mirror of
https://github.com/gsi-upm/senpy
synced 2025-01-05 03:01:27 +00:00
Doc changes
* Alabaster theme * Restructured * Simplified introduction * Reference to entries/models * Fixed examples
This commit is contained in:
parent
8b2c3e8d40
commit
548cb4c9ba
BIN
docs/_static/header.png
vendored
Normal file
BIN
docs/_static/header.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 208 KiB |
@ -1,5 +1,5 @@
|
||||
NIF API
|
||||
=======
|
||||
-------
|
||||
.. http:get:: /api
|
||||
|
||||
Basic endpoint for sentiment/emotion analysis.
|
||||
|
7
docs/apischema.rst
Normal file
7
docs/apischema.rst
Normal file
@ -0,0 +1,7 @@
|
||||
API and Schema
|
||||
##############
|
||||
.. toctree::
|
||||
|
||||
vocabularies.rst
|
||||
api.rst
|
||||
schema.rst
|
@ -11,7 +11,5 @@ Senpy proposes a modular and dynamic architecture that allows:
|
||||
The framework consists of two main modules: Senpy core, which is the building block of the service, and Senpy plugins, which consist of the analysis algorithm. The next figure depicts a simplified version of the processes involved in an analysis with the Senpy framework.
|
||||
|
||||
.. image:: senpy-architecture.png
|
||||
:height: 400px
|
||||
:width: 800px
|
||||
:scale: 100 %
|
||||
:width: 100%
|
||||
:align: center
|
||||
|
35
docs/conf.py
35
docs/conf.py
@ -37,6 +37,7 @@ extensions = [
|
||||
'sphinx.ext.todo',
|
||||
'sphinxcontrib.httpdomain',
|
||||
'sphinx.ext.coverage',
|
||||
'sphinx.ext.autosectionlabel'
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
@ -54,17 +55,21 @@ master_doc = 'index'
|
||||
# General information about the project.
|
||||
project = u'Senpy'
|
||||
copyright = u'2016, J. Fernando Sánchez'
|
||||
description = u'A framework for sentiment and emotion analysis services'
|
||||
|
||||
# The version info for the project you're documenting, acts as replacement for
|
||||
# |version| and |release|, also used in various other places throughout the
|
||||
# built documents.
|
||||
#
|
||||
# The short X.Y version.
|
||||
# with open('../senpy/VERSION') as f:
|
||||
# version = f.read().strip()
|
||||
# The full version, including alpha/beta/rc tags.
|
||||
# release = version
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
#language = None
|
||||
language = None
|
||||
|
||||
# There are two options for replacing |today|: either, you set today to some
|
||||
# non-false value, then it is used:
|
||||
@ -101,14 +106,14 @@ pygments_style = 'sphinx'
|
||||
#keep_warnings = False
|
||||
|
||||
|
||||
html_theme = 'alabaster'
|
||||
# -- Options for HTML output ----------------------------------------------
|
||||
if not on_rtd: # only import and set the theme if we're building docs locally
|
||||
import sphinx_rtd_theme
|
||||
html_theme = 'sphinx_rtd_theme'
|
||||
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
|
||||
# if not on_rtd: # only import and set the theme if we're building docs locally
|
||||
# import sphinx_rtd_theme
|
||||
# html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
|
||||
|
||||
else:
|
||||
html_theme = 'default'
|
||||
# else:
|
||||
# html_theme = 'default'
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
@ -116,7 +121,13 @@ else:
|
||||
# Theme options are theme-specific and customize the look and feel of a theme
|
||||
# further. For a list of options available for each theme, see the
|
||||
# documentation.
|
||||
#html_theme_options = {}
|
||||
html_theme_options = {
|
||||
'logo': 'header.png',
|
||||
'github_user': 'gsi-upm',
|
||||
'github_repo': 'senpy',
|
||||
'github_banner': True,
|
||||
}
|
||||
|
||||
|
||||
# Add any paths that contain custom themes here, relative to this directory.
|
||||
#html_theme_path = []
|
||||
@ -156,7 +167,13 @@ html_static_path = ['_static']
|
||||
#html_use_smartypants = True
|
||||
|
||||
# Custom sidebar templates, maps document names to template names.
|
||||
#html_sidebars = {}
|
||||
html_sidebars = {
|
||||
'**': [
|
||||
'about.html',
|
||||
'navigation.html',
|
||||
'searchbox.html',
|
||||
]
|
||||
}
|
||||
|
||||
# Additional templates that should be rendered to pages, maps page names to
|
||||
# template names.
|
||||
|
@ -1,7 +1,8 @@
|
||||
Demo
|
||||
----
|
||||
|
||||
There is a demo available on http://senpy.demos.gsi.dit.upm.es/, where you can a serie of different plugins. You can use them in the playground or make a directly requests to the service.
