Compare commits
20 Commits
be65592055
...
wip-1.0
Author | SHA1 | Date | |
---|---|---|---|
|
092591fb97 | ||
|
263b4e0e33 | ||
|
189836408f | ||
|
ee0c4517cb | ||
|
3041156f19 | ||
|
f49be3af68 | ||
|
5e93399d58 | ||
|
eca4cae298 | ||
|
47a67f6665 | ||
|
c13550cf83 | ||
|
55bbc76b2a | ||
|
d13e4eb4b9 | ||
|
93d23e4cab | ||
|
3802578ad5 | ||
|
4e296e0cf1 | ||
|
302075a65d | ||
|
fba379c97c | ||
|
50bca88362 | ||
|
cc238d84ec | ||
|
bf481f0f88 |
@@ -1,5 +1,7 @@
|
||||
**/soil_output
|
||||
.*
|
||||
**/.*
|
||||
**/__pycache__
|
||||
__pycache__
|
||||
*.pyc
|
||||
**/backup
|
||||
|
4
.gitignore
vendored
@@ -8,4 +8,6 @@ soil_output
|
||||
docs/_build*
|
||||
build/*
|
||||
dist/*
|
||||
prof
|
||||
prof
|
||||
backup
|
||||
*.egg-info
|
||||
|
34
CHANGELOG.md
@@ -3,18 +3,40 @@ All notable changes to this project will be documented in this file.
|
||||
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [0.30 UNRELEASED]
|
||||
## [1.0 UNRELEASED]
|
||||
|
||||
Version 1.0 introduced multiple changes, especially on the `Simulation` class and anything related to how configuration is handled.
|
||||
For an explanation of the general changes in version 1.0, please refer to the file `docs/notes_v1.0.rst`.
|
||||
|
||||
### Added
|
||||
* Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>`
|
||||
* Ability to run mesa simulations
|
||||
* The `soil.exporters` module to export the results of datacollectors (model.datacollector) into files at the end of trials/simulations
|
||||
* A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology).
|
||||
* FSM agents can now have generators as states. They work similar to normal states, with one caveat. Only `time` values can be yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. The return value *can* be a state, or a `(state, time)` tuple, just like in normal states.
|
||||
* Environments now have a class method to make them easier to use without a simulation`.run`. Notice that this is different from `run_model`, which is an instance method.
|
||||
* Ability to run simulations using mesa models
|
||||
* The `soil.exporters` module to export the results of datacollectors (`model.datacollector`) into files at the end of trials/simulations
|
||||
* Agents can now have generators or async functions as their step or as states. They work similar to normal functions, with one caveat in the case of `FSM`: only time values (a float, int or None) can be awaited or yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. To return to a different state, use the `delay` and `at` functions of the state.
|
||||
* Simulations can now specify a `matrix` with possible values for every simulation parameter. The final parameters will be calculated based on the `parameters` used and a cartesian product (i.e., all possible combinations) of each parameter.
|
||||
* Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>`
|
||||
* The `agent.after` and `agent.at` methods, to avoid having to return a time manually.
|
||||
### Changed
|
||||
* Configuration schema is very simplified
|
||||
* Configuration schema (`Simulation`) is very simplified. All simulations should be checked
|
||||
* Agents that wish to
|
||||
* Model / environment variables are expected (but not enforced) to be a single value. This is done to more closely align with mesa
|
||||
* `Exporter.iteration_end` now takes two parameters: `env` (same as before) and `params` (specific parameters for this environment). We considered including a `parameters` attribute in the environment, but this would not be compatible with mesa.
|
||||
* `num_trials` renamed to `iterations`
|
||||
* General renaming of `trial` to `iteration`, to work better with `mesa`
|
||||
* `model_parameters` renamed to `parameters` in simulation
|
||||
* Simulation results for every iteration of a simulation with the same name are stored in a single `sqlite` database
|
||||
|
||||
### Removed
|
||||
* The `time.When` and `time.Cond` classes are removed
|
||||
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.
|
||||
|
||||
## [0.20.8]
|
||||
### Changed
|
||||
* Tsih bumped to version 0.1.8
|
||||
### Fixed
|
||||
* Mentions to `id` in docs. It should be `state_id` now.
|
||||
* Fixed bug: environment agents were not being added to the simulation
|
||||
|
||||
## [0.20.7]
|
||||
### Changed
|
||||
|
@@ -4,10 +4,10 @@
|
||||
Soil is an extensible and user-friendly Agent-based Social Simulator for Social Networks.
|
||||
Learn how to run your own simulations with our [documentation](http://soilsim.readthedocs.io).
|
||||
|
||||
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
|
||||
Follow our [tutorial](docs/tutorial/soil_tutorial.ipynb) to develop your own agent models.
|
||||
|
||||
> **Warning**
|
||||
> Mesa 0.30 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/notes_v0.30.rst)
|
||||
> Soil 1.0 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/notes_v1.0.rst)
|
||||
|
||||
## Features
|
||||
|
||||
@@ -36,7 +36,6 @@ Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own
|
||||
* A command line interface (`soil`), to quickly run simulations with different parameters
|
||||
* An integrated debugger (`soil --debug`) with custom functions to print agent states and break at specific states
|
||||
|
||||
|
||||
## Mesa compatibility
|
||||
|
||||
SOIL has been redesigned to integrate well with [Mesa](https://github.com/projectmesa/mesa).
|
||||
|
12
benchmarks/noop-bench-async.csv
Normal file
@@ -0,0 +1,12 @@
|
||||
command,mean,stddev,median,user,system,min,max,parameter_sim
|
||||
python noop/mesa_batchrunner.py,1.3258325165599998,0.05822826666377271,1.31279976286,1.2978164199999997,0.25767558,1.2780627573599999,1.46763559736,mesa_batchrunner
|
||||
python noop/mesa_simulation.py,1.3915081544599999,0.07311646048704976,1.37166811936,1.35267662,0.29222067999999995,1.32746067836,1.58495303336,mesa_simulation
|
||||
python noop/soil_step.py,1.9859962588599998,0.12143759641749913,1.93586195486,2.0000750199999997,0.54126188,1.9061700903599998,2.2532835533599997,soil_step
|
||||
python noop/soil_step_pqueue.py,2.1347049971600005,0.01336179424666973,2.13492341986,2.1368160200000004,0.56862948,2.11810132936,2.16042739636,soil_step_pqueue
|
||||
python noop/soil_gens.py,2.1284937893599998,0.03030587681163665,2.13585231586,2.14158812,0.54900038,2.0768625143599997,2.19043625236,soil_gens
|
||||
python noop/soil_gens_pqueue.py,2.3469003942599995,0.019461346004472344,2.3486906343599996,2.36505852,0.54629858,2.31766326036,2.37998102136,soil_gens_pqueue
|
||||
python noop/soil_async.py,2.85755484126,0.0314955571121844,2.84774029536,2.86388112,0.55261338,2.81428668936,2.90567961636,soil_async
|
||||
python noop/soil_async_pqueue.py,3.1999731134600005,0.04432336803797717,3.20255954186,3.2162337199999995,0.5501872800000001,3.1406816913599997,3.26137401936,soil_async_pqueue
|
||||
python noop/soilent_step.py,1.30038977816,0.017973958957989845,1.30187804986,1.3231730199999998,0.5452653799999999,1.27058263436,1.31902240836,soilent_step
|
||||
python noop/soilent_step_pqueue.py,1.4708435788599998,0.027193290392962755,1.4707784423599999,1.4900387199999998,0.54749428,1.43498127536,1.53065598436,soilent_step_pqueue
|
||||
python noop/soilent_gens.py,1.6338810973599998,0.05752539125688073,1.63513330036,1.65216122,0.51846678,1.54135944036,1.7038832853599999,soilent_gens
|
|
11
benchmarks/noop-bench.csv
Normal file
@@ -0,0 +1,11 @@
|
||||
command,mean,stddev,median,user,system,min,max,parameter_sim
|
||||
python noop/mesa1_batchrunner.py,1.2559917394000002,0.012031173494887278,1.2572688413000002,1.2168630799999998,0.31825289999999995,1.2346063853,1.2735512493,mesa1_batchrunner
|
||||
python noop/mesa1_simulation.py,1.3024417227,0.022498874113931668,1.2994157323,1.2595484799999999,0.3087897,1.2697029703,1.3350640403,mesa1_simulation
|
||||
python noop/soil1.py,1.8789492443,0.18023367899835044,1.8186795393000001,1.86076288,0.5309521,1.7326687413000001,2.2928370642999996,soil1
|
||||
python noop/soil1_pqueue.py,1.9841675890000001,0.01735524088843906,1.9884363323,2.01830338,0.5787977999999999,1.9592171483,2.0076169282999996,soil1_pqueue
|
||||
python noop/soil2.py,2.0135188921999996,0.02869307129649681,2.0184709453,2.03951308,0.5885591,1.9680417823,2.0567112592999997,soil2
|
||||
python noop/soil2_pqueue.py,2.2367320454999997,0.024339667344486046,2.2357249777999995,2.2515216799999997,0.5978869,2.1957917303,2.2688685033,soil2_pqueue
|
||||
python noop/soilent1.py,1.1309301329,0.015133005948737871,1.1276461497999999,1.14056688,0.6027519,1.1135821423,1.1625753893,soilent1
|
||||
python noop/soilent1_pqueue.py,1.3097537665000003,0.018821977712258842,1.3073709358,1.3270259799999997,0.6000067999999998,1.2874580013,1.3381646823,soilent1_pqueue
|
||||
python noop/soilent2.py,1.5055360476,0.05166674417574119,1.4883118568,1.5121205799999997,0.5817363999999999,1.4490918363,1.6005909333000001,soilent2
|
||||
python noop/soilent2_pqueue.py,1.6622598218,0.031130739036296016,1.6588702603,1.6862567799999997,0.5854159,1.6289724583,1.7330545383,soilent2_pqueue
|
|
26
benchmarks/noop/_config.py
Normal file
@@ -0,0 +1,26 @@
|
||||
import os
|
||||
|
||||
NUM_AGENTS = int(os.environ.get('NUM_AGENTS', 100))
|
||||
NUM_ITERS = int(os.environ.get('NUM_ITERS', 10))
|
||||
MAX_STEPS = int(os.environ.get('MAX_STEPS', 1000))
|
||||
|
||||
|
||||
def run_sim(model, **kwargs):
|
||||
from soil import Simulation
|
||||
opts = dict(model=model,
|
||||
dump=False,
|
||||
num_processes=1,
|
||||
parameters={'num_agents': NUM_AGENTS},
|
||||
seed="",
|
||||
max_steps=MAX_STEPS,
|
||||
iterations=NUM_ITERS)
|
||||
opts.update(kwargs)
|
||||
res = Simulation(**opts).run()
|
||||
|
||||
total = sum(a.num_calls for e in res for a in e.schedule.agents)
|
||||
expected = NUM_AGENTS * NUM_ITERS * MAX_STEPS
|
||||
print(total)
|
||||
print(expected)
|
||||
|
||||
assert total == expected
|
||||
return res
|
43
benchmarks/noop/mesa_batchrunner.py
Normal file
@@ -0,0 +1,43 @@
|
||||
from mesa import batch_run, DataCollector, Agent, Model
|
||||
from mesa.time import RandomActivation
|
||||
|
||||
|
||||
class NoopAgent(Agent):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_calls = 0
|
||||
|
||||
def step(self):
|
||||
self.num_calls += 1
|
||||
|
||||
|
||||
class NoopModel(Model):
|
||||
def __init__(self, N):
|
||||
super().__init__()
|
||||
self.schedule = RandomActivation(self)
|
||||
for i in range(N):
|
||||
self.schedule.add(NoopAgent(self.next_id(), self))
|
||||
self.datacollector = DataCollector(model_reporters={"num_agents": lambda m: m.schedule.get_agent_count(),
|
||||
"time": lambda m: m.schedule.time},
|
||||
agent_reporters={"num_calls": "num_calls"})
|
||||
self.datacollector.collect(self)
|
||||
|
||||
def step(self):
|
||||
self.schedule.step()
|
||||
self.datacollector.collect(self)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
res = batch_run(model_cls=NoopModel,
|
||||
max_steps=MAX_STEPS,
|
||||
iterations=NUM_ITERS,
|
||||
number_processes=1,
|
||||
parameters={'N': NUM_AGENTS})
|
||||
total = sum(s["num_calls"] for s in res)
|
||||
total_agents = sum(s["num_agents"] for s in res)
|
||||
assert len(res) == NUM_AGENTS * NUM_ITERS
|
||||
assert total == NUM_AGENTS * NUM_ITERS * MAX_STEPS
|
||||
assert total_agents == NUM_AGENTS * NUM_AGENTS * NUM_ITERS
|
||||
|
37
benchmarks/noop/mesa_simulation.py
Normal file
@@ -0,0 +1,37 @@
|
||||
from mesa import batch_run, DataCollector, Agent, Model
|
||||
from mesa.time import RandomActivation
|
||||
from soil import Simulation
|
||||
from _config import *
|
||||
|
||||
|
||||
class NoopAgent(Agent):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_calls = 0
|
||||
|
||||
def step(self):
|
||||
self.num_calls += 1
|
||||
|
||||
|
||||
class NoopModel(Model):
|
||||
def __init__(self, num_agents, *args, **kwargs):
|
||||
super().__init__()
|
||||
self.schedule = RandomActivation(self)
|
||||
for i in range(num_agents):
|
||||
self.schedule.add(NoopAgent(self.next_id(), self))
|
||||
self.datacollector = DataCollector(model_reporters={"num_agents": lambda m: m.schedule.get_agent_count(),
|
||||
"time": lambda m: m.schedule.time},
|
||||
agent_reporters={"num_calls": "num_calls"})
|
||||
self.datacollector.collect(self)
|
||||
|
||||
def step(self):
|
||||
self.schedule.step()
|
||||
self.datacollector.collect(self)
|
||||
|
||||
|
||||
def run():
|
||||
run_sim(model=NoopModel)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run()
|
3
benchmarks/noop/noop-bench.csv
Normal file
@@ -0,0 +1,3 @@
|
||||
command,mean,stddev,median,user,system,min,max,parameter_sim
|
||||
python mesa1_batchrunner.py,1.2932078178200002,0.05649377020829272,1.2705532802200001,1.25902256,0.27242284,1.22210926572,1.40867459172,mesa1_batchrunner
|
||||
python mesa1_simulation.py,1.81112963812,0.015491072368938567,1.81342524572,1.8594407599999996,0.8005329399999999,1.78538603972,1.84176361172,mesa1_simulation
|
|
24
benchmarks/noop/soil_async.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from soil import BaseAgent, Environment, Simulation
|
||||
|
||||
|
||||
class NoopAgent(BaseAgent):
|
||||
num_calls = 0
|
||||
|
||||
async def step(self):
|
||||
while True:
|
||||
self.num_calls += 1
|
||||
await self.delay()
|
||||
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
run_sim(model=NoopEnvironment)
|
25
benchmarks/noop/soil_async_pqueue.py
Normal file
@@ -0,0 +1,25 @@
|
||||
from soil import BaseAgent, Environment, Simulation, PQueueActivation
|
||||
|
||||
|
||||
class NoopAgent(BaseAgent):
|
||||
num_calls = 0
|
||||
|
||||
async def step(self):
|
||||
while True:
|
||||
self.num_calls += 1
|
||||
await self.delay()
|
||||
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
schedule_class = PQueueActivation
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
run_sim(model=NoopEnvironment)
|
24
benchmarks/noop/soil_gens.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from soil import BaseAgent, Environment, Simulation
|
||||
|
||||
|
||||
class NoopAgent(BaseAgent):
|
||||
num_calls = 0
|
||||
|
||||
def step(self):
|
||||
while True:
|
||||
self.num_calls += 1
|
||||
yield self.delay()
|
||||
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
run_sim(model=NoopEnvironment)
|
25
