First commit

J. Fernando Sánchez 1 year ago
commit 70779fa0ad
  1. 5
  2. 201
  3. 6
  4. 91
  5. 0
  6. 4
  7. 57
  8. 1
  9. 227
  10. 79
  11. 444
  12. 89
  13. 87

.gitignore vendored

@ -0,0 +1,5 @@

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
implied, including, without limitation, any warranties or conditions
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2016 Jesús Manuel Sánchez Martínez - Grupo de Sistemas Inteligentes (GSI) DIT UPM
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
See the License for the specific language governing permissions and
limitations under the License.

@ -0,0 +1,6 @@
include requirements.txt
include test-requirements.txt
graft tsih
global-exclude __pycache__
global-exclude *.py[co]

@ -0,0 +1,91 @@
# TSIH - A dict with a HISTory
`tsih.Dict` is a type of `UserDict` that allows versioning, backed up by a `sqlite3` database.
* Transparent operation
* Only changes (deltas) are stored.
* Forward-filling of values. A value is reused in future versions, unless it changes.
* Auto-versioning option (off by default), to produce a new version every time a value change happens.
* Ability to store related entries as separate dictionaries. Each `tsih.Dict` has a `dict_name` that is used in the database to identify the dictionary.
* Tuple-based indexing. Get and set values by `dict_name`, `version` and `key`.
## Usage and examples
`tsih.Dict` objects can be used just like regular dictionaries:
>>> from tsih import Dict
>>> a = Dict()
>>> a['test'] = True
>>> a
{'test': True}
>>> a.get('missing', 5)
>>> a['missing']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'missing'
But at any point, new versions can be produced:
>>> a.version
>>> a['start'] = 'now'
>>> a
{'test': True, 'start': 'now'}
>>> a.version = 1
>>> a['start'] = 'one version ago'
>>> a
{'test': True, 'start': 'one version ago'}
Previous values can be accessed using tuple keys, i.e., (version, key):
>>> a[(0, 'start')]
>>> a[(1, 'start')]
'one version ago'
Each version only "records" changes, but later versions (even if they don't exist yet) inherit unchanged values from the previous ones:
>>> a[(5, 'start')]
'one version ago'
>>> a.version = 5
>>> # Until the value is changed
>>> a['start'] = '4 versions ago'
>>> a[(5, 'start')]
'4 versions ago'
You can access *every* state of the Dict using `None` in place of the version and/or the key.
In that case, we will get an iterator, which we can turn into a list explicitly or with the `.value` method.
For example, here we get all the changes to the `start` key:
>>> a[(None, 'start')].value() #
[(0.0, 'now'), (1.0, 'one version ago'), (5.0, '4 versions ago')]
Similarly, to get the keys and values at a specific version:
>>> list(a[(0, None)])
[('start', 'now'), ('test', True)]
Or, we can combine both to get the keys and values at every version:
>>> a[(None, None)].value()
[(0.0, 'start', 'now'), (1.0, 'start', 'one version ago'), (5.0, 'start', '4 versions ago'), (0.0, 'test', True), (1.0, 'test', True), (5.0, 'test', True)]
## Use cases
Tsih was originally part of the [Soil]( Agent-Based Social Simulation framework, where both the environment and the agents need to keep track of state (i.e., attribute) changes.

@ -0,0 +1,4 @@
addopts = --verbose

@ -0,0 +1,57 @@
import os
import re
from setuptools import setup
from pathlib import Path
this_directory = Path(__file__).parent
long_description = (this_directory / "").read_text()
version = ""
with open(os.path.join('tsih', '')) as f:
version =
r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]',, re.MULTILINE
assert version
def parse_requirements(filename):
""" load requirements from a pip requirements file """
with open(filename, 'r') as f:
lineiter = list(line.strip() for line in f)
return [line for line in lineiter if line and not line.startswith("#")]
install_reqs = parse_requirements("requirements.txt")
test_reqs = parse_requirements("test-requirements.txt")
extras_require['all'] = [dep for package in extras_require.values() for dep in package]
packages=['tsih'], # this must be the same as the name above
description=("A lightweight library to store an object's history into a SQL database"),
author='J. Fernando Sanchez',
url='', # use the URL to the github repo
keywords=['history', 'sql', 'records'],
'Development Status :: 4 - Beta',
'Environment :: Console',
'Intended Audience :: Developers',
'License :: OSI Approved :: Apache Software License',
'Operating System :: MacOS :: MacOS X',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'Programming Language :: Python :: 3'],
setup_requires=['pytest-runner', ],