|
||||
There is a demo available on http://senpy.demos.gsi.dit.upm.es/, where you can test a serie of different plugins.
|
||||
You can use the playground (a web interface) or make HTTP requests to the service API.
|
||||
|
||||
.. image:: senpy-playground.png
|
||||
:height: 400px
|
||||
|
@ -1,15 +1,28 @@
|
||||
Welcome to Senpy's documentation!
|
||||
=================================
|
||||
|
||||
Contents:
|
||||
With Senpy, you can easily turn your sentiment or emotion analysis algorithm into a full blown semantic service.
|
||||
Sharing your sentiment analysis with the world has never been easier.
|
||||
Senpy provides:
|
||||
|
||||
* Parameter validation, error handling
|
||||
* Formatting: JSON-LD, Turtle/n-triples input and output, or simple text input
|
||||
* Linked Data. Results are semantically annotated, using a series of well established vocabularies, and sane default URIs.
|
||||
* A web UI where users can explore your service and test different settings
|
||||
* A client to interact with any senpy service
|
||||
* A command line tool
|
||||
|
||||
|
||||
|
||||
.. toctree::
|
||||
:caption: Learn more about senpy
|
||||
:maxdepth: 2
|
||||
|
||||
senpy
|
||||
installation
|
||||
usage
|
||||
api
|
||||
schema
|
||||
apischema
|
||||
plugins
|
||||
conversion
|
||||
demo
|
||||
:maxdepth: 2
|
||||
research.rst
|
||||
|
@ -24,14 +24,33 @@ Docker Image
|
||||
************
|
||||
Build the image or use the pre-built one:
|
||||
|
||||
``docker run -ti -p 5000:5000 gsiupm/senpy --host 0.0.0.0 --default-plugins``
|
||||
.. code:: bash
|
||||
|
||||
To add custom plugins, add a volume and tell senpy where to find the plugins:
|
||||
docker run -ti -p 5000:5000 gsiupm/senpy --host 0.0.0.0 --default-plugins
|
||||
|
||||
To add custom plugins, use a docker volume:
|
||||
|
||||
``docker run -ti -p 5000:5000 -v <PATH OF PLUGINS>:/plugins gsiupm/senpy --host 0.0.0.0 --default-plugins -f /plugins``
|
||||
.. code:: bash
|
||||
|
||||
docker run -ti -p 5000:5000 -v <PATH OF PLUGINS>:/plugins gsiupm/senpy --host 0.0.0.0 --default-plugins -f /plugins
|
||||
|
||||
Note: There is a Senpy version for python2 too.
|
||||
Alias
|
||||
.....
|
||||
|
||||
If you are using the docker approach regularly, it is advisable to use a script or an alias to simplify your executions:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
alias senpy='docker run --rm -ti -p 5000:5000 -v $PWD:/senpy-plugins gsiupm/senpy --default-plugins'
|
||||
|
||||
|
||||
Python 2
|
||||
........
|
||||
|
||||
There is a Senpy version for python2 too:
|
||||
|
||||
``docker run -ti -p 5000:5000 gsiupm/senpy-python2.7 --host 0.0.0.0 --default-plugins``
|
||||
.. code:: bash
|
||||
|
||||
docker run -ti -p 5000:5000 gsiupm/senpy:python2.7 --host 0.0.0.0 --default-plugins
|
||||
|
||||
|
||||
|
@ -2,29 +2,34 @@ Developing new plugins
|
||||
----------------------
|
||||
This document describes how to develop a new analysis plugin. For an example of conversion plugins, see :doc:`conversion`.
|
||||
|
||||
There is also a tutorial for developing new plugins with slides `here <https://lab.cluster.gsi.dit.upm.es/senpy/senpy-tutorial>`__
|
||||
A more step-by-step tutorial with slides is available `here <https://lab.cluster.gsi.dit.upm.es/senpy/senpy-tutorial>`__
|
||||
|
||||
Each plugin represents a different analysis process.There are two types of files that are needed by senpy for loading a plugin:
|
||||
What is a plugin?
