1
0
mirror of https://github.com/gsi-upm/senpy synced 2025-09-17 03:52:22 +00:00

Compare commits

..

22 Commits
0.8.4 ... 0.8.6

Author SHA1 Message Date
J. Fernando Sánchez
1302b0b93c Fixed pip tests (added version) 2017-04-04 11:42:18 +02:00
J. Fernando Sánchez
ad1092690b Merge branch '20-improve-docs' into 0.8.x 2017-04-04 11:26:33 +02:00
J. Fernando Sánchez
e35e810ede Rephrase info on demo plugins
Closes #20
2017-04-04 11:26:05 +02:00
militarpancho
d5ddcb8d3f Change repository url 2017-04-04 11:21:08 +02:00
militarpancho
54c0c9c437 demo doc changed 2017-04-04 11:14:51 +02:00
J. Fernando Sánchez
6e970d01f2 Merge branch '21-ascii-cant-encode' into 0.8.x 2017-04-04 11:12:39 +02:00
J. Fernando Sánchez
1d0a54ecd2 Merge branch '22-pip-screws-with-logging-config' into 0.8.x 2017-04-04 11:12:23 +02:00
J. Fernando Sánchez
800d4a9c2c Fixed typos in Ian's patch 2017-04-04 11:11:51 +02:00
drevicko
035ef98b7e removed broken "/api" link
In index.html, there is a suggestion to try out the api with a link to "/api". Clicking that link results in a json error report - not ideal. 
Instead, I added text suggesting that a use can find example api url's after clickgin "Analyse!".
2017-04-04 11:07:32 +02:00
J. Fernando Sánchez
d7e115d7c2 Encode HEADERS
Closes #21
2017-04-03 19:23:18 +02:00
J. Fernando Sánchez
548cb4c9ba Doc changes
* Alabaster theme
* Restructured
* Simplified introduction
* Reference to entries/models
* Fixed examples
2017-04-03 18:20:09 +02:00
J. Fernando Sánchez
7e5b55ff9c Run pip with Popen
Closes #22
2017-03-30 17:38:17 +02:00
militarpancho
8b2c3e8d40 Update readthedocs. Mainly Api and What is senpy section 2017-03-28 12:34:39 +02:00
J. Fernando Sánchez
0c8f98d466 Pre-0.8.6
* Improved debugging (back to using Flask's built-in mechanisms)
* Recursive model loading from json
* Added DEVPORT to Makefile
* Accept json-ld input. Closes #16
* Improved Exception handling in client
* Modified default plugin selection to only include analysis plugins
* More tests
2017-03-14 19:59:06 +01:00
J. Fernando Sánchez
cc298742ec Merge branch '17-...' into 0.8.x 2017-03-14 13:20:20 +01:00
J. Fernando Sánchez
250052fb99 Options as a set in the JSON-LD context
Closes #18
2017-03-14 13:17:47 +01:00
J. Fernando Sánchez
603e086606 Fix list of plugins
Closes #17
2017-03-14 13:05:52 +01:00
J. Fernando Sánchez
a8614bab0c Accept plugin pipelines
Closes #15
2017-03-13 21:08:21 +01:00
J. Fernando Sánchez
70ca74b03c Added instructions for developers 2017-03-09 00:04:02 +01:00
J. Fernando Sánchez
c9e6d78183 Fixed alises, added PAD and FSRE
Closes #13
2017-03-08 23:23:40 +01:00
J. Fernando Sánchez
1a582c0843 Filter conversion plugins
Closes #12

* Shows only analysis plugins by default on /api/plugins
* Adds a plugin_type parameter to get other types of plugins
* default_plugin chosen from analysis plugins
2017-03-08 22:54:57 +01:00
drevicko
0394bcd69c add make version to readme for pip install
pip install needs the VERSION file - `make version` will create that file

I also added the -U flag to pip install to force install (this is important if the user is playing with the code or trying out different older versions, as pip will not install if it thinks the git repo represents a version already installed or older than the one installed)
2017-03-02 11:08:02 +00:00
33 changed files with 842 additions and 439 deletions

View File

@@ -6,6 +6,7 @@ VERSION=$(shell git describe --tags --dirty 2>/dev/null)
TARNAME=$(NAME)-$(VERSION).tar.gz
IMAGENAME=$(REPO)/$(NAME)
IMAGEWTAG=$(IMAGENAME):$(VERSION)
DEVPORT=5000
action="test-${PYMAIN}"
all: build run
@@ -43,7 +44,7 @@ quick_test: $(addprefix test-,$(PYMAIN))
dev-%:
@docker start $(NAME)-dev$* || (\
$(MAKE) build-$*; \
docker run -d -w /usr/src/app/ -v $$PWD:/usr/src/app --entrypoint=/bin/bash -ti --name $(NAME)-dev$* '$(IMAGEWTAG)-python$*'; \
docker run -d -w /usr/src/app/ -p $(DEVPORT):5000 -v $$PWD:/usr/src/app --entrypoint=/bin/bash -ti --name $(NAME)-dev$* '$(IMAGEWTAG)-python$*'; \
)\
docker exec -ti $(NAME)-dev$* bash
@@ -57,8 +58,10 @@ test-%: build-%
test: test-$(PYMAIN)
dist/$(TARNAME):
dist/$(TARNAME): version
docker run --rm -ti -v $$PWD:/usr/src/app/ -w /usr/src/app/ python:$(PYMAIN) python setup.py sdist;
docker run --rm -ti -v $$PWD:/usr/src/app/ -w /usr/src/app/ python:$(PYMAIN) chmod -R a+rwx dist;
sdist: dist/$(TARNAME)
@@ -82,11 +85,11 @@ git_tag:
git_push:
git push --tags origin master
pip_upload:
pip_upload: pip_test
python setup.py sdist upload ;
run-%: build-%
docker run --rm -p 5000:5000 -ti '$(IMAGEWTAG)-python$(PYMAIN)' --default-plugins
docker run --rm -p $(DEVPORT):5000 -ti '$(IMAGEWTAG)-python$(PYMAIN)' --default-plugins
run: run-$(PYMAIN)

View File

@@ -23,7 +23,7 @@ Through PIP
.. code:: bash
pip install --user senpy
pip install -U --user senpy
Alternatively, you can use the development version:
@@ -42,6 +42,53 @@ Build the image or use the pre-built one: ``docker run -ti -p 5000:5000 gsiupm/s
To add custom plugins, add a volume and tell senpy where to find the plugins: ``docker run -ti -p 5000:5000 -v <PATH OF PLUGINS>:/plugins gsiupm/senpy --default-plugins -f /plugins``
Developing
----------
Developing/debugging
********************
This command will run the senpy container using the latest image available, mounting your current folder so you get your latest code:
.. code:: bash
# Python 3.5
make dev
# Python 2.7
make dev-2.7
Building a docker image
***********************
.. code:: bash
# Python 3.5
make build-3.5
# Python 2.7
make build-2.7
Testing
*******
.. code:: bash
make test
Running
*******
This command will run the senpy server listening on localhost:5000
.. code:: bash
# Python 3.5
make run-3.5
# Python 2.7
make run-2.7
Usage
-----
@@ -49,12 +96,14 @@ However, the easiest and recommended way is to just use the command-line tool to
.. code:: bash
senpy
or, alternatively:
.. code:: bash
python -m senpy

BIN
docs/_static/header.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 208 KiB