@ -0,0 +1,227 @@
from unittest import TestCase
import os
import shutil
from glob import glob
from tsih import *
from tsih import utils
ROOT = os.path.abspath(os.path.dirname(__file__))
DBROOT = os.path.join(ROOT, 'testdb')
class TestHistory(TestCase):
def setUp(self):
if not os.path.exists(DBROOT):
def tearDown(self):
if os.path.exists(DBROOT):
def test_history(self):
tuples = (
('a_0', 0, 'id', 'h'),
('a_0', 1, 'id', 'e'),
('a_0', 2, 'id', 'l'),
('a_0', 3, 'id', 'l'),
('a_0', 4, 'id', 'o'),
('a_1', 0, 'id', 'v'),
('a_1', 1, 'id', 'a'),
('a_1', 2, 'id', 'l'),
('a_1', 3, 'id', 'u'),
('a_1', 4, 'id', 'e'),
('env', 1, 'prob', 1),
('env', 3, 'prob', 2),
('env', 5, 'prob', 3),
('a_2', 7, 'finished', True),
h = History()
# assert h['env', 0, 'prob'] == 0
for i in range(1, 7):
assert h['env', i, 'prob'] == ((i-1)//2)+1
for i, k in zip(range(5), 'hello'):
assert h['a_0', i, 'id'] == k
for record, value in zip(h['a_0', None, 'id'], 'hello'):
t_step, val = record
assert val == value
for i, k in zip(range(5), 'value'):
assert h['a_1', i, 'id'] == k
for i in range(5, 8):
assert h['a_1', i, 'id'] == 'e'
for i in range(7):
assert h['a_2', i, 'finished'] == False
assert h['a_2', 7, 'finished']
def test_history_gen(self):
tuples = (
('a_1', 0, 'id', 'v'),
('a_1', 1, 'id', 'a'),
('a_1', 2, 'id', 'l'),
('a_1', 3, 'id', 'u'),
('a_1', 4, 'id', 'e'),
('env', 1, 'prob', 1),
('env', 2, 'prob', 2),
('env', 3, 'prob', 3),
('a_2', 7, 'finished', True),
h = History()
for t_step, key, value in h['env', None, None]:
assert t_step == value
assert key == 'prob'
records = list(h[None, 7, None])
assert len(records) == 3
for i in records:
agent_id, key, value = i
if agent_id == 'a_1':
assert key == 'id'
assert value == 'e'
elif agent_id == 'a_2':
assert key == 'finished'
assert value
assert key == 'prob'
assert value == 3
records = h['a_1', 7, None]
assert records['id'] == 'e'
def test_history_file(self):
History should be saved to a file
tuples = (
('a_1', 0, 'id', 'v'),
('a_1', 1, 'id', 'a'),
('a_1', 2, 'id', 'l'),
('a_1', 3, 'id', 'u'),
('a_1', 4, 'id', 'e'),
('env', 1, 'prob', 1),
('env', 2, 'prob', 2),
('env', 3, 'prob', 3),
('a_2', 7, 'finished', True),
db_path = os.path.join(DBROOT, 'test')
h = History(db_path=db_path)
assert os.path.exists(db_path)
# Recover the data
recovered = History(db_path=db_path)
assert recovered['a_1', 0, 'id'] == 'v'
assert recovered['a_1', 4, 'id'] == 'e'
# Using backup=True should create a backup copy, and initialize an empty history
newhistory = History(db_path=db_path, backup=True)
backuppaths = glob(db_path + '.backup*.sqlite')
assert len(backuppaths) == 1
backuppath = backuppaths[0]
assert newhistory.db_path == h.db_path
assert os.path.exists(backuppath)
assert len(newhistory[None, None, None]) == 0
def test_interpolation(self):
Values for a key are valid until a new value is introduced at a later version
tuples = (
('a_1', 0, 'id', 'a'),
('a_1', 4, 'id', 'b'),
db_path = os.path.join(DBROOT, 'test')
h = History(db_path=db_path)
assert os.path.exists(db_path)
assert h['a_1', 2, 'id'] == 'a'
# Recover the data
recovered = History(db_path=db_path)
assert recovered['a_1', 0, 'id'] == 'a'
assert recovered['a_1', 4, 'id'] == 'b'
assert recovered['a_1', 2, 'id'] == 'a'
def test_history_tuples(self):
The data recovered should be equal to the one recorded.
tuples = (
('a_1', 0, 'id', 'v'),
('a_1', 1, 'id', 'a'),
('a_1', 2, 'id', 'l'),
('a_1', 3, 'id', 'u'),
('a_1', 4, 'id', 'e'),
('env', 1, 'prob', 1),
('env', 2, 'prob', 2),
('env', 3, 'prob', 3),
('a_2', 7, 'finished', True),
h = History()
recovered = list(h.to_tuples())
assert recovered
for i in recovered:
assert i in tuples
def test_stats(self):
The data recovered should be equal to the one recorded.
tuples = (
('a_1', 0, 'id', 'v'),
('a_1', 1, 'id', 'a'),
('a_1', 2, 'id', 'l'),
('a_1', 3, 'id', 'u'),
('a_1', 4, 'id', 'e'),
('env', 1, 'prob', 1),
('env', 2, 'prob', 2),
('env', 3, 'prob', 3),
('a_2', 7, 'finished', True),
stat_tuples = [
{'num_infected': 5, 'runtime': 0.2},
{'num_infected': 5, 'runtime': 0.2},
{'new': '40'},
h = History()
for stat in stat_tuples:
recovered = h.get_stats()
assert recovered
assert recovered[0]['num_infected'] == 5
assert recovered[1]['runtime'] == 0.2
assert recovered[2]['new'] == '40'
def test_unflatten(self):
ex = {'count.neighbors.3': 4,
'count.times.2': 4,
'': 4,
'mean.neighbors': 3,
'mean.times': 2,
'': 4,
't_step': 2,
'trial_id': 'exporter_sim_trial_1605817956-4475424'}
res = utils.unflatten_dict(ex)
assert 'count' in res
assert all(x in res['count'] for x in ['times', 'total', 'neighbors'])
assert res['count']['times']['2'] == 4
assert 'mean' in res
assert all(x in res['mean'] for x in ['times', 'total', 'neighbors'])
assert 't_step' in res
assert 'trial_id' in res

