mirror of
https://github.com/gsi-upm/soil
synced 2024-12-23 00:28:11 +00:00
210 lines
15 KiB
HTML
210 lines
15 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
|
|
|
|
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
|
|
|
<title>Developing new models — Soil 0.1 documentation</title>
|
|
|
|
<link rel="stylesheet" href="_static/alabaster.css" type="text/css" />
|
|
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
|
|
|
|
<script type="text/javascript">
|
|
var DOCUMENTATION_OPTIONS = {
|
|
URL_ROOT: './',
|
|
VERSION: '0.1',
|
|
COLLAPSE_INDEX: false,
|
|
FILE_SUFFIX: '.html',
|
|
HAS_SOURCE: true,
|
|
SOURCELINK_SUFFIX: '.txt'
|
|
};
|
|
</script>
|
|
<script type="text/javascript" src="_static/jquery.js"></script>
|
|
<script type="text/javascript" src="_static/underscore.js"></script>
|
|
<script type="text/javascript" src="_static/doctools.js"></script>
|
|
<link rel="index" title="Index" href="genindex.html" />
|
|
<link rel="search" title="Search" href="search.html" />
|
|
<link rel="prev" title="Usage" href="usage.html" />
|
|
|
|
<link rel="stylesheet" href="_static/custom.css" type="text/css" />
|
|
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
|
|
|
|
</head>
|
|
<body role="document">
|
|
|
|
|
|
<div class="document">
|
|
<div class="documentwrapper">
|
|
<div class="bodywrapper">
|
|
<div class="body" role="main">
|
|
|
|
<div class="section" id="developing-new-models">
|
|
<h1>Developing new models<a class="headerlink" href="#developing-new-models" title="Permalink to this headline">¶</a></h1>
|
|
<p>This document describes how to develop a new analysis model.</p>
|
|
<div class="section" id="what-is-a-model">
|
|
<h2>What is a model?<a class="headerlink" href="#what-is-a-model" title="Permalink to this headline">¶</a></h2>
|
|
<p>A model defines the behaviour of the agents with a view to assessing their effects on the system as a whole.
|
|
In practice, a model consists of at least two parts:</p>
|
|
<ul class="simple">
|
|
<li>Python module: the actual code that describes the behaviour.</li>
|
|
<li>Setting up the variables in the Simulation Settings JSON file.</li>
|
|
</ul>
|
|
<p>This separation allows us to run the simulation with different agents.</p>
|
|
</div>
|
|
<div class="section" id="models-code">
|
|
<h2>Models Code<a class="headerlink" href="#models-code" title="Permalink to this headline">¶</a></h2>
|
|
<p>All the models are imported to the main file. The initialization look like this:</p>
|
|
<div class="code python highlight-default"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">settings</span>
|
|
|
|
<span class="n">networkStatus</span> <span class="o">=</span> <span class="p">{}</span> <span class="c1"># Dict that will contain the status of every agent in the network</span>
|
|
|
|
<span class="n">sentimentCorrelationNodeArray</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">settings</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">):</span>
|
|
<span class="n">sentimentCorrelationNodeArray</span><span class="o">.</span><span class="n">append</span><span class="p">({</span><span class="s1">'id'</span><span class="p">:</span> <span class="n">x</span><span class="p">})</span>
|
|
<span class="c1"># Initialize agent states. Let's assume everyone is normal.</span>
|
|
<span class="n">init_states</span> <span class="o">=</span> <span class="p">[{</span><span class="s1">'id'</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="p">}</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">settings</span><span class="o">.</span><span class="n">number_of_nodes</span><span class="p">)]</span>
|
|
<span class="c1"># add keys as as necessary, but "id" must always refer to that state category</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>A new model have to inherit the BaseBehaviour class which is in the same module.
