/machine-learning-process.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Licence"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* [Python Machine Learning](http://proquest.safaribooksonline.com/book/programming/python/9781783555130), Sebastian Raschka, Packt Publishing, 2015."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Licence"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© 2016 Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1+"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

1178
ml2/3_7_SVM.ipynb Normal file

File diff suppressed because one or more lines are too long

89
ml2/3_8_Exercise_2.ipynb Normal file
View File

@ -0,0 +1,89 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © 2016 Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## [Introduction to Machine Learning II](3_0_0_Intro_ML_2.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exercise 2 - The Titanic Dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this exercise we are going to put in practice what we have learnt in the notebooks of the session. \n",
"\n",
"In the previous notebook we have been applying the SVM machine learning algorithm.\n",
"\n",
"Your task is to apply other machine learning algorithms (at least 2) that you have seen in theory or others you are interested in.\n",
"\n",
"You should compare the algorithms and describe your experiments."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Licence"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© 2016 Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1+"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -1,419 +0,0 @@
PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
892,3,"Kelly, Mr. James",male,34.5,0,0,330911,7.8292,,Q
893,3,"Wilkes, Mrs. James (Ellen Needs)",female,47,1,0,363272,7,,S
894,2,"Myles, Mr. Thomas Francis",male,62,0,0,240276,9.6875,,Q
895,3,"Wirz, Mr. Albert",male,27,0,0,315154,8.6625,,S
896,3,"Hirvonen, Mrs. Alexander (Helga E Lindqvist)",female,22,1,1,3101298,12.2875,,S
897,3,"Svensson, Mr. Johan Cervin",male,14,0,0,7538,9.225,,S
898,3,"Connolly, Miss. Kate",female,30,0,0,330972,7.6292,,Q
899,2,"Caldwell, Mr. Albert Francis",male,26,1,1,248738,29,,S
900,3,"Abrahim, Mrs. Joseph (Sophie Halaut Easu)",female,18,0,0,2657,7.2292,,C
901,3,"Davies, Mr. John Samuel",male,21,2,0,A/4 48871,24.15,,S
902,3,"Ilieff, Mr. Ylio",male,,0,0,349220,7.8958,,S
903,1,"Jones, Mr. Charles Cresson",male,46,0,0,694,26,,S
904,1,"Snyder, Mrs. John Pillsbury (Nelle Stevenson)",female,23,1,0,21228,82.2667,B45,S
905,2,"Howard, Mr. Benjamin",male,63,1,0,24065,26,,S
906,1,"Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood)",female,47,1,0,W.E.P. 5734,61.175,E31,S
907,2,"del Carlo, Mrs. Sebastiano (Argenia Genovesi)",female,24,1,0,SC/PARIS 2167,27.7208,,C
908,2,"Keane, Mr. Daniel",male,35,0,0,233734,12.35,,Q
909,3,"Assaf, Mr. Gerios",male,21,0,0,2692,7.225,,C
910,3,"Ilmakangas, Miss. Ida Livija",female,27,1,0,STON/O2. 3101270,7.925,,S
911,3,"Assaf Khalil, Mrs. Mariana (Miriam"")""",female,45,0,0,2696,7.225,,C
912,1,"Rothschild, Mr. Martin",male,55,1,0,PC 17603,59.4,,C
913,3,"Olsen, Master. Artur Karl",male,9,0,1,C 17368,3.1708,,S
914,1,"Flegenheim, Mrs. Alfred (Antoinette)",female,,0,0,PC 17598,31.6833,,S
915,1,"Williams, Mr. Richard Norris II",male,21,0,1,PC 17597,61.3792,,C
916,1,"Ryerson, Mrs. Arthur Larned (Emily Maria Borie)",female,48,1,3,PC 17608,262.375,B57 B59 B63 B66,C
917,3,"Robins, Mr. Alexander A",male,50,1,0,A/5. 3337,14.5,,S
918,1,"Ostby, Miss. Helene Ragnhild",female,22,0,1,113509,61.9792,B36,C
919,3,"Daher, Mr. Shedid",male,22.5,0,0,2698,7.225,,C
920,1,"Brady, Mr. John Bertram",male,41,0,0,113054,30.5,A21,S
921,3,"Samaan, Mr. Elias",male,,2,0,2662,21.6792,,C
922,2,"Louch, Mr. Charles Alexander",male,50,1,0,SC/AH 3085,26,,S
923,2,"Jefferys, Mr. Clifford Thomas",male,24,2,0,C.A. 31029,31.5,,S
924,3,"Dean, Mrs. Bertram (Eva Georgetta Light)",female,33,1,2,C.A. 2315,20.575,,S
925,3,"Johnston, Mrs. Andrew G (Elizabeth Lily"" Watson)""",female,,1,2,W./C. 6607,23.45,,S
926,1,"Mock, Mr. Philipp Edmund",male,30,1,0,13236,57.75,C78,C
927,3,"Katavelas, Mr. Vassilios (Catavelas Vassilios"")""",male,18.5,0,0,2682,7.2292,,C
928,3,"Roth, Miss. Sarah A",female,,0,0,342712,8.05,,S
929,3,"Cacic, Miss. Manda",female,21,0,0,315087,8.6625,,S
930,3,"Sap, Mr. Julius",male,25,0,0,345768,9.5,,S
931,3,"Hee, Mr. Ling",male,,0,0,1601,56.4958,,S
932,3,"Karun, Mr. Franz",male,39,0,1,349256,13.4167,,C
933,1,"Franklin, Mr. Thomas Parham",male,,0,0,113778,26.55,D34,S
934,3,"Goldsmith, Mr. Nathan",male,41,0,0,SOTON/O.Q. 3101263,7.85,,S
935,2,"Corbett, Mrs. Walter H (Irene Colvin)",female,30,0,0,237249,13,,S
936,1,"Kimball, Mrs. Edwin Nelson Jr (Gertrude Parsons)",female,45,1,0,11753,52.5542,D19,S
937,3,"Peltomaki, Mr. Nikolai Johannes",male,25,0,0,STON/O 2. 3101291,7.925,,S
938,1,"Chevre, Mr. Paul Romaine",male,45,0,0,PC 17594,29.7,A9,C
939,3,"Shaughnessy, Mr. Patrick",male,,0,0,370374,7.75,,Q
940,1,"Bucknell, Mrs. William Robert (Emma Eliza Ward)",female,60,0,0,11813,76.2917,D15,C
941,3,"Coutts, Mrs. William (Winnie Minnie"" Treanor)""",female,36,0,2,C.A. 37671,15.9,,S
942,1,"Smith, Mr. Lucien Philip",male,24,1,0,13695,60,C31,S
943,2,"Pulbaum, Mr. Franz",male,27,0,0,SC/PARIS 2168,15.0333,,C
944,2,"Hocking, Miss. Ellen Nellie""""",female,20,2,1,29105,23,,S
945,1,"Fortune, Miss. Ethel Flora",female,28,3,2,19950,263,C23 C25 C27,S
946,2,"Mangiavacchi, Mr. Serafino Emilio",male,,0,0,SC/A.3 2861,15.5792,,C
947,3,"Rice, Master. Albert",male,10,4,1,382652,29.125,,Q
948,3,"Cor, Mr. Bartol",male,35,0,0,349230,7.8958,,S
949,3,"Abelseth, Mr. Olaus Jorgensen",male,25,0,0,348122,7.65,F G63,S
950,3,"Davison, Mr. Thomas Henry",male,,1,0,386525,16.1,,S
951,1,"Chaudanson, Miss. Victorine",female,36,0,0,PC 17608,262.375,B61,C
952,3,"Dika, Mr. Mirko",male,17,0,0,349232,7.8958,,S
953,2,"McCrae, Mr. Arthur Gordon",male,32,0,0,237216,13.5,,S
954,3,"Bjorklund, Mr. Ernst Herbert",male,18,0,0,347090,7.75,,S
955,3,"Bradley, Miss. Bridget Delia",female,22,0,0,334914,7.725,,Q
956,1,"Ryerson, Master. John Borie",male,13,2,2,PC 17608,262.375,B57 B59 B63 B66,C
957,2,"Corey, Mrs. Percy C (Mary Phyllis Elizabeth Miller)",female,,0,0,F.C.C. 13534,21,,S
958,3,"Burns, Miss. Mary Delia",female,18,0,0,330963,7.8792,,Q
959,1,"Moore, Mr. Clarence Bloomfield",male,47,0,0,113796,42.4,,S
960,1,"Tucker, Mr. Gilbert Milligan Jr",male,31,0,0,2543,28.5375,C53,C
961,1,"Fortune, Mrs. Mark (Mary McDougald)",female,60,1,4,19950,263,C23 C25 C27,S
962,3,"Mulvihill, Miss. Bertha E",female,24,0,0,382653,7.75,,Q
963,3,"Minkoff, Mr. Lazar",male,21,0,0,349211,7.8958,,S
964,3,"Nieminen, Miss. Manta Josefina",female,29,0,0,3101297,7.925,,S
965,1,"Ovies y Rodriguez, Mr. Servando",male,28.5,0,0,PC 17562,27.7208,D43,C
966,1,"Geiger, Miss. Amalie",female,35,0,0,113503,211.5,C130,C
967,1,"Keeping, Mr. Edwin",male,32.5,0,0,113503,211.5,C132,C
968,3,"Miles, Mr. Frank",male,,0,0,359306,8.05,,S
969,1,"Cornell, Mrs. Robert Clifford (Malvina Helen Lamson)",female,55,2,0,11770,25.7,C101,S
970,2,"Aldworth, Mr. Charles Augustus",male,30,0,0,248744,13,,S
971,3,"Doyle, Miss. Elizabeth",female,24,0,0,368702,7.75,,Q
972,3,"Boulos, Master. Akar",male,6,1,1,2678,15.2458,,C
973,1,"Straus, Mr. Isidor",male,67,1,0,PC 17483,221.7792,C55 C57,S
974,1,"Case, Mr. Howard Brown",male,49,0,0,19924,26,,S
975,3,"Demetri, Mr. Marinko",male,,0,0,349238,7.8958,,S
976,2,"Lamb, Mr. John Joseph",male,,0,0,240261,10.7083,,Q
977,3,"Khalil, Mr. Betros",male,,1,0,2660,14.4542,,C
978,3,"Barry, Miss. Julia",female,27,0,0,330844,7.8792,,Q
979,3,"Badman, Miss. Emily Louisa",female,18,0,0,A/4 31416,8.05,,S
980,3,"O'Donoghue, Ms. Bridget",female,,0,0,364856,7.75,,Q
981,2,"Wells, Master. Ralph Lester",male,2,1,1,29103,23,,S
982,3,"Dyker, Mrs. Adolf Fredrik (Anna Elisabeth Judith Andersson)",female,22,1,0,347072,13.9,,S
983,3,"Pedersen, Mr. Olaf",male,,0,0,345498,7.775,,S