View File

@@ -1,5 +1,5 @@
NIF API
=======
-------
.. http:get:: /api
Basic endpoint for sentiment/emotion analysis.
@@ -22,38 +22,32 @@ NIF API
Content-Type: text/javascript
{
"@context": [
"http://127.0.0.1/static/context.jsonld",
],
"analysis": [
{
"@id": "SentimentAnalysisExample",
"@type": "marl:SentimentAnalysis",
"dc:language": "en",
"marl:maxPolarityValue": 10.0,
"marl:minPolarityValue": 0.0
}
],
"domain": "wndomains:electronics",
"entries": [
{
"opinions": [
{
"prov:generatedBy": "SentimentAnalysisExample",
"marl:polarityValue": 7.8,
"marl:hasPolarity": "marl:Positive",
"marl:describesObject": "http://www.gsi.dit.upm.es",
}
],
"nif:isString": "I love GSI",
"strings": [
{
"nif:anchorOf": "GSI",
"nif:taIdentRef": "http://www.gsi.dit.upm.es"
}
]
}
]
"@context":"http://127.0.0.1/api/contexts/Results.jsonld",
"@id":"_:Results_11241245.22",
"@type":"results"
"analysis": [
"plugins/sentiment-140_0.1"
],
"entries": [
{
"@id": "_:Entry_11241245.22"
"@type":"entry",
"emotions": [],
"entities": [],
"sentiments": [
{
"@id": "Sentiment0",
"@type": "sentiment",
"marl:hasPolarity": "marl:Negative",
"marl:polarityValue": 0,
"prefix": ""
}
],
"suggestions": [],
"text": "This text makes me sad.\nwhilst this text makes me happy and surprised at the same time.\nI cannot believe it!",
"topics": []
}
]
}
:query i input: No default. Depends on informat and intype
@@ -92,58 +86,59 @@ NIF API
.. sourcecode:: http
{
"@context": {
...
},
"@type": "plugins",
"plugins": [
{
"name": "sentiment140",
"is_activated": true,
"version": "0.1",
"extra_params": {
"@id": "extra_params_sentiment140_0.1",
"language": {
"required": false,
"@id": "lang_sentiment140",
"options": [
"es",
"en",
"auto"
],
"aliases": [
"language",
"l"
]
}
},
"@id": "sentiment140_0.1"
}, {
"name": "rand",
"is_activated": true,
"version": "0.1",
"extra_params": {
"@id": "extra_params_rand_0.1",
"language": {
"required": false,
"@id": "lang_rand",
"options": [
"es",
"en",
"auto"
],
"aliases": [
"language",
"l"
]
}
},
"@id": "rand_0.1"
}
]
}
{
"@id": "plugins/sentiment-140_0.1",
"@type": "sentimentPlugin",
"author": "@balkian",
"description": "Sentiment classifier using rule-based classification for English and Spanish. This plugin uses sentiment140 data to perform classification. For more information: http://help.sentiment140.com/for-students/",
"extra_params": {
"language": {
"@id": "lang_sentiment140",
"aliases": [
"language",
"l"
],
"options": [
"es",
"en",
"auto"
],
"required": false
}
},
"is_activated": true,
"maxPolarityValue": 1.0,
"minPolarityValue": 0.0,
"module": "sentiment-140",
"name": "sentiment-140",
"requirements": {},
"version": "0.1"
},
{
"@id": "plugins/ExamplePlugin_0.1",
"@type": "sentimentPlugin",
"author": "@balkian",
"custom_attribute": "42",
"description": "I am just an example",
"extra_params": {
"parameter": {
"@id": "parameter",
"aliases": [
"parameter",
"param"
],
"default": 42,
"required": true
}
},
"is_activated": true,
"maxPolarityValue": 1.0,
"minPolarityValue": 0.0,
"module": "example",
"name": "ExamplePlugin",
"requirements": "noop",
"version": "0.1"
}
.. http:get:: /api/plugins/<pluginname>
@@ -162,30 +157,60 @@ NIF API
.. sourcecode:: http
{
"@id": "rand_0.1",
"@type": "sentimentPlugin",
"extra_params": {
"@id": "extra_params_rand_0.1",
"language": {
"@id": "lang_rand",
"aliases": [
"language",
"l"
],
"options": [
"es",
"en",
"auto"
],
"required": false
}
},
"is_activated": true,
"name": "rand",
"version": "0.1"
"@context": "http://127.0.0.1/api/contexts/ExamplePlugin.jsonld",
"@id": "plugins/ExamplePlugin_0.1",
"@type": "sentimentPlugin",
"author": "@balkian",
"custom_attribute": "42",
"description": "I am just an example",
"extra_params": {
"parameter": {
"@id": "parameter",
"aliases": [
"parameter",
"param"
],
"default": 42,
"required": true
}
},
"is_activated": true,
"maxPolarityValue": 1.0,
"minPolarityValue": 0.0,
"module": "example",
"name": "ExamplePlugin",
"requirements": "noop",
"version": "0.1"
}
.. http:get:: /api/plugins/default
Return the information about the default plugin.

7
docs/apischema.rst Normal file
View File

@@ -0,0 +1,7 @@
API and Schema
##############
.. toctree::
vocabularies.rst
api.rst
schema.rst

15
docs/architecture.rst Normal file
View File

@@ -0,0 +1,15 @@
Architecture
============
The main component of a sentiment analysis service is the algorithm itself. However, for the algorithm to work, it needs to get the appropriate parameters from the user, format the results according to the defined API, interact with the user whn errors occur or more information is needed, etc.
Senpy proposes a modular and dynamic architecture that allows:
* Implementing different algorithms in a extensible way, yet offering a common interface.
* Offering common services that facilitate development, so developers can focus on implementing new and better algorithms.
The framework consists of two main modules: Senpy core, which is the building block of the service, and Senpy plugins, which consist of the analysis algorithm. The next figure depicts a simplified version of the processes involved in an analysis with the Senpy framework.
.. image:: senpy-architecture.png
:width: 100%
:align: center

View File

@@ -37,6 +37,7 @@ extensions = [
'sphinx.ext.todo',
'sphinxcontrib.httpdomain',
'sphinx.ext.coverage',
'sphinx.ext.autosectionlabel'
]
# Add any paths that contain templates here, relative to this directory.
@@ -54,20 +55,21 @@ master_doc = 'index'
# General information about the project.
project = u'Senpy'
copyright = u'2016, J. Fernando Sánchez'
description = u'A framework for sentiment and emotion analysis services'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
with open('../senpy/VERSION') as f:
version = f.read().strip()
# with open('../senpy/VERSION') as f:
# version = f.read().strip()
# The full version, including alpha/beta/rc tags.
release = version
# release = version
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#language = None
language = None
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
@@ -104,14 +106,14 @@ pygments_style = 'sphinx'
#keep_warnings = False
html_theme = 'alabaster'
# -- Options for HTML output ----------------------------------------------
if not on_rtd: # only import and set the theme if we're building docs locally
import sphinx_rtd_theme
html_theme = 'sphinx_rtd_theme'
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
# if not on_rtd: # only import and set the theme if we're building docs locally
# import sphinx_rtd_theme
# html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
else:
html_theme = 'default'
# else:
# html_theme = 'default'
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
@@ -119,7 +121,13 @@ else:
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
#html_theme_options = {}
html_theme_options = {
'logo': 'header.png',
'github_user': 'gsi-upm',
'github_repo': 'senpy',
'github_banner': True,
}
# Add any paths that contain custom themes here, relative to this directory.
#html_theme_path = []
@@ -159,7 +167,13 @@ html_static_path = ['_static']
#html_use_smartypants = True
# Custom sidebar templates, maps document names to template names.
#html_sidebars = {}
html_sidebars = {
'**': [
'about.html',
'navigation.html',
'searchbox.html',
]
}
# Additional templates that should be rendered to pages, maps page names to
# template names.

