1
0
mirror of https://github.com/gsi-upm/soil synced 2025-11-28 19:08:17 +00:00

Compare commits

..

1 Commits

Author SHA1 Message Date
dependabot[bot]
4137a0432d Bump ipython from 7.31.1 to 8.10.0 in /docs
Bumps [ipython](https://github.com/ipython/ipython) from 7.31.1 to 8.10.0.
- [Release notes](https://github.com/ipython/ipython/releases)
- [Commits](https://github.com/ipython/ipython/compare/7.31.1...8.10.0)

---
updated-dependencies:
- dependency-name: ipython
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-11 00:34:16 +00:00
69 changed files with 85539 additions and 5097 deletions

View File

@@ -1,7 +1,5 @@
**/soil_output
.*
**/.*
**/__pycache__
__pycache__
*.pyc
**/backup

3
.gitignore vendored
View File

@@ -8,5 +8,4 @@ soil_output
docs/_build*
build/*
dist/*
prof
backup
prof

View File

@@ -4,14 +4,6 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [UNRELEASED]
## [0.20.8]
### Changed
* Tsih bumped to version 0.1.8
### Fixed
* Mentions to `id` in docs. It should be `state_id` now.
* Fixed bug: environment agents were not being added to the simulation
## [0.20.7]
### Changed
* Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.3 KiB

After

Width:  |  Height:  |  Size: 7.0 KiB

BIN
docs/output_54_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_54_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_55_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_55_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

BIN
docs/output_61_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

BIN
docs/output_63_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_66_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_67_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 952 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/output_72_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/output_74_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_75_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