984,1,"Davidson, Mrs. Thornton (Orian Hays)",female,27,1,2,F.C. 12750,52,B71,S
985,3,"Guest, Mr. Robert",male,,0,0,376563,8.05,,S
986,1,"Birnbaum, Mr. Jakob",male,25,0,0,13905,26,,C
987,3,"Tenglin, Mr. Gunnar Isidor",male,25,0,0,350033,7.7958,,S
988,1,"Cavendish, Mrs. Tyrell William (Julia Florence Siegel)",female,76,1,0,19877,78.85,C46,S
989,3,"Makinen, Mr. Kalle Edvard",male,29,0,0,STON/O 2. 3101268,7.925,,S
990,3,"Braf, Miss. Elin Ester Maria",female,20,0,0,347471,7.8542,,S
991,3,"Nancarrow, Mr. William Henry",male,33,0,0,A./5. 3338,8.05,,S
992,1,"Stengel, Mrs. Charles Emil Henry (Annie May Morris)",female,43,1,0,11778,55.4417,C116,C
993,2,"Weisz, Mr. Leopold",male,27,1,0,228414,26,,S
994,3,"Foley, Mr. William",male,,0,0,365235,7.75,,Q
995,3,"Johansson Palmquist, Mr. Oskar Leander",male,26,0,0,347070,7.775,,S
996,3,"Thomas, Mrs. Alexander (Thamine Thelma"")""",female,16,1,1,2625,8.5167,,C
997,3,"Holthen, Mr. Johan Martin",male,28,0,0,C 4001,22.525,,S
998,3,"Buckley, Mr. Daniel",male,21,0,0,330920,7.8208,,Q
999,3,"Ryan, Mr. Edward",male,,0,0,383162,7.75,,Q
1000,3,"Willer, Mr. Aaron (Abi Weller"")""",male,,0,0,3410,8.7125,,S
1001,2,"Swane, Mr. George",male,18.5,0,0,248734,13,F,S
1002,2,"Stanton, Mr. Samuel Ward",male,41,0,0,237734,15.0458,,C
1003,3,"Shine, Miss. Ellen Natalia",female,,0,0,330968,7.7792,,Q
1004,1,"Evans, Miss. Edith Corse",female,36,0,0,PC 17531,31.6792,A29,C
1005,3,"Buckley, Miss. Katherine",female,18.5,0,0,329944,7.2833,,Q
1006,1,"Straus, Mrs. Isidor (Rosalie Ida Blun)",female,63,1,0,PC 17483,221.7792,C55 C57,S
1007,3,"Chronopoulos, Mr. Demetrios",male,18,1,0,2680,14.4542,,C
1008,3,"Thomas, Mr. John",male,,0,0,2681,6.4375,,C
1009,3,"Sandstrom, Miss. Beatrice Irene",female,1,1,1,PP 9549,16.7,G6,S
1010,1,"Beattie, Mr. Thomson",male,36,0,0,13050,75.2417,C6,C
1011,2,"Chapman, Mrs. John Henry (Sara Elizabeth Lawry)",female,29,1,0,SC/AH 29037,26,,S
1012,2,"Watt, Miss. Bertha J",female,12,0,0,C.A. 33595,15.75,,S
1013,3,"Kiernan, Mr. John",male,,1,0,367227,7.75,,Q
1014,1,"Schabert, Mrs. Paul (Emma Mock)",female,35,1,0,13236,57.75,C28,C
1015,3,"Carver, Mr. Alfred John",male,28,0,0,392095,7.25,,S
1016,3,"Kennedy, Mr. John",male,,0,0,368783,7.75,,Q
1017,3,"Cribb, Miss. Laura Alice",female,17,0,1,371362,16.1,,S
1018,3,"Brobeck, Mr. Karl Rudolf",male,22,0,0,350045,7.7958,,S
1019,3,"McCoy, Miss. Alicia",female,,2,0,367226,23.25,,Q
1020,2,"Bowenur, Mr. Solomon",male,42,0,0,211535,13,,S
1021,3,"Petersen, Mr. Marius",male,24,0,0,342441,8.05,,S
1022,3,"Spinner, Mr. Henry John",male,32,0,0,STON/OQ. 369943,8.05,,S
1023,1,"Gracie, Col. Archibald IV",male,53,0,0,113780,28.5,C51,C
1024,3,"Lefebre, Mrs. Frank (Frances)",female,,0,4,4133,25.4667,,S
1025,3,"Thomas, Mr. Charles P",male,,1,0,2621,6.4375,,C
1026,3,"Dintcheff, Mr. Valtcho",male,43,0,0,349226,7.8958,,S
1027,3,"Carlsson, Mr. Carl Robert",male,24,0,0,350409,7.8542,,S
1028,3,"Zakarian, Mr. Mapriededer",male,26.5,0,0,2656,7.225,,C
1029,2,"Schmidt, Mr. August",male,26,0,0,248659,13,,S
1030,3,"Drapkin, Miss. Jennie",female,23,0,0,SOTON/OQ 392083,8.05,,S
1031,3,"Goodwin, Mr. Charles Frederick",male,40,1,6,CA 2144,46.9,,S
1032,3,"Goodwin, Miss. Jessie Allis",female,10,5,2,CA 2144,46.9,,S
1033,1,"Daniels, Miss. Sarah",female,33,0,0,113781,151.55,,S
1034,1,"Ryerson, Mr. Arthur Larned",male,61,1,3,PC 17608,262.375,B57 B59 B63 B66,C
1035,2,"Beauchamp, Mr. Henry James",male,28,0,0,244358,26,,S
1036,1,"Lindeberg-Lind, Mr. Erik Gustaf (Mr Edward Lingrey"")""",male,42,0,0,17475,26.55,,S
1037,3,"Vander Planke, Mr. Julius",male,31,3,0,345763,18,,S
1038,1,"Hilliard, Mr. Herbert Henry",male,,0,0,17463,51.8625,E46,S
1039,3,"Davies, Mr. Evan",male,22,0,0,SC/A4 23568,8.05,,S
1040,1,"Crafton, Mr. John Bertram",male,,0,0,113791,26.55,,S
1041,2,"Lahtinen, Rev. William",male,30,1,1,250651,26,,S
1042,1,"Earnshaw, Mrs. Boulton (Olive Potter)",female,23,0,1,11767,83.1583,C54,C
1043,3,"Matinoff, Mr. Nicola",male,,0,0,349255,7.8958,,C
1044,3,"Storey, Mr. Thomas",male,60.5,0,0,3701,,,S
1045,3,"Klasen, Mrs. (Hulda Kristina Eugenia Lofqvist)",female,36,0,2,350405,12.1833,,S
1046,3,"Asplund, Master. Filip Oscar",male,13,4,2,347077,31.3875,,S
1047,3,"Duquemin, Mr. Joseph",male,24,0,0,S.O./P.P. 752,7.55,,S
1048,1,"Bird, Miss. Ellen",female,29,0,0,PC 17483,221.7792,C97,S
1049,3,"Lundin, Miss. Olga Elida",female,23,0,0,347469,7.8542,,S
1050,1,"Borebank, Mr. John James",male,42,0,0,110489,26.55,D22,S
1051,3,"Peacock, Mrs. Benjamin (Edith Nile)",female,26,0,2,SOTON/O.Q. 3101315,13.775,,S
1052,3,"Smyth, Miss. Julia",female,,0,0,335432,7.7333,,Q
1053,3,"Touma, Master. Georges Youssef",male,7,1,1,2650,15.2458,,C
1054,2,"Wright, Miss. Marion",female,26,0,0,220844,13.5,,S
1055,3,"Pearce, Mr. Ernest",male,,0,0,343271,7,,S
1056,2,"Peruschitz, Rev. Joseph Maria",male,41,0,0,237393,13,,S
1057,3,"Kink-Heilmann, Mrs. Anton (Luise Heilmann)",female,26,1,1,315153,22.025,,S
1058,1,"Brandeis, Mr. Emil",male,48,0,0,PC 17591,50.4958,B10,C
1059,3,"Ford, Mr. Edward Watson",male,18,2,2,W./C. 6608,34.375,,S
1060,1,"Cassebeer, Mrs. Henry Arthur Jr (Eleanor Genevieve Fosdick)",female,,0,0,17770,27.7208,,C
1061,3,"Hellstrom, Miss. Hilda Maria",female,22,0,0,7548,8.9625,,S
1062,3,"Lithman, Mr. Simon",male,,0,0,S.O./P.P. 251,7.55,,S
1063,3,"Zakarian, Mr. Ortin",male,27,0,0,2670,7.225,,C
1064,3,"Dyker, Mr. Adolf Fredrik",male,23,1,0,347072,13.9,,S
1065,3,"Torfa, Mr. Assad",male,,0,0,2673,7.2292,,C
1066,3,"Asplund, Mr. Carl Oscar Vilhelm Gustafsson",male,40,1,5,347077,31.3875,,S
1067,2,"Brown, Miss. Edith Eileen",female,15,0,2,29750,39,,S
1068,2,"Sincock, Miss. Maude",female,20,0,0,C.A. 33112,36.75,,S
1069,1,"Stengel, Mr. Charles Emil Henry",male,54,1,0,11778,55.4417,C116,C
1070,2,"Becker, Mrs. Allen Oliver (Nellie E Baumgardner)",female,36,0,3,230136,39,F4,S
1071,1,"Compton, Mrs. Alexander Taylor (Mary Eliza Ingersoll)",female,64,0,2,PC 17756,83.1583,E45,C
1072,2,"McCrie, Mr. James Matthew",male,30,0,0,233478,13,,S
1073,1,"Compton, Mr. Alexander Taylor Jr",male,37,1,1,PC 17756,83.1583,E52,C
1074,1,"Marvin, Mrs. Daniel Warner (Mary Graham Carmichael Farquarson)",female,18,1,0,113773,53.1,D30,S
1075,3,"Lane, Mr. Patrick",male,,0,0,7935,7.75,,Q
1076,1,"Douglas, Mrs. Frederick Charles (Mary Helene Baxter)",female,27,1,1,PC 17558,247.5208,B58 B60,C
1077,2,"Maybery, Mr. Frank Hubert",male,40,0,0,239059,16,,S
1078,2,"Phillips, Miss. Alice Frances Louisa",female,21,0,1,S.O./P.P. 2,21,,S
1079,3,"Davies, Mr. Joseph",male,17,2,0,A/4 48873,8.05,,S
1080,3,"Sage, Miss. Ada",female,,8,2,CA. 2343,69.55,,S
1081,2,"Veal, Mr. James",male,40,0,0,28221,13,,S
1082,2,"Angle, Mr. William A",male,34,1,0,226875,26,,S
1083,1,"Salomon, Mr. Abraham L",male,,0,0,111163,26,,S
1084,3,"van Billiard, Master. Walter John",male,11.5,1,1,A/5. 851,14.5,,S
1085,2,"Lingane, Mr. John",male,61,0,0,235509,12.35,,Q
1086,2,"Drew, Master. Marshall Brines",male,8,0,2,28220,32.5,,S
1087,3,"Karlsson, Mr. Julius Konrad Eugen",male,33,0,0,347465,7.8542,,S
1088,1,"Spedden, Master. Robert Douglas",male,6,0,2,16966,134.5,E34,C
1089,3,"Nilsson, Miss. Berta Olivia",female,18,0,0,347066,7.775,,S
1090,2,"Baimbrigge, Mr. Charles Robert",male,23,0,0,C.A. 31030,10.5,,S
1091,3,"Rasmussen, Mrs. (Lena Jacobsen Solvang)",female,,0,0,65305,8.1125,,S
1092,3,"Murphy, Miss. Nora",female,,0,0,36568,15.5,,Q
1093,3,"Danbom, Master. Gilbert Sigvard Emanuel",male,0.33,0,2,347080,14.4,,S
1094,1,"Astor, Col. John Jacob",male,47,1,0,PC 17757,227.525,C62 C64,C
1095,2,"Quick, Miss. Winifred Vera",female,8,1,1,26360,26,,S
1096,2,"Andrew, Mr. Frank Thomas",male,25,0,0,C.A. 34050,10.5,,S
1097,1,"Omont, Mr. Alfred Fernand",male,,0,0,F.C. 12998,25.7417,,C
1098,3,"McGowan, Miss. Katherine",female,35,0,0,9232,7.75,,Q
1099,2,"Collett, Mr. Sidney C Stuart",male,24,0,0,28034,10.5,,S
1100,1,"Rosenbaum, Miss. Edith Louise",female,33,0,0,PC 17613,27.7208,A11,C
1101,3,"Delalic, Mr. Redjo",male,25,0,0,349250,7.8958,,S