View File

@@ -1,7 +1,8 @@
Demo
----
There is a demo available on http://senpy.demos.gsi.dit.upm.es/, where you can a serie of different plugins. You can use them in the playground or make a directly requests to the service.
There is a demo available on http://senpy.cluster.gsi.dit.upm.es/, where you can test a serie of different plugins.
You can use the playground (a web interface) or make HTTP requests to the service API.
.. image:: senpy-playground.png
:height: 400px
@@ -12,64 +13,4 @@ There is a demo available on http://senpy.demos.gsi.dit.upm.es/, where you can a
Plugins Demo
============
The next plugins are available at the demo:
* emoTextAnew extracts the VAD (valence-arousal-dominance) of a sentence by matching words from the ANEW dictionary.
* emoTextWordnetAffect based on the hierarchy of WordnetAffect to calculate the emotion of the sentence.
* vaderSentiment utilizes the software from vaderSentiment to calculate the sentiment of a sentence.
* sentiText is a software developed during the TASS 2015 competition, it has been adapted for English and Spanish.
emoTextANEW plugin
******************
This plugin is going to used the ANEW lexicon dictionary to calculate de VAD (valence-arousal-dominance) of the sentence and the determinate which emotion is closer to this value.
Each emotion has a centroid, which it has been approximated using the formula described in this article:
http://www.aclweb.org/anthology/W10-0208
The plugin is going to look for the words in the sentence that appear in the ANEW dictionary and calculate the average VAD score for the sentence. Once this score is calculated, it is going to seek the emotion that is closest to this value.
emoTextWAF plugin
*****************
This plugin uses WordNet-Affect (http://wndomains.fbk.eu/wnaffect.html) to calculate the percentage of each emotion. The emotions that are going to be used are: anger, fear, disgust, joy and sadness. It is has been used a emotion mapping enlarge the emotions:
* anger : general-dislike
* fear : negative-fear
* disgust : shame
* joy : gratitude, affective, enthusiasm, love, joy, liking
* sadness : ingrattitude, daze, humlity, compassion, despair, anxiety, sadness
sentiText plugin
****************
This plugin is based in the classifier developed for the TASS 2015 competition. It has been developed for Spanish and English. The different phases that has this plugin when it is activated:
* Train both classifiers (English and Spanish).
* Initialize resources (dictionaries,stopwords,etc.).
* Extract bag of words,lemmas and chars.
Once the plugin is activated, the features that are going to be extracted for the classifiers are:
* Matches with the bag of words extracted from the train corpus.
* Sentiment score of the sentences extracted from the dictionaries (lexicons and emoticons).
* Identify negations and intensifiers in the sentences.
* Complementary features such as exclamation and interrogation marks, eloganted and caps words, hashtags, etc.
The plugin has a preprocessor, which is focues on Twitter corpora, that is going to be used for cleaning the text to simplify the feature extraction.
There is more information avaliable in the next article.
Aspect based Sentiment Analysis of Spanish Tweets, Oscar Araque and Ignacio Corcuera-Platas and Constantino Román-Gómez and Carlos A. Iglesias and J. Fernando Sánchez-Rada. http://gsi.dit.upm.es/es/investigacion/publicaciones?view=publication&task=show&id=37
vaderSentiment plugin
*********************
For developing this plugin, it has been used the module vaderSentiment, which is described in the paper: VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text C.J. Hutto and Eric Gilbert Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
If you use this plugin in your research, please cite the above paper
For more information about the functionality, check the official repository
https://github.com/cjhutto/vaderSentiment
The source code and description of the plugins used in the demo is available here: https://lab.cluster.gsi.dit.upm.es/senpy/senpy-plugins-community/.

View File

@@ -1,15 +1,28 @@
Welcome to Senpy's documentation!
=================================
Contents:
With Senpy, you can easily turn your sentiment or emotion analysis algorithm into a full blown semantic service.
Sharing your sentiment analysis with the world has never been easier.
Senpy provides:
* Parameter validation, error handling
* Formatting: JSON-LD, Turtle/n-triples input and output, or simple text input
* Linked Data. Results are semantically annotated, using a series of well established vocabularies, and sane default URIs.
* A web UI where users can explore your service and test different settings
* A client to interact with any senpy service
* A command line tool
.. toctree::
:caption: Learn more about senpy
:maxdepth: 2
senpy
installation
usage
api
schema
apischema
plugins
conversion
demo
:maxdepth: 2
research.rst

View File

@@ -22,6 +22,35 @@ If you want to install senpy globally, use sudo instead of the ``--user`` flag.
Docker Image
************
Build the image or use the pre-built one: ``docker run -ti -p 5000:5000 gsiupm/senpy --host 0.0.0.0 --default-plugins``.
Build the image or use the pre-built one:
.. code:: bash
docker run -ti -p 5000:5000 gsiupm/senpy --host 0.0.0.0 --default-plugins
To add custom plugins, use a docker volume:
.. code:: bash
docker run -ti -p 5000:5000 -v <PATH OF PLUGINS>:/plugins gsiupm/senpy --host 0.0.0.0 --default-plugins -f /plugins
Alias
.....
If you are using the docker approach regularly, it is advisable to use a script or an alias to simplify your executions:
.. code:: bash
alias senpy='docker run --rm -ti -p 5000:5000 -v $PWD:/senpy-plugins gsiupm/senpy --default-plugins'
Python 2
........
There is a Senpy version for python2 too:
.. code:: bash
docker run -ti -p 5000:5000 gsiupm/senpy:python2.7 --host 0.0.0.0 --default-plugins
To add custom plugins, add a volume and tell senpy where to find the plugins: ``docker run -ti -p 5000:5000 -v <PATH OF PLUGINS>:/plugins gsiupm/senpy --host 0.0.0.0 --default-plugins -f /plugins``

View File

@@ -2,27 +2,34 @@ Developing new plugins
----------------------
This document describes how to develop a new analysis plugin. For an example of conversion plugins, see :doc:`conversion`.
Each plugin represents a different analysis process.There are two types of files that are needed by senpy for loading a plugin:
A more step-by-step tutorial with slides is available `here <https://lab.cluster.gsi.dit.upm.es/senpy/senpy-tutorial>`__
- Definition file, has the ".senpy" extension.
- Code file, is a python file.
What is a plugin?
=================
This separation will allow us to deploy plugins that use the same code but employ different parameters.
A plugin is a program that, given a text, will add annotations to it.
In practice, a plugin consists of at least two files:
- Definition file: a `.senpy` file that describes the plugin (e.g. what input parameters it accepts, what emotion model it uses).
- Python module: the actual code that will add annotations to each input.
This separation allows us to deploy plugins that use the same code but employ different parameters.
For instance, one could use the same classifier and processing in several plugins, but train with different datasets.
This scenario is particularly useful for evaluation purposes.
The only limitation is that the name of each plugin needs to be unique.
Plugins Definitions
===================
Plugin Definition files
=======================
The definition file contains all the attributes of the plugin, and can be written in YAML or JSON.
When the server is launched, it will recursively search for definition files in the plugin folder (the current folder, by default).
The most important attributes are:
* **name**: unique name that senpy will use internally to identify the plugin.
* **module**: indicates the module that contains the plugin code, which will be automatically loaded by senpy.
* **version**
* extra_params: used to specify parameters that the plugin accepts that are not already part of the senpy API. Those parameters may be required, and have aliased names. For instance:
* extra_params: to add parameters to the senpy API when this plugin is requested. Those parameters may be required, and have aliased names. For instance:
.. code:: yaml
@@ -68,10 +75,28 @@ The basic methods in a plugin are:
* __init__
* activate: used to load memory-hungry resources
* deactivate: used to free up resources
* analyse_entry: called in every user requests. It takes in the parameters supplied by a user and should yield one or more ``Entry`` objects.
* analyse_entry: called in every user requests. It takes two parameters: ``Entry``, the entry object, and ``params``, the parameters supplied by the user. It should yield one or more ``Entry`` objects.
Plugins are loaded asynchronously, so don't worry if the activate method takes too long. The plugin will be marked as activated once it is finished executing the method.
Entries
=======
Entries are objects that can be annotated.
By default, entries are `NIF contexts <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html>`_ represented in JSON-LD format.
Annotations are added to the object like this:
.. code:: python
entry = Entry()
entry.vocabulary__annotationName = 'myvalue'
entry['vocabulary:annotationName'] = 'myvalue'
entry['annotationNameURI'] = 'myvalue'
Where vocabulary is one of the prefixes defined in the default senpy context, and annotationURI is a full URI.
The value may be any valid JSON-LD dictionary.
For simplicity, senpy includes a series of models by default in the ``senpy.models`` module.
Example plugin
==============
@@ -117,6 +142,13 @@ Now, in a file named ``helloworld.py``:
F.A.Q.
======
What annotations can I use?
???????????????????????????
You can add almost any annotation to an entry.
The most common use cases are covered in the :doc:`schema`.
Why does the analyse function yield instead of return?
??????????????????????????????????????????????????????