benchmarks/noop/soil_gens_pqueue.py
Normal file
@@ -0,0 +1,25 @@
|
||||
from soil import BaseAgent, Environment, Simulation, PQueueActivation
|
||||
|
||||
|
||||
class NoopAgent(BaseAgent):
|
||||
num_calls = 0
|
||||
|
||||
def step(self):
|
||||
while True:
|
||||
self.num_calls += 1
|
||||
yield self.delay()
|
||||
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
schedule_class = PQueueActivation
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
run_sim(model=NoopEnvironment)
|
21
benchmarks/noop/soil_state.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from soil import Agent, Environment, Simulation, state
|
||||
|
||||
|
||||
class NoopAgent(Agent):
|
||||
num_calls = 0
|
||||
|
||||
@state(default=True)
|
||||
def unique(self):
|
||||
self.num_calls += 1
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
from _config import *
|
||||
|
||||
run_sim(model=NoopEnvironment)
|
20
benchmarks/noop/soil_step.py
Normal file
@@ -0,0 +1,20 @@
|
||||
from soil import Agent, Environment, Simulation
|
||||
|
||||
|
||||
class NoopAgent(Agent):
|
||||
num_calls = 0
|
||||
|
||||
def step(self):
|
||||
self.num_calls += 1
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
from _config import *
|
||||
|
||||
run_sim(model=NoopEnvironment)
|
22
benchmarks/noop/soil_step_pqueue.py
Normal file
@@ -0,0 +1,22 @@
|
||||
from soil import BaseAgent, Environment, Simulation, PQueueActivation
|
||||
|
||||
|
||||
class NoopAgent(BaseAgent):
|
||||
num_calls = 0
|
||||
|
||||
def step(self):
|
||||
self.num_calls += 1
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
schedule_class = PQueueActivation
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
run_sim(model=NoopEnvironment)
|
29
benchmarks/noop/soilent_async.py
Normal file
@@ -0,0 +1,29 @@
|
||||
from soil import Agent, Environment, Simulation
|
||||
from soil.time import SoilentActivation
|
||||
|
||||
|
||||
class NoopAgent(Agent):
|
||||
num_calls = 0
|
||||
|
||||
async def step(self):
|
||||
while True:
|
||||
self.num_calls += 1
|
||||
# yield self.delay(1)
|
||||
await self.delay()
|
||||
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
schedule_class = SoilentActivation
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
res = run_sim(model=NoopEnvironment)
|
||||
for r in res:
|
||||
assert isinstance(r.schedule, SoilentActivation)
|
27
benchmarks/noop/soilent_async_pqueue.py
Normal file
@@ -0,0 +1,27 @@
|
||||
from soil import Agent, Environment
|
||||
from soil.time import SoilentPQueueActivation
|
||||
|
||||
|
||||
class NoopAgent(Agent):
|
||||
num_calls = 0
|
||||
|
||||
async def step(self):
|
||||
while True:
|
||||
self.num_calls += 1
|
||||
await self.delay()
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
schedule_class = SoilentPQueueActivation
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
res = run_sim(model=NoopEnvironment)
|
||||
for r in res:
|
||||
assert isinstance(r.schedule, SoilentPQueueActivation)
|
28
benchmarks/noop/soilent_gens.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from soil import Agent, Environment, Simulation
|
||||
from soil.time import SoilentActivation
|
||||
|
||||
|
||||
class NoopAgent(Agent):
|
||||
num_calls = 0
|
||||
|
||||
def step(self):
|
||||
while True:
|
||||
self.num_calls += 1
|
||||
# yield self.delay(1)
|
||||
yield self.delay()
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
schedule_class = SoilentActivation
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
res = run_sim(model=NoopEnvironment)
|
||||
for r in res:
|
||||
assert isinstance(r.schedule, SoilentActivation)
|
28
benchmarks/noop/soilent_gens_pqueue.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from soil import Agent, Environment
|
||||
from soil.time import SoilentPQueueActivation
|
||||
|
||||
|
||||
class NoopAgent(Agent):
|
||||
num_calls = 0
|
||||
|
||||
def step(self):
|
||||
while True:
|
||||
self.num_calls += 1
|
||||
# yield self.delay(1)
|
||||
yield
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
schedule_class = SoilentPQueueActivation
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
res = run_sim(model=NoopEnvironment)
|
||||
for r in res:
|
||||
assert isinstance(r.schedule, SoilentPQueueActivation)
|
30
benchmarks/noop/soilent_state.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from soil import Agent, Environment, Simulation, state
|
||||
from soil.time import SoilentActivation
|
||||
|
||||
|
||||
class NoopAgent(Agent):
|
||||
num_calls = 0
|
||||
|
||||
@state(default=True)
|
||||
async def unique(self):
|
||||
while True:
|
||||
self.num_calls += 1
|
||||
# yield self.delay(1)
|
||||
await self.delay()
|
||||
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
schedule_class = SoilentActivation
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
|
||||
res = run_sim(model=NoopEnvironment)
|
||||
for r in res:
|
||||
assert isinstance(r.schedule, SoilentActivation)
|
24
benchmarks/noop/soilent_step.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from soil import BaseAgent, Environment, Simulation
|
||||
from soil.time import SoilentActivation
|
||||
|
||||
|
||||
class NoopAgent(BaseAgent):
|
||||
num_calls = 0
|
||||
|
||||
def step(self):
|
||||
self.num_calls += 1
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
schedule_class = SoilentActivation
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
res = run_sim(model=NoopEnvironment)
|
||||
for r in res:
|
||||
assert isinstance(r.schedule, SoilentActivation)
|
24
benchmarks/noop/soilent_step_pqueue.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from soil import BaseAgent, Environment, Simulation
|
||||
from soil.time import SoilentPQueueActivation
|
||||
|
||||
|
||||
class NoopAgent(BaseAgent):
|
||||
num_calls = 0
|
||||
|
||||
def step(self):
|
||||
self.num_calls += 1
|
||||
|
||||
class NoopEnvironment(Environment):
|
||||
num_agents = 100
|
||||
schedule_class = SoilentPQueueActivation
|
||||
|
||||
def init(self):
|
||||
self.add_agents(NoopAgent, k=self.num_agents)
|
||||
self.add_agent_reporter("num_calls")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from _config import *
|
||||
res = run_sim(model=NoopEnvironment)
|
||||
for r in res:
|
||||
assert isinstance(r.schedule, SoilentPqueueActivation)
|
19
benchmarks/run.py
Executable file
@@ -0,0 +1,19 @@
|
||||
#!/bin/env python
|
||||
import sys
|
||||
import os
|
||||
import subprocess
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(
|
||||
prog='Profiler for soil')
|
||||
parser.add_argument('--suffix', default=None)
|
||||
parser.add_argument('files', nargs="+")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
for fname in args.files:
|
||||
suffix = ("_" + args.suffix) if args.suffix else ""
|
||||
simname = f"{fname.replace('/', '-')}{suffix}"
|
||||
profpath = os.path.join("profs", simname + ".prof")
|
||||
|
||||
print(f"Running {fname} and saving profile to {profpath}")
|
||||
subprocess.call(["python", "-m", "cProfile", "-o", profpath, fname])
|
4
benchmarks/virusonnetwork.csv
Normal file
@@ -0,0 +1,4 @@
|
||||
command,mean,stddev,median,user,system,min,max,parameter_sim
|
||||
python virusonnetwork/mesa_basic.py,3.8381473157,0.0518143371442526,3.8475315791,3.873109219999999,0.55102658,3.7523016936,3.9095182436,mesa_basic.py
|
||||
python virusonnetwork/soil_step.py,3.2167258977000004,0.02337131987357665,3.2257620261,3.28374132,0.51343958,3.1792271306,3.2511521286000002,soil_step.py
|
||||
python virusonnetwork/soil_states.py,3.4908183217,0.03726734070349347,3.4912775086,3.5684004200000006,0.50416068,3.4272087936,3.5529207346000002,soil_states.py
|
|
38
benchmarks/virusonnetwork/_config.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import os
|
||||
from soil import simulation
|
||||
|
||||
NUM_AGENTS = int(os.environ.get('NUM_AGENTS', 100))
|
||||
NUM_ITERS = int(os.environ.get('NUM_ITERS', 10))
|
||||
MAX_STEPS = int(os.environ.get('MAX_STEPS', 500))
|
||||
|
||||
|
||||
def run_sim(model, **kwargs):
|
||||
from soil import Simulation
|
||||
opts = dict(model=model,
|
||||
dump=False,
|
||||
num_processes=1,
|
||||
parameters={'num_nodes': NUM_AGENTS,
|
||||
"avg_node_degree": 3,
|
||||
"initial_outbreak_size": 5,
|
||||
"virus_spread_chance": 0.25,
|
||||
"virus_check_frequency": 0.25,
|
||||
"recovery_chance": 0.3,
|
||||
"gain_resistance_chance": 0.1,
|
||||
},
|
||||
max_steps=MAX_STEPS,
|
||||
iterations=NUM_ITERS)
|
||||
opts.update(kwargs)
|
||||
its = Simulation(**opts).run()
|
||||
assert len(its) == NUM_ITERS
|
||||
|
||||
if not simulation._AVOID_RUNNING:
|
||||
ratios = list(it.resistant_susceptible_ratio for it in its)
|
||||
print("Max - Avg - Min ratio:", max(ratios), sum(ratios)/len(ratios), min(ratios))
|
||||
infected = list(it.number_infected for it in its)
|
||||
print("Max - Avg - Min infected:", max(infected), sum(infected)/len(infected), min(infected))
|
||||
|
||||
assert all((it.schedule.steps == MAX_STEPS or it.number_infected == 0) for it in its)
|
||||
assert all(sum([it.number_susceptible,
|
||||
it.number_infected,
|
||||
it.number_resistant]) == NUM_AGENTS for it in its)
|
||||
return its
|
180
benchmarks/virusonnetwork/mesa_basic.py
Normal file
@@ -0,0 +1,180 @@
|
||||
# Verbatim copy from mesa
|
||||
# https://github.com/projectmesa/mesa/blob/976ddfc8a1e5feaaf8007a7abaa9abc7093881a0/examples/virus_on_network/virus_on_network/model.py
|
||||
import math
|
||||
from enum import Enum
|
||||
import networkx as nx
|
||||
|
||||
import mesa
|
||||
|
||||
|
||||
class State(Enum):
|
||||
SUSCEPTIBLE = 0
|
||||
INFECTED = 1
|
||||
RESISTANT = 2
|
||||
|
||||
|
||||
def number_state(model, state):
|
||||
return sum(1 for a in model.grid.get_all_cell_contents() if a.state is state)
|
||||
|
||||
|
||||
def number_infected(model):
|
||||
return number_state(model, State.INFECTED)
|
||||
|
||||
|
||||
def number_susceptible(model):
|
||||
return number_state(model, State.SUSCEPTIBLE)
|
||||
|
||||
|
||||
def number_resistant(model):
|
||||
return number_state(model, State.RESISTANT)
|
||||
|
||||
|
||||
class VirusOnNetwork(mesa.Model):
|
||||
"""A virus model with some number of agents"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args,
|
||||
num_nodes=10,
|
||||
avg_node_degree=3,
|
||||
initial_outbreak_size=1,
|
||||
virus_spread_chance=0.4,
|
||||
virus_check_frequency=0.4,
|
||||
recovery_chance=0.3,
|
||||
gain_resistance_chance=0.5,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
self.num_nodes = num_nodes
|
||||
prob = avg_node_degree / self.num_nodes
|
||||
self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)
|
||||
self.grid = mesa.space.NetworkGrid(self.G)
|
||||
self.schedule = mesa.time.RandomActivation(self)
|
||||
self.initial_outbreak_size = (
|
||||
initial_outbreak_size if initial_outbreak_size <= num_nodes else num_nodes
|
||||
)
|
||||
self.virus_spread_chance = virus_spread_chance
|
||||
self.virus_check_frequency = virus_check_frequency
|
||||
self.recovery_chance = recovery_chance
|
||||
self.gain_resistance_chance = gain_resistance_chance
|
||||
|
||||
self.datacollector = mesa.DataCollector(
|
||||
{
|
||||
"Ratio": "resistant_susceptible_ratio",
|
||||
"Infected": number_infected,
|
||||
"Susceptible": number_susceptible,
|
||||
"Resistant": number_resistant,
|
||||
}
|
||||
)
|
||||
|
||||
# Create agents
|
||||
for i, node in enumerate(self.G.nodes()):
|
||||
a = VirusAgent(
|
||||
i,
|
||||
self,
|
||||
State.SUSCEPTIBLE,
|
||||
self.virus_spread_chance,
|
||||
self.virus_check_frequency,
|
||||
self.recovery_chance,
|
||||
self.gain_resistance_chance,
|
||||
)
|
||||
self.schedule.add(a)
|
||||
# Add the agent to the node
|
||||
self.grid.place_agent(a, node)
|
||||
|
||||
# Infect some nodes
|
||||
infected_nodes = self.random.sample(list(self.G), self.initial_outbreak_size)
|
||||
for a in self.grid.get_cell_list_contents(infected_nodes):
|
||||
a.state = State.INFECTED
|
||||
|
||||
self.running = True
|
||||
self.datacollector.collect(self)
|
||||
|
||||
@property
|
||||
def number_susceptible(self):
|
||||
return number_susceptible(self)
|
||||
@property
|
||||
def number_resistant(self):
|
||||
return number_resistant(self)
|
||||
@property
|
||||
def number_infected(self):
|
||||
return number_infected(self)
|
||||
|
||||
@property
|
||||
def resistant_susceptible_ratio(self):
|
||||
try:
|
||||
return number_state(self, State.RESISTANT) / number_state(
|
||||
self, State.SUSCEPTIBLE
|
||||
)
|
||||
except ZeroDivisionError:
|
||||
return math.inf
|
||||
|
||||
def step(self):
|
||||
self.schedule.step()
|
||||
# collect data
|
||||
self.datacollector.collect(self)
|
||||
|
||||
def run_model(self, n):
|
||||
for i in range(n):
|
||||
self.step()
|
||||
|
||||
|
||||
class VirusAgent(mesa.Agent):
|
||||
def __init__(
|
||||
self,
|
||||
unique_id,
|
||||
model,
|
||||
initial_state,
|
||||
virus_spread_chance,
|
||||
virus_check_frequency,
|
||||
recovery_chance,
|
||||
gain_resistance_chance,
|
||||
):
|
||||
super().__init__(unique_id, model)
|
||||
|
||||
self.state = initial_state
|
||||
|
||||
self.virus_spread_chance = virus_spread_chance
|
||||
self.virus_check_frequency = virus_check_frequency
|
||||
self.recovery_chance = recovery_chance
|
||||
self.gain_resistance_chance = gain_resistance_chance
|
||||
|
||||
def try_to_infect_neighbors(self):
|
||||
neighbors_nodes = self.model.grid.get_neighbors(self.pos, include_center=False)
|
||||
susceptible_neighbors = [
|
||||
agent
|
||||
for agent in self.model.grid.get_cell_list_contents(neighbors_nodes)
|
||||
if agent.state is State.SUSCEPTIBLE
|
||||
]
|
||||
for a in susceptible_neighbors:
|
||||
if self.random.random() < self.virus_spread_chance:
|
||||
a.state = State.INFECTED
|
||||
|
||||
def try_gain_resistance(self):
|
||||
if self.random.random() < self.gain_resistance_chance:
|
||||
self.state = State.RESISTANT
|
||||
|
||||
def try_remove_infection(self):
|
||||
# Try to remove
|
||||
if self.random.random() < self.recovery_chance:
|
||||
# Success
|
||||
self.state = State.SUSCEPTIBLE
|
||||
self.try_gain_resistance()
|
||||
else:
|
||||
# Failed
|
||||
self.state = State.INFECTED
|
||||
|
||||
def try_check_situation(self):
|
||||
if self.random.random() < self.virus_check_frequency:
|
||||
# Checking...
|
||||
if self.state is State.INFECTED:
|
||||
self.try_remove_infection()
|
||||
|
||||
def step(self):
|
||||
if self.state is State.INFECTED:
|
||||
self.try_to_infect_neighbors()
|
||||
self.try_check_situation()
|
||||
|
||||
|
||||
from _config import run_sim
|
||||
run_sim(model=VirusOnNetwork)
|
91
benchmarks/virusonnetwork/soil_states.py
Normal file
@@ -0,0 +1,91 @@
|
||||
# Verbatim copy from mesa
|
||||
# https://github.com/projectmesa/mesa/blob/976ddfc8a1e5feaaf8007a7abaa9abc7093881a0/examples/virus_on_network/virus_on_network/model.py
|
||||
import math
|
||||
from enum import Enum
|
||||
import networkx as nx
|
||||
|
||||
from soil import *
|
||||
|
||||
|
||||
class VirusOnNetwork(Environment):
|
||||
"""A virus model with some number of agents"""
|
||||
num_nodes = 10
|
||||
avg_node_degree = 3
|
||||
initial_outbreak_size = 1
|
||||
virus_spread_chance = 0.4
|
||||
virus_check_frequency = 0.4
|
||||
recovery_chance = 0
|
||||
gain_resistance_chance = 0
|
||||
|
||||
def init(self):
|
||||
prob = self.avg_node_degree / self.num_nodes
|
||||
# Use internal seed with the networkx generator
|
||||
self.create_network(generator=nx.erdos_renyi_graph, n=self.num_nodes, p=prob)
|
||||
|
||||
self.initial_outbreak_size = min(self.initial_outbreak_size, self.num_nodes)
|
||||
self.populate_network(VirusAgent)
|
||||
|
||||
# Infect some nodes
|
||||
infected_nodes = self.random.sample(list(self.G), self.initial_outbreak_size)
|
||||
for a in self.agents(node_id=infected_nodes):
|
||||
a.set_state(VirusAgent.infected)
|
||||
assert self.number_infected == self.initial_outbreak_size
|
||||
|
||||
def step(self):
|
||||
super().step()
|
||||
|
||||
@report
|
||||
@property
|
||||
def resistant_susceptible_ratio(self):
|
||||
try:
|
||||
return self.number_resistant / self.number_susceptible
|
||||
except ZeroDivisionError:
|
||||
return math.inf
|
||||
|
||||
@report
|
||||
@property
|
||||
def number_infected(self):
|
||||
return self.count_agents(state_id=VirusAgent.infected.id)
|
||||
|
||||
@report
|
||||
@property
|
||||
def number_susceptible(self):
|
||||
return self.count_agents(state_id=VirusAgent.susceptible.id)
|
||||
|
||||
@report
|
||||
@property
|
||||
def number_resistant(self):
|
||||
return self.count_agents(state_id=VirusAgent.resistant.id)
|
||||
|
||||
|
||||
class VirusAgent(Agent):
|
||||
virus_spread_chance = None # Inherit from model
|
||||
virus_check_frequency = None # Inherit from model
|
||||
recovery_chance = None # Inherit from model
|
||||
gain_resistance_chance = None # Inherit from model
|
||||
|
||||
@state(default=True)
|
||||
async def susceptible(self):
|
||||
await self.received()
|
||||
return self.infected
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
susceptible_neighbors = self.get_neighbors(state_id=self.susceptible.id)
|
||||
for a in susceptible_neighbors:
|
||||
if self.prob(self.virus_spread_chance):
|
||||
a.tell(True, sender=self)
|
||||
if self.prob(self.virus_check_frequency):
|
||||
if self.prob(self.recovery_chance):
|
||||
if self.prob(self.gain_resistance_chance):
|
||||
return self.resistant
|
||||
else:
|
||||
return self.susceptible
|
||||
|
||||
@state
|
||||
def resistant(self):
|
||||
return self.at(INFINITY)
|
||||
|
||||
|
||||
from _config import run_sim
|
||||
run_sim(model=VirusOnNetwork)
|
104
benchmarks/virusonnetwork/soil_step.py
Normal file
@@ -0,0 +1,104 @@
|
||||
# Verbatim copy from mesa
|
||||
# https://github.com/projectmesa/mesa/blob/976ddfc8a1e5feaaf8007a7abaa9abc7093881a0/examples/virus_on_network/virus_on_network/model.py
|
||||
import math
|
||||
from enum import Enum
|
||||
import networkx as nx
|
||||
|
||||
from soil import *
|
||||
|
||||
|
||||
class State(Enum):
|
||||
SUSCEPTIBLE = 0
|
||||
INFECTED = 1
|
||||
RESISTANT = 2
|
||||
|
||||
|
||||
class VirusOnNetwork(Environment):
|
||||
"""A virus model with some number of agents"""
|
||||
num_nodes = 10
|
||||
avg_node_degree = 3
|
||||
initial_outbreak_size = 1
|
||||
virus_spread_chance = 0.4
|
||||
virus_check_frequency = 0.4
|
||||
recovery_chance = 0
|
||||
gain_resistance_chance = 0
|
||||
|
||||
def init(self):
|
||||
prob = self.avg_node_degree / self.num_nodes
|
||||
# Use internal seed with the networkx generator
|
||||
self.create_network(generator=nx.erdos_renyi_graph, n=self.num_nodes, p=prob)
|
||||
|
||||
self.initial_outbreak_size = min(self.initial_outbreak_size, self.num_nodes)
|
||||
self.populate_network(VirusAgent)
|
||||
|
||||
# Infect some nodes
|
||||
infected_nodes = self.random.sample(list(self.G), self.initial_outbreak_size)
|
||||
for a in self.agents(node_id=infected_nodes):
|
||||
a.status = State.INFECTED
|
||||
assert self.number_infected == self.initial_outbreak_size
|
||||
|
||||
@report
|
||||
@property
|
||||
def resistant_susceptible_ratio(self):
|
||||
try:
|
||||
return self.number_resistant / self.number_susceptible
|
||||
except ZeroDivisionError:
|
||||
return math.inf
|
||||
|
||||
@report
|
||||
@property
|
||||
def number_infected(self):
|
||||
return self.count_agents(status=State.INFECTED)
|
||||
|
||||
@report
|
||||
@property
|
||||
def number_susceptible(self):
|
||||
return self.count_agents(status=State.SUSCEPTIBLE)
|
||||
|
||||
@report
|
||||
@property
|
||||
def number_resistant(self):
|
||||
return self.count_agents(status=State.RESISTANT)
|
||||
|
||||
|
||||
|
||||
class VirusAgent(Agent):
|
||||
status = State.SUSCEPTIBLE
|
||||
virus_spread_chance = None # Inherit from model
|
||||
virus_check_frequency = None # Inherit from model
|
||||
recovery_chance = None # Inherit from model
|
||||
gain_resistance_chance = None # Inherit from model
|
||||
|
||||
def try_to_infect_neighbors(self):
|
||||
susceptible_neighbors = self.get_neighbors(status=State.SUSCEPTIBLE)
|
||||
for a in susceptible_neighbors:
|
||||
if self.prob(self.virus_spread_chance):
|
||||
a.status = State.INFECTED
|
||||
|
||||
def try_gain_resistance(self):
|
||||
if self.prob(self.gain_resistance_chance):
|
||||
self.status = State.RESISTANT
|
||||
return self.at(INFINITY)
|
||||
|
||||
def try_remove_infection(self):
|
||||
# Try to remove
|
||||
if self.prob(self.recovery_chance):
|
||||
# Success
|
||||
self.status = State.SUSCEPTIBLE
|
||||
return self.try_gain_resistance()
|
||||
|
||||
def try_check_situation(self):
|
||||
if self.prob(self.virus_check_frequency):
|
||||
# Checking...
|
||||
if self.status is State.INFECTED:
|
||||
return self.try_remove_infection()
|
||||
|
||||
def step(self):
|
||||
if self.status is State.INFECTED:
|
||||
self.try_to_infect_neighbors()
|
||||
return self.try_check_situation()
|
||||
|
||||
|
||||
|
||||
from _config import run_sim
|
||||
run_sim(model=VirusOnNetwork)
|
10
docs/conf.py
@@ -31,7 +31,10 @@
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = ['IPython.sphinxext.ipython_console_highlighting']
|
||||
extensions = [
|
||||
"IPython.sphinxext.ipython_console_highlighting",
|
||||
"nbsphinx",
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
@@ -64,7 +67,7 @@ release = '0.1'
|
||||
#
|
||||
# This is also used if you do content translation via gettext catalogs.
|
||||
# Usually you set "language" from the command line for these cases.
|
||||
language = None
|
||||
language = "en"
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
@@ -152,6 +155,3 @@ texinfo_documents = [
|
||||
author, 'Soil', 'One line description of project.',
|
||||
'Miscellaneous'),
|
||||
]
|
||||
|
||||
|
||||
|
||||
|
@@ -1,40 +0,0 @@
|
||||
---
|
||||
name: MyExampleSimulation
|
||||
max_time: 50
|
||||
num_trials: 3
|
||||
interval: 2
|
||||
model_params:
|
||||
topology:
|
||||
params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 100
|
||||
m: 2
|
||||
agents:
|
||||
distribution:
|
||||
- agent_class: SISaModel
|
||||
topology: True
|
||||
ratio: 0.1
|
||||
state:
|
||||
state_id: content
|
||||
- agent_class: SISaModel
|
||||
topology: True
|
||||
ratio: .1
|
||||
state:
|
||||
state_id: discontent
|
||||
- agent_class: SISaModel
|
||||
topology: True
|
||||
ratio: 0.8
|
||||
state:
|
||||
state_id: neutral
|
||||
prob_infect: 0.075
|
||||
neutral_discontent_spon_prob: 0.1
|
||||
neutral_discontent_infected_prob: 0.3
|
||||
neutral_content_spon_prob: 0.3
|
||||
neutral_content_infected_prob: 0.4
|
||||
discontent_neutral: 0.5
|
||||
discontent_content: 0.5
|
||||
variance_d_c: 0.2
|
||||
content_discontent: 0.2
|
||||
variance_c_d: 0.2
|
||||
content_neutral: 0.2
|
||||
standard_variance: 1
|
@@ -1,7 +1,21 @@
|
||||
Welcome to Soil's documentation!