1102,3,"Andersen, Mr. Albert Karvin",male,32,0,0,C 4001,22.525,,S
1103,3,"Finoli, Mr. Luigi",male,,0,0,SOTON/O.Q. 3101308,7.05,,S
1104,2,"Deacon, Mr. Percy William",male,17,0,0,S.O.C. 14879,73.5,,S
1105,2,"Howard, Mrs. Benjamin (Ellen Truelove Arman)",female,60,1,0,24065,26,,S
1106,3,"Andersson, Miss. Ida Augusta Margareta",female,38,4,2,347091,7.775,,S
1107,1,"Head, Mr. Christopher",male,42,0,0,113038,42.5,B11,S
1108,3,"Mahon, Miss. Bridget Delia",female,,0,0,330924,7.8792,,Q
1109,1,"Wick, Mr. George Dennick",male,57,1,1,36928,164.8667,,S
1110,1,"Widener, Mrs. George Dunton (Eleanor Elkins)",female,50,1,1,113503,211.5,C80,C
1111,3,"Thomson, Mr. Alexander Morrison",male,,0,0,32302,8.05,,S
1112,2,"Duran y More, Miss. Florentina",female,30,1,0,SC/PARIS 2148,13.8583,,C
1113,3,"Reynolds, Mr. Harold J",male,21,0,0,342684,8.05,,S
1114,2,"Cook, Mrs. (Selena Rogers)",female,22,0,0,W./C. 14266,10.5,F33,S
1115,3,"Karlsson, Mr. Einar Gervasius",male,21,0,0,350053,7.7958,,S
1116,1,"Candee, Mrs. Edward (Helen Churchill Hungerford)",female,53,0,0,PC 17606,27.4458,,C
1117,3,"Moubarek, Mrs. George (Omine Amenia"" Alexander)""",female,,0,2,2661,15.2458,,C
1118,3,"Asplund, Mr. Johan Charles",male,23,0,0,350054,7.7958,,S
1119,3,"McNeill, Miss. Bridget",female,,0,0,370368,7.75,,Q
1120,3,"Everett, Mr. Thomas James",male,40.5,0,0,C.A. 6212,15.1,,S
1121,2,"Hocking, Mr. Samuel James Metcalfe",male,36,0,0,242963,13,,S
1122,2,"Sweet, Mr. George Frederick",male,14,0,0,220845,65,,S
1123,1,"Willard, Miss. Constance",female,21,0,0,113795,26.55,,S
1124,3,"Wiklund, Mr. Karl Johan",male,21,1,0,3101266,6.4958,,S
1125,3,"Linehan, Mr. Michael",male,,0,0,330971,7.8792,,Q
1126,1,"Cumings, Mr. John Bradley",male,39,1,0,PC 17599,71.2833,C85,C
1127,3,"Vendel, Mr. Olof Edvin",male,20,0,0,350416,7.8542,,S
1128,1,"Warren, Mr. Frank Manley",male,64,1,0,110813,75.25,D37,C
1129,3,"Baccos, Mr. Raffull",male,20,0,0,2679,7.225,,C
1130,2,"Hiltunen, Miss. Marta",female,18,1,1,250650,13,,S
1131,1,"Douglas, Mrs. Walter Donald (Mahala Dutton)",female,48,1,0,PC 17761,106.425,C86,C
1132,1,"Lindstrom, Mrs. Carl Johan (Sigrid Posse)",female,55,0,0,112377,27.7208,,C
1133,2,"Christy, Mrs. (Alice Frances)",female,45,0,2,237789,30,,S
1134,1,"Spedden, Mr. Frederic Oakley",male,45,1,1,16966,134.5,E34,C
1135,3,"Hyman, Mr. Abraham",male,,0,0,3470,7.8875,,S
1136,3,"Johnston, Master. William Arthur Willie""""",male,,1,2,W./C. 6607,23.45,,S
1137,1,"Kenyon, Mr. Frederick R",male,41,1,0,17464,51.8625,D21,S
1138,2,"Karnes, Mrs. J Frank (Claire Bennett)",female,22,0,0,F.C.C. 13534,21,,S
1139,2,"Drew, Mr. James Vivian",male,42,1,1,28220,32.5,,S
1140,2,"Hold, Mrs. Stephen (Annie Margaret Hill)",female,29,1,0,26707,26,,S
1141,3,"Khalil, Mrs. Betros (Zahie Maria"" Elias)""",female,,1,0,2660,14.4542,,C
1142,2,"West, Miss. Barbara J",female,0.92,1,2,C.A. 34651,27.75,,S
1143,3,"Abrahamsson, Mr. Abraham August Johannes",male,20,0,0,SOTON/O2 3101284,7.925,,S
1144,1,"Clark, Mr. Walter Miller",male,27,1,0,13508,136.7792,C89,C
1145,3,"Salander, Mr. Karl Johan",male,24,0,0,7266,9.325,,S
1146,3,"Wenzel, Mr. Linhart",male,32.5,0,0,345775,9.5,,S
1147,3,"MacKay, Mr. George William",male,,0,0,C.A. 42795,7.55,,S
1148,3,"Mahon, Mr. John",male,,0,0,AQ/4 3130,7.75,,Q
1149,3,"Niklasson, Mr. Samuel",male,28,0,0,363611,8.05,,S
1150,2,"Bentham, Miss. Lilian W",female,19,0,0,28404,13,,S
1151,3,"Midtsjo, Mr. Karl Albert",male,21,0,0,345501,7.775,,S
1152,3,"de Messemaeker, Mr. Guillaume Joseph",male,36.5,1,0,345572,17.4,,S
1153,3,"Nilsson, Mr. August Ferdinand",male,21,0,0,350410,7.8542,,S
1154,2,"Wells, Mrs. Arthur Henry (Addie"" Dart Trevaskis)""",female,29,0,2,29103,23,,S
1155,3,"Klasen, Miss. Gertrud Emilia",female,1,1,1,350405,12.1833,,S
1156,2,"Portaluppi, Mr. Emilio Ilario Giuseppe",male,30,0,0,C.A. 34644,12.7375,,C
1157,3,"Lyntakoff, Mr. Stanko",male,,0,0,349235,7.8958,,S
1158,1,"Chisholm, Mr. Roderick Robert Crispin",male,,0,0,112051,0,,S
1159,3,"Warren, Mr. Charles William",male,,0,0,C.A. 49867,7.55,,S
1160,3,"Howard, Miss. May Elizabeth",female,,0,0,A. 2. 39186,8.05,,S
1161,3,"Pokrnic, Mr. Mate",male,17,0,0,315095,8.6625,,S
1162,1,"McCaffry, Mr. Thomas Francis",male,46,0,0,13050,75.2417,C6,C
1163,3,"Fox, Mr. Patrick",male,,0,0,368573,7.75,,Q
1164,1,"Clark, Mrs. Walter Miller (Virginia McDowell)",female,26,1,0,13508,136.7792,C89,C
1165,3,"Lennon, Miss. Mary",female,,1,0,370371,15.5,,Q
1166,3,"Saade, Mr. Jean Nassr",male,,0,0,2676,7.225,,C
1167,2,"Bryhl, Miss. Dagmar Jenny Ingeborg ",female,20,1,0,236853,26,,S
1168,2,"Parker, Mr. Clifford Richard",male,28,0,0,SC 14888,10.5,,S
1169,2,"Faunthorpe, Mr. Harry",male,40,1,0,2926,26,,S
1170,2,"Ware, Mr. John James",male,30,1,0,CA 31352,21,,S
1171,2,"Oxenham, Mr. Percy Thomas",male,22,0,0,W./C. 14260,10.5,,S
1172,3,"Oreskovic, Miss. Jelka",female,23,0,0,315085,8.6625,,S
1173,3,"Peacock, Master. Alfred Edward",male,0.75,1,1,SOTON/O.Q. 3101315,13.775,,S
1174,3,"Fleming, Miss. Honora",female,,0,0,364859,7.75,,Q
1175,3,"Touma, Miss. Maria Youssef",female,9,1,1,2650,15.2458,,C
1176,3,"Rosblom, Miss. Salli Helena",female,2,1,1,370129,20.2125,,S
1177,3,"Dennis, Mr. William",male,36,0,0,A/5 21175,7.25,,S
1178,3,"Franklin, Mr. Charles (Charles Fardon)",male,,0,0,SOTON/O.Q. 3101314,7.25,,S
1179,1,"Snyder, Mr. John Pillsbury",male,24,1,0,21228,82.2667,B45,S
1180,3,"Mardirosian, Mr. Sarkis",male,,0,0,2655,7.2292,F E46,C
1181,3,"Ford, Mr. Arthur",male,,0,0,A/5 1478,8.05,,S
1182,1,"Rheims, Mr. George Alexander Lucien",male,,0,0,PC 17607,39.6,,S
1183,3,"Daly, Miss. Margaret Marcella Maggie""""",female,30,0,0,382650,6.95,,Q
1184,3,"Nasr, Mr. Mustafa",male,,0,0,2652,7.2292,,C
1185,1,"Dodge, Dr. Washington",male,53,1,1,33638,81.8583,A34,S
1186,3,"Wittevrongel, Mr. Camille",male,36,0,0,345771,9.5,,S
1187,3,"Angheloff, Mr. Minko",male,26,0,0,349202,7.8958,,S
1188,2,"Laroche, Miss. Louise",female,1,1,2,SC/Paris 2123,41.5792,,C
1189,3,"Samaan, Mr. Hanna",male,,2,0,2662,21.6792,,C
1190,1,"Loring, Mr. Joseph Holland",male,30,0,0,113801,45.5,,S
1191,3,"Johansson, Mr. Nils",male,29,0,0,347467,7.8542,,S
1192,3,"Olsson, Mr. Oscar Wilhelm",male,32,0,0,347079,7.775,,S
1193,2,"Malachard, Mr. Noel",male,,0,0,237735,15.0458,D,C
1194,2,"Phillips, Mr. Escott Robert",male,43,0,1,S.O./P.P. 2,21,,S
1195,3,"Pokrnic, Mr. Tome",male,24,0,0,315092,8.6625,,S
1196,3,"McCarthy, Miss. Catherine Katie""""",female,,0,0,383123,7.75,,Q
1197,1,"Crosby, Mrs. Edward Gifford (Catherine Elizabeth Halstead)",female,64,1,1,112901,26.55,B26,S
1198,1,"Allison, Mr. Hudson Joshua Creighton",male,30,1,2,113781,151.55,C22 C26,S
1199,3,"Aks, Master. Philip Frank",male,0.83,0,1,392091,9.35,,S
1200,1,"Hays, Mr. Charles Melville",male,55,1,1,12749,93.5,B69,S
1201,3,"Hansen, Mrs. Claus Peter (Jennie L Howard)",female,45,1,0,350026,14.1083,,S
1202,3,"Cacic, Mr. Jego Grga",male,18,0,0,315091,8.6625,,S
1203,3,"Vartanian, Mr. David",male,22,0,0,2658,7.225,,C
1204,3,"Sadowitz, Mr. Harry",male,,0,0,LP 1588,7.575,,S
1205,3,"Carr, Miss. Jeannie",female,37,0,0,368364,7.75,,Q
1206,1,"White, Mrs. John Stuart (Ella Holmes)",female,55,0,0,PC 17760,135.6333,C32,C
1207,3,"Hagardon, Miss. Kate",female,17,0,0,AQ/3. 30631,7.7333,,Q
1208,1,"Spencer, Mr. William Augustus",male,57,1,0,PC 17569,146.5208,B78,C
1209,2,"Rogers, Mr. Reginald Harry",male,19,0,0,28004,10.5,,S
1210,3,"Jonsson, Mr. Nils Hilding",male,27,0,0,350408,7.8542,,S
1211,2,"Jefferys, Mr. Ernest Wilfred",male,22,2,0,C.A. 31029,31.5,,S
1212,3,"Andersson, Mr. Johan Samuel",male,26,0,0,347075,7.775,,S
1213,3,"Krekorian, Mr. Neshan",male,25,0,0,2654,7.2292,F E57,C
1214,2,"Nesson, Mr. Israel",male,26,0,0,244368,13,F2,S
1215,1,"Rowe, Mr. Alfred G",male,33,0,0,113790,26.55,,S
1216,1,"Kreuchen, Miss. Emilie",female,39,0,0,24160,211.3375,,S
1217,3,"Assam, Mr. Ali",male,23,0,0,SOTON/O.Q. 3101309,7.05,,S
1218,2,"Becker, Miss. Ruth Elizabeth",female,12,2,1,230136,39,F4,S
1219,1,"Rosenshine, Mr. George (Mr George Thorne"")""",male,46,0,0,PC 17585,79.2,,C