|
|
There are two basics methods:</p>
|
|
<ul class="simple">
|
|
<li>__init__</li>
|
|
<li>step: used to define the behaviour over time.</li>
|
|
</ul>
|
|
</div>
|
|
<div class="section" id="variable-initialization">
|
|
<h2>Variable Initialization<a class="headerlink" href="#variable-initialization" title="Permalink to this headline">¶</a></h2>
|
|
<p>The different parameters of the model have to be initialize in the Simulation Settings JSON file which will be
|
|
passed as a parameter to the simulation.</p>
|
|
<div class="code json highlight-default"><div class="highlight"><pre><span></span><span class="p">{</span>
|
|
<span class="s2">"agent"</span><span class="p">:</span> <span class="p">[</span><span class="s2">"SISaModel"</span><span class="p">,</span><span class="s2">"ControlModelM2"</span><span class="p">],</span>
|
|
|
|
<span class="s2">"neutral_discontent_spon_prob"</span><span class="p">:</span> <span class="mf">0.04</span><span class="p">,</span>
|
|
<span class="s2">"neutral_discontent_infected_prob"</span><span class="p">:</span> <span class="mf">0.04</span><span class="p">,</span>
|
|
<span class="s2">"neutral_content_spon_prob"</span><span class="p">:</span> <span class="mf">0.18</span><span class="p">,</span>
|
|
<span class="s2">"neutral_content_infected_prob"</span><span class="p">:</span> <span class="mf">0.02</span><span class="p">,</span>
|
|
|
|
<span class="s2">"discontent_neutral"</span><span class="p">:</span> <span class="mf">0.13</span><span class="p">,</span>
|
|
<span class="s2">"discontent_content"</span><span class="p">:</span> <span class="mf">0.07</span><span class="p">,</span>
|
|
<span class="s2">"variance_d_c"</span><span class="p">:</span> <span class="mf">0.02</span><span class="p">,</span>
|
|
|
|
<span class="s2">"content_discontent"</span><span class="p">:</span> <span class="mf">0.009</span><span class="p">,</span>
|
|
<span class="s2">"variance_c_d"</span><span class="p">:</span> <span class="mf">0.003</span><span class="p">,</span>
|
|
<span class="s2">"content_neutral"</span><span class="p">:</span> <span class="mf">0.088</span><span class="p">,</span>
|
|
|
|
<span class="s2">"standard_variance"</span><span class="p">:</span> <span class="mf">0.055</span><span class="p">,</span>
|
|
|
|
|
|
<span class="s2">"prob_neutral_making_denier"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
|
|
|
<span class="s2">"prob_infect"</span><span class="p">:</span> <span class="mf">0.075</span><span class="p">,</span>
|
|
|
|
<span class="s2">"prob_cured_healing_infected"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
|
<span class="s2">"prob_cured_vaccinate_neutral"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
|
|
|
<span class="s2">"prob_vaccinated_healing_infected"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
|
<span class="s2">"prob_vaccinated_vaccinate_neutral"</span><span class="p">:</span> <span class="mf">0.035</span><span class="p">,</span>
|
|
<span class="s2">"prob_generate_anti_rumor"</span><span class="p">:</span> <span class="mf">0.035</span>
|
|
<span class="p">}</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>In this file you will also define the models you are going to simulate. You can simulate as many models as you want.