11
docs/research.rst Normal file
View File

@@ -0,0 +1,11 @@
Research
--------
If you use Senpy in your research, please cite `Senpy: A Pragmatic Linked Sentiment Analysis Framework <http://gsi.dit.upm.es/index.php/es/investigacion/publicaciones?view=publication&task=show&id=417>`__ (`BibTex <http://gsi.dit.upm.es/index.php/es/investigacion/publicaciones?controller=publications&task=export&format=bibtex&id=417>`__):
.. code-block:: text
Sánchez-Rada, J. F., Iglesias, C. A., Corcuera, I., & Araque, Ó. (2016, October).
Senpy: A Pragmatic Linked Sentiment Analysis Framework.
In Data Science and Advanced Analytics (DSAA),
2016 IEEE International Conference on (pp. 735-742). IEEE.

View File

@@ -1,74 +1,74 @@
Schema Examples
===============
Schema
------
All the examples in this page use the :download:`the main schema <_static/schemas/definitions.json>`.
Simple NIF annotation
---------------------
.....................
Description
...........
,,,,,,,,,,,
This example covers the basic example in the NIF documentation: `<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html>`_.
Representation
..............
.. literalinclude:: examples/example-basic.json
,,,,,,,,,,,,,,
.. literalinclude:: examples/results/example-basic.json
:language: json-ld
Sentiment Analysis
---------------------
.....................
Description
...........
,,,,,,,,,,,
Representation
..............
,,,,,,,,,,,,,,
.. literalinclude:: examples/example-sentiment.json
.. literalinclude:: examples/results/example-sentiment.json
:emphasize-lines: 5-10,25-33
:language: json-ld
Suggestion Mining
-----------------
.................
Description
...........
,,,,,,,,,,,
Representation
..............
,,,,,,,,,,,,,,
.. literalinclude:: examples/example-suggestion.json
.. literalinclude:: examples/results/example-suggestion.json
:emphasize-lines: 5-8,22-27
:language: json-ld
Emotion Analysis
----------------
................
Description
...........
,,,,,,,,,,,
Representation
..............
,,,,,,,,,,,,,,
.. literalinclude:: examples/example-emotion.json
.. literalinclude:: examples/results/example-emotion.json
:language: json-ld
:emphasize-lines: 5-8,25-37
Named Entity Recognition
------------------------
........................
Description
...........
,,,,,,,,,,,
Representation
..............
,,,,,,,,,,,,,,
.. literalinclude:: examples/example-ner.json
.. literalinclude:: examples/results/example-ner.json
:emphasize-lines: 5-8,19-34
:language: json-ld
Complete example
----------------
................
Description
...........
,,,,,,,,,,,
This example covers all of the above cases, integrating all the annotations in the same document.
Representation
..............
,,,,,,,,,,,,,,
.. literalinclude:: examples/example-complete.json
.. literalinclude:: examples/results/example-complete.json
:language: json-ld

View File

@@ -1,35 +1,32 @@
What is Senpy?
--------------
Senpy is an open source reference implementation of a linked data model for sentiment and emotion analysis services based on the vocabularies NIF, Marl and Onyx.
Senpy is a framework that turns your sentiment or emotion analysis algorithm into a full blown semantic service.
Senpy takes care of:
The overall goal of the reference implementation Senpy is easing the adoption of the proposed linked data model for sentiment and emotion analysis services, so that services from different providers become interoperable. With this aim, the design of the reference implementation has focused on its extensibility and reusability.
* Interfacing with the user: parameter validation, error handling.
* Formatting: JSON-LD, Turtle/n-triples input and output, or simple text input
* Linked Data: senpy results are semantically annotated, using a series of well established vocabularies, and sane default URIs.
* User interface: a web UI where users can explore your service and test different settings
* A client to interact with the service. Currently only available in Python.
A modular approach allows organizations to replace individual components with custom ones developed in-house. Furthermore, organizations can benefit from reusing prepackages modules that provide advanced functionalities, such as algorithms for sentiment and emotion analysis, linked data publication or emotion and sentiment mapping between different providers.
Sharing your sentiment analysis with the world has never been easier!
Specifications
==============
Senpy for service developers
============================
The model used in Senpy is based on the following specifications:
Check out the :doc:`plugins` if you have developed an analysis algorithm (e.g. sentiment analysis) and you want to publish it as a service.
* Marl, a vocabulary designed to annotate and describe subjetive opinions expressed on the web or in information systems.
* Onyx, which is built one the same principles as Marl to annotate and describe emotions, and provides interoperability with Emotion Markup Language.
* NIF 2.0, which defines a semantic format and APO for improving interoperability among natural language processing services
Senpy for end users
===================
Architecture
============
All services built using senpy share a common interface.
This allows users to use them (almost) interchangeably.
Senpy comes with a :ref:`built-in client`.
The main component of a sentiment analysis service is the algorithm itself. However, for the algorithm to work, it needs to get the appropriate parameters from the user, format the results according to the defined API, interact with the user whn errors occur or more information is needed, etc.
Senpy proposes a modular and dynamic architecture that allows:
.. toctree::
:caption: Interested? Check out senpy's:
architecture
* Implementing different algorithms in a extensible way, yet offering a common interface.
* Offering common services that facilitate development, so developers can focus on implementing new and better algorithms.
The framework consists of two main modules: Senpy core, which is the building block of the service, and Senpy plugins, which consist of the analysis algorithm. The next figure depicts a simplified version of the processes involved in an analysis with the Senpy framework.
.. image:: senpy-architecture.png
:height: 400px
:width: 800px
:scale: 100 %
:align: center

View File

@@ -1,20 +1,9 @@
Usage
-----
The easiest and recommended way is to just use the command-line tool to load your plugins and launch the server.
.. code:: bash
senpy
Or, alternatively:
.. code:: bash
python -m senpy
This will create a server with any modules found in the current path.
First of all, you need to install the package.
See :doc:`installation` for installation instructions.
Once installed, the `senpy` command should be available.
Useful command-line options
===========================
@@ -23,19 +12,19 @@ In case you want to load modules, which are located in different folders under t
.. code:: bash
python -m senpy -f .
senpy -f .
The default port used by senpy is 5000, but you can change it using the option `--port`.
The default port used by senpy is 5000, but you can change it using the `--port` flag.
.. code:: bash
python -m senpy --port 8080
senpy --port 8080
Also, the host can be changed where senpy is deployed. The default value is `127.0.0.1`.
.. code:: bash
python -m senpy --host 0.0.0.0
senpy --host 0.0.0.0
For more options, see the `--help` page.
@@ -48,15 +37,19 @@ Once the server is launched, there is a basic endpoint in the server, which prov
In case you want to know the different endpoints of the server, there is more information available in the NIF API section_.
CLI
===
CLI demo
========
This video shows how to use senpy through command-line tool.
https://asciinema.org/a/9uwef1ghkjk062cw2t4mhzpyk
.. image:: https://asciinema.org/a/9uwef1ghkjk062cw2t4mhzpyk.png
:width: 100%
:target: https://asciinema.org/a/9uwef1ghkjk062cw2t4mhzpyk
:alt: CLI demo
Request example in python
=========================
Built-in client
===============
This example shows how to make a request to the default plugin:

8
docs/vocabularies.rst Normal file
View File

@@ -0,0 +1,8 @@
Vocabularies and model
======================
The model used in Senpy is based on the following vocabularies:
* Marl, a vocabulary designed to annotate and describe subjetive opinions expressed on the web or in information systems.
* Onyx, which is built one the same principles as Marl to annotate and describe emotions, and provides interoperability with Emotion Markup Language.
* NIF 2.0, which defines a semantic format and APO for improving interoperability among natural language processing services