1220,2,"Clarke, Mr. Charles Valentine",male,29,1,0,2003,26,,S
1221,2,"Enander, Mr. Ingvar",male,21,0,0,236854,13,,S
1222,2,"Davies, Mrs. John Morgan (Elizabeth Agnes Mary White) ",female,48,0,2,C.A. 33112,36.75,,S
1223,1,"Dulles, Mr. William Crothers",male,39,0,0,PC 17580,29.7,A18,C
1224,3,"Thomas, Mr. Tannous",male,,0,0,2684,7.225,,C
1225,3,"Nakid, Mrs. Said (Waika Mary"" Mowad)""",female,19,1,1,2653,15.7417,,C
1226,3,"Cor, Mr. Ivan",male,27,0,0,349229,7.8958,,S
1227,1,"Maguire, Mr. John Edward",male,30,0,0,110469,26,C106,S
1228,2,"de Brito, Mr. Jose Joaquim",male,32,0,0,244360,13,,S
1229,3,"Elias, Mr. Joseph",male,39,0,2,2675,7.2292,,C
1230,2,"Denbury, Mr. Herbert",male,25,0,0,C.A. 31029,31.5,,S
1231,3,"Betros, Master. Seman",male,,0,0,2622,7.2292,,C
1232,2,"Fillbrook, Mr. Joseph Charles",male,18,0,0,C.A. 15185,10.5,,S
1233,3,"Lundstrom, Mr. Thure Edvin",male,32,0,0,350403,7.5792,,S
1234,3,"Sage, Mr. John George",male,,1,9,CA. 2343,69.55,,S
1235,1,"Cardeza, Mrs. James Warburton Martinez (Charlotte Wardle Drake)",female,58,0,1,PC 17755,512.3292,B51 B53 B55,C
1236,3,"van Billiard, Master. James William",male,,1,1,A/5. 851,14.5,,S
1237,3,"Abelseth, Miss. Karen Marie",female,16,0,0,348125,7.65,,S
1238,2,"Botsford, Mr. William Hull",male,26,0,0,237670,13,,S
1239,3,"Whabee, Mrs. George Joseph (Shawneene Abi-Saab)",female,38,0,0,2688,7.2292,,C
1240,2,"Giles, Mr. Ralph",male,24,0,0,248726,13.5,,S
1241,2,"Walcroft, Miss. Nellie",female,31,0,0,F.C.C. 13528,21,,S
1242,1,"Greenfield, Mrs. Leo David (Blanche Strouse)",female,45,0,1,PC 17759,63.3583,D10 D12,C
1243,2,"Stokes, Mr. Philip Joseph",male,25,0,0,F.C.C. 13540,10.5,,S
1244,2,"Dibden, Mr. William",male,18,0,0,S.O.C. 14879,73.5,,S
1245,2,"Herman, Mr. Samuel",male,49,1,2,220845,65,,S
1246,3,"Dean, Miss. Elizabeth Gladys Millvina""""",female,0.17,1,2,C.A. 2315,20.575,,S
1247,1,"Julian, Mr. Henry Forbes",male,50,0,0,113044,26,E60,S
1248,1,"Brown, Mrs. John Murray (Caroline Lane Lamson)",female,59,2,0,11769,51.4792,C101,S
1249,3,"Lockyer, Mr. Edward",male,,0,0,1222,7.8792,,S
1250,3,"O'Keefe, Mr. Patrick",male,,0,0,368402,7.75,,Q
1251,3,"Lindell, Mrs. Edvard Bengtsson (Elin Gerda Persson)",female,30,1,0,349910,15.55,,S
1252,3,"Sage, Master. William Henry",male,14.5,8,2,CA. 2343,69.55,,S
1253,2,"Mallet, Mrs. Albert (Antoinette Magnin)",female,24,1,1,S.C./PARIS 2079,37.0042,,C
1254,2,"Ware, Mrs. John James (Florence Louise Long)",female,31,0,0,CA 31352,21,,S
1255,3,"Strilic, Mr. Ivan",male,27,0,0,315083,8.6625,,S
1256,1,"Harder, Mrs. George Achilles (Dorothy Annan)",female,25,1,0,11765,55.4417,E50,C
1257,3,"Sage, Mrs. John (Annie Bullen)",female,,1,9,CA. 2343,69.55,,S
1258,3,"Caram, Mr. Joseph",male,,1,0,2689,14.4583,,C
1259,3,"Riihivouri, Miss. Susanna Juhantytar Sanni""""",female,22,0,0,3101295,39.6875,,S
1260,1,"Gibson, Mrs. Leonard (Pauline C Boeson)",female,45,0,1,112378,59.4,,C
1261,2,"Pallas y Castello, Mr. Emilio",male,29,0,0,SC/PARIS 2147,13.8583,,C
1262,2,"Giles, Mr. Edgar",male,21,1,0,28133,11.5,,S
1263,1,"Wilson, Miss. Helen Alice",female,31,0,0,16966,134.5,E39 E41,C
1264,1,"Ismay, Mr. Joseph Bruce",male,49,0,0,112058,0,B52 B54 B56,S
1265,2,"Harbeck, Mr. William H",male,44,0,0,248746,13,,S
1266,1,"Dodge, Mrs. Washington (Ruth Vidaver)",female,54,1,1,33638,81.8583,A34,S
1267,1,"Bowen, Miss. Grace Scott",female,45,0,0,PC 17608,262.375,,C
1268,3,"Kink, Miss. Maria",female,22,2,0,315152,8.6625,,S
1269,2,"Cotterill, Mr. Henry Harry""""",male,21,0,0,29107,11.5,,S
1270,1,"Hipkins, Mr. William Edward",male,55,0,0,680,50,C39,S
1271,3,"Asplund, Master. Carl Edgar",male,5,4,2,347077,31.3875,,S
1272,3,"O'Connor, Mr. Patrick",male,,0,0,366713,7.75,,Q
1273,3,"Foley, Mr. Joseph",male,26,0,0,330910,7.8792,,Q
1274,3,"Risien, Mrs. Samuel (Emma)",female,,0,0,364498,14.5,,S
1275,3,"McNamee, Mrs. Neal (Eileen O'Leary)",female,19,1,0,376566,16.1,,S
1276,2,"Wheeler, Mr. Edwin Frederick""""",male,,0,0,SC/PARIS 2159,12.875,,S
1277,2,"Herman, Miss. Kate",female,24,1,2,220845,65,,S
1278,3,"Aronsson, Mr. Ernst Axel Algot",male,24,0,0,349911,7.775,,S
1279,2,"Ashby, Mr. John",male,57,0,0,244346,13,,S
1280,3,"Canavan, Mr. Patrick",male,21,0,0,364858,7.75,,Q
1281,3,"Palsson, Master. Paul Folke",male,6,3,1,349909,21.075,,S
1282,1,"Payne, Mr. Vivian Ponsonby",male,23,0,0,12749,93.5,B24,S
1283,1,"Lines, Mrs. Ernest H (Elizabeth Lindsey James)",female,51,0,1,PC 17592,39.4,D28,S
1284,3,"Abbott, Master. Eugene Joseph",male,13,0,2,C.A. 2673,20.25,,S
1285,2,"Gilbert, Mr. William",male,47,0,0,C.A. 30769,10.5,,S
1286,3,"Kink-Heilmann, Mr. Anton",male,29,3,1,315153,22.025,,S
1287,1,"Smith, Mrs. Lucien Philip (Mary Eloise Hughes)",female,18,1,0,13695,60,C31,S
1288,3,"Colbert, Mr. Patrick",male,24,0,0,371109,7.25,,Q
1289,1,"Frolicher-Stehli, Mrs. Maxmillian (Margaretha Emerentia Stehli)",female,48,1,1,13567,79.2,B41,C
1290,3,"Larsson-Rondberg, Mr. Edvard A",male,22,0,0,347065,7.775,,S
1291,3,"Conlon, Mr. Thomas Henry",male,31,0,0,21332,7.7333,,Q
1292,1,"Bonnell, Miss. Caroline",female,30,0,0,36928,164.8667,C7,S
1293,2,"Gale, Mr. Harry",male,38,1,0,28664,21,,S
1294,1,"Gibson, Miss. Dorothy Winifred",female,22,0,1,112378,59.4,,C
1295,1,"Carrau, Mr. Jose Pedro",male,17,0,0,113059,47.1,,S
1296,1,"Frauenthal, Mr. Isaac Gerald",male,43,1,0,17765,27.7208,D40,C
1297,2,"Nourney, Mr. Alfred (Baron von Drachstedt"")""",male,20,0,0,SC/PARIS 2166,13.8625,D38,C
1298,2,"Ware, Mr. William Jeffery",male,23,1,0,28666,10.5,,S
1299,1,"Widener, Mr. George Dunton",male,50,1,1,113503,211.5,C80,C
1300,3,"Riordan, Miss. Johanna Hannah""""",female,,0,0,334915,7.7208,,Q
1301,3,"Peacock, Miss. Treasteall",female,3,1,1,SOTON/O.Q. 3101315,13.775,,S
1302,3,"Naughton, Miss. Hannah",female,,0,0,365237,7.75,,Q
1303,1,"Minahan, Mrs. William Edward (Lillian E Thorpe)",female,37,1,0,19928,90,C78,Q
1304,3,"Henriksson, Miss. Jenny Lovisa",female,28,0,0,347086,7.775,,S
1305,3,"Spector, Mr. Woolf",male,,0,0,A.5. 3236,8.05,,S
1306,1,"Oliva y Ocana, Dona. Fermina",female,39,0,0,PC 17758,108.9,C105,C
1307,3,"Saether, Mr. Simon Sivertsen",male,38.5,0,0,SOTON/O.Q. 3101262,7.25,,S
1308,3,"Ware, Mr. Frederick",male,,0,0,359309,8.05,,S
1309,3,"Peter, Master. Michael J",male,,1,1,2668,22.3583,,C
1 PassengerId Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
2 892 3 Kelly, Mr. James male 34.5 0 0 330911 7.8292 Q
3 893 3 Wilkes, Mrs. James (Ellen Needs) female 47 1 0 363272 7 S
4 894 2 Myles, Mr. Thomas Francis male 62 0 0 240276 9.6875 Q
5 895 3 Wirz, Mr. Albert male 27 0 0 315154 8.6625 S
6 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22 1 1 3101298 12.2875 S
7 897 3 Svensson, Mr. Johan Cervin male 14 0 0 7538 9.225 S
8 898 3 Connolly, Miss. Kate female 30 0 0 330972 7.6292 Q
9 899 2 Caldwell, Mr. Albert Francis male 26 1 1 248738 29 S
10 900 3 Abrahim, Mrs. Joseph (Sophie Halaut Easu) female 18 0 0 2657 7.2292 C
11 901 3 Davies, Mr. John Samuel male 21 2 0 A/4 48871 24.15 S
12 902 3 Ilieff, Mr. Ylio male 0 0 349220 7.8958 S
13 903 1 Jones, Mr. Charles Cresson male 46 0 0 694 26 S
14 904 1 Snyder, Mrs. John Pillsbury (Nelle Stevenson) female 23 1 0 21228 82.2667 B45 S
15 905 2 Howard, Mr. Benjamin male 63 1 0 24065 26 S
16 906 1 Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood) female 47 1 0 W.E.P. 5734 61.175 E31 S
17 907 2 del Carlo, Mrs. Sebastiano (Argenia Genovesi) female 24 1 0 SC/PARIS 2167 27.7208 C
18 908 2 Keane, Mr. Daniel male 35 0 0 233734 12.35 Q
19 909 3 Assaf, Mr. Gerios male 21 0 0 2692 7.225 C
20 910 3 Ilmakangas, Miss. Ida Livija female 27 1 0 STON/O2. 3101270 7.925 S
21 911 3 Assaf Khalil, Mrs. Mariana (Miriam")" female 45 0 0 2696 7.225 C
22 912 1 Rothschild, Mr. Martin male 55 1 0 PC 17603 59.4 C
23 913 3 Olsen, Master. Artur Karl male 9 0 1 C 17368 3.1708 S
24 914 1 Flegenheim, Mrs. Alfred (Antoinette) female 0 0 PC 17598 31.6833 S
25 915 1 Williams, Mr. Richard Norris II male 21 0 1 PC 17597 61.3792 C