|
||||
================================
|
||||
|
||||
Soil is an Agent-based Social Simulator in Python focused on Social Networks.
|
||||
Soil is an opinionated Agent-based Social Simulator in Python focused on Social Networks.
|
||||
To get started developing your own simulations and agent behaviors, check out our :doc:`Tutorial <tutorial/soil_tutorial>` and the `examples on GitHub <https://github.com/gsi-upm/soil/tree/master/examples>`.
|
||||
|
||||
Soil can be installed through pip (see more details in the :doc:`installation` page):.
|
||||
|
||||
.. image:: soil.png
|
||||
:width: 80%
|
||||
:align: center
|
||||
|
||||
|
||||
.. code:: bash
|
||||
|
||||
pip install soil
|
||||
|
||||
|
||||
|
||||
If you use Soil in your research, do not forget to cite this paper:
|
||||
|
||||
@@ -33,9 +47,9 @@ If you use Soil in your research, do not forget to cite this paper:
|
||||
:caption: Learn more about soil:
|
||||
|
||||
installation
|
||||
quickstart
|
||||
configuration
|
||||
Tutorial <soil_tutorial>
|
||||
Tutorial <tutorial/soil_tutorial>
|
||||
notes_v1.0
|
||||
soil-vs
|
||||
|
||||
..
|
||||
|
||||
|
@@ -1,7 +1,10 @@
|
||||
Installation
|
||||
------------
|
||||
|
||||
The easiest way to install Soil is through pip, with Python >= 3.4:
|
||||
Through pip
|
||||
===========
|
||||
|
||||
The easiest way to install Soil is through pip, with Python >= 3.8:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
@@ -25,4 +28,38 @@ Or, if you're using using soil programmatically:
|
||||
import soil
|
||||
print(soil.__version__)
|
||||
|
||||
The latest version can be installed through `GitHub <https://github.com/gsi-upm/soil>`_ or `GitLab <https://lab.gsi.upm.es/soil/soil.git>`_.
|
||||
|
||||
|
||||
Web UI
|
||||
======
|
||||
|
||||
Soil also includes a web server that allows you to upload your simulations, change parameters, and visualize the results, including a timeline of the network.
|
||||
To make it work, you have to install soil like this:
|
||||
|
||||
.. code::
|
||||
|
||||
pip install soil[web]
|
||||
|
||||
Once installed, the soil web UI can be run in two ways:
|
||||
|
||||
.. code::
|
||||
|
||||
soil-web
|
||||
|
||||
# OR
|
||||
|
||||
python -m soil.web
|
||||
|
||||
|
||||
Development
|
||||
===========
|
||||
|
||||
The latest version can be downloaded from `GitHub <https://github.com/gsi-upm/soil>`_ and installed manually:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
git clone https://github.com/gsi-upm/soil
|
||||
cd soil
|
||||
python -m venv .venv
|
||||
source .venv/bin/activate
|
||||
pip install --editable .
|
@@ -1,22 +0,0 @@
|
||||
Mesa compatibility
|
||||
------------------
|
||||
|
||||
Soil is in the process of becoming fully compatible with MESA.
|
||||
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
|
||||
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
|
||||
|
||||
This is a non-exhaustive list of tasks to achieve compatibility:
|
||||
|
||||
- [ ] Integrate `soil.Simulation` with mesa's runners:
|
||||
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
|
||||
- [ ] Integrate `soil.Environment` with `mesa.Model`:
|
||||
- [x] `Soil.Environment` inherits from `mesa.Model`
|
||||
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
|
||||
- [ ] Allow for `mesa.Model` to be used in a simulation.
|
||||
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
|
||||
- [x] Rename agent.id to unique_id?
|
||||
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
|
||||
- [ ] Provide examples
|
||||
- [ ] Using mesa modules in a soil simulation
|
||||
- [ ] Using soil modules in a mesa simulation
|
||||
- [ ] Document the new APIs and usage
|
@@ -1,7 +1,10 @@
|
||||
What are the main changes between version 0.3 and 0.2?
|
||||
######################################################
|
||||
Upgrading to Soil 1.0
|
||||
---------------------
|
||||
|
||||
Version 0.3 is a major rewrite of the Soil system, focused on simplifying the API, aligning it with Mesa, and making it easier to use.
|
||||
What are the main changes in version 1.0?
|
||||
#########################################
|
||||
|
||||
Version 1.0 is a major rewrite of the Soil system, focused on simplifying the API, aligning it with Mesa, and making it easier to use.
|
||||
Unfortunately, this comes at the cost of backwards compatibility.
|
||||
|
||||
We drew several lessons from the previous version of Soil, and tried to address them in this version.
|
Before Width: | Height: | Size: 7.0 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 19 KiB |
@@ -1,93 +0,0 @@
|
||||
Quickstart
|
||||
----------
|
||||
|
||||
This section shows how to run your first simulation with Soil.
|
||||
For installation instructions, see :doc:`installation`.
|
||||
|
||||
There are mainly two parts in a simulation: agent classes and simulation configuration.
|
||||
An agent class defines how the agent will behave throughout the simulation.
|
||||
The configuration includes things such as number of agents to use and their type, network topology to use, etc.
|
||||
|
||||
|
||||
.. image:: soil.png
|
||||
:width: 80%
|
||||
:align: center
|
||||
|
||||
|
||||
Soil includes several agent classes in the ``soil.agents`` module, and we will use them in this quickstart.
|
||||
If you are interested in developing your own agents classes, see :doc:`soil_tutorial`.
|
||||
|
||||
Configuration
|
||||
=============
|
||||
To get you started, we will use this configuration (:download:`download the file <quickstart.yml>` directly):
|
||||
|
||||
.. literalinclude:: quickstart.yml
|
||||
:language: yaml
|
||||
|
||||
The agent type used, SISa, is a very simple model.
|
||||
It only has three states (neutral, content and discontent),
|
||||
Its parameters are the probabilities to change from one state to another, either spontaneously or because of contagion from neighboring agents.
|
||||
|
||||
Running the simulation
|
||||
======================
|
||||
|
||||
To see the simulation in action, simply point soil to the configuration, and tell it to store the graph and the history of agent states and environment parameters at every point.
|
||||
|
||||
.. code::
|
||||
|
||||
❯ soil --graph --csv quickstart.yml [13:35:29]
|
||||
INFO:soil:Using config(s): quickstart
|
||||
INFO:soil:Dumping results to soil_output/quickstart : ['csv', 'gexf']
|
||||
INFO:soil:Starting simulation quickstart at 13:35:30.
|
||||
INFO:soil:Starting Simulation quickstart trial 0 at 13:35:30.
|
||||
INFO:soil:Finished Simulation quickstart trial 0 at 13:35:49 in 19.43677067756653 seconds
|
||||
INFO:soil:Starting Dumping simulation quickstart trial 0 at 13:35:49.
|
||||
INFO:soil:Finished Dumping simulation quickstart trial 0 at 13:35:51 in 1.7733407020568848 seconds
|
||||
INFO:soil:Dumping results to soil_output/quickstart
|
||||
INFO:soil:Finished simulation quickstart at 13:35:51 in 21.29862952232361 seconds
|
||||
|
||||
|
||||
The ``CSV`` file should look like this:
|
||||
|
||||
.. code::
|
||||
|
||||
agent_id,t_step,key,value
|
||||
env,0,neutral_discontent_spon_prob,0.05
|
||||
env,0,neutral_discontent_infected_prob,0.1
|
||||
env,0,neutral_content_spon_prob,0.2
|
||||
env,0,neutral_content_infected_prob,0.4
|
||||
env,0,discontent_neutral,0.2
|
||||
env,0,discontent_content,0.05
|
||||
env,0,content_discontent,0.05
|
||||
env,0,variance_d_c,0.05
|
||||
env,0,variance_c_d,0.1
|
||||
|
||||
Results and visualization
|
||||
=========================
|
||||
|
||||
The environment variables are marked as ``agent_id`` env.
|
||||
Th exported values are only stored when they change.
|
||||
To find out how to get every key and value at every point in the simulation, check out the :doc:`soil_tutorial`.
|
||||
|
||||
The dynamic graph is exported as a .gexf file which could be visualized with
|
||||
`Gephi <https://gephi.org/users/download/>`__.
|
||||
Now it is your turn to experiment with the simulation.
|
||||
Change some of the parameters, such as the number of agents, the probability of becoming content, or the type of network, and see how the results change.
|
||||
|
||||
|
||||
Soil also includes a web server that allows you to upload your simulations, change parameters, and visualize the results, including a timeline of the network.
|
||||
To make it work, you have to install soil like this:
|
||||
|
||||
.. code::
|
||||
|
||||
pip install soil[web]
|
||||
|
||||
Once installed, the soil web UI can be run in two ways:
|
||||
|
||||
.. code::
|
||||
|
||||
soil-web
|
||||
|
||||
# OR
|
||||
|
||||
python -m soil.web
|
@@ -1,33 +0,0 @@
|
||||
---
|
||||
name: quickstart
|
||||
num_trials: 1
|
||||
max_time: 1000
|
||||
model_params:
|
||||
agents:
|
||||
- agent_class: SISaModel
|
||||
topology: true
|
||||
state:
|
||||
id: neutral
|
||||
weight: 1
|
||||
- agent_class: SISaModel
|
||||
topology: true
|
||||
state:
|
||||
id: content
|
||||
weight: 2
|
||||
topology:
|
||||
params:
|
||||
n: 100
|
||||
k: 5
|
||||
p: 0.2
|
||||
generator: newman_watts_strogatz_graph
|
||||
neutral_discontent_spon_prob: 0.05
|
||||
neutral_discontent_infected_prob: 0.1
|
||||
neutral_content_spon_prob: 0.2
|
||||
neutral_content_infected_prob: 0.4
|
||||
discontent_neutral: 0.2
|
||||
discontent_content: 0.05
|
||||
content_discontent: 0.05
|
||||
variance_d_c: 0.05
|
||||
variance_c_d: 0.1
|
||||
content_neutral: 0.1
|
||||
standard_variance: 0.1
|
@@ -1 +1,2 @@
|
||||
ipython>=7.31.1
|
||||
nbsphinx==0.9.1
|
||||
|
@@ -1,4 +1,8 @@
|
||||
### MESA
|
||||
Soil vs other ABM frameworks
|
||||
============================
|
||||
|
||||
MESA
|
||||
----
|
||||
|
||||
Starting with version 0.3, Soil has been redesigned to complement Mesa, while remaining compatible with it.
|
||||
That means that every component in Soil (i.e., Models, Environments, etc.) can be mixed with existing mesa components.
|
||||
@@ -10,3 +14,42 @@ Here are some reasons to use Soil instead of plain mesa:
|
||||
- Functions to automatically populate a topology with an agent distribution (i.e., different ratios of agent class and state)
|
||||
- The `soil.Simulation` class allows you to run multiple instances of the same experiment (i.e., multiple trials with the same parameters but a different randomness seed)
|
||||
- Reporting functions that aggregate multiple
|
||||
|
||||
Mesa compatibility
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Soil is in the process of becoming fully compatible with MESA.
|
||||
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
|
||||
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
|
||||
|
||||
This is a non-exhaustive list of tasks to achieve compatibility:
|
||||
|
||||
.. |check| raw:: html
|
||||
|
||||
☑
|
||||
|
||||
.. |uncheck| raw:: html
|
||||
|
||||
☐
|
||||
|
||||
- |check| Integrate `soil.Simulation` with mesa's runners:
|
||||
|
||||
- |check| `soil.Simulation` can replace `mesa.batchrunner`
|
||||
|
||||
- |check| Integrate `soil.Environment` with `mesa.Model`:
|
||||
|
||||
- |check| `Soil.Environment` inherits from `mesa.Model`
|
||||
- |check| `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
|
||||
- |check| Allow for `mesa.Model` to be used in a simulation.
|
||||
|
||||
- |check| Integrate `soil.Agent` with `mesa.Agent`:
|
||||
|
||||
- |check| Rename agent.id to unique_id
|
||||
- |check| mesa agents can be used in soil simulations (see `examples/mesa`)
|
||||
|
||||
- |check| Provide examples
|
||||
|
||||
- |check| Using mesa modules in a soil simulation (see `examples/mesa`)
|
||||
- |uncheck| Using soil modules in a mesa simulation (see `examples/mesa`)
|
||||
|
||||
- |uncheck| Document the new APIs and usage
|
2277
docs/tutorial/soil_tutorial.ipynb
Normal file
1
examples/README.md
Normal file
@@ -0,0 +1 @@
|
||||
Some of these examples are close to real life simulations, whereas some others are only a demonstration of Soil's capatibilities.
|
@@ -43,7 +43,7 @@ class Journey:
|
||||
driver: Optional[Driver] = None
|
||||
|
||||
|
||||
class City(EventedEnvironment):
|
||||
class City(Environment):
|
||||
"""
|
||||
An environment with a grid where drivers and passengers will be placed.