|
||||
=================
|
||||
|
||||
- Definition file, has the ".senpy" extension.
|
||||
- Code file, is a python file.
|
||||
A plugin is a program that, given a text, will add annotations to it.
|
||||
In practice, a plugin consists of at least two files:
|
||||
|
||||
This separation will allow us to deploy plugins that use the same code but employ different parameters.
|
||||
- Definition file: a `.senpy` file that describes the plugin (e.g. what input parameters it accepts, what emotion model it uses).
|
||||
- Python module: the actual code that will add annotations to each input.
|
||||
|
||||
This separation allows us to deploy plugins that use the same code but employ different parameters.
|
||||
For instance, one could use the same classifier and processing in several plugins, but train with different datasets.
|
||||
This scenario is particularly useful for evaluation purposes.
|
||||
|
||||
The only limitation is that the name of each plugin needs to be unique.
|
||||
|
||||
Plugins Definitions
|
||||
===================
|
||||
Plugin Definition files
|
||||
=======================
|
||||
|
||||
The definition file contains all the attributes of the plugin, and can be written in YAML or JSON.
|
||||
When the server is launched, it will recursively search for definition files in the plugin folder (the current folder, by default).
|
||||
The most important attributes are:
|
||||
|
||||
* **name**: unique name that senpy will use internally to identify the plugin.
|
||||
* **module**: indicates the module that contains the plugin code, which will be automatically loaded by senpy.
|
||||
* **version**
|
||||
* extra_params: used to specify parameters that the plugin accepts that are not already part of the senpy API. Those parameters may be required, and have aliased names. For instance:
|
||||
* extra_params: to add parameters to the senpy API when this plugin is requested. Those parameters may be required, and have aliased names. For instance:
|
||||
|
||||
.. code:: yaml
|
||||
|
||||
@ -70,10 +75,28 @@ The basic methods in a plugin are:
|
||||
* __init__
|
||||
* activate: used to load memory-hungry resources
|
||||
* deactivate: used to free up resources
|
||||
* analyse_entry: called in every user requests. It takes in the parameters supplied by a user and should yield one or more ``Entry`` objects.
|
||||
* analyse_entry: called in every user requests. It takes two parameters: ``Entry``, the entry object, and ``params``, the parameters supplied by the user. It should yield one or more ``Entry`` objects.
|
||||
|
||||
Plugins are loaded asynchronously, so don't worry if the activate method takes too long. The plugin will be marked as activated once it is finished executing the method.
|
||||
|
||||
Entries
|
||||
=======
|
||||
|
||||
Entries are objects that can be annotated.
|
||||
By default, entries are `NIF contexts <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html>`_ represented in JSON-LD format.
|
||||
Annotations are added to the object like this:
|
||||
|
||||
.. code:: python
|
||||
|
||||
entry = Entry()
|
||||
entry.vocabulary__annotationName = 'myvalue'
|
||||
entry['vocabulary:annotationName'] = 'myvalue'
|
||||
entry['annotationNameURI'] = 'myvalue'
|
||||
|
||||
Where vocabulary is one of the prefixes defined in the default senpy context, and annotationURI is a full URI.
|
||||
The value may be any valid JSON-LD dictionary.
|
||||
For simplicity, senpy includes a series of models by default in the ``senpy.models`` module.
|
||||
|
||||
|
||||
Example plugin
|
||||
==============
|
||||
@ -119,6 +142,13 @@ Now, in a file named ``helloworld.py``:
|
||||
|
||||
F.A.Q.
|
||||
======
|
||||
What annotations can I use?
|
||||
???????????????????????????
|
||||
|
||||
You can add almost any annotation to an entry.
|
||||
The most common use cases are covered in the :doc:`schema`.
|
||||
|
||||
|
||||
Why does the analyse function yield instead of return?
|
||||
??????????????????????????????????????????????????????
|
||||
|
||||
|
11
docs/research.rst
Normal file
11
docs/research.rst
Normal file
@ -0,0 +1,11 @@
|
||||
Research
|
||||
--------
|
||||
|
||||
If you use Senpy in your research, please cite `Senpy: A Pragmatic Linked Sentiment Analysis Framework <http://gsi.dit.upm.es/index.php/es/investigacion/publicaciones?view=publication&task=show&id=417>`__ (`BibTex <http://gsi.dit.upm.es/index.php/es/investigacion/publicaciones?controller=publications&task=export&format=bibtex&id=417>`__):
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
Sánchez-Rada, J. F., Iglesias, C. A., Corcuera, I., & Araque, Ó. (2016, October).