26 916 1 Ryerson, Mrs. Arthur Larned (Emily Maria Borie) female 48 1 3 PC 17608 262.375 B57 B59 B63 B66 C
27 917 3 Robins, Mr. Alexander A male 50 1 0 A/5. 3337 14.5 S
28 918 1 Ostby, Miss. Helene Ragnhild female 22 0 1 113509 61.9792 B36 C
29 919 3 Daher, Mr. Shedid male 22.5 0 0 2698 7.225 C
30 920 1 Brady, Mr. John Bertram male 41 0 0 113054 30.5 A21 S
31 921 3 Samaan, Mr. Elias male 2 0 2662 21.6792 C
32 922 2 Louch, Mr. Charles Alexander male 50 1 0 SC/AH 3085 26 S
33 923 2 Jefferys, Mr. Clifford Thomas male 24 2 0 C.A. 31029 31.5 S
34 924 3 Dean, Mrs. Bertram (Eva Georgetta Light) female 33 1 2 C.A. 2315 20.575 S
35 925 3 Johnston, Mrs. Andrew G (Elizabeth Lily" Watson)" female 1 2 W./C. 6607 23.45 S
36 926 1 Mock, Mr. Philipp Edmund male 30 1 0 13236 57.75 C78 C
37 927 3 Katavelas, Mr. Vassilios (Catavelas Vassilios")" male 18.5 0 0 2682 7.2292 C
38 928 3 Roth, Miss. Sarah A female 0 0 342712 8.05 S
39 929 3 Cacic, Miss. Manda female 21 0 0 315087 8.6625 S
40 930 3 Sap, Mr. Julius male 25 0 0 345768 9.5 S
41 931 3 Hee, Mr. Ling male 0 0 1601 56.4958 S
42 932 3 Karun, Mr. Franz male 39 0 1 349256 13.4167 C
43 933 1 Franklin, Mr. Thomas Parham male 0 0 113778 26.55 D34 S
44 934 3 Goldsmith, Mr. Nathan male 41 0 0 SOTON/O.Q. 3101263 7.85 S
45 935 2 Corbett, Mrs. Walter H (Irene Colvin) female 30 0 0 237249 13 S
46 936 1 Kimball, Mrs. Edwin Nelson Jr (Gertrude Parsons) female 45 1 0 11753 52.5542 D19 S
47 937 3 Peltomaki, Mr. Nikolai Johannes male 25 0 0 STON/O 2. 3101291 7.925 S
48 938 1 Chevre, Mr. Paul Romaine male 45 0 0 PC 17594 29.7 A9 C
49 939 3 Shaughnessy, Mr. Patrick male 0 0 370374 7.75 Q
50 940 1 Bucknell, Mrs. William Robert (Emma Eliza Ward) female 60 0 0 11813 76.2917 D15 C
51 941 3 Coutts, Mrs. William (Winnie Minnie" Treanor)" female 36 0 2 C.A. 37671 15.9 S
52 942 1 Smith, Mr. Lucien Philip male 24 1 0 13695 60 C31 S
53 943 2 Pulbaum, Mr. Franz male 27 0 0 SC/PARIS 2168 15.0333 C
54 944 2 Hocking, Miss. Ellen Nellie"" female 20 2 1 29105 23 S
55 945 1 Fortune, Miss. Ethel Flora female 28 3 2 19950 263 C23 C25 C27 S
56 946 2 Mangiavacchi, Mr. Serafino Emilio male 0 0 SC/A.3 2861 15.5792 C
57 947 3 Rice, Master. Albert male 10 4 1 382652 29.125 Q
58 948 3 Cor, Mr. Bartol male 35 0 0 349230 7.8958 S
59 949 3 Abelseth, Mr. Olaus Jorgensen male 25 0 0 348122 7.65 F G63 S
60 950 3 Davison, Mr. Thomas Henry male 1 0 386525 16.1 S
61 951 1 Chaudanson, Miss. Victorine female 36 0 0 PC 17608 262.375 B61 C
62 952 3 Dika, Mr. Mirko male 17 0 0 349232 7.8958 S
63 953 2 McCrae, Mr. Arthur Gordon male 32 0 0 237216 13.5 S
64 954 3 Bjorklund, Mr. Ernst Herbert male 18 0 0 347090 7.75 S
65 955 3 Bradley, Miss. Bridget Delia female 22 0 0 334914 7.725 Q
66 956 1 Ryerson, Master. John Borie male 13 2 2 PC 17608 262.375 B57 B59 B63 B66 C
67 957 2 Corey, Mrs. Percy C (Mary Phyllis Elizabeth Miller) female 0 0 F.C.C. 13534 21 S
68 958 3 Burns, Miss. Mary Delia female 18 0 0 330963 7.8792 Q
69 959 1 Moore, Mr. Clarence Bloomfield male 47 0 0 113796 42.4 S
70 960 1 Tucker, Mr. Gilbert Milligan Jr male 31 0 0 2543 28.5375 C53 C
71 961 1 Fortune, Mrs. Mark (Mary McDougald) female 60 1 4 19950 263 C23 C25 C27 S
72 962 3 Mulvihill, Miss. Bertha E female 24 0 0 382653 7.75 Q
73 963 3 Minkoff, Mr. Lazar male 21 0 0 349211 7.8958 S
74 964 3 Nieminen, Miss. Manta Josefina female 29 0 0 3101297 7.925 S
75 965 1 Ovies y Rodriguez, Mr. Servando male 28.5 0 0 PC 17562 27.7208 D43 C
76 966 1 Geiger, Miss. Amalie female 35 0 0 113503 211.5 C130 C
77 967 1 Keeping, Mr. Edwin male 32.5 0 0 113503 211.5 C132 C
78 968 3 Miles, Mr. Frank male 0 0 359306 8.05 S
79 969 1 Cornell, Mrs. Robert Clifford (Malvina Helen Lamson) female 55 2 0 11770 25.7 C101 S
80 970 2 Aldworth, Mr. Charles Augustus male 30 0 0 248744 13 S
81 971 3 Doyle, Miss. Elizabeth female 24 0 0 368702 7.75 Q
82 972 3 Boulos, Master. Akar male 6 1 1 2678 15.2458 C
83 973 1 Straus, Mr. Isidor male 67 1 0 PC 17483 221.7792 C55 C57 S
84 974 1 Case, Mr. Howard Brown male 49 0 0 19924 26 S
85 975 3 Demetri, Mr. Marinko male 0 0 349238 7.8958 S
86 976 2 Lamb, Mr. John Joseph male 0 0 240261 10.7083 Q
87 977 3 Khalil, Mr. Betros male 1 0 2660 14.4542 C
88 978 3 Barry, Miss. Julia female 27 0 0 330844 7.8792 Q
89 979 3 Badman, Miss. Emily Louisa female 18 0 0 A/4 31416 8.05 S
90 980 3 O'Donoghue, Ms. Bridget female 0 0 364856 7.75 Q
91 981 2 Wells, Master. Ralph Lester male 2 1 1 29103 23 S
92 982 3 Dyker, Mrs. Adolf Fredrik (Anna Elisabeth Judith Andersson) female 22 1 0 347072 13.9 S
93 983 3 Pedersen, Mr. Olaf male 0 0 345498 7.775 S
94 984 1 Davidson, Mrs. Thornton (Orian Hays) female 27 1 2 F.C. 12750 52 B71 S
95 985 3 Guest, Mr. Robert male 0 0 376563 8.05 S
96 986 1 Birnbaum, Mr. Jakob male 25 0 0 13905 26 C
97 987 3 Tenglin, Mr. Gunnar Isidor male 25 0 0 350033 7.7958 S
98 988 1 Cavendish, Mrs. Tyrell William (Julia Florence Siegel) female 76 1 0 19877 78.85 C46 S
99 989 3 Makinen, Mr. Kalle Edvard male 29 0 0 STON/O 2. 3101268 7.925 S
100 990 3 Braf, Miss. Elin Ester Maria female 20 0 0 347471 7.8542 S
101 991 3 Nancarrow, Mr. William Henry male 33 0 0 A./5. 3338 8.05 S
102 992 1 Stengel, Mrs. Charles Emil Henry (Annie May Morris) female 43 1 0 11778 55.4417 C116 C
103 993 2 Weisz, Mr. Leopold male 27 1 0 228414 26 S
104 994 3 Foley, Mr. William male 0 0 365235 7.75 Q
105 995 3 Johansson Palmquist, Mr. Oskar Leander male 26 0 0 347070 7.775 S
106 996 3 Thomas, Mrs. Alexander (Thamine Thelma")" female 16 1 1 2625 8.5167 C
107 997 3 Holthen, Mr. Johan Martin male 28 0 0 C 4001 22.525 S
108 998 3 Buckley, Mr. Daniel male 21 0 0 330920 7.8208 Q
109 999 3 Ryan, Mr. Edward male 0 0 383162 7.75 Q
110 1000 3 Willer, Mr. Aaron (Abi Weller")" male 0 0 3410 8.7125 S
111 1001 2 Swane, Mr. George male 18.5 0 0 248734 13 F S
112 1002 2 Stanton, Mr. Samuel Ward male 41 0 0 237734 15.0458 C
113 1003 3 Shine, Miss. Ellen Natalia female 0 0 330968 7.7792 Q
114 1004 1 Evans, Miss. Edith Corse female 36 0 0 PC 17531 31.6792 A29 C
115 1005 3 Buckley, Miss. Katherine female 18.5 0 0 329944 7.2833 Q
116 1006 1 Straus, Mrs. Isidor (Rosalie Ida Blun) female 63 1 0 PC 17483 221.7792 C55 C57 S
117 1007 3 Chronopoulos, Mr. Demetrios male 18 1 0 2680 14.4542 C
118 1008 3 Thomas, Mr. John male 0 0 2681 6.4375 C
119 1009 3 Sandstrom, Miss. Beatrice Irene female 1 1 1 PP 9549 16.7 G6 S
120 1010 1 Beattie, Mr. Thomson male 36 0 0 13050 75.2417 C6 C
121 1011 2 Chapman, Mrs. John Henry (Sara Elizabeth Lawry) female 29 1 0 SC/AH 29037 26 S
122 1012 2 Watt, Miss. Bertha J female 12 0 0 C.A. 33595 15.75 S
123 1013 3 Kiernan, Mr. John male 1 0 367227 7.75 Q
124 1014 1 Schabert, Mrs. Paul (Emma Mock) female 35 1 0 13236 57.75 C28 C
125 1015 3 Carver, Mr. Alfred John male 28 0 0 392095 7.25 S
126 1016 3 Kennedy, Mr. John male 0 0 368783 7.75 Q
127 1017 3 Cribb, Miss. Laura Alice female 17 0 1 371362 16.1 S
128 1018 3 Brobeck, Mr. Karl Rudolf male 22 0 0 350045 7.7958 S
129 1019 3 McCoy, Miss. Alicia female 2 0 367226 23.25 Q
130 1020 2 Bowenur, Mr. Solomon male 42 0 0 211535 13 S
131 1021 3 Petersen, Mr. Marius male 24 0 0 342441 8.05 S
132 1022 3 Spinner, Mr. Henry John male 32 0 0 STON/OQ. 369943 8.05 S
133 1023 1 Gracie, Col. Archibald IV male 53 0 0 113780 28.5 C51 C
134 1024 3 Lefebre, Mrs. Frank (Frances) female 0 4 4133 25.4667 S
135 1025 3 Thomas, Mr. Charles P male 1 0 2621 6.4375 C
136 1026 3 Dintcheff, Mr. Valtcho male 43 0 0 349226 7.8958 S
137 1027 3 Carlsson, Mr. Carl Robert male 24 0 0 350409 7.8542 S
138 1028 3 Zakarian, Mr. Mapriededer male 26.5 0 0 2656 7.225 C
139 1029 2 Schmidt, Mr. August male 26 0 0 248659 13 S
140 1030 3 Drapkin, Miss. Jennie female 23 0 0 SOTON/OQ 392083 8.05 S
141 1031 3 Goodwin, Mr. Charles Frederick male 40 1 6 CA 2144 46.9 S
142 1032 3 Goodwin, Miss. Jessie Allis female 10 5 2 CA 2144 46.9 S
143 1033 1 Daniels, Miss. Sarah female 33 0 0 113781 151.55 S