|
||||
|
||||
@@ -85,40 +85,41 @@ class Driver(Evented, FSM):
|
||||
journey = None
|
||||
earnings = 0
|
||||
|
||||
def on_receive(self, msg, sender):
|
||||
"""This is not a state. It will run (and block) every time check_messages is invoked"""
|
||||
if self.journey is None and isinstance(msg, Journey) and msg.driver is None:
|
||||
msg.driver = self
|
||||
self.journey = msg
|
||||
# TODO: remove
|
||||
# def on_receive(self, msg, sender):
|
||||
# """This is not a state. It will run (and block) every time process_messages is invoked"""
|
||||
# if self.journey is None and isinstance(msg, Journey) and msg.driver is None:
|
||||
# msg.driver = self
|
||||
# self.journey = msg
|
||||
|
||||
def check_passengers(self):
|
||||
"""If there are no more passengers, stop forever"""
|
||||
c = self.count_agents(agent_class=Passenger)
|
||||
self.info(f"Passengers left {c}")
|
||||
if not c:
|
||||
self.die()
|
||||
self.debug(f"Passengers left {c}")
|
||||
return c
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def wandering(self):
|
||||
@state(default=True)
|
||||
async def wandering(self):
|
||||
"""Move around the city until a journey is accepted"""
|
||||
target = None
|
||||
self.check_passengers()
|
||||
if not self.check_passengers():
|
||||
return self.die("No passengers left")
|
||||
self.journey = None
|
||||
while self.journey is None: # No potential journeys detected (see on_receive)
|
||||
while self.journey is None: # No potential journeys detected
|
||||
if target is None or not self.move_towards(target):
|
||||
target = self.random.choice(
|
||||
self.model.grid.get_neighborhood(self.pos, moore=False)
|
||||
)
|
||||
|
||||
self.check_passengers()
|
||||
if not self.check_passengers():
|
||||
return self.die("No passengers left")
|
||||
# This will call on_receive behind the scenes, and the agent's status will be updated
|
||||
self.check_messages()
|
||||
yield Delta(30) # Wait at least 30 seconds before checking again
|
||||
|
||||
await self.delay(30) # Wait at least 30 seconds before checking again
|
||||
|
||||
try:
|
||||
# Re-send the journey to the passenger, to confirm that we have been selected
|
||||
self.journey = yield self.journey.passenger.ask(self.journey, timeout=60)
|
||||
self.journey = await self.journey.passenger.ask(self.journey, timeout=60, delay=5)
|
||||
except events.TimedOut:
|
||||
# No journey has been accepted. Try again
|
||||
self.journey = None
|
||||
@@ -127,20 +128,24 @@ class Driver(Evented, FSM):
|
||||
return self.driving
|
||||
|
||||
@state
|
||||
def driving(self):
|
||||
async def driving(self):
|
||||
"""The journey has been accepted. Pick them up and take them to their destination"""
|
||||
self.info(f"Driving towards Passenger {self.journey.passenger.unique_id}")
|
||||
while self.move_towards(self.journey.origin):
|
||||
yield
|
||||
await self.delay()
|
||||
self.info(f"Driving {self.journey.passenger.unique_id} from {self.journey.origin} to {self.journey.destination}")
|
||||
while self.move_towards(self.journey.destination, with_passenger=True):
|
||||
yield
|
||||
await self.delay()
|
||||
self.info("Arrived at destination")
|
||||
self.earnings += self.journey.tip
|
||||
self.model.total_earnings += self.journey.tip
|
||||
self.check_passengers()
|
||||
if not self.check_passengers():
|
||||
return self.die("No passengers left")
|
||||
return self.wandering
|
||||
|
||||
def move_towards(self, target, with_passenger=False):
|
||||
"""Move one cell at a time towards a target"""
|
||||
self.info(f"Moving { self.pos } -> { target }")
|
||||
self.debug(f"Moving { self.pos } -> { target }")
|
||||
if target[0] == self.pos[0] and target[1] == self.pos[1]:
|
||||
return False
|
||||
|
||||
@@ -163,19 +168,20 @@ class Driver(Evented, FSM):
|
||||
class Passenger(Evented, FSM):
|
||||
pos = None
|
||||
|
||||
def on_receive(self, msg, sender):
|
||||
"""This is not a state. It will be run synchronously every time `check_messages` is run"""
|
||||
# TODO: Remove
|
||||
# def on_receive(self, msg, sender):
|
||||
# """This is not a state. It will be run synchronously every time `process_messages` is run"""
|
||||
|
||||
if isinstance(msg, Journey):
|
||||
self.journey = msg
|
||||
return msg
|
||||
# if isinstance(msg, Journey):
|
||||
# self.journey = msg
|
||||
# return msg
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def asking(self):
|
||||
async def asking(self):
|
||||
destination = (
|
||||
self.random.randint(0, self.model.grid.height),
|
||||
self.random.randint(0, self.model.grid.width),
|
||||
self.random.randint(0, self.model.grid.height-1),
|
||||
self.random.randint(0, self.model.grid.width-1),
|
||||
)
|
||||
self.journey = None
|
||||
journey = Journey(
|
||||
@@ -187,29 +193,48 @@ class Passenger(Evented, FSM):
|
||||
|
||||
timeout = 60
|
||||
expiration = self.now + timeout
|
||||
self.model.broadcast(journey, ttl=timeout, sender=self, agent_class=Driver)
|
||||
self.info(f"Asking for journey at: { self.pos }")
|
||||
self.broadcast(journey, ttl=timeout, agent_class=Driver)
|
||||
while not self.journey:
|
||||
self.info(f"Passenger at: { self.pos }. Checking for responses.")
|
||||
self.debug(f"Waiting for responses at: { self.pos }")
|
||||
try:
|
||||
# This will call check_messages behind the scenes, and the agent's status will be updated
|
||||
# If you want to avoid that, you can call it with: check=False
|
||||
yield self.received(expiration=expiration)
|
||||
offers = await self.received(expiration=expiration, delay=10)
|
||||
accepted = None
|
||||
for event in offers:
|
||||
offer = event.payload
|
||||
if isinstance(offer, Journey):
|
||||
self.journey = offer
|
||||
assert isinstance(event.sender, Driver)
|
||||
try:
|
||||
answer = await event.sender.ask(True, sender=self, timeout=60, delay=5)
|
||||
if answer:
|
||||
accepted = offer
|
||||
self.journey = offer
|
||||
break
|
||||
except events.TimedOut:
|
||||
pass
|
||||
if accepted:
|
||||
for event in offers:
|
||||
if event.payload != accepted:
|
||||
event.sender.tell(False, timeout=60, delay=5)
|
||||
|
||||
except events.TimedOut:
|
||||
self.info(f"Passenger at: { self.pos }. Asking for journey.")
|
||||
self.model.broadcast(
|
||||
journey, ttl=timeout, sender=self, agent_class=Driver
|
||||
self.info(f"Still no response. Waiting at: { self.pos }")
|
||||
self.broadcast(
|
||||
journey, ttl=timeout, agent_class=Driver
|
||||
)
|
||||
expiration = self.now + timeout
|
||||
self.info(f"Got a response! Waiting for driver")
|
||||
return self.driving_home
|
||||
|
||||
@state
|
||||
def driving_home(self):
|
||||
async def driving_home(self):
|
||||
while (
|
||||
self.pos[0] != self.journey.destination[0]
|
||||
or self.pos[1] != self.journey.destination[1]
|
||||
):
|
||||
try:
|
||||
yield self.received(timeout=60)
|
||||
await self.received(timeout=60)
|
||||
except events.TimedOut:
|
||||
pass
|
||||
|
||||
@@ -220,7 +245,7 @@ simulation = Simulation(name="RideHailing",
|
||||
model=City,
|
||||
seed="carsSeed",
|
||||
max_time=1000,
|
||||
model_params=dict(n_passengers=2))
|
||||
parameters=dict(n_passengers=2))
|
||||
|
||||
if __name__ == "__main__":
|
||||
easy(simulation)
|
||||
easy(simulation)
|
@@ -1,5 +1,4 @@
|
||||
from soil.agents import FSM, state, default_state
|
||||
from soil.time import Delta
|
||||
|
||||
|
||||
class Fibonacci(FSM):
|
||||
@@ -11,17 +10,17 @@ class Fibonacci(FSM):
|
||||
def counting(self):
|
||||
self.log("Stopping at {}".format(self.now))
|
||||
prev, self["prev"] = self["prev"], max([self.now, self["prev"]])
|
||||
return None, Delta(prev)
|
||||
return self.delay(prev)
|
||||
|
||||
|
||||
|
||||
class Odds(FSM):
|
||||
"""Agent that only executes in odd t_steps"""
|
||||
|
||||
@default_state
|
||||
@state
|
||||
@state(default=True)
|
||||
def odds(self):
|
||||
self.log("Stopping at {}".format(self.now))
|
||||
return None, Delta(1 + self.now % 2)
|
||||
return self.delay(1 + (self.now % 2))
|
||||
|
||||
|
||||
from soil import Environment, Simulation
|
||||
@@ -35,7 +34,7 @@ class TimeoutsEnv(Environment):
|
||||
self.add_agent(agent_class=Odds, node_id=1)
|
||||
|
||||
|
||||
sim = Simulation(model=TimeoutsEnv, max_steps=10, interval=1)
|
||||
sim = Simulation(model=TimeoutsEnv, max_steps=10)
|
||||
|
||||
if __name__ == "__main__":
|
||||
sim.run(dump=False)
|
||||
sim.run(dump=False)
|
@@ -33,7 +33,7 @@ class GeneratorEnv(Environment):
|
||||
self.add_agents(CounterModel)
|
||||
|
||||
|
||||
sim = Simulation(model=GeneratorEnv, max_steps=10, interval=1)
|
||||
sim = Simulation(model=GeneratorEnv, max_steps=10)
|
||||
|
||||
if __name__ == '__main__':
|
||||
sim.run(dump=False)
|
@@ -1,7 +1,7 @@
|
||||
from soil import Simulation
|
||||
from social_wealth import MoneyEnv, graph_generator
|
||||
|
||||
sim = Simulation(name="mesa_sim", dump=False, max_steps=10, interval=2, model=MoneyEnv, model_params=dict(generator=graph_generator, N=10, width=50, height=50))
|
||||
sim = Simulation(name="mesa_sim", dump=False, max_steps=10, model=MoneyEnv, parameters=dict(generator=graph_generator, N=10, width=50, height=50))
|
||||
|
||||
if __name__ == "__main__":
|
||||
sim.run()
|
||||
|
@@ -63,7 +63,7 @@ chart = ChartModule(
|
||||
[{"Label": "Gini", "Color": "Black"}], data_collector_name="datacollector"
|
||||
)
|
||||
|
||||
model_params = {
|
||||
parameters = {
|
||||
"N": Slider(
|
||||
"N",
|
||||
5,
|
||||
@@ -98,12 +98,12 @@ model_params = {
|
||||
|
||||
|
||||
canvas_element = CanvasGrid(
|
||||
gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500
|
||||
gridPortrayal, parameters["width"].value, parameters["height"].value, 500, 500
|
||||
)
|
||||
|
||||
|
||||
server = ModularServer(
|
||||
MoneyEnv, [grid, chart, canvas_element], "Money Model", model_params
|
||||
MoneyEnv, [grid, chart, canvas_element], "Money Model", parameters
|
||||
)
|
||||
server.port = 8521
|
||||
|
||||
|
@@ -2,13 +2,12 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2017-11-08T16:22:30.732107Z",
|
||||
"start_time": "2017-11-08T17:22:30.059855+01:00"
|
||||
},
|
||||
"collapsed": true
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -28,24 +27,16 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2017-11-08T16:22:35.580593Z",
|
||||
"start_time": "2017-11-08T17:22:35.542745+01:00"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Populating the interactive namespace from numpy and matplotlib\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pylab inline\n",
|
||||
"%matplotlib inline\n",
|
||||
"\n",
|
||||
"from soil import *"
|
||||
]
|
||||
@@ -66,7 +57,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2017-11-08T16:22:37.242327Z",
|
||||
@@ -86,7 +77,7 @@
|
||||
" prob_neighbor_spread: 0.0\r\n",
|
||||
" prob_tv_spread: 0.01\r\n",
|
||||
"interval: 1\r\n",
|
||||
"max_time: 30\r\n",
|
||||
"max_time: 300\r\n",
|
||||
"name: Sim_all_dumb\r\n",
|
||||
"network_agents:\r\n",
|
||||
"- agent_class: DumbViewer\r\n",
|
||||
@@ -110,7 +101,7 @@
|
||||
" prob_neighbor_spread: 0.0\r\n",
|
||||
" prob_tv_spread: 0.01\r\n",
|
||||
"interval: 1\r\n",
|
||||
"max_time: 30\r\n",
|
||||
"max_time: 300\r\n",
|
||||
"name: Sim_half_herd\r\n",
|
||||
"network_agents:\r\n",
|
||||
"- agent_class: DumbViewer\r\n",
|
||||
@@ -142,18 +133,18 @@
|
||||
" prob_neighbor_spread: 0.0\r\n",
|
||||
" prob_tv_spread: 0.01\r\n",
|
||||
"interval: 1\r\n",
|
||||
"max_time: 30\r\n",
|
||||
"max_time: 300\r\n",
|
||||
"name: Sim_all_herd\r\n",
|
||||
"network_agents:\r\n",
|
||||
"- agent_class: HerdViewer\r\n",
|
||||
" state:\r\n",
|
||||
" has_tv: true\r\n",
|
||||
" id: neutral\r\n",
|
||||
" state_id: neutral\r\n",
|
||||
" weight: 1\r\n",
|
||||
"- agent_class: HerdViewer\r\n",
|
||||
" state:\r\n",
|
||||
" has_tv: true\r\n",
|
||||
" id: neutral\r\n",
|
||||
" state_id: neutral\r\n",
|
||||
" weight: 1\r\n",
|
||||
"network_params:\r\n",
|
||||
" generator: barabasi_albert_graph\r\n",
|
||||
@@ -169,13 +160,13 @@
|
||||
" prob_tv_spread: 0.01\r\n",
|
||||
" prob_neighbor_cure: 0.1\r\n",
|
||||
"interval: 1\r\n",
|
||||
"max_time: 30\r\n",
|
||||
"max_time: 300\r\n",
|
||||
"name: Sim_wise_herd\r\n",
|
||||
"network_agents:\r\n",
|
||||
"- agent_class: HerdViewer\r\n",
|
||||
" state:\r\n",
|
||||
" has_tv: true\r\n",
|
||||
" id: neutral\r\n",
|
||||
" state_id: neutral\r\n",
|
||||
" weight: 1\r\n",
|
||||
"- agent_class: WiseViewer\r\n",
|
||||
" state:\r\n",
|
||||
@@ -195,13 +186,13 @@
|
||||
" prob_tv_spread: 0.01\r\n",
|
||||
" prob_neighbor_cure: 0.1\r\n",
|
||||
"interval: 1\r\n",
|
||||
"max_time: 30\r\n",
|
||||
"max_time: 300\r\n",
|
||||
"name: Sim_all_wise\r\n",
|
||||
"network_agents:\r\n",
|
||||
"- agent_class: WiseViewer\r\n",
|
||||
" state:\r\n",
|
||||
" has_tv: true\r\n",
|
||||
" id: neutral\r\n",
|
||||
" state_id: neutral\r\n",
|
||||
" weight: 1\r\n",
|
||||
"- agent_class: WiseViewer\r\n",
|
||||
" state:\r\n",
|
||||
@@ -225,7 +216,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2017-11-08T18:07:46.781745Z",
|
||||
@@ -233,7 +224,24 @@
|
||||
},
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "ValueError",
|
||||
"evalue": "No objects to concatenate",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m evodumb \u001b[38;5;241m=\u001b[39m \u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_data\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msoil_output/Sim_all_dumb/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprocess\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_count\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mid\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m;\n",
|
||||