@ -0,0 +1,79 @@
from unittest import TestCase
import os
import shutil
import pathlib
from tsih import Dict
ROOT = pathlib.Path(os.path.abspath(os.path.dirname(__file__)))
DBROOT = ROOT / 'testdb'
class TestTsih(TestCase):
def setUp(self):
if not os.path.exists(DBROOT):
def tearDown(self):
if os.path.exists(DBROOT):
def test_basic(self):
'''The data stored in each version should be retrievable'''
d = Dict()
d['text'] = 'hello'
d.version = 1
d['text'] = 'world'
assert d[(0, 'text')] == 'hello'
assert d[(1, 'text')] == 'world'
def test_auto_version(self):
'''Changing a value when `auto_version` is on should produce a new version automatically'''
d = Dict(version=0, auto_version=True)
d['text'] = 'hello'
d['text'] = 'world'
assert d[(1, 'text')] == 'hello'
assert d[(2, 'text')] == 'world'
def test_serialized(self):
Using the same database should enable retrieving the values of a previous
d = Dict(name='robot', db_path=DBROOT / 'basic.sqlite')
d['text'] = 'hello'
d.version = 25
d['text'] = 'world'
assert d[(0, 'text')] == 'hello'
assert d[(24, 'text')] == 'hello'
assert d[(25, 'text')] == 'world'
del d
recovered = Dict(name='robot', db_path=DBROOT / 'basic.sqlite')
assert recovered[(0, 'text')] == 'hello'
assert recovered[(24, 'text')] == 'hello'
assert recovered[(25, 'text')] == 'world'
def test_custom(self):
Inheriting from the Dict class should not change the behavior.
class CustomDict(Dict):
def __init__(self, *args, **kwargs):
super().__init__(*args, db_path=DBROOT / 'custom.sqlite', **kwargs)
d = CustomDict(name='robot')
d['text'] = 'hello'
d.version = 25
d['text'] = 'world'
assert d[(0, 'text')] == 'hello'
assert d[(24, 'text')] == 'hello'
assert d[(25, 'text')] == 'world'
del d
recovered = CustomDict(name='robot')
assert recovered[(0, 'text')] == 'hello'
assert recovered[(24, 'text')] == 'hello'
assert recovered[(26, 'text')] == 'world'