144 1034 1 Ryerson, Mr. Arthur Larned male 61 1 3 PC 17608 262.375 B57 B59 B63 B66 C
145 1035 2 Beauchamp, Mr. Henry James male 28 0 0 244358 26 S
146 1036 1 Lindeberg-Lind, Mr. Erik Gustaf (Mr Edward Lingrey")" male 42 0 0 17475 26.55 S
147 1037 3 Vander Planke, Mr. Julius male 31 3 0 345763 18 S
148 1038 1 Hilliard, Mr. Herbert Henry male 0 0 17463 51.8625 E46 S
149 1039 3 Davies, Mr. Evan male 22 0 0 SC/A4 23568 8.05 S
150 1040 1 Crafton, Mr. John Bertram male 0 0 113791 26.55 S
151 1041 2 Lahtinen, Rev. William male 30 1 1 250651 26 S
152 1042 1 Earnshaw, Mrs. Boulton (Olive Potter) female 23 0 1 11767 83.1583 C54 C
153 1043 3 Matinoff, Mr. Nicola male 0 0 349255 7.8958 C
154 1044 3 Storey, Mr. Thomas male 60.5 0 0 3701 S
155 1045 3 Klasen, Mrs. (Hulda Kristina Eugenia Lofqvist) female 36 0 2 350405 12.1833 S
156 1046 3 Asplund, Master. Filip Oscar male 13 4 2 347077 31.3875 S
157 1047 3 Duquemin, Mr. Joseph male 24 0 0 S.O./P.P. 752 7.55 S
158 1048 1 Bird, Miss. Ellen female 29 0 0 PC 17483 221.7792 C97 S
159 1049 3 Lundin, Miss. Olga Elida female 23 0 0 347469 7.8542 S
160 1050 1 Borebank, Mr. John James male 42 0 0 110489 26.55 D22 S
161 1051 3 Peacock, Mrs. Benjamin (Edith Nile) female 26 0 2 SOTON/O.Q. 3101315 13.775 S
162 1052 3 Smyth, Miss. Julia female 0 0 335432 7.7333 Q
163 1053 3 Touma, Master. Georges Youssef male 7 1 1 2650 15.2458 C
164 1054 2 Wright, Miss. Marion female 26 0 0 220844 13.5 S
165 1055 3 Pearce, Mr. Ernest male 0 0 343271 7 S
166 1056 2 Peruschitz, Rev. Joseph Maria male 41 0 0 237393 13 S
167 1057 3 Kink-Heilmann, Mrs. Anton (Luise Heilmann) female 26 1 1 315153 22.025 S
168 1058 1 Brandeis, Mr. Emil male 48 0 0 PC 17591 50.4958 B10 C
169 1059 3 Ford, Mr. Edward Watson male 18 2 2 W./C. 6608 34.375 S
170 1060 1 Cassebeer, Mrs. Henry Arthur Jr (Eleanor Genevieve Fosdick) female 0 0 17770 27.7208 C
171 1061 3 Hellstrom, Miss. Hilda Maria female 22 0 0 7548 8.9625 S
172 1062 3 Lithman, Mr. Simon male 0 0 S.O./P.P. 251 7.55 S
173 1063 3 Zakarian, Mr. Ortin male 27 0 0 2670 7.225 C
174 1064 3 Dyker, Mr. Adolf Fredrik male 23 1 0 347072 13.9 S
175 1065 3 Torfa, Mr. Assad male 0 0 2673 7.2292 C
176 1066 3 Asplund, Mr. Carl Oscar Vilhelm Gustafsson male 40 1 5 347077 31.3875 S
177 1067 2 Brown, Miss. Edith Eileen female 15 0 2 29750 39 S
178 1068 2 Sincock, Miss. Maude female 20 0 0 C.A. 33112 36.75 S
179 1069 1 Stengel, Mr. Charles Emil Henry male 54 1 0 11778 55.4417 C116 C
180 1070 2 Becker, Mrs. Allen Oliver (Nellie E Baumgardner) female 36 0 3 230136 39 F4 S
181 1071 1 Compton, Mrs. Alexander Taylor (Mary Eliza Ingersoll) female 64 0 2 PC 17756 83.1583 E45 C
182 1072 2 McCrie, Mr. James Matthew male 30 0 0 233478 13 S
183 1073 1 Compton, Mr. Alexander Taylor Jr male 37 1 1 PC 17756 83.1583 E52 C
184 1074 1 Marvin, Mrs. Daniel Warner (Mary Graham Carmichael Farquarson) female 18 1 0 113773 53.1 D30 S
185 1075 3 Lane, Mr. Patrick male 0 0 7935 7.75 Q
186 1076 1 Douglas, Mrs. Frederick Charles (Mary Helene Baxter) female 27 1 1 PC 17558 247.5208 B58 B60 C
187 1077 2 Maybery, Mr. Frank Hubert male 40 0 0 239059 16 S
188 1078 2 Phillips, Miss. Alice Frances Louisa female 21 0 1 S.O./P.P. 2 21 S
189 1079 3 Davies, Mr. Joseph male 17 2 0 A/4 48873 8.05 S
190 1080 3 Sage, Miss. Ada female 8 2 CA. 2343 69.55 S
191 1081 2 Veal, Mr. James male 40 0 0 28221 13 S
192 1082 2 Angle, Mr. William A male 34 1 0 226875 26 S
193 1083 1 Salomon, Mr. Abraham L male 0 0 111163 26 S
194 1084 3 van Billiard, Master. Walter John male 11.5 1 1 A/5. 851 14.5 S
195 1085 2 Lingane, Mr. John male 61 0 0 235509 12.35 Q
196 1086 2 Drew, Master. Marshall Brines male 8 0 2 28220 32.5 S
197 1087 3 Karlsson, Mr. Julius Konrad Eugen male 33 0 0 347465 7.8542 S
198 1088 1 Spedden, Master. Robert Douglas male 6 0 2 16966 134.5 E34 C
199 1089 3 Nilsson, Miss. Berta Olivia female 18 0 0 347066 7.775 S
200 1090 2 Baimbrigge, Mr. Charles Robert male 23 0 0 C.A. 31030 10.5 S
201 1091 3 Rasmussen, Mrs. (Lena Jacobsen Solvang) female 0 0 65305 8.1125 S
202 1092 3 Murphy, Miss. Nora female 0 0 36568 15.5 Q
203 1093 3 Danbom, Master. Gilbert Sigvard Emanuel male 0.33 0 2 347080 14.4 S
204 1094 1 Astor, Col. John Jacob male 47 1 0 PC 17757 227.525 C62 C64 C
205 1095 2 Quick, Miss. Winifred Vera female 8 1 1 26360 26 S
206 1096 2 Andrew, Mr. Frank Thomas male 25 0 0 C.A. 34050 10.5 S
207 1097 1 Omont, Mr. Alfred Fernand male 0 0 F.C. 12998 25.7417 C
208 1098 3 McGowan, Miss. Katherine female 35 0 0 9232 7.75 Q
209 1099 2 Collett, Mr. Sidney C Stuart male 24 0 0 28034 10.5 S
210 1100 1 Rosenbaum, Miss. Edith Louise female 33 0 0 PC 17613 27.7208 A11 C
211 1101 3 Delalic, Mr. Redjo male 25 0 0 349250 7.8958 S
212 1102 3 Andersen, Mr. Albert Karvin male 32 0 0 C 4001 22.525 S
213 1103 3 Finoli, Mr. Luigi male 0 0 SOTON/O.Q. 3101308 7.05 S
214 1104 2 Deacon, Mr. Percy William male 17 0 0 S.O.C. 14879 73.5 S
215 1105 2 Howard, Mrs. Benjamin (Ellen Truelove Arman) female 60 1 0 24065 26 S
216 1106 3 Andersson, Miss. Ida Augusta Margareta female 38 4 2 347091 7.775 S
217 1107 1 Head, Mr. Christopher male 42 0 0 113038 42.5 B11 S
218 1108 3 Mahon, Miss. Bridget Delia female 0 0 330924 7.8792 Q
219 1109 1 Wick, Mr. George Dennick male 57 1 1 36928 164.8667 S
220 1110 1 Widener, Mrs. George Dunton (Eleanor Elkins) female 50 1 1 113503 211.5 C80 C
221 1111 3 Thomson, Mr. Alexander Morrison male 0 0 32302 8.05 S
222 1112 2 Duran y More, Miss. Florentina female 30 1 0 SC/PARIS 2148 13.8583 C
223 1113 3 Reynolds, Mr. Harold J male 21 0 0 342684 8.05 S
224 1114 2 Cook, Mrs. (Selena Rogers) female 22 0 0 W./C. 14266 10.5 F33 S
225 1115 3 Karlsson, Mr. Einar Gervasius male 21 0 0 350053 7.7958 S
226 1116 1 Candee, Mrs. Edward (Helen Churchill Hungerford) female 53 0 0 PC 17606 27.4458 C
227 1117 3 Moubarek, Mrs. George (Omine Amenia" Alexander)" female 0 2 2661 15.2458 C
228 1118 3 Asplund, Mr. Johan Charles male 23 0 0 350054 7.7958 S
229 1119 3 McNeill, Miss. Bridget female 0 0 370368 7.75 Q
230 1120 3 Everett, Mr. Thomas James male 40.5 0 0 C.A. 6212 15.1 S
231 1121 2 Hocking, Mr. Samuel James Metcalfe male 36 0 0 242963 13 S
232 1122 2 Sweet, Mr. George Frederick male 14 0 0 220845 65 S
233 1123 1 Willard, Miss. Constance female 21 0 0 113795 26.55 S
234 1124 3 Wiklund, Mr. Karl Johan male 21 1 0 3101266 6.4958 S
235 1125 3 Linehan, Mr. Michael male 0 0 330971 7.8792 Q
236 1126 1 Cumings, Mr. John Bradley male 39 1 0 PC 17599 71.2833 C85 C
237 1127 3 Vendel, Mr. Olof Edvin male 20 0 0 350416 7.8542 S
238 1128 1 Warren, Mr. Frank Manley male 64 1 0 110813 75.25 D37 C
239 1129 3 Baccos, Mr. Raffull male 20 0 0 2679 7.225 C
240 1130 2 Hiltunen, Miss. Marta female 18 1 1 250650 13 S
241 1131 1 Douglas, Mrs. Walter Donald (Mahala Dutton) female 48 1 0 PC 17761 106.425 C86 C
242 1132 1 Lindstrom, Mrs. Carl Johan (Sigrid Posse) female 55 0 0 112377 27.7208 C
243 1133 2 Christy, Mrs. (Alice Frances) female 45 0 2 237789 30 S
244 1134 1 Spedden, Mr. Frederic Oakley male 45 1 1 16966 134.5 E34 C
245 1135 3 Hyman, Mr. Abraham male 0 0 3470 7.8875 S
246 1136 3 Johnston, Master. William Arthur Willie"" male 1 2 W./C. 6607 23.45 S
247 1137 1 Kenyon, Mr. Frederick R male 41 1 0 17464 51.8625 D21 S
248 1138 2 Karnes, Mrs. J Frank (Claire Bennett) female 22 0 0 F.C.C. 13534 21 S
249 1139 2 Drew, Mr. James Vivian male 42 1 1 28220 32.5 S
250 1140 2 Hold, Mrs. Stephen (Annie Margaret Hill) female 29 1 0 26707 26 S
251 1141 3 Khalil, Mrs. Betros (Zahie Maria" Elias)" female 1 0 2660 14.4542 C
252 1142 2 West, Miss. Barbara J female 0.92 1 2 C.A. 34651 27.75 S
253 1143 3 Abrahamsson, Mr. Abraham August Johannes male 20 0 0 SOTON/O2 3101284 7.925 S
254 1144 1 Clark, Mr. Walter Miller male 27 1 0 13508 136.7792 C89 C
255 1145 3 Salander, Mr. Karl Johan male 24 0 0 7266 9.325 S
256 1146 3 Wenzel, Mr. Linhart male 32.5 0 0 345775 9.5 S
257 1147 3 MacKay, Mr. George William male 0 0 C.A. 42795 7.55 S