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:14\u001b[0m, in \u001b[0;36mread_data\u001b[0;34m(group, *args, **kwargs)\u001b[0m\n\u001b[1;32m 12\u001b[0m iterable \u001b[38;5;241m=\u001b[39m _read_data(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m group:\n\u001b[0;32m---> 14\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgroup_trials\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterable\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(iterable)\n",
|
||||
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:201\u001b[0m, in \u001b[0;36mgroup_trials\u001b[0;34m(trials, aggfunc)\u001b[0m\n\u001b[1;32m 199\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(trials)\n\u001b[1;32m 200\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mmap\u001b[39m(\u001b[38;5;28;01mlambda\u001b[39;00m x: x[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mtuple\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m x, trials))\n\u001b[0;32m--> 201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcat\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrials\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mgroupby(level\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\u001b[38;5;241m.\u001b[39magg(aggfunc)\u001b[38;5;241m.\u001b[39mreorder_levels([\u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m1\u001b[39m] ,axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n",
|
||||
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/util/_decorators.py:331\u001b[0m, in \u001b[0;36mdeprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m>\u001b[39m num_allow_args:\n\u001b[1;32m 326\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 327\u001b[0m msg\u001b[38;5;241m.\u001b[39mformat(arguments\u001b[38;5;241m=\u001b[39m_format_argument_list(allow_args)),\n\u001b[1;32m 328\u001b[0m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[1;32m 329\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[1;32m 330\u001b[0m )\n\u001b[0;32m--> 331\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:368\u001b[0m, in \u001b[0;36mconcat\u001b[0;34m(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)\u001b[0m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;129m@deprecate_nonkeyword_arguments\u001b[39m(version\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, allowed_args\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mobjs\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mconcat\u001b[39m(\n\u001b[1;32m 148\u001b[0m objs: Iterable[NDFrame] \u001b[38;5;241m|\u001b[39m Mapping[HashableT, NDFrame],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 157\u001b[0m copy: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 158\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame \u001b[38;5;241m|\u001b[39m Series:\n\u001b[1;32m 159\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;124;03m Concatenate pandas objects along a particular axis.\u001b[39;00m\n\u001b[1;32m 161\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 366\u001b[0m \u001b[38;5;124;03m 1 3 4\u001b[39;00m\n\u001b[1;32m 367\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 368\u001b[0m op \u001b[38;5;241m=\u001b[39m \u001b[43m_Concatenator\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 369\u001b[0m \u001b[43m \u001b[49m\u001b[43mobjs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 370\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_index\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_index\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mjoin\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkeys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43mnames\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnames\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 376\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify_integrity\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_integrity\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 378\u001b[0m \u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m op\u001b[38;5;241m.\u001b[39mget_result()\n",
|
||||
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:425\u001b[0m, in \u001b[0;36m_Concatenator.__init__\u001b[0;34m(self, objs, axis, join, keys, levels, names, ignore_index, verify_integrity, copy, sort)\u001b[0m\n\u001b[1;32m 422\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(objs)\n\u001b[1;32m 424\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(objs) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 425\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo objects to concatenate\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 427\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m keys \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 428\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(com\u001b[38;5;241m.\u001b[39mnot_none(\u001b[38;5;241m*\u001b[39mobjs))\n",
|
||||
"\u001b[0;31mValueError\u001b[0m: No objects to concatenate"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"evodumb = analysis.read_data('soil_output/Sim_all_dumb/', process=analysis.get_count, group=True, keys=['id']);"
|
||||
]
|
||||
@@ -721,9 +729,9 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "venv-soil",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
"name": "venv-soil"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -735,7 +743,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.2"
|
||||
"version": "3.8.10"
|
||||
},
|
||||
"toc": {
|
||||
"colors": {
|
||||
|
@@ -1,4 +1,4 @@
|
||||
from soil.agents import FSM, NetworkAgent, state, default_state, prob
|
||||
from soil.agents import FSM, NetworkAgent, state, default_state
|
||||
from soil.parameters import *
|
||||
import logging
|
||||
|
||||
@@ -116,7 +116,7 @@ for [r1, r2] in product([0, 0.5, 1.0], repeat=2):
|
||||
Simulation(
|
||||
name='newspread_sim',
|
||||
model=NewsSpread,
|
||||
model_params=dict(
|
||||
parameters=dict(
|
||||
ratio_dumb=r1,
|
||||
ratio_herd=r2,
|
||||
ratio_wise=1-r1-r2,
|
||||
@@ -124,7 +124,7 @@ for [r1, r2] in product([0, 0.5, 1.0], repeat=2):
|
||||
network_params=netparams,
|
||||
prob_neighbor_spread=0,
|
||||
),
|
||||
num_trials=5,
|
||||
iterations=5,
|
||||
max_steps=300,
|
||||
dump=False,
|
||||
).run()
|
||||
|
@@ -38,7 +38,7 @@ simulation = Simulation(
|
||||
name="Programmatic",
|
||||
model=ProgrammaticEnv,
|
||||
seed='Program',
|
||||
num_trials=1,
|
||||
iterations=1,
|
||||
max_time=100,
|
||||
dump=False,
|
||||
)
|
||||
|
@@ -178,10 +178,10 @@ class Police(FSM):
|
||||
sim = Simulation(
|
||||
model=CityPubs,
|
||||
name="pubcrawl",
|
||||
num_trials=3,
|
||||
iterations=3,
|
||||
max_steps=10,
|
||||
dump=False,
|
||||
model_params=dict(
|
||||
parameters=dict(
|
||||
network_generator=nx.empty_graph,
|
||||
network_params={"n": 30},
|
||||
model=CityPubs,
|
||||
|
@@ -1,7 +1,7 @@
|
||||
There are two similar implementations of this simulation.
|
||||
|
||||
- `basic`. Using simple primites
|
||||
- `improved`. Using more advanced features such as the `time` module to avoid unnecessary computations (i.e., skip steps), and generator functions.
|
||||
- `improved`. Using more advanced features such as the delays to avoid unnecessary computations (i.e., skip steps).
|
||||
|
||||
The examples can be run directly in the terminal, and they accept command like arguments.
|
||||
For example, to enable the CSV exporter and the Summary exporter, while setting `max_time` to `100` and `seed` to `CustomSeed`:
|
||||
|
@@ -1,23 +1,33 @@
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, Simulation
|
||||
from soil.time import Delta
|
||||
from enum import Enum
|
||||
from collections import Counter
|
||||
import logging
|
||||
from soil import Evented, FSM, state, default_state, BaseAgent, NetworkAgent, Environment, parameters, report, TimedOut
|
||||
import math
|
||||
|
||||
from rabbits_basic_sim import RabbitEnv
|
||||
|
||||
class RabbitsImprovedEnv(Environment):
|
||||
prob_death: parameters.probability = 1e-3
|
||||
|
||||
class RabbitsImprovedEnv(RabbitEnv):
|
||||
def init(self):
|
||||
"""Initialize the environment with the new versions of the agents"""
|
||||
a1 = self.add_node(Male)
|
||||
a2 = self.add_node(Female)
|
||||
a1.add_edge(a2)
|
||||
self.add_agent(RandomAccident)
|
||||
|
||||
@report
|
||||
@property
|
||||
def num_rabbits(self):
|
||||
return self.count_agents(agent_class=Rabbit)
|
||||
|
||||
class Rabbit(FSM, NetworkAgent):
|
||||
@report
|
||||
@property
|
||||
def num_males(self):
|
||||
return self.count_agents(agent_class=Male)
|
||||
|
||||
@report
|
||||
@property
|
||||
def num_females(self):
|
||||
return self.count_agents(agent_class=Female)
|
||||
|
||||
|
||||
class Rabbit(Evented, FSM, NetworkAgent):
|
||||
|
||||
sexual_maturity = 30
|
||||
life_expectancy = 300
|
||||
@@ -32,42 +42,40 @@ class Rabbit(FSM, NetworkAgent):
|
||||
@default_state
|
||||
@state
|
||||
def newborn(self):
|
||||
self.info("I am a newborn.")
|
||||
self.debug("I am a newborn.")
|
||||
self.birth = self.now
|
||||
self.offspring = 0
|
||||
return self.youngling, Delta(self.sexual_maturity - self.age)
|
||||
return self.youngling
|
||||
|
||||
@state
|
||||
def youngling(self):
|
||||
if self.age >= self.sexual_maturity:
|
||||
self.info(f"I am fertile! My age is {self.age}")
|
||||
return self.fertile
|
||||
async def youngling(self):
|
||||
self.debug("I am a youngling.")
|
||||
await self.delay(self.sexual_maturity - self.age)
|
||||
assert self.age >= self.sexual_maturity
|
||||
self.debug(f"I am fertile! My age is {self.age}")
|
||||
return self.fertile
|
||||
|
||||
@state
|
||||
def fertile(self):
|
||||
raise Exception("Each subclass should define its fertile state")
|
||||
|
||||
@state
|
||||
def dead(self):
|
||||
self.die()
|
||||
|
||||
|
||||
class Male(Rabbit):
|
||||
max_females = 5
|
||||
mating_prob = 0.001
|
||||
mating_prob = 0.005
|
||||
|
||||
@state
|
||||
def fertile(self):
|
||||
if self.age > self.life_expectancy:
|
||||
return self.dead
|
||||
return self.die()
|
||||
|
||||
# Males try to mate
|
||||
for f in self.model.agents(
|
||||
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
|
||||
):
|
||||
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
|
||||
self.debug(f"FOUND A FEMALE: {repr(f)}. Mating with prob {self.mating_prob}")
|
||||
if self.prob(self["mating_prob"]):
|
||||
f.impregnate(self)
|
||||
f.tell(self.unique_id, sender=self, timeout=1)
|
||||
break # Do not try to impregnate other females
|
||||
|
||||
|
||||
@@ -76,78 +84,91 @@ class Female(Rabbit):
|
||||
conception = None
|
||||
|
||||
@state
|
||||
def fertile(self):
|
||||
async def fertile(self):
|
||||
# Just wait for a Male
|
||||
if self.age > self.life_expectancy:
|
||||
return self.dead
|
||||
if self.conception is not None:
|
||||
return self.pregnant
|
||||
|
||||
@property
|
||||
def pregnancy(self):
|
||||
if self.conception is None:
|
||||
return None
|
||||
return self.now - self.conception
|
||||
|
||||
def impregnate(self, male):
|
||||
self.info(f"impregnated by {repr(male)}")
|
||||
self.mate = male
|
||||
self.conception = self.now
|
||||
self.number_of_babies = int(8 + 4 * self.random.random())
|
||||
try:
|
||||
timeout = self.life_expectancy - self.age
|
||||
while timeout > 0:
|
||||
mates = await self.received(timeout=timeout)
|
||||
# assert self.age <= self.life_expectancy
|
||||
for mate in mates:
|
||||
try:
|
||||
male = self.model.agents[mate.payload]
|
||||
except ValueError:
|
||||
continue
|
||||
self.debug(f"impregnated by {repr(male)}")
|
||||
self.mate = male
|
||||
self.number_of_babies = int(8 + 4 * self.random.random())
|
||||
self.conception = self.now
|
||||
return self.pregnant
|
||||
except TimedOut:
|
||||
pass
|
||||
return self.die()
|
||||
|
||||
@state
|
||||
def pregnant(self):
|
||||
async def pregnant(self):
|
||||
self.debug("I am pregnant")
|
||||
# assert self.mate is not None
|
||||
|
||||
when = min(self.gestation, self.life_expectancy - self.age)
|
||||
if when < 0:
|
||||
return self.die()
|
||||
await self.delay(when)
|
||||
|
||||
if self.age > self.life_expectancy:
|
||||
self.info("Dying before giving birth")
|
||||
self.debug("Dying before giving birth")
|
||||
return self.die()
|
||||
|
||||
if self.pregnancy >= self.gestation:
|
||||
self.info("Having {} babies".format(self.number_of_babies))
|
||||
for i in range(self.number_of_babies):
|
||||
state = {}
|
||||
agent_class = self.random.choice([Male, Female])
|
||||
child = self.model.add_node(agent_class=agent_class, **state)
|
||||
child.add_edge(self)
|
||||
if self.mate:
|
||||
child.add_edge(self.mate)
|
||||
self.mate.offspring += 1
|
||||
else:
|
||||
self.debug("The father has passed away")
|
||||
# assert self.now - self.conception >= self.gestation
|
||||
if not self.alive:
|
||||
return self.die()
|
||||
|
||||
self.offspring += 1
|
||||
self.mate = None
|
||||
return self.fertile
|
||||
self.debug("Having {} babies".format(self.number_of_babies))
|
||||
for i in range(self.number_of_babies):
|
||||
state = {}
|
||||
agent_class = self.random.choice([Male, Female])
|
||||
child = self.model.add_node(agent_class=agent_class, **state)
|
||||
child.add_edge(self)
|
||||
try:
|
||||
child.add_edge(self.mate)
|
||||
self.model.agents[self.mate].offspring += 1
|
||||
except ValueError:
|
||||
self.debug("The father has passed away")
|
||||
|
||||
self.offspring += 1
|
||||
self.mate = None
|
||||
self.conception = None
|
||||
return self.fertile
|
||||
|
||||
def die(self):
|
||||
if self.pregnancy is not None:
|
||||
self.info("A mother has died carrying a baby!!")