@ -0,0 +1,444 @@
import time
import os
import pandas as pd
import sqlite3
import copy
import uuid
import logging
import pathlib
import tempfile
logger = logging.getLogger(__name__)
__version__ = '0.1.4'
from collections import UserDict, namedtuple
from . import serialization
from .utils import open_or_reuse, unflatten_dict
class Dict(UserDict):
def __init__(self, name=None, db_name=None, db_path=None, backup=False, readonly=False, version=0, auto_version=False):
self.dict_name = name or 'anonymous_{}'.format(uuid.uuid1())
self._history = History(name=db_name, db_path=db_path, backup=backup, readonly=readonly)
self.version = version
self.auto_version = auto_version
def __delitem__(self, key):
if isinstance(key, tuple):
raise ValueError('Cannot remove past entries')
if self.auto_version:
self.version += 1[key] = None
def __getitem__(self, key):
if isinstance(key, tuple):
if len(key) < 3:
key = tuple([self.dict_name] + list(key))
return self._history[key]
def __del__(self):
def __setcurrent(self, key, value):
if self.auto_version:
self.version += 1[key] = value
def __setitem__(self, key, value):
if not isinstance(key, tuple):
self.__setcurrent(key, value)
if len(key) < 3:
key = tuple([self.dict_name] + list(key))
k = history.Key(*key)
if k.t_step == version and k.dict_id == self.dict_name:
return self.__setcurrent(key.key, key.value)
class History:
Store and retrieve values from a sqlite database.
def __init__(self, name=None, db_path=None, backup=False, readonly=False):
if readonly and (not os.path.exists(db_path)):
raise Exception('The DB file does not exist. Cannot open in read-only mode')
self._db = None
self._temp = db_path is None
self._stats_columns = None
self.readonly = readonly
if self._temp:
if not name:
name = time.time()
# The file will be deleted as soon as it's closed
# Normally, that will be on destruction
db_path = tempfile.NamedTemporaryFile(suffix='{}.sqlite'.format(name)).name
if backup and os.path.exists(db_path):
newname = db_path + '.backup{}.sqlite'.format(time.time())
os.rename(db_path, newname)
self.db_path = db_path
self.db = db_path
self._dtypes = {}
self._tups = []
if self.readonly:
with self.db:
logger.debug('Creating database {}'.format(self.db_path))
self.db.execute('''CREATE TABLE IF NOT EXISTS history (dict_id text, t_step real, key text, value text)''')
self.db.execute('''CREATE TABLE IF NOT EXISTS value_types (key text, value_type text)''')
self.db.execute('''CREATE TABLE IF NOT EXISTS stats (stat_id text)''')
self.db.execute('''CREATE UNIQUE INDEX IF NOT EXISTS idx_history ON history (dict_id, t_step, key);''')
def db(self):
except (sqlite3.ProgrammingError, AttributeError):
self.db = None # Reset the database
return self._db
def db(self, db_path=None):
db_path = db_path or self.db_path
if isinstance(db_path, str) or isinstance(db_path, pathlib.Path):
logger.debug('Connecting to database {}'.format(db_path))
self._db = sqlite3.connect(db_path)
self._db.row_factory = sqlite3.Row
self._db = db_path
def __del__(self):
def close(self):
def _close(self):
if self._db is None:
self._db = None
def save_stats(self, stat):
if self.readonly:
print('DB in readonly mode')
if not stat:
with self.db:
if not self._stats_columns:
self._stats_columns = list(c['name'] for c in self.db.execute('PRAGMA table_info(stats)'))
for column, value in stat.items():
if column in self._stats_columns:
dtype = 'text'
if not isinstance(value, str):
dtype = 'real'
dtype = 'int'
except (ValueError, OverflowError):
self.db.execute('ALTER TABLE stats ADD "{}" "{}"'.format(column, dtype))
columns = ", ".join(map(lambda x: '"{}"'.format(x), stat.keys()))
values = ", ".join(['"{0}"'.format(col) for col in stat.values()])
query = "INSERT INTO stats ({columns}) VALUES ({values})".format(
def get_stats(self, unflatten=True):
rows = self.db.execute("select * from stats").fetchall()
res = []
for row in rows:
d = {}
for k in row.keys():
if row[k] is None:
d[k] = row[k]
if unflatten:
d = unflatten_dict(d)
return res
def dtypes(self):
return {k:v[0] for k, v in self._dtypes.items()}
def save_tuples(self, tuples):
Save a series of tuples, converting them to records if necessary
self.save_records(Record(*tup) for tup in tuples)
def save_records(self, records):
Save a collection of records
for record in records:
if not isinstance(record, Record):
record = Record(*record)
def save_record(self, dict_id, t_step, key, value):
Save a collection of records to the database.
Database writes are cached.
if self.readonly:
raise Exception('DB in readonly mode')
if key not in self._dtypes:
if key not in self._dtypes:
name =
serializer = serialization.serializer(name)
deserializer = serialization.deserializer(name)
self._dtypes[key] = (name, serializer, deserializer)
with self.db:
self.db.execute("replace into value_types (key, value_type) values (?, ?)", (key, name))
value = self._dtypes[key][1](value)
def flush_cache(self):