|
|
The simulation returns one result for each model. For the usage, see <a class="reference internal" href="usage.html"><span class="doc">Usage</span></a>.</p>
|
|
</div>
|
|
<div class="section" id="example-model">
|
|
<h2>Example Model<a class="headerlink" href="#example-model" title="Permalink to this headline">¶</a></h2>
|
|
<p>In this section, we will implement a Sentiment Correlation Model.</p>
|
|
<p>The class would look like this:</p>
|
|
<div class="code python highlight-default"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">..BaseBehaviour</span> <span class="k">import</span> <span class="o">*</span>
|
|
<span class="kn">from</span> <span class="nn">..</span> <span class="k">import</span> <span class="n">sentimentCorrelationNodeArray</span>
|
|
|
|
<span class="k">class</span> <span class="nc">SentimentCorrelationModel</span><span class="p">(</span><span class="n">BaseBehaviour</span><span class="p">):</span>
|
|
|
|
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">environment</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">agent_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">state</span><span class="o">=</span><span class="p">()):</span>
|
|
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="n">environment</span><span class="o">=</span><span class="n">environment</span><span class="p">,</span> <span class="n">agent_id</span><span class="o">=</span><span class="n">agent_id</span><span class="p">,</span> <span class="n">state</span><span class="o">=</span><span class="n">state</span><span class="p">)</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">outside_effects_prob</span> <span class="o">=</span> <span class="n">environment</span><span class="o">.</span><span class="n">environment_params</span><span class="p">[</span><span class="s1">'outside_effects_prob'</span><span class="p">]</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">anger_prob</span> <span class="o">=</span> <span class="n">environment</span><span class="o">.</span><span class="n">environment_params</span><span class="p">[</span><span class="s1">'anger_prob'</span><span class="p">]</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">joy_prob</span> <span class="o">=</span> <span class="n">environment</span><span class="o">.</span><span class="n">environment_params</span><span class="p">[</span><span class="s1">'joy_prob'</span><span class="p">]</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">sadness_prob</span> <span class="o">=</span> <span class="n">environment</span><span class="o">.</span><span class="n">environment_params</span><span class="p">[</span><span class="s1">'sadness_prob'</span><span class="p">]</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">disgust_prob</span> <span class="o">=</span> <span class="n">environment</span><span class="o">.</span><span class="n">environment_params</span><span class="p">[</span><span class="s1">'disgust_prob'</span><span class="p">]</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">time_awareness</span> <span class="o">=</span> <span class="p">[]</span>
|
|
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">):</span> <span class="c1"># In this model we have 4 sentiments</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">time_awareness</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust</span>
|
|
<span class="n">sentimentCorrelationNodeArray</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">id</span><span class="p">][</span><span class="bp">self</span><span class="o">.</span><span class="n">env</span><span class="o">.</span><span class="n">now</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span>
|
|
|
|
<span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">now</span><span class="p">):</span>
|
|
<span class="bp">self</span><span class="o">.</span><span class="n">behaviour</span><span class="p">()</span> <span class="c1"># Method which define the behaviour</span>
|
|
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">step</span><span class="p">(</span><span class="n">now</span><span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The variables will be modified by the user, so you have to include them in the Simulation Settings JSON file.</p>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
|
<div class="sphinxsidebarwrapper">
|
|
<h3><a href="index.html">Table Of Contents</a></h3>
|
|
<ul>
|
|
<li><a class="reference internal" href="#">Developing new models</a><ul>
|
|
<li><a class="reference internal" href="#what-is-a-model">What is a model?</a></li>
|
|
<li><a class="reference internal" href="#models-code">Models Code</a></li>
|
|
<li><a class="reference internal" href="#variable-initialization">Variable Initialization</a></li>
|
|
<li><a class="reference internal" href="#example-model">Example Model</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
<div class="relations">
|
|
<h3>Related Topics</h3>
|
|
<ul>
|
|
<li><a href="index.html">Documentation overview</a><ul>
|
|
<li>Previous: <a href="usage.html" title="previous chapter">Usage</a></li>
|
|
</ul></li>
|
|
</ul>
|
|
</div>
|
|
<div role="note" aria-label="source link">
|
|
<h3>This Page</h3>
|
|
<ul class="this-page-menu">
|
|
<li><a href="_sources/models.rst.txt"
|
|
rel="nofollow">Show Source</a></li>
|
|
</ul>
|
|
</div>
|
|
<div id="searchbox" style="display: none" role="search">
|
|
<h3>Quick search</h3>
|
|
<form class="search" action="search.html" method="get">
|
|
<div><input type="text" name="q" /></div>
|
|
<div><input type="submit" value="Go" /></div>
|
|
<input type="hidden" name="check_keywords" value="yes" />
|
|
<input type="hidden" name="area" value="default" />
|
|
</form>
|
|
</div>
|
|
<script type="text/javascript">$('#searchbox').show(0);</script>
|
|
</div>
|
|
</div>
|
|
<div class="clearer"></div>
|
|
</div>
|
|
<div class="footer">
|
|
©2017, GSI.
|
|
|
|
|
|
|
Powered by <a href="http://sphinx-doc.org/">Sphinx 1.5.1</a>
|
|
& <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.9</a>
|
|
|
|
|
|
|
<a href="_sources/models.rst.txt"
|
|
rel="nofollow">Page source</a>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
</body>
|
|
</html> |