|
||||
if self.conception is not None:
|
||||
self.debug("A mother has died carrying a baby!!")
|
||||
return super().die()
|
||||
|
||||
|
||||
class RandomAccident(BaseAgent):
|
||||
# Default value, but the value from the environment takes precedence
|
||||
prob_death = 1e-3
|
||||
|
||||
def step(self):
|
||||
rabbits_alive = self.model.G.number_of_nodes()
|
||||
|
||||
if not rabbits_alive:
|
||||
return self.die()
|
||||
alive = self.get_agents(agent_class=Rabbit, alive=True)
|
||||
|
||||
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
|
||||
math.log10(max(1, rabbits_alive))
|
||||
)
|
||||
if not alive:
|
||||
return self.die("No more rabbits to kill")
|
||||
|
||||
num_alive = len(alive)
|
||||
prob_death = min(1, self.prob_death * num_alive/10)
|
||||
self.debug("Killing some rabbits with prob={}!".format(prob_death))
|
||||
for i in self.iter_agents(agent_class=Rabbit):
|
||||
|
||||
for i in alive:
|
||||
if i.state_id == i.dead.id:
|
||||
continue
|
||||
if self.prob(prob_death):
|
||||
self.info("I killed a rabbit: {}".format(i.id))
|
||||
rabbits_alive -= 1
|
||||
i.die()
|
||||
self.debug("Rabbits alive: {}".format(rabbits_alive))
|
||||
self.debug("I killed a rabbit: {}".format(i.unique_id))
|
||||
num_alive -= 1
|
||||
self.model.remove_agent(i)
|
||||
self.debug("Rabbits alive: {}".format(num_alive))
|
||||
|
||||
|
||||
sim = Simulation(model=RabbitsImprovedEnv, max_time=100, seed="MySeed", num_trials=1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
sim.run()
|
||||
RabbitsImprovedEnv.run(max_time=1000, seed="MySeed", iterations=1)
|
||||
|
@@ -1,11 +1,9 @@
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, Simulation, report, parameters as params
|
||||
from collections import Counter
|
||||
import logging
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, report, parameters as params
|
||||
import math
|
||||
|
||||
|
||||
class RabbitEnv(Environment):
|
||||
prob_death: params.probability = 1e-100
|
||||
prob_death: params.probability = 1e-3
|
||||
|
||||
def init(self):
|
||||
a1 = self.add_node(Male)
|
||||
@@ -37,7 +35,7 @@ class Rabbit(NetworkAgent, FSM):
|
||||
@default_state
|
||||
@state
|
||||
def newborn(self):
|
||||
self.info("I am a newborn.")
|
||||
self.debug("I am a newborn.")
|
||||
self.age = 0
|
||||
self.offspring = 0
|
||||
return self.youngling
|
||||
@@ -46,7 +44,7 @@ class Rabbit(NetworkAgent, FSM):
|
||||
def youngling(self):
|
||||
self.age += 1
|
||||
if self.age >= self.sexual_maturity:
|
||||
self.info(f"I am fertile! My age is {self.age}")
|
||||
self.debug(f"I am fertile! My age is {self.age}")
|
||||
return self.fertile
|
||||
|
||||
@state
|
||||
@@ -60,7 +58,7 @@ class Rabbit(NetworkAgent, FSM):
|
||||
|
||||
class Male(Rabbit):
|
||||
max_females = 5
|
||||
mating_prob = 0.001
|
||||
mating_prob = 0.005
|
||||
|
||||
@state
|
||||
def fertile(self):
|
||||
@@ -70,9 +68,8 @@ class Male(Rabbit):
|
||||
return self.dead
|
||||
|
||||
# Males try to mate
|
||||
for f in self.model.agents(
|
||||
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
|
||||
):
|
||||
for f in self.model.agents.filter(
|
||||
agent_class=Female, state_id=Female.fertile.id).limit(self.max_females):
|
||||
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
|
||||
if self.prob(self["mating_prob"]):
|
||||
f.impregnate(self)
|
||||
@@ -93,14 +90,14 @@ class Female(Rabbit):
|
||||
return self.pregnant
|
||||
|
||||
def impregnate(self, male):
|
||||
self.info(f"impregnated by {repr(male)}")
|
||||
self.debug(f"impregnated by {repr(male)}")
|
||||
self.mate = male
|
||||
self.pregnancy = 0
|
||||
self.number_of_babies = int(8 + 4 * self.random.random())
|
||||
|
||||
@state
|
||||
def pregnant(self):
|
||||
self.info("I am pregnant")
|
||||
self.debug("I am pregnant")
|
||||
self.age += 1
|
||||
|
||||
if self.age >= self.life_expectancy:
|
||||
@@ -110,7 +107,7 @@ class Female(Rabbit):
|
||||
self.pregnancy += 1
|
||||
return
|
||||
|
||||
self.info("Having {} babies".format(self.number_of_babies))
|
||||
self.debug("Having {} babies".format(self.number_of_babies))
|
||||
for i in range(self.number_of_babies):
|
||||
state = {}
|
||||
agent_class = self.random.choice([Male, Female])
|
||||
@@ -129,33 +126,32 @@ class Female(Rabbit):
|
||||
|
||||
def die(self):
|
||||
if "pregnancy" in self and self["pregnancy"] > -1:
|
||||
self.info("A mother has died carrying a baby!!")
|
||||
self.debug("A mother has died carrying a baby!!")
|
||||
return super().die()
|
||||
|
||||
|
||||
class RandomAccident(BaseAgent):
|
||||
prob_death = None
|
||||
def step(self):
|
||||
rabbits_alive = self.model.G.number_of_nodes()
|
||||
alive = self.get_agents(agent_class=Rabbit, alive=True)
|
||||
|
||||
if not rabbits_alive:
|
||||
return self.die()
|
||||
if not alive:
|
||||
return self.die("No more rabbits to kill")
|
||||
|
||||
prob_death = self.model.prob_death * math.floor(
|
||||
math.log10(max(1, rabbits_alive))
|
||||
)
|
||||
num_alive = len(alive)
|
||||
prob_death = min(1, self.prob_death * num_alive/10)
|
||||
self.debug("Killing some rabbits with prob={}!".format(prob_death))
|
||||
for i in self.get_agents(agent_class=Rabbit):
|
||||
|
||||
for i in alive:
|
||||
if i.state_id == i.dead.id:
|
||||
continue
|
||||
if self.prob(prob_death):
|
||||
self.info("I killed a rabbit: {}".format(i.id))
|
||||
rabbits_alive -= 1
|
||||
i.die()
|
||||
self.debug("Rabbits alive: {}".format(rabbits_alive))
|
||||
self.debug("I killed a rabbit: {}".format(i.unique_id))
|
||||
num_alive -= 1
|
||||
self.model.remove_agent(i)
|
||||
i.alive = False
|
||||
i.killed = True
|
||||
self.debug("Rabbits alive: {}".format(num_alive))
|
||||
|
||||
|
||||
|
||||
sim = Simulation(model=RabbitEnv, max_time=100, seed="MySeed", num_trials=1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
sim.run()
|
||||
RabbitEnv.run(max_time=1000, seed="MySeed", iterations=1)
|
@@ -1,9 +1,7 @@
|
||||
"""
|
||||
Example of setting a
|
||||
Example of a fully programmatic simulation, without definition files.
|
||||
"""
|
||||
from soil import Simulation, agents, Environment
|
||||
from soil.time import Delta
|
||||
|
||||
|
||||
class MyAgent(agents.FSM):
|
||||
@@ -11,22 +9,22 @@ class MyAgent(agents.FSM):
|
||||
An agent that first does a ping
|
||||
"""
|
||||
|
||||
defaults = {"pong_counts": 2}
|
||||
max_pongs = 2
|
||||
|
||||
@agents.default_state
|
||||
@agents.state
|
||||
def ping(self):
|
||||
self.info("Ping")
|
||||
return self.pong, Delta(self.random.expovariate(1 / 16))
|
||||
return self.pong.delay(self.random.expovariate(1 / 16))
|
||||
|
||||
@agents.state
|
||||
def pong(self):
|
||||
self.info("Pong")
|
||||
self.pong_counts -= 1
|
||||
self.info(str(self.pong_counts))
|
||||
if self.pong_counts < 1:
|
||||
self.max_pongs -= 1
|
||||
self.info(str(self.max_pongs), "pongs remaining")
|
||||
if self.max_pongs < 1:
|
||||
return self.die()
|
||||
return None, Delta(self.random.expovariate(1 / 16))
|
||||
return self.delay(self.random.expovariate(1 / 16))
|
||||
|
||||
|
||||
class RandomEnv(Environment):
|
||||
@@ -38,7 +36,7 @@ class RandomEnv(Environment):
|
||||
s = Simulation(
|
||||
name="Programmatic",
|
||||
model=RandomEnv,
|
||||
num_trials=1,
|
||||
iterations=1,
|
||||
max_time=100,
|
||||
dump=False,
|
||||
)
|
||||
|
@@ -1,7 +1,9 @@
|
||||
import networkx as nx
|
||||
from soil.agents import Geo, NetworkAgent, FSM, custom, state, default_state
|
||||
from soil.agents import FSM, state, default_state
|
||||
from soil.agents.geo import Geo
|
||||
from soil import Environment, Simulation
|
||||
from soil.parameters import *
|
||||
from soil.utils import int_seed
|
||||
|
||||
|
||||
class TerroristEnvironment(Environment):
|
||||
@@ -38,9 +40,8 @@ class TerroristEnvironment(Environment):
|
||||
HavenModel
|
||||
], [self.ratio_civil, self.ratio_leader, self.ratio_training, self.ratio_haven])
|
||||
|
||||
@staticmethod
|
||||
def generator(*args, **kwargs):
|
||||
return nx.random_geometric_graph(*args, **kwargs)
|
||||
def generator(self, *args, seed=None, **kwargs):
|
||||
return nx.random_geometric_graph(*args, **kwargs, seed=seed or int_seed(self._seed))
|
||||
|
||||
class TerroristSpreadModel(FSM, Geo):
|
||||
"""
|
||||
@@ -137,7 +138,7 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
|
||||
def ego_search(self, steps=1, center=False, agent=None, **kwargs):
|
||||
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
|
||||
node = agent.node_id
|
||||
node = agent.node_id if agent else self.node_id
|
||||
G = self.subgraph(**kwargs)
|
||||
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
|
||||
|
||||
@@ -279,26 +280,26 @@ class TerroristNetworkModel(TerroristSpreadModel):
|
||||
)
|
||||
)
|
||||
neighbours = set(
|
||||
agent.id
|
||||
agent.unique_id
|
||||
for agent in self.get_neighbors(agent_class=TerroristNetworkModel)
|
||||
)
|
||||
search = (close_ups | step_neighbours) - neighbours
|
||||
for agent in self.get_agents(search):
|
||||
social_distance = 1 / self.shortest_path_length(agent.id)
|
||||
spatial_proximity = 1 - self.get_distance(agent.id)
|
||||
social_distance = 1 / self.shortest_path_length(agent.unique_id)
|
||||
spatial_proximity = 1 - self.get_distance(agent.unique_id)
|
||||
prob_new_interaction = (
|
||||
self.weight_social_distance * social_distance
|
||||
+ self.weight_link_distance * spatial_proximity
|
||||
)
|
||||
if (
|
||||
agent["id"] == agent.civilian.id
|
||||
agent.state_id == "civilian"
|
||||
and self.random.random() < prob_new_interaction
|
||||
):
|
||||
self.add_edge(agent)
|
||||
break
|
||||
|
||||
def get_distance(self, target):
|
||||
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.id]
|
||||
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.unique_id]
|
||||
target_x, target_y = nx.get_node_attributes(self.G, "pos")[target]
|
||||
dx = abs(source_x - target_x)
|
||||
dy = abs(source_y - target_y)
|
||||
@@ -306,16 +307,17 @@ class TerroristNetworkModel(TerroristSpreadModel):
|
||||
|
||||
def shortest_path_length(self, target):
|
||||
try:
|
||||
return nx.shortest_path_length(self.G, self.id, target)
|
||||
return nx.shortest_path_length(self.G, self.unique_id, target)
|
||||
except nx.NetworkXNoPath:
|
||||
return float("inf")
|
||||
|
||||
|
||||
sim = Simulation(
|
||||
model=TerroristEnvironment,
|
||||
num_trials=1,
|
||||
iterations=1,
|
||||
name="TerroristNetworkModel_sim",
|
||||
max_steps=150,
|
||||
seed="default2",
|
||||
skip_test=False,
|
||||
dump=False,
|
||||
)
|
||||
|
@@ -21,5 +21,4 @@ class TorvaldsEnv(Environment):
|
||||
|
||||
sim = Simulation(name='torvalds_example',
|
||||
max_steps=10,
|
||||
interval=2,
|
||||
model=TorvaldsEnv)
|
@@ -6,7 +6,7 @@ pandas>=1
|
||||
SALib>=1.3
|
||||
Jinja2
|
||||
Mesa>=1.2
|
||||
pydantic>=1.9
|
||||
sqlalchemy>=1.4
|
||||
typing-extensions>=4.4
|
||||
annotated-types>=0.4
|
||||
annotated-types>=0.4
|
||||
tqdm>=4.64
|
||||
|
@@ -1,3 +1,7 @@
|
||||
[metadata]
|
||||
long_description = file: README.md
|
||||
long_description_content_type = text/markdown
|
||||
|
||||
[aliases]
|
||||
test=pytest
|
||||
[tool:pytest]
|
||||
|
4
setup.py
@@ -17,9 +17,9 @@ def parse_requirements(filename):
|
||||
install_reqs = parse_requirements("requirements.txt")
|
||||
test_reqs = parse_requirements("test-requirements.txt")
|
||||
extras_require={
|
||||
'mesa': ['mesa>=0.8.9'],
|
||||
'geo': ['scipy>=1.3'],
|
||||
'web': ['tornado']
|
||||
'web': ['tornado'],
|
||||
'ipython': ['ipython==8.12', 'nbformat==5.8'],
|
||||
}
|
||||
extras_require['all'] = [dep for package in extras_require.values() for dep in package]
|
||||
|
||||
|
@@ -1 +1 @@
|
||||
0.30.0rc4
|
||||
1.0.0rc10
|