Use a cache to save state changes to avoid opening a session for every change.
The cache will be flushed at the end of the simulation, and when history is accessed.
if self.readonly:
raise Exception('DB in readonly mode')
logger.debug('Flushing cache {}'.format(self.db_path))
with self.db:
self.db.executemany("replace into history(dict_id, t_step, key, value) values (?, ?, ?, ?)", self._tups)
def to_tuples(self):
with self.db:
res = self.db.execute("select dict_id, t_step, key, value from history ").fetchall()
for r in res:
dict_id, t_step, key, value = r
if key not in self._dtypes:
if key not in self._dtypes:
raise ValueError("Unknown datatype for {} and {}".format(key, value))
value = self._dtypes[key][2](value)
yield dict_id, t_step, key, value
def _read_types(self):
with self.db:
res = self.db.execute("select key, value_type from value_types ").fetchall()
for k, v in res:
serializer = serialization.serializer(v)
deserializer = serialization.deserializer(v)
self._dtypes[k] = (v, serializer, deserializer)
def __getitem__(self, key):
key = Key(*key)
dict_ids = [key.dict_id] if key.dict_id is not None else []
t_steps = [key.t_step] if key.t_step is not None else []
keys = [key.key] if key.key is not None else []
df = self.read_sql(dict_ids=dict_ids,
r = Records(df, filter=key, dtypes=self._dtypes)
if r.resolved:
return r.value()
return r
def read_sql(self, keys=None, dict_ids=None, not_dict_ids=None, t_steps=None, convert_types=False, limit=-1):
def escape_and_join(v):
if v is None:
return ",".join(map(lambda x: "\'{}\'".format(x), v))
filters = [("key in ({})".format(escape_and_join(keys)), keys),
("dict_id in ({})".format(escape_and_join(dict_ids)), dict_ids),
("dict_id not in ({})".format(escape_and_join(not_dict_ids)), not_dict_ids)
filters = list(k[0] for k in filters if k[1])
last_df = None
if t_steps:
# Convert negative indices into positive
if any(x<0 for x in t_steps):
max_t = int(self.db.execute("select max(t_step) from history").fetchone()[0])
t_steps = [t if t>0 else max_t+1+t for t in t_steps]
# We will be doing ffill interpolation, so we need to look for
# the last value before the minimum step in the query
min_step = min(t_steps)
last_filters = ['t_step < {}'.format(min_step),]
last_filters = last_filters + filters
condition = ' and '.join(last_filters)
last_query = '''
select h1.*
from history h1
inner join (
select dict_id, key, max(t_step) as t_step
from history
where {condition}
group by dict_id, key
) h2
on h1.dict_id = h2.dict_id and
h1.key = h2.key and
h1.t_step = h2.t_step
last_df = pd.read_sql_query(last_query, self.db)
filters.append("t_step >= '{}' and t_step <= '{}'".format(min_step, max(t_steps)))
condition = ''
if filters:
condition = 'where {} '.format(' and '.join(filters))
query = 'select * from history {} limit {}'.format(condition, limit)
df = pd.read_sql_query(query, self.db)
if last_df is not None:
df = pd.concat([df, last_df])
df_p = df.pivot_table(values='value', index=['t_step'],
columns=['key', 'dict_id'],
for k, v in self._dtypes.items():
if k in df_p:
dtype, _, deserial = v
df_p[k] = df_p[k].fillna(method='ffill').astype(dtype)
except (TypeError, ValueError):
# Avoid forward-filling unknown/incompatible types
if t_steps:
df_p = df_p.reindex(t_steps, method='ffill')
return df_p.ffill()
def __getstate__(self):
state = dict(**self.__dict__)
del state['_db']
del state['_dtypes']
return state
def __setstate__(self, state):
self.__dict__ = state
self._dtypes = {}
self._db = None
def dump(self, f):
for line in open_or_reuse(self.db_path, 'rb'):
class Records():
def __init__(self, df, filter=None, dtypes=None):
if not filter:
filter = Key(dict_id=None,
self._df = df
self._filter = filter
self.dtypes = dtypes or {}
def mask(self, tup):
res = ()
for i, k in zip(tup[:-1], self._filter):
if k is None:
res = res + (i,)
res = res + (tup[-1],)
return res
def filter(self, newKey):
f = list(self._filter)
for ix, i in enumerate(f):
if i is None:
f[ix] = newKey
self._filter = Key(*f)
def resolved(self):
return sum(1 for i in self._filter if i is not None) == 3
def __iter__(self):
for column, series in self._df.iteritems():
key, dict_id = column
for t_step, value in series.iteritems():
r = Record(t_step=t_step,
yield self.mask(r)
def value(self):
if self.resolved:
f = self._filter
i = self._df[f.key][str(f.dict_id)]
ix = i.index.get_loc(f.t_step, method='ffill')
return i.iloc[ix]
except KeyError as ex:
return self.dtypes[f.key][2]()
return list(self)
def df(self):
return self._df
def __getitem__(self, k):
n = copy.copy(self)
if n.resolved:
return n.value()
return n
def __len__(self):
return len(self._df)
def __str__(self):
if self.resolved:
return str(self.value())
return '<Records for [{}]>'.format(self._filter)
Key = namedtuple('Key', ['dict_id', 't_step', 'key'])
Record = namedtuple('Record', 'dict_id t_step key value')
Stat = namedtuple('Stat', 'stat_id text')