View File

@@ -26,7 +26,6 @@ from gevent.wsgi import WSGIServer
from gevent.monkey import patch_all
import logging
import os
import sys
import argparse
import senpy
@@ -35,22 +34,6 @@ patch_all(thread=False)
SERVER_PORT = os.environ.get("PORT", 5000)
def info(type, value, tb):
if hasattr(sys, 'ps1') or not sys.stderr.isatty():
# we are in interactive mode or we don't have a tty-like
# device, so we call the default hook
sys.__excepthook__(type, value, tb)
else:
import traceback
import pdb
# we are NOT in interactive mode, print the exception...
traceback.print_exception(type, value, tb)
print
# ...then start the debugger in post-mortem mode.
# pdb.pm() # deprecated
pdb.post_mortem(tb) # more "modern"
def main():
parser = argparse.ArgumentParser(description='Run a Senpy server')
parser.add_argument(
@@ -100,22 +83,25 @@ def main():
rl.setLevel(getattr(logging, args.level))
app = Flask(__name__)
app.debug = args.debug
if args.debug:
sys.excepthook = info
sp = Senpy(app, args.plugins_folder, default_plugins=args.default_plugins)
if args.only_install:
sp.install_deps()
return
sp.activate_all()
http_server = WSGIServer((args.host, args.port), app)
try:
print('Senpy version {}'.format(senpy.__version__))
print('Server running on port %s:%d. Ctrl+C to quit' % (args.host,
args.port))
http_server.serve_forever()
except KeyboardInterrupt:
print('Bye!')
http_server.stop()
print('Senpy version {}'.format(senpy.__version__))
print('Server running on port %s:%d. Ctrl+C to quit' % (args.host,
args.port))
if not app.debug:
http_server = WSGIServer((args.host, args.port), app)
try:
http_server.serve_forever()
except KeyboardInterrupt:
print('Bye!')
http_server.stop()
else:
app.run(args.host,
args.port,
debug=True)
sp.deactivate_all()

View File

@@ -26,6 +26,13 @@ API_PARAMS = {
"aliases": ["emotionModel", "emoModel"],
"required": False
},
"plugin_type": {
"@id": "pluginType",
"description": 'What kind of plugins to list',
"aliases": ["pluginType", "plugin_type"],
"required": True,
"default": "analysisPlugin"
},
"conversion": {
"@id": "conversion",
"description": "How to show the elements that have (not) been converted",
@@ -63,7 +70,7 @@ NIF_PARAMS = {
"aliases": ["f", "informat"],
"required": False,
"default": "text",
"options": ["turtle", "text"],
"options": ["turtle", "text", "json-ld"],
},
"intype": {
"@id": "intype",

View File

@@ -25,6 +25,7 @@ from .version import __version__
from functools import wraps
import logging
import json
logger = logging.getLogger(__name__)
@@ -74,7 +75,7 @@ def basic_api(f):
@wraps(f)
def decorated_function(*args, **kwargs):
raw_params = get_params(request)
headers = {'X-ORIGINAL-PARAMS': raw_params}
headers = {'X-ORIGINAL-PARAMS': json.dumps(raw_params)}
# Get defaults
web_params = parse_params({}, spec=WEB_PARAMS)
api_params = parse_params({}, spec=API_PARAMS)
@@ -92,6 +93,9 @@ def basic_api(f):
response = f(*args, **kwargs)
except Error as ex:
response = ex
logger.error(ex)
if current_app.debug:
raise
in_headers = web_params['inHeaders'] != "0"
expanded = api_params['expanded-jsonld']
@@ -121,7 +125,9 @@ def api():
@basic_api
def plugins():
sp = current_app.senpy
dic = Plugins(plugins=list(sp.plugins.values()))
ptype = request.params.get('plugin_type')
plugins = sp.filter_plugins(plugin_type=ptype)
dic = Plugins(plugins=list(plugins.values()))
return dic