BIN
docs/output_76_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

View File

@@ -1 +1 @@
ipython==7.31.1
ipython==8.10.0

File diff suppressed because it is too large Load Diff

532
examples/NewsSpread.ipynb Normal file

File diff suppressed because one or more lines are too long

80808
examples/Untitled.ipynb Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -2,12 +2,13 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-08T16:22:30.732107Z",
"start_time": "2017-11-08T17:22:30.059855+01:00"
}
},
"collapsed": true
},
"outputs": [],
"source": [
@@ -27,16 +28,24 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-08T16:22:35.580593Z",
"start_time": "2017-11-08T17:22:35.542745+01:00"
}
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [
"%matplotlib inline\n",
"%pylab inline\n",
"\n",
"from soil import *"
]
@@ -57,7 +66,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-08T16:22:37.242327Z",
@@ -77,7 +86,7 @@
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 300\r\n",
"max_time: 30\r\n",
"name: Sim_all_dumb\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
@@ -101,7 +110,7 @@
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 300\r\n",
"max_time: 30\r\n",
"name: Sim_half_herd\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
@@ -133,18 +142,18 @@
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 300\r\n",
"max_time: 30\r\n",
"name: Sim_all_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" state_id: neutral\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" state_id: neutral\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
@@ -160,13 +169,13 @@
" prob_tv_spread: 0.01\r\n",
" prob_neighbor_cure: 0.1\r\n",
"interval: 1\r\n",
"max_time: 300\r\n",
"max_time: 30\r\n",
"name: Sim_wise_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" state_id: neutral\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
" state:\r\n",
@@ -186,13 +195,13 @@
" prob_tv_spread: 0.01\r\n",
" prob_neighbor_cure: 0.1\r\n",
"interval: 1\r\n",
"max_time: 300\r\n",
"max_time: 30\r\n",
"name: Sim_all_wise\r\n",
"network_agents:\r\n",
"- agent_type: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" state_id: neutral\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
" state:\r\n",
@@ -216,7 +225,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 22,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-08T18:07:46.781745Z",
@@ -224,24 +233,7 @@
},
"scrolled": true
},
"outputs": [
{
"ename": "ValueError",
"evalue": "No objects to concatenate",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m evodumb \u001b[38;5;241m=\u001b[39m \u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_data\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msoil_output/Sim_all_dumb/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprocess\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_count\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mid\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m;\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:14\u001b[0m, in \u001b[0;36mread_data\u001b[0;34m(group, *args, **kwargs)\u001b[0m\n\u001b[1;32m 12\u001b[0m iterable \u001b[38;5;241m=\u001b[39m _read_data(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m group:\n\u001b[0;32m---> 14\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgroup_trials\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterable\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(iterable)\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:201\u001b[0m, in \u001b[0;36mgroup_trials\u001b[0;34m(trials, aggfunc)\u001b[0m\n\u001b[1;32m 199\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(trials)\n\u001b[1;32m 200\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mmap\u001b[39m(\u001b[38;5;28;01mlambda\u001b[39;00m x: x[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mtuple\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m x, trials))\n\u001b[0;32m--> 201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcat\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrials\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mgroupby(level\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\u001b[38;5;241m.\u001b[39magg(aggfunc)\u001b[38;5;241m.\u001b[39mreorder_levels([\u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m1\u001b[39m] ,axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/util/_decorators.py:331\u001b[0m, in \u001b[0;36mdeprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m>\u001b[39m num_allow_args:\n\u001b[1;32m 326\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 327\u001b[0m msg\u001b[38;5;241m.\u001b[39mformat(arguments\u001b[38;5;241m=\u001b[39m_format_argument_list(allow_args)),\n\u001b[1;32m 328\u001b[0m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[1;32m 329\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[1;32m 330\u001b[0m )\n\u001b[0;32m--> 331\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:368\u001b[0m, in \u001b[0;36mconcat\u001b[0;34m(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)\u001b[0m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;129m@deprecate_nonkeyword_arguments\u001b[39m(version\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, allowed_args\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mobjs\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mconcat\u001b[39m(\n\u001b[1;32m 148\u001b[0m objs: Iterable[NDFrame] \u001b[38;5;241m|\u001b[39m Mapping[HashableT, NDFrame],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 157\u001b[0m copy: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 158\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame \u001b[38;5;241m|\u001b[39m Series:\n\u001b[1;32m 159\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;124;03m Concatenate pandas objects along a particular axis.\u001b[39;00m\n\u001b[1;32m 161\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 366\u001b[0m \u001b[38;5;124;03m 1 3 4\u001b[39;00m\n\u001b[1;32m 367\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 368\u001b[0m op \u001b[38;5;241m=\u001b[39m \u001b[43m_Concatenator\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 369\u001b[0m \u001b[43m \u001b[49m\u001b[43mobjs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 370\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_index\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_index\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mjoin\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkeys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43mnames\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnames\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 376\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify_integrity\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_integrity\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 378\u001b[0m \u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m op\u001b[38;5;241m.\u001b[39mget_result()\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:425\u001b[0m, in \u001b[0;36m_Concatenator.__init__\u001b[0;34m(self, objs, axis, join, keys, levels, names, ignore_index, verify_integrity, copy, sort)\u001b[0m\n\u001b[1;32m 422\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(objs)\n\u001b[1;32m 424\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(objs) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 425\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo objects to concatenate\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 427\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m keys \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 428\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(com\u001b[38;5;241m.\u001b[39mnot_none(\u001b[38;5;241m*\u001b[39mobjs))\n",
"\u001b[0;31mValueError\u001b[0m: No objects to concatenate"
]
}
],
"outputs": [],
"source": [
"evodumb = analysis.read_data('soil_output/Sim_all_dumb/', process=analysis.get_count, group=True, keys=['id']);"
]
@@ -729,9 +721,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "venv-soil",
"display_name": "Python 3",
"language": "python",
"name": "venv-soil"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -743,7 +735,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
"version": "3.6.2"
},
"toc": {
"colors": {

View File

@@ -1,7 +1,7 @@
---
load_module: rabbit_agents
name: rabbits_example
max_time: 1000
max_time: 100
interval: 1
seed: MySeed
agent_type: rabbit_agents.RabbitModel

File diff suppressed because one or more lines are too long

View File

@@ -6,4 +6,4 @@ pandas>=0.23
SALib>=1.3
Jinja2
Mesa>=0.8
tsih>=0.1.9
tsih>=0.1.5

View File

@@ -1 +1 @@
0.20.8
0.20.7

View File

@@ -281,7 +281,7 @@ def default_state(func):
class MetaFSM(type):
def __init__(cls, name, bases, nmspc):
super().__init__(name, bases, nmspc)
super(MetaFSM, cls).__init__(name, bases, nmspc)
states = {}
# Re-use states from inherited classes
default_state = None
@@ -482,7 +482,6 @@ def _definition_to_dict(definition, size=None, default_state=None):
distro = sorted([item for item in definition if 'weight' in item])
ix = 0
def init_agent(item, id=ix):
while id in agents:
id += 1