@ -0,0 +1,89 @@
import os
import logging
import ast
import sys
import importlib
from itertools import product, chain
logger = logging.getLogger('soil')
builtins = importlib.import_module('builtins')
def name(value, known_modules=[]):
'''Return a name that can be imported, to serialize/deserialize an object'''
if value is None:
return 'None'
if not isinstance(value, type): # Get the class name first
value = type(value)
tname = value.__name__
if hasattr(builtins, tname):
return tname
modname = value.__module__
if modname == '__main__':
return tname
if known_modules and modname in known_modules:
return tname
for kmod in known_modules:
if not kmod:
module = importlib.import_module(kmod)
if hasattr(module, tname):
return tname
return '{}.{}'.format(modname, tname)
def serializer(type_):
if type_ != 'str' and hasattr(builtins, type_):
return repr
return lambda x: x
def serialize(v, known_modules=[]):
'''Get a text representation of an object.'''
tname = name(v, known_modules=known_modules)
func = serializer(tname)
return func(v), tname
def deserializer(type_, known_modules=[]):
if type(type_) != str: # Already deserialized
return type_
if type_ == 'str':
return lambda x='': x
if type_ == 'None':
return lambda x=None: None
if hasattr(builtins, type_): # Check if it's a builtin type
cls = getattr(builtins, type_)
return lambda x=None: ast.literal_eval(x) if x is not None else cls()
# Otherwise, see if we can find the module and the class
modules = known_modules or []
options = []
for mod in modules:
if mod:
options.append((mod, type_))
if '.' in type_: # Fully qualified module
module, type_ = type_.rsplit(".", 1)
options.append ((module, type_))
errors = []
for modname, tname in options:
module = importlib.import_module(modname)
cls = getattr(module, tname)
return getattr(cls, 'deserialize', cls)
except (ImportError, AttributeError) as ex:
errors.append((modname, tname, ex))
raise Exception('Could not find type {}. Tried: {}'.format(type_, errors))
def deserialize(type_, value=None, **kwargs):
'''Get an object from a text representation'''
if not isinstance(type_, str):
return type_
des = deserializer(type_, **kwargs)
if value is None:
return des
return des(value)