View File

@@ -5,8 +5,9 @@ It orchestrates plugin (de)activation and analysis.
from future import standard_library
standard_library.install_aliases()
from .plugins import SentimentPlugin, SenpyPlugin
from .models import Error, Entry, Results
from . import plugins
from .plugins import SenpyPlugin
from .models import Error, Entry, Results, from_string
from .blueprints import api_blueprint, demo_blueprint, ns_blueprint
from .api import API_PARAMS, NIF_PARAMS, parse_params
@@ -21,11 +22,18 @@ import importlib
import logging
import traceback
import yaml
import pip
import subprocess
logger = logging.getLogger(__name__)
def log_subprocess_output(process):
for line in iter(process.stdout.readline, b''):
logger.info('%r', line)
for line in iter(process.stderr.readline, b''):
logger.error('%r', line)
class Senpy(object):
""" Default Senpy extension for Flask """
@@ -77,70 +85,101 @@ class Senpy(object):
else:
logger.debug("Not a folder: %s", folder)
def _find_plugin(self, params):
api_params = parse_params(params, spec=API_PARAMS)
algo = None
if "algorithm" in api_params and api_params["algorithm"]:
algo = api_params["algorithm"]
elif self.plugins:
algo = self.default_plugin and self.default_plugin.name
if not algo:
def _find_plugins(self, params):
if not self.analysis_plugins:
raise Error(
status=404,
message=("No plugins found."
" Please install one.").format(algo))
if algo not in self.plugins:
logger.debug(("The algorithm '{}' is not valid\n"
"Valid algorithms: {}").format(algo,
self.plugins.keys()))
" Please install one."))
api_params = parse_params(params, spec=API_PARAMS)
algos = None
if "algorithm" in api_params and api_params["algorithm"]:
algos = api_params["algorithm"].split(',')
elif self.default_plugin:
algos = [self.default_plugin.name, ]
else:
raise Error(
status=404,
message="The algorithm '{}' is not valid".format(algo))
message="No default plugin found, and None provided")
if not self.plugins[algo].is_activated:
logger.debug("Plugin not activated: {}".format(algo))
raise Error(
status=400,
message=("The algorithm '{}'"
" is not activated yet").format(algo))
return self.plugins[algo]
plugins = list()
for algo in algos:
if algo not in self.plugins:
logger.debug(("The algorithm '{}' is not valid\n"
"Valid algorithms: {}").format(algo,
self.plugins.keys()))
raise Error(
status=404,
message="The algorithm '{}' is not valid".format(algo))
def _get_params(self, params, plugin):
if not self.plugins[algo].is_activated:
logger.debug("Plugin not activated: {}".format(algo))
raise Error(
status=400,
message=("The algorithm '{}'"
" is not activated yet").format(algo))
plugins.append(self.plugins[algo])
return plugins
def _get_params(self, params, plugin=None):
nif_params = parse_params(params, spec=NIF_PARAMS)
extra_params = plugin.get('extra_params', {})
specific_params = parse_params(params, spec=extra_params)
nif_params.update(specific_params)
if plugin:
extra_params = plugin.get('extra_params', {})
specific_params = parse_params(params, spec=extra_params)
nif_params.update(specific_params)
return nif_params
def _get_entries(self, params):
entry = None
if params['informat'] == 'text':
results = Results()
entry = Entry(text=params['input'])
results.entries.append(entry)
elif params['informat'] == 'json-ld':
results = from_string(params['input'], cls=Results)
else:
raise NotImplemented('Only text input format implemented')
yield entry
raise NotImplemented('Informat {} is not implemented'.format(params['informat']))
return results
def _process_entries(self, entries, plugins, nif_params):
if not plugins:
for i in entries:
yield i
return
plugin = plugins[0]
specific_params = self._get_params(nif_params, plugin)
results = plugin.analyse_entries(entries, specific_params)
for i in self._process_entries(results, plugins[1:], nif_params):
yield i
def _process_response(self, resp, plugins, nif_params):
entries = resp.entries
resp.entries = []
for plug in plugins:
resp.analysis.append(plug.id)
for i in self._process_entries(entries, plugins, nif_params):
resp.entries.append(i)
return resp
def analyse(self, **api_params):
"""
Main method that analyses a request, either from CLI or HTTP.
It uses a dictionary of parameters, provided by the user.
"""
logger.debug("analysing with params: {}".format(api_params))
plugin = self._find_plugin(api_params)
nif_params = self._get_params(api_params, plugin)
resp = Results()
plugins = self._find_plugins(api_params)
nif_params = self._get_params(api_params)
resp = self._get_entries(nif_params)
if 'with_parameters' in api_params:
resp.parameters = nif_params
try:
entries = []
for i in self._get_entries(nif_params):
entries += list(plugin.analyse_entry(i, nif_params))
resp.entries = entries
self.convert_emotions(resp, plugin, nif_params)
resp.analysis.append(plugin.id)
resp = self._process_response(resp, plugins, nif_params)
self.convert_emotions(resp, plugins, nif_params)
logger.debug("Returning analysis result: {}".format(resp))
except Error as ex:
logger.exception('Error returning analysis result')
resp = ex
except Exception as ex:
logger.exception('Error returning analysis result')
resp = Error(message=str(ex), status=500)
except (Error, Exception) as ex:
if not isinstance(ex, Error):
ex = Error(message=str(ex), status=500)
logger.error('Error returning analysis result')
raise ex
return resp
def _conversion_candidates(self, fromModel, toModel):
@@ -154,7 +193,7 @@ class Senpy(object):
# logging.debug('Found candidate: {}'.format(candidate))
yield candidate
def convert_emotions(self, resp, plugin, params):
def convert_emotions(self, resp, plugins, params):
"""
Conversion of all emotions in a response.
In addition to converting from one model to another, it has
@@ -162,29 +201,35 @@ class Senpy(object):
Needless to say, this is far from an elegant solution, but it works.
@todo refactor and clean up
"""
fromModel = plugin.get('onyx:usesEmotionModel', None)
toModel = params.get('emotionModel', None)
output = params.get('conversion', None)
logger.debug('Asked for model: {}'.format(toModel))
logger.debug('Analysis plugin uses model: {}'.format(fromModel))
if not toModel:
return
try:
candidate = next(self._conversion_candidates(fromModel, toModel))
except StopIteration:
e = Error(('No conversion plugin found for: '
'{} -> {}'.format(fromModel, toModel)))
e.original_response = resp
e.parameters = params
raise e
logger.debug('Asked for model: {}'.format(toModel))
output = params.get('conversion', None)
candidates = {}
for plugin in plugins:
try:
fromModel = plugin.get('onyx:usesEmotionModel', None)
candidates[plugin.id] = next(self._conversion_candidates(fromModel, toModel))
logger.debug('Analysis plugin {} uses model: {}'.format(plugin.id, fromModel))
except StopIteration:
e = Error(('No conversion plugin found for: '
'{} -> {}'.format(fromModel, toModel)))
e.original_response = resp
e.parameters = params
raise e
newentries = []
resp.analysis = set(resp.analysis)
for i in resp.entries:
if output == "full":
newemotions = copy.deepcopy(i.emotions)
else:
newemotions = []
for j in i.emotions:
plugname = j['prov:wasGeneratedBy']
candidate = candidates[plugname]
resp.analysis.add(candidate.id)
for k in candidate.convert(j, fromModel, toModel, params):
k.prov__wasGeneratedBy = candidate.id
if output == 'nested':
@@ -193,13 +238,13 @@ class Senpy(object):
i.emotions = newemotions
newentries.append(i)
resp.entries = newentries
resp.analysis.append(candidate.id)
@property
def default_plugin(self):
candidate = self._default
if not candidate:
candidates = self.filter_plugins(is_activated=True)
candidates = self.filter_plugins(plugin_type='analysisPlugin',
is_activated=True)
if len(candidates) > 0:
candidate = list(candidates.values())[0]
logger.debug("Default: {}".format(candidate))
@@ -295,13 +340,19 @@ class Senpy(object):
def _install_deps(cls, info=None):
requirements = info.get('requirements', [])
if requirements:
pip_args = []
pip_args = ['pip']
pip_args.append('install')
pip_args.append('--use-wheel')
for req in requirements:
pip_args.append(req)
logger.info('Installing requirements: ' + str(requirements))
pip.main(pip_args)
process = subprocess.Popen(pip_args,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
log_subprocess_output(process)
exitcode = process.wait()
if exitcode != 0:
raise Error("Dependencies not properly installed")
@classmethod
def _load_module(cls, name, root):
@@ -367,6 +418,22 @@ class Senpy(object):
def filter_plugins(self, **kwargs):
""" Filter plugins by different criteria """
ptype = kwargs.pop('plugin_type', None)
logger.debug('#' * 100)
logger.debug('ptype {}'.format(ptype))
if ptype:
try:
ptype = ptype[0].upper() + ptype[1:]
pclass = getattr(plugins, ptype)
logger.debug('Class: {}'.format(pclass))
candidates = filter(lambda x: isinstance(x, pclass),
self.plugins.values())
except AttributeError:
raise Error('{} is not a valid type'.format(ptype))
else:
candidates = self.plugins.values()
logger.debug(candidates)
def matches(plug):
res = all(getattr(plug, k, None) == v for (k, v) in kwargs.items())
@@ -374,15 +441,11 @@ class Senpy(object):
"matching {} with {}: {}".format(plug.name, kwargs, res))
return res
if not kwargs:
return self.plugins
else:
return {n: p for n, p in self.plugins.items() if matches(p)}
if kwargs:
candidates = filter(matches, candidates)
return {p.name: p for p in candidates}
def sentiment_plugins(self):
""" Return only the sentiment plugins """
return {
p: plugin
for p, plugin in self.plugins.items()
if isinstance(plugin, SentimentPlugin)
}
@property
def analysis_plugins(self):
""" Return only the analysis plugins """
return self.filter_plugins(plugin_type='analysisPlugin')

View File

@@ -214,6 +214,7 @@ class BaseModel(SenpyMixin, dict):
temp['@type'] = getattr(self, '@type')
except AttributeError:
logger.warn('Creating an instance of an unknown model')
super(BaseModel, self).__init__(temp)
def _get_key(self, key):
@@ -252,13 +253,32 @@ def register(rsubclass, rtype=None):
_subtypes[rtype or rsubclass.__name__] = rsubclass
def from_dict(indict):
target = indict.get('@type', None)
if target and target in _subtypes:
cls = _subtypes[target]
else:
cls = BaseModel
return cls(**indict)
def from_dict(indict, cls=None):
if not cls:
target = indict.get('@type', None)
try:
if target and target in _subtypes:
cls = _subtypes[target]
else:
cls = BaseModel
except Exception:
cls = BaseModel
outdict = dict()
for k, v in indict.items():
if k == '@context':
pass
elif isinstance(v, dict):
v = from_dict(indict[k])
elif isinstance(v, list):
for ix, v2 in enumerate(v):
if isinstance(v2, dict):
v[ix] = from_dict(v2)
outdict[k] = v
return cls(**outdict)
def from_string(string, **kwargs):
return from_dict(json.loads(string), **kwargs)
def from_json(injson):
@@ -308,7 +328,7 @@ for i in [
_ErrorModel = from_schema('error')
class Error(SenpyMixin, BaseException):
class Error(SenpyMixin, Exception):
def __init__(self, message, *args, **kwargs):
super(Error, self).__init__(self, message, message)
self._error = _ErrorModel(message=message, *args, **kwargs)
@@ -337,5 +357,8 @@ class Error(SenpyMixin, BaseException):
def __delattr__(self, key):
delattr(self._error, key)
def __str__(self):
return str(self.to_JSON(with_context=False))
register(Error, 'error')