View File

@@ -112,7 +112,7 @@ def get_types(df):
Get the value type for every key stored in a raw history dataframe.
'''
dtypes = df.groupby(by=['key'])['value_type'].unique()
return {k:v[0] for k,v in dtypes.items()}
return {k:v[0] for k,v in dtypes.iteritems()}
def process_one(df, *keys, columns=['key', 'agent_id'], values='value',
@@ -146,7 +146,7 @@ def get_count(df, *keys):
counts = pd.DataFrame()
for key in df.columns.levels[0]:
g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0)
for value, series in g.items():
for value, series in g.iteritems():
counts[key, value] = series
counts.columns = pd.MultiIndex.from_tuples(counts.columns)
return counts

View File

@@ -124,8 +124,7 @@ class Environment(Model):
def environment_agents(self, environment_agents):
self._environment_agents = environment_agents
for (ix, agent) in enumerate(self._environment_agents):
self.init_agent(len(self.G) + ix, agent_definitions=environment_agents, with_node=False)
self._env_agents = agents._definition_to_dict(definition=environment_agents)
@property
def network_agents(self):
@@ -140,19 +139,15 @@ class Environment(Model):
for ix in self.G.nodes():
self.init_agent(ix, agent_definitions=network_agents)
def init_agent(self, agent_id, agent_definitions, with_node=True):
def init_agent(self, agent_id, agent_definitions):
node = self.G.nodes[agent_id]
init = False
state = {}
if with_node:
node = self.G.nodes[agent_id]
state = dict(node)
state.update(self.states.get(agent_id, {}))
state = dict(node)
agent_type = None
if 'agent_type' in state:
agent_type = state['agent_type']
elif with_node and 'agent_type' in node:
if 'agent_type' in self.states.get(agent_id, {}):
agent_type = self.states[agent_id]['agent_type']
elif 'agent_type' in node:
agent_type = node['agent_type']
elif 'agent_type' in self.default_state:
agent_type = self.default_state['agent_type']
@@ -162,16 +157,15 @@ class Environment(Model):
elif agent_definitions:
agent_type, state = agents._agent_from_definition(agent_definitions, unique_id=agent_id)
else:
serialization.logger.debug('Skipping agent {}'.format(agent_id))
serialization.logger.debug('Skipping node {}'.format(agent_id))
return
return self.set_agent(agent_id, agent_type, state, with_node=with_node)
return self.set_agent(agent_id, agent_type, state)
def set_agent(self, agent_id, agent_type, state=None, with_node=True):
def set_agent(self, agent_id, agent_type, state=None):
node = self.G.nodes[agent_id]
defstate = deepcopy(self.default_state) or {}
defstate.update(self.states.get(agent_id, {}))
if with_node:
node = self.G.nodes[agent_id]
defstate.update(node.get('state', {}))
defstate.update(node.get('state', {}))
if state:
defstate.update(state)
a = None
@@ -184,8 +178,7 @@ class Environment(Model):
for (k, v) in state.items():
setattr(a, k, v)
if with_node:
node['agent'] = a
node['agent'] = a
self.schedule.add(a)
return a

View File

@@ -52,7 +52,7 @@ class distribution(Stats):
except TypeError:
pass
for name, count in t.value_counts().items():
for name, count in t.value_counts().iteritems():
if a not in stats['count']:
stats['count'][a] = {}
stats['count'][a][name] = count
@@ -68,10 +68,10 @@ class distribution(Stats):
mean = {}
if self.means:
res = dfm.drop('metric', axis=1).groupby(by=['key']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
res = dfm.groupby(by=['key']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
mean = res['value'].to_dict()
if self.counts:
res = dfc.drop('metric', axis=1).groupby(by=['key', 'value']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
res = dfc.groupby(by=['key', 'value']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
for k,v in res['count'].to_dict().items():
if k not in count:
count[k] = {}