Compare commits
4 Commits
mesa
...
4e296e0cf1
Author | SHA1 | Date | |
---|---|---|---|
|
4e296e0cf1 | ||
|
302075a65d | ||
|
fba379c97c | ||
|
bf481f0f88 |
@@ -1,5 +1,7 @@
|
||||
**/soil_output
|
||||
.*
|
||||
**/.*
|
||||
**/__pycache__
|
||||
__pycache__
|
||||
*.pyc
|
||||
**/backup
|
||||
|
3
.gitignore
vendored
@@ -8,4 +8,5 @@ soil_output
|
||||
docs/_build*
|
||||
build/*
|
||||
dist/*
|
||||
prof
|
||||
prof
|
||||
backup
|
@@ -28,6 +28,13 @@ For an explanation of the general changes in version 1.0, please refer to the fi
|
||||
### Removed
|
||||
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.
|
||||
|
||||
## [0.20.8]
|
||||
### Changed
|
||||
* Tsih bumped to version 0.1.8
|
||||
### Fixed
|
||||
* Mentions to `id` in docs. It should be `state_id` now.
|
||||
* Fixed bug: environment agents were not being added to the simulation
|
||||
|
||||
## [0.20.7]
|
||||
### Changed
|
||||
* Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument)
|
||||
|
@@ -36,7 +36,6 @@ Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own
|
||||
* A command line interface (`soil`), to quickly run simulations with different parameters
|
||||
* An integrated debugger (`soil --debug`) with custom functions to print agent states and break at specific states
|
||||
|
||||
|
||||
## Mesa compatibility
|
||||
|
||||
SOIL has been redesigned to integrate well with [Mesa](https://github.com/projectmesa/mesa).
|
||||
|
BIN
docs/output_58_0.png
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
docs/output_58_1.png
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
docs/output_58_2.png
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
docs/output_58_3.png
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
docs/output_58_4.png
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
docs/output_60_0.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_60_1.png
Normal file
After Width: | Height: | Size: 37 KiB |
BIN
docs/output_60_2.png
Normal file
After Width: | Height: | Size: 34 KiB |
BIN
docs/output_60_3.png
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
docs/output_60_4.png
Normal file
After Width: | Height: | Size: 37 KiB |
BIN
docs/output_62_0.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_62_1.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_62_2.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_62_3.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_62_4.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_68_1.png
Normal file
After Width: | Height: | Size: 952 KiB |
BIN
docs/output_70_1.png
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
docs/output_77_0.png
Normal file
After Width: | Height: | Size: 45 KiB |
BIN
docs/output_81_0.png
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
docs/output_82_1.png
Normal file
After Width: | Height: | Size: 25 KiB |
BIN
docs/output_83_0.png
Normal file
After Width: | Height: | Size: 53 KiB |
@@ -650,6 +650,7 @@ Only one agent (0) will have a TV (in blue).
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
<p>20 rows × 2504 columns</p>
|
||||
</div>
|
||||
|
||||
|
||||
@@ -744,11 +745,13 @@ set\ ``overwrite=True``.
|
||||
prob_neighbor_spread = 0
|
||||
|
||||
|
||||
.. image:: output_58_3.png
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
|
||||
|
||||
.. image:: output_58_4.png
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
@@ -756,12 +759,15 @@ set\ ``overwrite=True``.
|
||||
generator = erdos_renyi_graph
|
||||
prob_neighbor_spread = 0.25
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
analysis.plot_all('soil_output/Spread_erdos*', analysis.get_count, 'state_id');
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
|
||||
|
||||
.. image:: output_60_0.png
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
@@ -788,6 +794,8 @@ set\ ``overwrite=True``.
|
||||
|
||||
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
|
||||
|
||||
The previous cells were using the ``count_value`` function for
|
||||
aggregation. There’s another function to plot numeral values:
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
@@ -1226,6 +1234,7 @@ keys in this case are the same as ``parameters``, and an additional one:
|
||||
|
||||
|
||||
|
||||
.. image:: output_81_0.png
|
||||
|
||||
.. raw:: html
|
||||
|
||||
@@ -1322,7 +1331,7 @@ dataframe, but there will be two more keys: the ``step`` and the
|
||||
``agent_id``. There will be a column per each agent reporter added to
|
||||
the model. In our case, there is only one: ``state_id``.