@ -0,0 +1,87 @@
import logging
import time
import os
from shutil import copyfile
from contextlib import contextmanager
logger = logging.getLogger('soil')
# logging.basicConfig()
# logger.setLevel(logging.INFO)
def timer(name='task', pre="",, to_object=None):
start = time.time()
function('{}Starting {} at {}.'.format(pre, name,
time.strftime("%X", time.gmtime(start))))
yield start
end = time.time()
function('{}Finished {} at {} in {} seconds'.format(pre, name,
time.strftime("%X", time.gmtime(end)),
if to_object:
to_object.start = start
to_object.end = end
def safe_open(path, mode='r', backup=True, **kwargs):
outdir = os.path.dirname(path)
if outdir and not os.path.exists(outdir):
if backup and 'w' in mode and os.path.exists(path):
creation = os.path.getctime(path)
stamp = time.strftime('%Y-%m-%d_%H.%M.%S', time.localtime(creation))
backup_dir = os.path.join(outdir, 'backup')
if not os.path.exists(backup_dir):
newpath = os.path.join(backup_dir, '{}@{}'.format(os.path.basename(path),
copyfile(path, newpath)
return open(path, mode=mode, **kwargs)
def open_or_reuse(f, *args, **kwargs):
return safe_open(f, *args, **kwargs)
except (AttributeError, TypeError):
return f
def flatten_dict(d):
if not isinstance(d, dict):
return d
return dict(_flatten_dict(d))
def _flatten_dict(d, prefix=''):
if not isinstance(d, dict):
# print('END:', prefix, d)
yield prefix, d
if prefix:
prefix = prefix + '.'
for k, v in d.items():
# print(k, v)
res = list(_flatten_dict(v, prefix='{}{}'.format(prefix, k)))
# print('RES:', res)
yield from res
def unflatten_dict(d):
out = {}
for k, v in d.items():
target = out
if not isinstance(k, str):
target[k] = v
tokens = k.split('.')
if len(tokens) < 2:
target[k] = v
for token in tokens[:-1]:
if token not in target:
target[token] = {}
target = target[token]
target[tokens[-1]] = v
return out