258 1148 3 Mahon, Mr. John male 0 0 AQ/4 3130 7.75 Q
259 1149 3 Niklasson, Mr. Samuel male 28 0 0 363611 8.05 S
260 1150 2 Bentham, Miss. Lilian W female 19 0 0 28404 13 S
261 1151 3 Midtsjo, Mr. Karl Albert male 21 0 0 345501 7.775 S
262 1152 3 de Messemaeker, Mr. Guillaume Joseph male 36.5 1 0 345572 17.4 S
263 1153 3 Nilsson, Mr. August Ferdinand male 21 0 0 350410 7.8542 S
264 1154 2 Wells, Mrs. Arthur Henry (Addie" Dart Trevaskis)" female 29 0 2 29103 23 S
265 1155 3 Klasen, Miss. Gertrud Emilia female 1 1 1 350405 12.1833 S
266 1156 2 Portaluppi, Mr. Emilio Ilario Giuseppe male 30 0 0 C.A. 34644 12.7375 C
267 1157 3 Lyntakoff, Mr. Stanko male 0 0 349235 7.8958 S
268 1158 1 Chisholm, Mr. Roderick Robert Crispin male 0 0 112051 0 S
269 1159 3 Warren, Mr. Charles William male 0 0 C.A. 49867 7.55 S
270 1160 3 Howard, Miss. May Elizabeth female 0 0 A. 2. 39186 8.05 S
271 1161 3 Pokrnic, Mr. Mate male 17 0 0 315095 8.6625 S
272 1162 1 McCaffry, Mr. Thomas Francis male 46 0 0 13050 75.2417 C6 C
273 1163 3 Fox, Mr. Patrick male 0 0 368573 7.75 Q
274 1164 1 Clark, Mrs. Walter Miller (Virginia McDowell) female 26 1 0 13508 136.7792 C89 C
275 1165 3 Lennon, Miss. Mary female 1 0 370371 15.5 Q
276 1166 3 Saade, Mr. Jean Nassr male 0 0 2676 7.225 C
277 1167 2 Bryhl, Miss. Dagmar Jenny Ingeborg female 20 1 0 236853 26 S
278 1168 2 Parker, Mr. Clifford Richard male 28 0 0 SC 14888 10.5 S
279 1169 2 Faunthorpe, Mr. Harry male 40 1 0 2926 26 S
280 1170 2 Ware, Mr. John James male 30 1 0 CA 31352 21 S
281 1171 2 Oxenham, Mr. Percy Thomas male 22 0 0 W./C. 14260 10.5 S
282 1172 3 Oreskovic, Miss. Jelka female 23 0 0 315085 8.6625 S
283 1173 3 Peacock, Master. Alfred Edward male 0.75 1 1 SOTON/O.Q. 3101315 13.775 S
284 1174 3 Fleming, Miss. Honora female 0 0 364859 7.75 Q
285 1175 3 Touma, Miss. Maria Youssef female 9 1 1 2650 15.2458 C
286 1176 3 Rosblom, Miss. Salli Helena female 2 1 1 370129 20.2125 S
287 1177 3 Dennis, Mr. William male 36 0 0 A/5 21175 7.25 S
288 1178 3 Franklin, Mr. Charles (Charles Fardon) male 0 0 SOTON/O.Q. 3101314 7.25 S
289 1179 1 Snyder, Mr. John Pillsbury male 24 1 0 21228 82.2667 B45 S
290 1180 3 Mardirosian, Mr. Sarkis male 0 0 2655 7.2292 F E46 C
291 1181 3 Ford, Mr. Arthur male 0 0 A/5 1478 8.05 S
292 1182 1 Rheims, Mr. George Alexander Lucien male 0 0 PC 17607 39.6 S
293 1183 3 Daly, Miss. Margaret Marcella Maggie"" female 30 0 0 382650 6.95 Q
294 1184 3 Nasr, Mr. Mustafa male 0 0 2652 7.2292 C
295 1185 1 Dodge, Dr. Washington male 53 1 1 33638 81.8583 A34 S
296 1186 3 Wittevrongel, Mr. Camille male 36 0 0 345771 9.5 S
297 1187 3 Angheloff, Mr. Minko male 26 0 0 349202 7.8958 S
298 1188 2 Laroche, Miss. Louise female 1 1 2 SC/Paris 2123 41.5792 C
299 1189 3 Samaan, Mr. Hanna male 2 0 2662 21.6792 C
300 1190 1 Loring, Mr. Joseph Holland male 30 0 0 113801 45.5 S
301 1191 3 Johansson, Mr. Nils male 29 0 0 347467 7.8542 S
302 1192 3 Olsson, Mr. Oscar Wilhelm male 32 0 0 347079 7.775 S
303 1193 2 Malachard, Mr. Noel male 0 0 237735 15.0458 D C
304 1194 2 Phillips, Mr. Escott Robert male 43 0 1 S.O./P.P. 2 21 S
305 1195 3 Pokrnic, Mr. Tome male 24 0 0 315092 8.6625 S
306 1196 3 McCarthy, Miss. Catherine Katie"" female 0 0 383123 7.75 Q
307 1197 1 Crosby, Mrs. Edward Gifford (Catherine Elizabeth Halstead) female 64 1 1 112901 26.55 B26 S
308 1198 1 Allison, Mr. Hudson Joshua Creighton male 30 1 2 113781 151.55 C22 C26 S
309 1199 3 Aks, Master. Philip Frank male 0.83 0 1 392091 9.35 S
310 1200 1 Hays, Mr. Charles Melville male 55 1 1 12749 93.5 B69 S
311 1201 3 Hansen, Mrs. Claus Peter (Jennie L Howard) female 45 1 0 350026 14.1083 S
312 1202 3 Cacic, Mr. Jego Grga male 18 0 0 315091 8.6625 S
313 1203 3 Vartanian, Mr. David male 22 0 0 2658 7.225 C
314 1204 3 Sadowitz, Mr. Harry male 0 0 LP 1588 7.575 S
315 1205 3 Carr, Miss. Jeannie female 37 0 0 368364 7.75 Q
316 1206 1 White, Mrs. John Stuart (Ella Holmes) female 55 0 0 PC 17760 135.6333 C32 C
317 1207 3 Hagardon, Miss. Kate female 17 0 0 AQ/3. 30631 7.7333 Q
318 1208 1 Spencer, Mr. William Augustus male 57 1 0 PC 17569 146.5208 B78 C
319 1209 2 Rogers, Mr. Reginald Harry male 19 0 0 28004 10.5 S
320 1210 3 Jonsson, Mr. Nils Hilding male 27 0 0 350408 7.8542 S
321 1211 2 Jefferys, Mr. Ernest Wilfred male 22 2 0 C.A. 31029 31.5 S
322 1212 3 Andersson, Mr. Johan Samuel male 26 0 0 347075 7.775 S
323 1213 3 Krekorian, Mr. Neshan male 25 0 0 2654 7.2292 F E57 C
324 1214 2 Nesson, Mr. Israel male 26 0 0 244368 13 F2 S
325 1215 1 Rowe, Mr. Alfred G male 33 0 0 113790 26.55 S
326 1216 1 Kreuchen, Miss. Emilie female 39 0 0 24160 211.3375 S
327 1217 3 Assam, Mr. Ali male 23 0 0 SOTON/O.Q. 3101309 7.05 S
328 1218 2 Becker, Miss. Ruth Elizabeth female 12 2 1 230136 39 F4 S
329 1219 1 Rosenshine, Mr. George (Mr George Thorne")" male 46 0 0 PC 17585 79.2 C
330 1220 2 Clarke, Mr. Charles Valentine male 29 1 0 2003 26 S
331 1221 2 Enander, Mr. Ingvar male 21 0 0 236854 13 S
332 1222 2 Davies, Mrs. John Morgan (Elizabeth Agnes Mary White) female 48 0 2 C.A. 33112 36.75 S
333 1223 1 Dulles, Mr. William Crothers male 39 0 0 PC 17580 29.7 A18 C
334 1224 3 Thomas, Mr. Tannous male 0 0 2684 7.225 C
335 1225 3 Nakid, Mrs. Said (Waika Mary" Mowad)" female 19 1 1 2653 15.7417 C
336 1226 3 Cor, Mr. Ivan male 27 0 0 349229 7.8958 S
337 1227 1 Maguire, Mr. John Edward male 30 0 0 110469 26 C106 S
338 1228 2 de Brito, Mr. Jose Joaquim male 32 0 0 244360 13 S
339 1229 3 Elias, Mr. Joseph male 39 0 2 2675 7.2292 C
340 1230 2 Denbury, Mr. Herbert male 25 0 0 C.A. 31029 31.5 S
341 1231 3 Betros, Master. Seman male 0 0 2622 7.2292 C
342 1232 2 Fillbrook, Mr. Joseph Charles male 18 0 0 C.A. 15185 10.5 S
343 1233 3 Lundstrom, Mr. Thure Edvin male 32 0 0 350403 7.5792 S
344 1234 3 Sage, Mr. John George male 1 9 CA. 2343 69.55 S
345 1235 1 Cardeza, Mrs. James Warburton Martinez (Charlotte Wardle Drake) female 58 0 1 PC 17755 512.3292 B51 B53 B55 C
346 1236 3 van Billiard, Master. James William male 1 1 A/5. 851 14.5 S
347 1237 3 Abelseth, Miss. Karen Marie female 16 0 0 348125 7.65 S
348 1238 2 Botsford, Mr. William Hull male 26 0 0 237670 13 S
349 1239 3 Whabee, Mrs. George Joseph (Shawneene Abi-Saab) female 38 0 0 2688 7.2292 C
350 1240 2 Giles, Mr. Ralph male 24 0 0 248726 13.5 S
351 1241 2 Walcroft, Miss. Nellie female 31 0 0 F.C.C. 13528 21 S
352 1242 1 Greenfield, Mrs. Leo David (Blanche Strouse) female 45 0 1 PC 17759 63.3583 D10 D12 C
353 1243 2 Stokes, Mr. Philip Joseph male 25 0 0 F.C.C. 13540 10.5 S
354 1244 2 Dibden, Mr. William male 18 0 0 S.O.C. 14879 73.5 S
355 1245 2 Herman, Mr. Samuel male 49 1 2 220845 65 S
356 1246 3 Dean, Miss. Elizabeth Gladys Millvina"" female 0.17 1 2 C.A. 2315 20.575 S
357 1247 1 Julian, Mr. Henry Forbes male 50 0 0 113044 26 E60 S
358 1248 1 Brown, Mrs. John Murray (Caroline Lane Lamson) female 59 2 0 11769 51.4792 C101 S
359 1249 3 Lockyer, Mr. Edward male 0 0 1222 7.8792 S
360 1250 3 O'Keefe, Mr. Patrick male 0 0 368402 7.75 Q
361 1251 3 Lindell, Mrs. Edvard Bengtsson (Elin Gerda Persson) female 30 1 0 349910 15.55 S
362 1252 3 Sage, Master. William Henry male 14.5 8 2 CA. 2343 69.55 S
363 1253 2 Mallet, Mrs. Albert (Antoinette Magnin) female 24 1 1 S.C./PARIS 2079 37.0042 C
364 1254 2 Ware, Mrs. John James (Florence Louise Long) female 31 0 0 CA 31352 21 S
365 1255 3 Strilic, Mr. Ivan male 27 0 0 315083 8.6625 S
366 1256 1 Harder, Mrs. George Achilles (Dorothy Annan) female 25 1 0 11765 55.4417 E50 C
367 1257 3 Sage, Mrs. John (Annie Bullen) female 1 9 CA. 2343 69.55 S
368 1258 3 Caram, Mr. Joseph male 1 0 2689 14.4583 C
369 1259 3 Riihivouri, Miss. Susanna Juhantytar Sanni"" female 22 0 0 3101295 39.6875 S
370 1260 1 Gibson, Mrs. Leonard (Pauline C Boeson) female 45 0 1 112378 59.4 C
371 1261 2 Pallas y Castello, Mr. Emilio male 29 0 0 SC/PARIS 2147 13.8583 C
372 1262 2 Giles, Mr. Edgar male 21 1 0 28133 11.5 S
373 1263 1 Wilson, Miss. Helen Alice female 31 0 0 16966 134.5 E39 E41 C