|
||||
|
||||
.. code:: ipython3
|
||||
<Axes: xlabel='t_step'>
|
||||
|
||||
res.agents.head()
|
||||
|
||||
|
@@ -2,13 +2,12 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2017-11-08T16:22:30.732107Z",
|
||||
"start_time": "2017-11-08T17:22:30.059855+01:00"
|
||||
},
|
||||
"collapsed": true
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -28,24 +27,16 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2017-11-08T16:22:35.580593Z",
|
||||
"start_time": "2017-11-08T17:22:35.542745+01:00"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Populating the interactive namespace from numpy and matplotlib\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pylab inline\n",
|
||||
"%matplotlib inline\n",
|
||||
"\n",
|
||||
"from soil import *"
|
||||
]
|
||||
@@ -66,7 +57,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2017-11-08T16:22:37.242327Z",
|
||||
@@ -86,7 +77,7 @@
|
||||
" prob_neighbor_spread: 0.0\r\n",
|
||||
" prob_tv_spread: 0.01\r\n",
|
||||
"interval: 1\r\n",
|
||||
"max_time: 30\r\n",
|
||||
"max_time: 300\r\n",
|
||||
"name: Sim_all_dumb\r\n",
|
||||
"network_agents:\r\n",
|
||||
"- agent_class: DumbViewer\r\n",
|
||||
@@ -110,7 +101,7 @@
|
||||
" prob_neighbor_spread: 0.0\r\n",
|
||||
" prob_tv_spread: 0.01\r\n",
|
||||
"interval: 1\r\n",
|
||||
"max_time: 30\r\n",
|
||||
"max_time: 300\r\n",
|
||||
"name: Sim_half_herd\r\n",
|
||||
"network_agents:\r\n",
|
||||
"- agent_class: DumbViewer\r\n",
|
||||
@@ -142,18 +133,18 @@
|
||||
" prob_neighbor_spread: 0.0\r\n",
|
||||
" prob_tv_spread: 0.01\r\n",
|
||||
"interval: 1\r\n",
|
||||
"max_time: 30\r\n",
|
||||
"max_time: 300\r\n",
|
||||
"name: Sim_all_herd\r\n",
|
||||
"network_agents:\r\n",
|
||||
"- agent_class: HerdViewer\r\n",
|
||||
" state:\r\n",
|
||||
" has_tv: true\r\n",
|
||||
" id: neutral\r\n",
|
||||
" state_id: neutral\r\n",
|
||||
" weight: 1\r\n",
|
||||
"- agent_class: HerdViewer\r\n",
|
||||
" state:\r\n",
|
||||
" has_tv: true\r\n",
|
||||
" id: neutral\r\n",
|
||||
" state_id: neutral\r\n",
|
||||
" weight: 1\r\n",
|
||||
"network_params:\r\n",
|
||||
" generator: barabasi_albert_graph\r\n",
|
||||
@@ -169,13 +160,13 @@
|
||||
" prob_tv_spread: 0.01\r\n",
|
||||
" prob_neighbor_cure: 0.1\r\n",
|
||||
"interval: 1\r\n",
|
||||
"max_time: 30\r\n",
|
||||
"max_time: 300\r\n",
|
||||
"name: Sim_wise_herd\r\n",
|
||||
"network_agents:\r\n",
|
||||
"- agent_class: HerdViewer\r\n",
|
||||
" state:\r\n",
|
||||
" has_tv: true\r\n",
|
||||
" id: neutral\r\n",
|
||||
" state_id: neutral\r\n",
|
||||
" weight: 1\r\n",
|
||||
"- agent_class: WiseViewer\r\n",
|
||||
" state:\r\n",
|
||||
@@ -195,13 +186,13 @@
|
||||
" prob_tv_spread: 0.01\r\n",
|
||||
" prob_neighbor_cure: 0.1\r\n",
|
||||
"interval: 1\r\n",
|
||||
"max_time: 30\r\n",
|
||||
"max_time: 300\r\n",
|
||||
"name: Sim_all_wise\r\n",
|
||||
"network_agents:\r\n",
|
||||
"- agent_class: WiseViewer\r\n",
|
||||
" state:\r\n",
|
||||
" has_tv: true\r\n",
|
||||
" id: neutral\r\n",
|
||||
" state_id: neutral\r\n",
|
||||
" weight: 1\r\n",
|
||||
"- agent_class: WiseViewer\r\n",
|
||||
" state:\r\n",
|
||||
@@ -225,7 +216,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2017-11-08T18:07:46.781745Z",
|
||||
@@ -233,7 +224,24 @@
|
||||
},
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "ValueError",
|
||||
"evalue": "No objects to concatenate",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m evodumb \u001b[38;5;241m=\u001b[39m \u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_data\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msoil_output/Sim_all_dumb/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprocess\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_count\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mid\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m;\n",
|
||||
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:14\u001b[0m, in \u001b[0;36mread_data\u001b[0;34m(group, *args, **kwargs)\u001b[0m\n\u001b[1;32m 12\u001b[0m iterable \u001b[38;5;241m=\u001b[39m _read_data(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m group:\n\u001b[0;32m---> 14\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgroup_trials\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterable\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(iterable)\n",
|
||||
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:201\u001b[0m, in \u001b[0;36mgroup_trials\u001b[0;34m(trials, aggfunc)\u001b[0m\n\u001b[1;32m 199\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(trials)\n\u001b[1;32m 200\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mmap\u001b[39m(\u001b[38;5;28;01mlambda\u001b[39;00m x: x[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mtuple\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m x, trials))\n\u001b[0;32m--> 201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcat\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrials\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mgroupby(level\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\u001b[38;5;241m.\u001b[39magg(aggfunc)\u001b[38;5;241m.\u001b[39mreorder_levels([\u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m1\u001b[39m] ,axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n",
