1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-13 06:52:28 +00:00
soil/soil.py
2016-04-13 18:45:19 +02:00

68 lines
1.9 KiB
Python

from models import *
from nxsim import NetworkSimulation
from nxsim import BaseLoggingAgent
import networkx as nx
import settings
import models
import math
import json
settings.init() # Loads all the data from settings
models.init() # Loads the models and network variables
####################
# Network creation #
####################
if settings.network_type == 0:
G = nx.complete_graph(settings.number_of_nodes)
if settings.network_type == 1:
G = nx.barabasi_albert_graph(settings.number_of_nodes,3)
if settings.network_type == 2:
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
# More types of networks can be added here
##############
# Simulation #
##############
sim = NetworkSimulation(topology=G, states=init_states, agent_type=BigMarketModel,
max_time=settings.max_time, num_trials=settings.num_trials, logging_interval=1.0)
sim.run_simulation()
###########
# Results #
###########
trial = BaseLoggingAgent.open_trial_state_history(dir_path='sim_01', trial_id=0)
status_census = [sum([1 for node_id, state in g.items() if state['id'] == 1]) for t,g in trial.items()]
#################
# Visualization #
#################
for x in range(0, settings.number_of_nodes):
for empresa in models.networkStatus["agente_%s"%x]:
emotionStatusAux=[]
for tiempo in models.networkStatus["agente_%s"%x][empresa]:
prec = 2
output = math.floor(models.networkStatus["agente_%s"%x][empresa][tiempo] * (10 ** prec)) / (10 ** prec) #Para tener 2 decimales solo
emotionStatusAux.append((output,tiempo,None))
attributes = {}
attributes[empresa] = emotionStatusAux
G.add_node(x, attributes)
print("Done!")
with open('data.txt', 'w') as outfile:
json.dump(models.networkStatus, outfile, sort_keys=True, indent=4, separators=(',', ': '))
nx.write_gexf(G,"test.gexf", version="1.2draft")