|
||||
Senpy: A Pragmatic Linked Sentiment Analysis Framework.
|
||||
In Data Science and Advanced Analytics (DSAA),
|
||||
2016 IEEE International Conference on (pp. 735-742). IEEE.
|
@ -1,74 +1,74 @@
|
||||
Schema Examples
|
||||
===============
|
||||
Schema
|
||||
------
|
||||
All the examples in this page use the :download:`the main schema <_static/schemas/definitions.json>`.
|
||||
|
||||
Simple NIF annotation
|
||||
---------------------
|
||||
.....................
|
||||
Description
|
||||
...........
|
||||
,,,,,,,,,,,
|
||||
This example covers the basic example in the NIF documentation: `<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html>`_.
|
||||
|
||||
Representation
|
||||
..............
|
||||
.. literalinclude:: examples/example-basic.json
|
||||
,,,,,,,,,,,,,,
|
||||
.. literalinclude:: examples/results/example-basic.json
|
||||
:language: json-ld
|
||||
|
||||
Sentiment Analysis
|
||||
---------------------
|
||||
.....................
|
||||
Description
|
||||
...........
|
||||
,,,,,,,,,,,
|
||||
|
||||
Representation
|
||||
..............
|
||||
,,,,,,,,,,,,,,
|
||||
|
||||
.. literalinclude:: examples/example-sentiment.json
|
||||
.. literalinclude:: examples/results/example-sentiment.json
|
||||
:emphasize-lines: 5-10,25-33
|
||||
:language: json-ld
|
||||
|
||||
Suggestion Mining
|
||||
-----------------
|
||||
.................
|
||||
Description
|
||||
...........
|
||||
,,,,,,,,,,,
|
||||
|
||||
Representation
|
||||
..............
|
||||
,,,,,,,,,,,,,,
|
||||
|
||||
.. literalinclude:: examples/example-suggestion.json
|
||||
.. literalinclude:: examples/results/example-suggestion.json
|
||||
:emphasize-lines: 5-8,22-27
|
||||
:language: json-ld
|
||||
|
||||
Emotion Analysis
|
||||
----------------
|
||||
................
|
||||
Description
|
||||
...........
|
||||
,,,,,,,,,,,
|
||||
|
||||
Representation
|
||||
..............
|
||||
,,,,,,,,,,,,,,
|
||||
|
||||
.. literalinclude:: examples/example-emotion.json
|
||||
.. literalinclude:: examples/results/example-emotion.json
|
||||
:language: json-ld
|
||||
:emphasize-lines: 5-8,25-37
|
||||
|
||||
Named Entity Recognition
|
||||
------------------------
|
||||
........................
|
||||
Description
|
||||
...........
|
||||
,,,,,,,,,,,
|
||||
|
||||
Representation
|
||||
..............
|
||||
,,,,,,,,,,,,,,
|
||||
|
||||
.. literalinclude:: examples/example-ner.json
|
||||
.. literalinclude:: examples/results/example-ner.json
|
||||
:emphasize-lines: 5-8,19-34
|
||||
:language: json-ld
|
||||
|
||||
Complete example
|
||||
----------------
|
||||
................
|
||||
Description
|
||||
...........
|
||||
,,,,,,,,,,,
|
||||
This example covers all of the above cases, integrating all the annotations in the same document.
|
||||
|
||||
Representation
|
||||
..............
|
||||
,,,,,,,,,,,,,,
|
||||
|
||||
.. literalinclude:: examples/example-complete.json
|
||||
.. literalinclude:: examples/results/example-complete.json
|
||||
:language: json-ld
|
||||
|
@ -1,18 +1,32 @@
|
||||
What is Senpy?
|
||||
--------------
|
||||
|
||||
Senpy is a framework to build semantic sentiment and emotion analysis services. Using Senpy you can easy develop and publish your own analysis algorithms.
|
||||
Senpy is a framework that turns your sentiment or emotion analysis algorithm into a full blown semantic service.
|
||||
Senpy takes care of:
|
||||
|
||||
If you use Senpy, please cite `Senpy: A Pragmatic Linked Sentiment Analysis Framework <http://gsi.dit.upm.es/index.php/es/investigacion/publicaciones?view=publication&task=show&id=417>`__ (`BibTex <http://gsi.dit.upm.es/index.php/es/investigacion/publicaciones?controller=publications&task=export&format=bibtex&id=417>`__):
|
||||
* Interfacing with the user: parameter validation, error handling.