|
||||
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/util/_decorators.py:331\u001b[0m, in \u001b[0;36mdeprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m>\u001b[39m num_allow_args:\n\u001b[1;32m 326\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 327\u001b[0m msg\u001b[38;5;241m.\u001b[39mformat(arguments\u001b[38;5;241m=\u001b[39m_format_argument_list(allow_args)),\n\u001b[1;32m 328\u001b[0m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[1;32m 329\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[1;32m 330\u001b[0m )\n\u001b[0;32m--> 331\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:368\u001b[0m, in \u001b[0;36mconcat\u001b[0;34m(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)\u001b[0m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;129m@deprecate_nonkeyword_arguments\u001b[39m(version\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, allowed_args\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mobjs\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mconcat\u001b[39m(\n\u001b[1;32m 148\u001b[0m objs: Iterable[NDFrame] \u001b[38;5;241m|\u001b[39m Mapping[HashableT, NDFrame],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 157\u001b[0m copy: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 158\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame \u001b[38;5;241m|\u001b[39m Series:\n\u001b[1;32m 159\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;124;03m Concatenate pandas objects along a particular axis.\u001b[39;00m\n\u001b[1;32m 161\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 366\u001b[0m \u001b[38;5;124;03m 1 3 4\u001b[39;00m\n\u001b[1;32m 367\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 368\u001b[0m op \u001b[38;5;241m=\u001b[39m \u001b[43m_Concatenator\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 369\u001b[0m \u001b[43m \u001b[49m\u001b[43mobjs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 370\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_index\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_index\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mjoin\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkeys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43mnames\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnames\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 376\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify_integrity\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_integrity\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 378\u001b[0m \u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m op\u001b[38;5;241m.\u001b[39mget_result()\n",
|
||||
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:425\u001b[0m, in \u001b[0;36m_Concatenator.__init__\u001b[0;34m(self, objs, axis, join, keys, levels, names, ignore_index, verify_integrity, copy, sort)\u001b[0m\n\u001b[1;32m 422\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(objs)\n\u001b[1;32m 424\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(objs) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 425\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo objects to concatenate\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 427\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m keys \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 428\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(com\u001b[38;5;241m.\u001b[39mnot_none(\u001b[38;5;241m*\u001b[39mobjs))\n",
|
||||
"\u001b[0;31mValueError\u001b[0m: No objects to concatenate"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"evodumb = analysis.read_data('soil_output/Sim_all_dumb/', process=analysis.get_count, group=True, keys=['id']);"
|
||||
]
|
||||
@@ -721,9 +729,9 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "venv-soil",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
"name": "venv-soil"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -735,7 +743,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.2"
|
||||
"version": "3.8.10"
|
||||
},
|
||||
"toc": {
|
||||
"colors": {
|
||||
|
@@ -1 +1 @@
|
||||
1.0.0rc1
|
||||
1.0.0rc2
|
||||
|
@@ -77,7 +77,7 @@ class MetaAgent(ABCMeta):
|
||||
else:
|
||||
defaults[attr] = copy(func)
|
||||
|
||||
return super().__new__(mcls=mcls, name=name, bases=bases, namespace=new_nmspc)
|
||||
return super().__new__(mcls, name, bases, new_nmspc)
|
||||
|
||||
|
||||
class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
|