374 1264 1 Ismay, Mr. Joseph Bruce male 49 0 0 112058 0 B52 B54 B56 S
375 1265 2 Harbeck, Mr. William H male 44 0 0 248746 13 S
376 1266 1 Dodge, Mrs. Washington (Ruth Vidaver) female 54 1 1 33638 81.8583 A34 S
377 1267 1 Bowen, Miss. Grace Scott female 45 0 0 PC 17608 262.375 C
378 1268 3 Kink, Miss. Maria female 22 2 0 315152 8.6625 S
379 1269 2 Cotterill, Mr. Henry Harry"" male 21 0 0 29107 11.5 S
380 1270 1 Hipkins, Mr. William Edward male 55 0 0 680 50 C39 S
381 1271 3 Asplund, Master. Carl Edgar male 5 4 2 347077 31.3875 S
382 1272 3 O'Connor, Mr. Patrick male 0 0 366713 7.75 Q
383 1273 3 Foley, Mr. Joseph male 26 0 0 330910 7.8792 Q
384 1274 3 Risien, Mrs. Samuel (Emma) female 0 0 364498 14.5 S
385 1275 3 McNamee, Mrs. Neal (Eileen O'Leary) female 19 1 0 376566 16.1 S
386 1276 2 Wheeler, Mr. Edwin Frederick"" male 0 0 SC/PARIS 2159 12.875 S
387 1277 2 Herman, Miss. Kate female 24 1 2 220845 65 S
388 1278 3 Aronsson, Mr. Ernst Axel Algot male 24 0 0 349911 7.775 S
389 1279 2 Ashby, Mr. John male 57 0 0 244346 13 S
390 1280 3 Canavan, Mr. Patrick male 21 0 0 364858 7.75 Q
391 1281 3 Palsson, Master. Paul Folke male 6 3 1 349909 21.075 S
392 1282 1 Payne, Mr. Vivian Ponsonby male 23 0 0 12749 93.5 B24 S
393 1283 1 Lines, Mrs. Ernest H (Elizabeth Lindsey James) female 51 0 1 PC 17592 39.4 D28 S
394 1284 3 Abbott, Master. Eugene Joseph male 13 0 2 C.A. 2673 20.25 S
395 1285 2 Gilbert, Mr. William male 47 0 0 C.A. 30769 10.5 S
396 1286 3 Kink-Heilmann, Mr. Anton male 29 3 1 315153 22.025 S
397 1287 1 Smith, Mrs. Lucien Philip (Mary Eloise Hughes) female 18 1 0 13695 60 C31 S
398 1288 3 Colbert, Mr. Patrick male 24 0 0 371109 7.25 Q
399 1289 1 Frolicher-Stehli, Mrs. Maxmillian (Margaretha Emerentia Stehli) female 48 1 1 13567 79.2 B41 C
400 1290 3 Larsson-Rondberg, Mr. Edvard A male 22 0 0 347065 7.775 S
401 1291 3 Conlon, Mr. Thomas Henry male 31 0 0 21332 7.7333 Q
402 1292 1 Bonnell, Miss. Caroline female 30 0 0 36928 164.8667 C7 S
403 1293 2 Gale, Mr. Harry male 38 1 0 28664 21 S
404 1294 1 Gibson, Miss. Dorothy Winifred female 22 0 1 112378 59.4 C
405 1295 1 Carrau, Mr. Jose Pedro male 17 0 0 113059 47.1 S
406 1296 1 Frauenthal, Mr. Isaac Gerald male 43 1 0 17765 27.7208 D40 C
407 1297 2 Nourney, Mr. Alfred (Baron von Drachstedt")" male 20 0 0 SC/PARIS 2166 13.8625 D38 C
408 1298 2 Ware, Mr. William Jeffery male 23 1 0 28666 10.5 S
409 1299 1 Widener, Mr. George Dunton male 50 1 1 113503 211.5 C80 C
410 1300 3 Riordan, Miss. Johanna Hannah"" female 0 0 334915 7.7208 Q
411 1301 3 Peacock, Miss. Treasteall female 3 1 1 SOTON/O.Q. 3101315 13.775 S
412 1302 3 Naughton, Miss. Hannah female 0 0 365237 7.75 Q
413 1303 1 Minahan, Mrs. William Edward (Lillian E Thorpe) female 37 1 0 19928 90 C78 Q
414 1304 3 Henriksson, Miss. Jenny Lovisa female 28 0 0 347086 7.775 S
415 1305 3 Spector, Mr. Woolf male 0 0 A.5. 3236 8.05 S
416 1306 1 Oliva y Ocana, Dona. Fermina female 39 0 0 PC 17758 108.9 C105 C
417 1307 3 Saether, Mr. Simon Sivertsen male 38.5 0 0 SOTON/O.Q. 3101262 7.25 S
418 1308 3 Ware, Mr. Frederick male 0 0 359309 8.05 S
419 1309 3 Peter, Master. Michael J male 1 1 2668 22.3583 C

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 237 KiB

BIN
ml2/images/titanic.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

109
ml2/plot_learning_curve.py Normal file
View File

@ -0,0 +1,109 @@
"""
Taken from http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
========================
Plotting Learning Curves
========================
On the left side the learning curve of a naive Bayes classifier is shown for
the digits dataset. Note that the training score and the cross-validation score
are both not very good at the end. However, the shape of the curve can be found
in more complex datasets very often: the training score is very high at the
beginning and decreases and the cross-validation score is very low at the
beginning and increases. On the right side we see the learning curve of an SVM
with RBF kernel. We can see clearly that the training score is still around
the maximum and the validation score could be increased with more training
samples.
"""
#print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.learning_curve import learning_curve
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
"""
Generate a simple plot of the test and traning learning curve.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
title : string
Title for the chart.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
ylim : tuple, shape (ymin, ymax), optional
Defines minimum and maximum yvalues plotted.
cv : integer, cross-validation generator, optional
If an integer is passed, it is the number of folds (defaults to 3).
Specific cross-validation objects can be passed, see
sklearn.cross_validation module for the list of possible objects
n_jobs : integer, optional
Number of jobs to run in parallel (default 1).
"""
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
#digits = load_digits()
#X, y = digits.data, digits.target
#title = "Learning Curves (Naive Bayes)"
# Cross validation with 100 iterations to get smoother mean test and train
# score curves, each time with 20% data randomly selected as a validation set.
#cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=100,
# test_size=0.2, random_state=0)
#estimator = GaussianNB()
#plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4)
#title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)"
# SVC is more expensive so we do a lower number of CV iterations:
#cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=10,
# test_size=0.2, random_state=0)
#estimator = SVC(gamma=0.001)
#plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4)
#plt.show()

80
ml2/plot_svm.py Normal file
View File

@ -0,0 +1,80 @@
from patsy import dmatrices
import matplotlib.pyplot as plt
import numpy as np
from sklearn import svm
#Taken from http://nbviewer.jupyter.org/github/agconti/kaggle-titanic/blob/master/Titanic.ipynb
def plot_svm(df):
# set plotting parameters
plt.figure(figsize=(8,6))
# # Create an acceptable formula for our machine learning algorithms
formula_ml = 'Survived ~ C(Pclass) + C(Sex) + Age + SibSp + Parch + C(Embarked)'
# create a regression friendly data frame
y, x = dmatrices(formula_ml, data=df, return_type='matrix')
# select which features we would like to analyze
# try chaning the selection here for diffrent output.
# Choose : [2,3] - pretty sweet DBs [3,1] --standard DBs [7,3] -very cool DBs,
# [3,6] -- very long complex dbs, could take over an hour to calculate!
feature_1 = 2
feature_2 = 3
X = np.asarray(x)
X = X[:,[feature_1, feature_2]]
y = np.asarray(y)
# needs to be 1 dimensional so we flatten. it comes out of dmatrices with a shape.
y = y.flatten()
n_sample = len(X)
np.random.seed(0)
order = np.random.permutation(n_sample)
X = X[order]
y = y[order].astype(np.float)
# do a cross validation
nighty_precent_of_sample = int(.9 * n_sample)
X_train = X[:nighty_precent_of_sample]
y_train = y[:nighty_precent_of_sample]
X_test = X[nighty_precent_of_sample:]
y_test = y[nighty_precent_of_sample:]
# create a list of the types of kerneks we will use for your analysis
types_of_kernels = ['linear', 'rbf', 'poly']
# specify our color map for plotting the results
color_map = plt.cm.RdBu_r
# fit the model
for fig_num, kernel in enumerate(types_of_kernels):
clf = svm.SVC(kernel=kernel, gamma=3)
clf.fit(X_train, y_train)
plt.figure(fig_num)
plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=color_map)
# circle out the test data
plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10)
plt.axis('tight')
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
# put the result into a color plot
Z = Z.reshape(XX.shape)
plt.pcolormesh(XX, YY, Z > 0, cmap=color_map)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],
levels=[-.5, 0, .5])
plt.title(kernel)
plt.show()