|
||||
* Formatting: JSON-LD, Turtle/n-triples input and output, or simple text input
|
||||
* Linked Data: senpy results are semantically annotated, using a series of well established vocabularies, and sane default URIs.
|
||||
* User interface: a web UI where users can explore your service and test different settings
|
||||
* A client to interact with the service. Currently only available in Python.
|
||||
|
||||
.. code-block:: text
|
||||
Sharing your sentiment analysis with the world has never been easier!
|
||||
|
||||
Senpy for service developers
|
||||
============================
|
||||
|
||||
Check out the :doc:`plugins` if you have developed an analysis algorithm (e.g. sentiment analysis) and you want to publish it as a service.
|
||||
|
||||
Senpy for end users
|
||||
===================
|
||||
|
||||
All services built using senpy share a common interface.
|
||||
This allows users to use them (almost) interchangeably.
|
||||
Senpy comes with a :ref:`built-in client`.
|
||||
|
||||
Sánchez-Rada, J. F., Iglesias, C. A., Corcuera, I., & Araque, Ó. (2016, October).
|
||||
Senpy: A Pragmatic Linked Sentiment Analysis Framework.
|
||||
In Data Science and Advanced Analytics (DSAA),
|
||||
2016 IEEE International Conference on (pp. 735-742). IEEE.
|
||||
|
||||
.. toctree::
|
||||
specifications
|
||||
architecture
|
||||
:caption: Interested? Check out senpy's:
|
||||
|
||||
architecture
|
||||
|
||||
|
@ -1,20 +1,9 @@
|
||||
Usage
|
||||
-----
|
||||
|
||||
The easiest and recommended way is to just use the command-line tool to load your plugins and launch the server.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
senpy
|
||||
|
||||
Or, alternatively:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
python -m senpy
|
||||
|
||||
|
||||
This will create a server with any modules found in the current path.
|
||||
First of all, you need to install the package.
|
||||
See :doc:`installation` for installation instructions.
|
||||
Once installed, the `senpy` command should be available.
|
||||
|
||||
Useful command-line options
|
||||
===========================
|
||||
@ -23,19 +12,19 @@ In case you want to load modules, which are located in different folders under t
|
||||
|
||||
.. code:: bash
|
||||
|
||||
python -m senpy -f .
|
||||
senpy -f .
|
||||
|
||||
The default port used by senpy is 5000, but you can change it using the option `--port`.
|
||||
The default port used by senpy is 5000, but you can change it using the `--port` flag.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
python -m senpy --port 8080
|
||||
senpy --port 8080
|
||||
|
||||
Also, the host can be changed where senpy is deployed. The default value is `127.0.0.1`.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
python -m senpy --host 0.0.0.0
|
||||
senpy --host 0.0.0.0
|
||||
|
||||
For more options, see the `--help` page.
|
||||
|
||||
@ -48,15 +37,19 @@ Once the server is launched, there is a basic endpoint in the server, which prov
|
||||
|
||||
In case you want to know the different endpoints of the server, there is more information available in the NIF API section_.
|
||||
|
||||
CLI
|
||||
===
|
||||
CLI demo
|
||||
========
|
||||
|
||||
This video shows how to use senpy through command-line tool.
|
||||
|
||||
https://asciinema.org/a/9uwef1ghkjk062cw2t4mhzpyk
|
||||
.. image:: https://asciinema.org/a/9uwef1ghkjk062cw2t4mhzpyk.png
|
||||
:width: 100%
|
||||
:target: https://asciinema.org/a/9uwef1ghkjk062cw2t4mhzpyk
|
||||
:alt: CLI demo
|
||||
|
||||
Request example in python
|
||||
=========================
|
||||
|
||||
Built-in client
|
||||
===============
|
||||
|
||||
This example shows how to make a request to the default plugin:
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
Specifications
|
||||
==============
|
||||
Vocabularies and model
|
||||
======================
|
||||
|
||||
The model used in Senpy is based on the following specifications:
|
||||
The model used in Senpy is based on the following vocabularies:
|
||||
|
||||
* Marl, a vocabulary designed to annotate and describe subjetive opinions expressed on the web or in information systems.
|
||||
* Onyx, which is built one the same principles as Marl to annotate and describe emotions, and provides interoperability with Emotion Markup Language.
|
Loading…
Reference in New Issue
Block a user