View File

@@ -13,7 +13,7 @@ from .. import models
logger = logging.getLogger(__name__)
class SenpyPlugin(models.Plugin):
class Plugin(models.Plugin):
def __init__(self, info=None):
"""
Provides a canonical name for plugins and serves as base for other
@@ -24,12 +24,24 @@ class SenpyPlugin(models.Plugin):
"information for the plugin."))
logger.debug("Initialising {}".format(info))
id = 'plugins/{}_{}'.format(info['name'], info['version'])
super(SenpyPlugin, self).__init__(id=id, **info)
super(Plugin, self).__init__(id=id, **info)
self.is_activated = False
def get_folder(self):
return os.path.dirname(inspect.getfile(self.__class__))
def activate(self):
pass
def deactivate(self):
pass
SenpyPlugin = Plugin
class AnalysisPlugin(Plugin):
def analyse(self, *args, **kwargs):
raise NotImplemented(
'Your method should implement either analyse or analyse_entry')
@@ -48,30 +60,33 @@ class SenpyPlugin(models.Plugin):
for i in results.entries:
yield i
def activate(self):
pass
def deactivate(self):
pass
def analyse_entries(self, entries, parameters):
for entry in entries:
logger.debug('Analysing entry with plugin {}: {}'.format(self, entry))
for result in self.analyse_entry(entry, parameters):
yield result
class SentimentPlugin(models.SentimentPlugin, SenpyPlugin):
class ConversionPlugin(Plugin):
pass
class SentimentPlugin(models.SentimentPlugin, AnalysisPlugin):
def __init__(self, info, *args, **kwargs):
super(SentimentPlugin, self).__init__(info, *args, **kwargs)
self.minPolarityValue = float(info.get("minPolarityValue", 0))
self.maxPolarityValue = float(info.get("maxPolarityValue", 1))
class EmotionPlugin(models.EmotionPlugin, SenpyPlugin):
class EmotionPlugin(models.EmotionPlugin, AnalysisPlugin):
def __init__(self, info, *args, **kwargs):
super(EmotionPlugin, self).__init__(info, *args, **kwargs)
self.minEmotionValue = float(info.get("minEmotionValue", -1))
self.maxEmotionValue = float(info.get("maxEmotionValue", 1))
class EmotionConversionPlugin(models.EmotionConversionPlugin, SenpyPlugin):
def __init__(self, info, *args, **kwargs):
super(EmotionConversionPlugin, self).__init__(info, *args, **kwargs)
class EmotionConversionPlugin(models.EmotionConversionPlugin, ConversionPlugin):
pass
class ShelfMixin(object):

View File

@@ -6,6 +6,33 @@ logger = logging.getLogger(__name__)
class CentroidConversion(EmotionConversionPlugin):
def __init__(self, info):
if 'centroids' not in info:
raise Error('Centroid conversion plugins should provide '
'the centroids in their senpy file')
if 'onyx:doesConversion' not in info:
if 'centroids_direction' not in info:
raise Error('Please, provide centroids direction')
cf, ct = info['centroids_direction']
info['onyx:doesConversion'] = [{
'onyx:conversionFrom': cf,
'onyx:conversionTo': ct
}, {
'onyx:conversionFrom': ct,
'onyx:conversionTo': cf
}]
if 'aliases' in info:
aliases = info['aliases']
ncentroids = {}
for k1, v1 in info['centroids'].items():
nv1 = {}
for k2, v2 in v1.items():
nv1[aliases.get(k2, k2)] = v2
ncentroids[aliases.get(k1, k1)] = nv1
info['centroids'] = ncentroids
super(CentroidConversion, self).__init__(info)
def _forward_conversion(self, original):
"""Sum the VAD value of all categories found."""
@@ -25,7 +52,7 @@ class CentroidConversion(EmotionConversionPlugin):
dimensions = list(self.centroids.values())[0]
def distance(e1, e2):
return sum((e1[k] - e2.get(self.aliases[k], 0)) for k in dimensions)
return sum((e1[k] - e2.get(k, 0)) for k in dimensions)
emotion = ''
mindistance = 10000000000000000000000.0
@@ -40,11 +67,12 @@ class CentroidConversion(EmotionConversionPlugin):
def convert(self, emotionSet, fromModel, toModel, params):
cf, ct = self.centroids_direction
logger.debug('{}\n{}\n{}\n{}'.format(emotionSet, fromModel, toModel, params))
logger.debug(
'{}\n{}\n{}\n{}'.format(emotionSet, fromModel, toModel, params))
e = EmotionSet()
if fromModel == cf:
if fromModel == cf and toModel == ct:
e.onyx__hasEmotion.append(self._forward_conversion(emotionSet))
elif fromModel == ct:
elif fromModel == ct and toModel == cf:
for i in emotionSet.onyx__hasEmotion:
e.onyx__hasEmotion.append(self._backwards_conversion(i))
else:

View File

@@ -0,0 +1,39 @@
---
name: Ekman2FSRE
module: senpy.plugins.conversion.centroids
description: Plugin to convert emotion sets from Ekman to VAD
version: 0.1
# No need to specify onyx:doesConversion because centroids.py adds it automatically from centroids_direction
centroids:
anger:
A: 6.95
D: 5.1
V: 2.7
disgust:
A: 5.3
D: 8.05
V: 2.7
fear:
A: 6.5
D: 3.6
V: 3.2
happiness:
A: 7.22
D: 6.28
V: 8.6
sadness:
A: 5.21
D: 2.82
V: 2.21
centroids_direction:
- emoml:big6
- emoml:fsre-dimensions
aliases: # These are aliases for any key in the centroid, to avoid repeating a long name several times
A: emoml:arousal
V: emoml:valence
D: emoml:dominance
anger: emoml:big6anger
disgust: emoml:big6disgust
fear: emoml:big6fear
happiness: emoml:big6happiness
sadness: emoml:big6sadness

View File

@@ -1,38 +1,39 @@
---
name: Ekman2VAD
name: Ekman2PAD
module: senpy.plugins.conversion.centroids
description: Plugin to convert emotion sets from Ekman to VAD
version: 0.1
onyx:doesConversion:
- onyx:conversionFrom: emoml:big6
onyx:conversionTo: emoml:fsre-dimensions
- onyx:conversionFrom: emoml:fsre-dimensions
onyx:conversionTo: emoml:big6
# No need to specify onyx:doesConversion because centroids.py adds it automatically from centroids_direction
centroids:
emoml:big6anger:
anger:
A: 6.95
D: 5.1
V: 2.7
emoml:big6disgust:
disgust:
A: 5.3
D: 8.05
V: 2.7
emoml:big6fear:
fear:
A: 6.5
D: 3.6
V: 3.2
emoml:big6happiness:
happiness:
A: 7.22
D: 6.28
V: 8.6
emoml:big6sadness:
sadness:
A: 5.21
D: 2.82
V: 2.21
centroids_direction:
- emoml:big6
- emoml:fsre-dimensions
aliases:
- emoml:pad
aliases: # These are aliases for any key in the centroid, to avoid repeating a long name several times
A: emoml:arousal
V: emoml:valence
D: emoml:dominance
D: emoml:dominance
anger: emoml:big6anger
disgust: emoml:big6disgust
fear: emoml:big6fear
happiness: emoml:big6happiness
sadness: emoml:big6sadness

View File

@@ -37,6 +37,12 @@
"@type": "@id",
"@container": "@set"
},
"plugins": {
"@container": "@list"
},
"options": {
"@container": "@set"
},
"prov:wasGeneratedBy": {
"@type": "@id"
},

View File

@@ -6,6 +6,7 @@
"properties": {
"plugins": {
"type": "array",
"default": [],
"items": {
"$ref": "plugin.json"
}

View File

@@ -47,7 +47,7 @@
This website is the senpy Playground, which allows you to test the instance of senpy in this server. It provides a user-friendly interface to the functions exposed by the senpy API.
</p>
<p>
Once you get comfortable with the parameters and results, you are encouraged to issue your own requests to the API endpoint, which should be <a href="/api">here</a>.
Once you get comfortable with the parameters and results, you are encouraged to issue your own requests to the API endpoint. You can find examples of API URL's when you try out a plugin with the "Analyse!" button on the "Test it" tab.
</p>
<p>
These are some of the things you can do with the API:

View File

@@ -4,4 +4,5 @@ from senpy.plugins import SentimentPlugin
class DummyPlugin(SentimentPlugin):
def analyse_entry(self, entry, params):
entry.text = entry.text[::-1]
entry.reversed = entry.get('reversed', 0) + 1
yield entry

View File

@@ -1,8 +1,8 @@
from senpy.plugins import SenpyPlugin
from senpy.plugins import AnalysisPlugin
from time import sleep
class SleepPlugin(SenpyPlugin):
class SleepPlugin(AnalysisPlugin):
def activate(self, *args, **kwargs):
sleep(self.timeout)

View File

@@ -19,6 +19,7 @@ def parse_resp(resp):
class BlueprintsTest(TestCase):
def setUp(self):
self.app = Flask("test_extensions")
self.app.debug = False
self.client = self.app.test_client()
self.senpy = Senpy()
self.senpy.init_app(self.app)

View File

@@ -10,7 +10,7 @@ except ImportError:
from functools import partial
from senpy.extensions import Senpy
from senpy.models import Error, Results, Entry, EmotionSet, Emotion
from senpy.models import Error, Results, Entry, EmotionSet, Emotion, Plugin
from flask import Flask
from unittest import TestCase
@@ -61,6 +61,19 @@ class ExtensionsTest(TestCase):
assert len(self.senpy.plugins) >= 3
assert self.senpy.plugins["Sleep"].is_activated
def test_installing_nonexistent(self):
""" Fail if the dependencies cannot be met """
info = {
'name': 'TestPipFail',
'module': 'dummy',
'description': None,
'requirements': ['IAmMakingThisPackageNameUpToFail'],
'version': 0
}
root = os.path.join(self.dir, 'plugins', 'dummy_plugin')
with self.assertRaises(Error):
name, module = self.senpy._load_plugin_from_info(info, root=root)
def test_disabling(self):
""" Disabling a plugin """
self.senpy.deactivate_all(sync=True)
@@ -96,19 +109,49 @@ class ExtensionsTest(TestCase):
assert r2.analysis[0] == "plugins/Dummy_0.1"
assert r1.entries[0].text == 'input'
def test_analyse_jsonld(self):
""" Using a plugin with JSON-LD input"""
js_input = '''{
"@id": "prueba",
"@type": "results",
"entries": [
{"@id": "entry1",
"text": "tupni",
"@type": "entry"
}
]
}'''
r1 = self.senpy.analyse(algorithm="Dummy",
input=js_input,
informat="json-ld",
output="tuptuo")
r2 = self.senpy.analyse(input="tupni", output="tuptuo")
assert r1.analysis[0] == "plugins/Dummy_0.1"
assert r2.analysis[0] == "plugins/Dummy_0.1"
assert r1.entries[0].text == 'input'
def test_analyse_error(self):
mm = mock.MagicMock()
mm.analyse_entry.side_effect = Error('error on analysis', status=900)
mm.id = 'magic_mock'
mm.analyse_entries.side_effect = Error('error on analysis', status=500)
self.senpy.plugins['MOCK'] = mm
resp = self.senpy.analyse(input='nothing', algorithm='MOCK')
assert resp['message'] == 'error on analysis'
assert resp['status'] == 900
try:
self.senpy.analyse(input='nothing', algorithm='MOCK')
assert False
except Error as ex:
assert ex['message'] == 'error on analysis'
assert ex['status'] == 500
mm.analyse.side_effect = Exception('generic exception on analysis')
mm.analyse_entry.side_effect = Exception(
mm.analyse_entries.side_effect = Exception(
'generic exception on analysis')
resp = self.senpy.analyse(input='nothing', algorithm='MOCK')
assert resp['message'] == 'generic exception on analysis'
assert resp['status'] == 500
try:
self.senpy.analyse(input='nothing', algorithm='MOCK')
assert False
except Error as ex:
assert ex['message'] == 'generic exception on analysis'
assert ex['status'] == 500
def test_filtering(self):
""" Filtering plugins """
@@ -125,11 +168,12 @@ class ExtensionsTest(TestCase):
def test_convert_emotions(self):
self.senpy.activate_all()
plugin = {
plugin = Plugin({
'id': 'imaginary',
'onyx:usesEmotionModel': 'emoml:fsre-dimensions'
}
})
eSet1 = EmotionSet()
eSet1.prov__wasGeneratedBy = plugin['id']
eSet1['onyx:hasEmotion'].append(Emotion({
'emoml:arousal': 1,
'emoml:potency': 0,
@@ -145,19 +189,19 @@ class ExtensionsTest(TestCase):
'conversion': 'full'}
r1 = deepcopy(response)
self.senpy.convert_emotions(r1,
plugin,
[plugin, ],
params)
assert len(r1.entries[0].emotions) == 2
params['conversion'] = 'nested'
r2 = deepcopy(response)
self.senpy.convert_emotions(r2,
plugin,
[plugin, ],
params)
assert len(r2.entries[0].emotions) == 1
assert r2.entries[0].emotions[0]['prov:wasDerivedFrom'] == eSet1
params['conversion'] = 'filtered'
r3 = deepcopy(response)
self.senpy.convert_emotions(r3,
plugin,
[plugin, ],
params)
assert len(r3.entries[0].emotions) == 1

View File

@@ -11,8 +11,12 @@ from senpy.models import (Emotion,
Entry,
Error,
Results,
Sentiment)
from senpy.plugins import SenpyPlugin
Sentiment,
Plugins,
Plugin,
from_string,
from_dict)
from senpy import plugins
from pprint import pprint
@@ -53,8 +57,8 @@ class ModelsTest(TestCase):
assert (received["entries"][0]["nif:isString"] != "Not testing")
def test_id(self):
''' Adding the id after creation should overwrite the automatic ID
'''
""" Adding the id after creation should overwrite the automatic ID
"""
r = Entry()
j = r.jsonld()
assert '@id' in j
@@ -94,8 +98,16 @@ class ModelsTest(TestCase):
r.validate()
def test_plugins(self):
self.assertRaises(Error, SenpyPlugin)
p = SenpyPlugin({"name": "dummy", "version": 0})
self.assertRaises(Error, plugins.Plugin)
p = plugins.Plugin({"name": "dummy",
"version": 0,
"extra_params": {
"none": {
"options": ["es", ],
"required": False,
"default": "0"
}
}})
c = p.jsonld()
assert "info" not in c
assert "repo" not in c
@@ -103,11 +115,13 @@ class ModelsTest(TestCase):
logging.debug("Framed:")
logging.debug(c)
p.validate()
assert "es" in c['extra_params']['none']['options']
assert isinstance(c['extra_params']['none']['options'], list)
def test_str(self):
"""The string representation shouldn't include private variables"""
r = Results()
p = SenpyPlugin({"name": "STR test", "version": 0})
p = plugins.Plugin({"name": "STR test", "version": 0})
p._testing = 0
s = str(p)
assert "_testing" not in s
@@ -143,3 +157,34 @@ class ModelsTest(TestCase):
print(t)
g = rdflib.Graph().parse(data=t, format='turtle')
assert len(g) == len(triples)
def test_single_plugin(self):
"""A response with a single plugin should still return a list"""
plugs = Plugins()
for i in range(10):
p = Plugin({'id': str(i),
'version': 0,
'description': 'dummy'})
plugs.plugins.append(p)
assert isinstance(plugs.plugins, list)
js = plugs.jsonld()
assert isinstance(js['plugins'], list)
def test_from_string(self):
results = {
'@type': 'results',
'@id': 'prueba',
'entries': [{
'@id': 'entry1',
'@type': 'entry',
'text': 'TEST'
}]
}
recovered = from_dict(results)
assert isinstance(recovered, Results)
assert isinstance(recovered.entries[0], Entry)
string = json.dumps(results)
recovered = from_string(string)
assert isinstance(recovered, Results)
assert isinstance(recovered.entries[0], Entry)