1
0
mirror of https://github.com/gsi-upm/sitc synced 2025-01-10 04:51:27 +00:00
sitc/ml2/plot_svm.py

81 lines
2.4 KiB
Python
Raw Normal View History

2016-03-28 12:03:08 +00:00
from patsy import dmatrices
import matplotlib.pyplot as plt
import numpy as np
from sklearn import svm
2022-03-07 13:19:44 +00:00
# Taken from http://nbviewer.jupyter.org/github/agconti/kaggle-titanic/blob/master/Titanic.ipynb
2016-03-28 12:03:08 +00:00
def plot_svm(df):
# set plotting parameters
plt.figure(figsize=(8,6))
# # Create an acceptable formula for our machine learning algorithms
formula_ml = 'Survived ~ C(Pclass) + C(Sex) + Age + SibSp + Parch + C(Embarked)'
# create a regression friendly data frame
y, x = dmatrices(formula_ml, data=df, return_type='matrix')
# select which features we would like to analyze
# try chaning the selection here for diffrent output.
# Choose : [2,3] - pretty sweet DBs [3,1] --standard DBs [7,3] -very cool DBs,
# [3,6] -- very long complex dbs, could take over an hour to calculate!
feature_1 = 2
feature_2 = 3
X = np.asarray(x)
X = X[:,[feature_1, feature_2]]
y = np.asarray(y)
# needs to be 1 dimensional so we flatten. it comes out of dmatrices with a shape.
y = y.flatten()
n_sample = len(X)
np.random.seed(0)
order = np.random.permutation(n_sample)
X = X[order]
y = y[order].astype(np.float)
# do a cross validation
nighty_precent_of_sample = int(.9 * n_sample)
X_train = X[:nighty_precent_of_sample]
y_train = y[:nighty_precent_of_sample]
X_test = X[nighty_precent_of_sample:]
y_test = y[nighty_precent_of_sample:]
# create a list of the types of kerneks we will use for your analysis
types_of_kernels = ['linear', 'rbf', 'poly']
# specify our color map for plotting the results
color_map = plt.cm.RdBu_r
# fit the model
for fig_num, kernel in enumerate(types_of_kernels):
clf = svm.SVC(kernel=kernel, gamma=3)
clf.fit(X_train, y_train)
plt.figure(fig_num)
plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=color_map)
# circle out the test data
plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10)
plt.axis('tight')
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
# put the result into a color plot
Z = Z.reshape(XX.shape)
plt.pcolormesh(XX, YY, Z > 0, cmap=color_map)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],
levels=[-.5, 0, .5])
plt.title(kernel)
plt.show()