@@ -19,7 +19,7 @@ from pathlib import Path
|
||||
from .agents import *
|
||||
from . import agents
|
||||
from .simulation import *
|
||||
from .environment import Environment, EventedEnvironment
|
||||
from .environment import Environment
|
||||
from .datacollection import SoilCollector
|
||||
from . import serialization
|
||||
from .utils import logger
|
||||
@@ -87,7 +87,7 @@ def main(
|
||||
"--graph",
|
||||
"-g",
|
||||
action="store_true",
|
||||
help="Dump each trial's network topology as a GEXF graph. Defaults to false.",
|
||||
help="Dump each iteration's network topology as a GEXF graph. Defaults to false.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--csv",
|
||||
@@ -116,11 +116,23 @@ def main(
|
||||
help="Export environment and/or simulations using this exporter",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--until",
|
||||
"--max_time",
|
||||
default="",
|
||||
help="Set maximum time for the simulation to run. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max_steps",
|
||||
default="",
|
||||
help="Set maximum number of steps for the simulation to run.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iterations",
|
||||
default="",
|
||||
help="Set maximum number of iterations (runs) for the simulation.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
default=None,
|
||||
@@ -147,7 +159,8 @@ def main(
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
logger.setLevel(getattr(logging, (args.level or "INFO").upper()))
|
||||
level = getattr(logging, (args.level or "INFO").upper())
|
||||
logger.setLevel(level)
|
||||
|
||||
if args.version:
|
||||
return
|
||||
@@ -185,11 +198,14 @@ def main(
|
||||
debug=debug,
|
||||
exporters=exporters,
|
||||
num_processes=args.num_processes,
|
||||
level=level,
|
||||
outdir=output,
|
||||
exporter_params=exp_params,
|
||||
**kwargs)
|
||||
if args.seed is not None:
|
||||
opts["seed"] = args.seed
|
||||
if args.iterations:
|
||||
opts["iterations"] =int(args.iterations)
|
||||
|
||||
if sim:
|
||||
logger.info("Loading simulation instance")
|
||||
@@ -218,7 +234,7 @@ def main(
|
||||
k, v = s.split("=", 1)[:2]
|
||||
v = eval(v)
|
||||
tail, *head = k.rsplit(".", 1)[::-1]
|
||||
target = sim.model_params
|
||||
target = sim.parameters
|
||||
if head:
|
||||
for part in head[0].split("."):
|
||||
try:
|
||||
@@ -233,12 +249,16 @@ def main(
|
||||
if args.only_convert:
|
||||
print(sim.to_yaml())
|
||||
continue
|
||||
res.append(sim.run(until=args.until))
|
||||
d = {}
|
||||
if args.max_time:
|
||||
d["max_time"] = float(args.max_time)
|
||||
if args.max_steps:
|
||||
d["max_steps"] = int(args.max_steps)
|
||||
res.append(sim.run(**d))
|
||||
|
||||
except Exception as ex:
|
||||
if args.pdb:
|
||||
from .debugging import post_mortem
|
||||
|
||||
print(traceback.format_exc())
|
||||
post_mortem()
|
||||
else:
|
||||
|
@@ -1,85 +1,23 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
from collections import OrderedDict, defaultdict
|
||||
from collections.abc import MutableMapping, Mapping, Set
|
||||
from abc import ABCMeta
|
||||
from copy import deepcopy, copy
|
||||
from functools import partial, wraps
|
||||
from itertools import islice, chain
|
||||
from collections.abc import MutableMapping
|
||||
from copy import deepcopy
|
||||
import inspect
|
||||
import types
|
||||
import textwrap
|
||||
import networkx as nx
|
||||
import warnings
|
||||
import sys
|
||||
|
||||
from typing import Any
|
||||
from mesa import Agent as MesaAgent
|
||||
|
||||
from mesa import Agent as MesaAgent, Model
|
||||
from typing import Dict, List
|
||||
from .. import utils, time
|
||||
|
||||
from .. import serialization, network, utils, time, config
|
||||
from .meta import MetaAgent
|
||||
|
||||
|
||||
IGNORED_FIELDS = ("model", "logger")
|
||||
|
||||
|
||||
class MetaAgent(ABCMeta):
|
||||
def __new__(mcls, name, bases, namespace):
|
||||
defaults = {}
|
||||
|
||||
# Re-use defaults from inherited classes
|
||||
for i in bases:
|
||||
if isinstance(i, MetaAgent):
|
||||
defaults.update(i._defaults)
|
||||
|
||||
new_nmspc = {
|
||||
"_defaults": defaults,
|
||||
"_last_return": None,
|
||||
"_last_except": None,
|
||||
}
|
||||
|
||||
for attr, func in namespace.items():
|
||||
if attr == "step" and inspect.isgeneratorfunction(func):
|
||||
orig_func = func
|
||||
new_nmspc["_coroutine"] = None
|
||||
|
||||
@wraps(func)
|
||||
def func(self):
|
||||
while True:
|
||||
if not self._coroutine:
|
||||
self._coroutine = orig_func(self)
|
||||
try:
|
||||
if self._last_except:
|
||||
return self._coroutine.throw(self._last_except)
|
||||
else:
|
||||
return self._coroutine.send(self._last_return)
|
||||
except StopIteration as ex:
|
||||
self._coroutine = None
|
||||
return ex.value
|
||||
finally:
|
||||
self._last_return = None
|
||||
self._last_except = None
|
||||
|
||||
func.id = name or func.__name__
|
||||
func.is_default = False
|
||||
new_nmspc[attr] = func
|
||||
elif (
|
||||
isinstance(func, types.FunctionType)
|
||||
or isinstance(func, property)
|
||||
or isinstance(func, classmethod)
|
||||
or attr[0] == "_"
|
||||
):
|
||||
new_nmspc[attr] = func
|
||||
elif attr == "defaults":
|
||||
defaults.update(func)
|
||||
else:
|
||||
defaults[attr] = copy(func)
|
||||
|
||||
return super().__new__(mcls=mcls, name=name, bases=bases, namespace=new_nmspc)
|
||||
|
||||
|
||||
class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
"""
|
||||
A special type of Mesa Agent that:
|
||||
@@ -92,8 +30,11 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
Any attribute that is not preceded by an underscore (`_`) will also be added to its state.
|
||||
"""
|
||||
|
||||
def __init__(self, unique_id, model, name=None, init=True, interval=None, **kwargs):
|
||||
assert isinstance(unique_id, int)
|
||||
def __init__(self, unique_id=None, model=None, name=None, init=True, **kwargs):
|
||||
# Ideally, model should be the first argument, but Mesa's Agent class has unique_id first
|
||||
assert not (model is None), "Must provide a model"
|
||||
if unique_id is None:
|
||||
unique_id = model.next_id()
|
||||
super().__init__(unique_id=unique_id, model=model)
|
||||
|
||||
self.name = (
|
||||
@@ -102,7 +43,6 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
|
||||
self.alive = True
|
||||
|
||||
self.interval = interval or self.get("interval", 1)
|
||||
logger = utils.logger.getChild(getattr(self.model, "id", self.model)).getChild(
|
||||
self.name
|
||||
)
|
||||
@@ -111,13 +51,18 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
if hasattr(self, "level"):
|
||||
self.logger.setLevel(self.level)
|
||||
|
||||
for k in self._defaults:
|
||||
v = getattr(model, k, None)
|
||||
if v is not None:
|
||||
setattr(self, k, v)
|
||||
|
||||
for (k, v) in self._defaults.items():
|
||||
if not hasattr(self, k) or getattr(self, k) is None:
|
||||
setattr(self, k, deepcopy(v))
|
||||
|
||||
for (k, v) in kwargs.items():
|
||||
|
||||
setattr(self, k, v)
|
||||
|
||||
if init:
|
||||
self.init()
|
||||
|
||||
@@ -128,11 +73,11 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
return hash(self.unique_id)
|
||||
|
||||
def prob(self, probability):
|
||||
return prob(probability, self.model.random)
|
||||
return utils.prob(probability, self.model.random)
|
||||
|
||||
@classmethod
|
||||
def w(cls, **kwargs):
|
||||
return custom(cls, **kwargs)
|
||||
return utils.custom(cls, **kwargs)
|
||||
|
||||
# TODO: refactor to clean up mesa compatibility
|
||||
@property
|
||||
@@ -142,20 +87,12 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
print(msg, file=sys.stderr)
|
||||
return self.unique_id
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, model, attrs, warn_extra=True):
|
||||
ignored = {}
|
||||
args = {}
|
||||
for k, v in attrs.items():
|
||||
if k in inspect.signature(cls).parameters:
|
||||
args[k] = v
|
||||
else:
|
||||
ignored[k] = v
|
||||
if ignored and warn_extra:
|
||||
utils.logger.info(
|
||||
f"Ignoring the following arguments for agent class { agent_class.__name__ }: { ignored }"
|
||||
)
|
||||
return cls(model=model, **args)
|
||||
@property
|
||||
def env(self):
|
||||
msg = "This attribute is deprecated. Use `model` instead"
|
||||
warnings.warn(msg, DeprecationWarning)
|
||||
print(msg, file=sys.stderr)
|
||||
return self.model
|
||||
|
||||
def __getitem__(self, key):
|
||||
try:
|
||||
@@ -189,11 +126,13 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
return it
|
||||
|
||||
def get(self, key, default=None):
|
||||
if key in self:
|
||||
return self[key]
|
||||
elif key in self.model:
|
||||
return self.model[key]
|
||||
return default
|
||||
try:
|
||||
return getattr(self, key)
|
||||
except AttributeError:
|
||||
try:
|
||||
return getattr(self.model, key)
|
||||
except AttributeError:
|
||||
return default
|
||||
|
||||
@property
|
||||
def now(self):
|
||||
@@ -206,21 +145,18 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
def die(self, msg=None):
|
||||
if msg:
|
||||
self.info("Agent dying:", msg)
|
||||
self.debug(f"agent dying")
|
||||
else:
|
||||
self.debug(f"agent dying")
|
||||
self.alive = False
|
||||
try:
|
||||
self.model.schedule.remove(self)
|
||||
except KeyError:
|
||||
pass
|
||||
return time.NEVER
|
||||
return time.Delay(time.INFINITY)
|
||||
|
||||
def step(self):
|
||||
raise NotImplementedError("Agent must implement step method")
|
||||
|
||||
|
||||
def _check_alive(self):
|
||||
if not self.alive:
|
||||
raise time.DeadAgent(self.unique_id)
|
||||
|
||||
|
||||
def log(self, *message, level=logging.INFO, **kwargs):
|
||||
if not self.logger.isEnabledFor(level):
|
||||
return
|
||||
@@ -266,407 +202,30 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
def __repr__(self):
|
||||
return f"{self.__class__.__name__}({self.unique_id})"
|
||||
|
||||
def at(self, at):
|
||||
return time.Delay(float(at) - self.now)
|
||||
|
||||
def prob(prob, random):
|
||||
"""
|
||||
A true/False uniform distribution with a given probability.
|
||||
To be used like this:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
if prob(0.3):
|
||||
do_something()
|
||||
|
||||
"""
|
||||
r = random.random()
|
||||
return r < prob
|
||||
|
||||
|
||||
def calculate_distribution(network_agents=None, agent_class=None):
|
||||
"""
|
||||
Calculate the threshold values (thresholds for a uniform distribution)
|
||||
of an agent distribution given the weights of each agent type.
|
||||
|
||||
The input has this form: ::
|
||||
|
||||
[
|
||||
{'agent_class': 'agent_class_1',
|
||||
'weight': 0.2,
|
||||
'state': {
|
||||
'id': 0
|
||||
}
|
||||
},
|
||||
{'agent_class': 'agent_class_2',
|
||||
'weight': 0.8,
|
||||
'state': {
|
||||
'id': 1
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
In this example, 20% of the nodes will be marked as type
|
||||
'agent_class_1'.
|
||||
"""
|
||||
if network_agents:
|
||||
network_agents = [
|
||||
deepcopy(agent) for agent in network_agents if not hasattr(agent, "id")
|
||||
]
|
||||
elif agent_class:
|
||||
network_agents = [{"agent_class": agent_class}]
|
||||
else:
|
||||
raise ValueError("Specify a distribution or a default agent type")
|
||||
|
||||
# Fix missing weights and incompatible types
|
||||
for x in network_agents:
|
||||
x["weight"] = float(x.get("weight", 1))
|
||||
|
||||
# Calculate the thresholds
|
||||
total = sum(x["weight"] for x in network_agents)
|
||||
acc = 0
|
||||
for v in network_agents:
|
||||
if "ids" in v:
|
||||
continue
|
||||
upper = acc + (v["weight"] / total)
|
||||
v["threshold"] = [acc, upper]
|
||||
acc = upper
|
||||
return network_agents
|
||||
|
||||
|
||||
def _serialize_type(agent_class, known_modules=[], **kwargs):
|
||||
if isinstance(agent_class, str):
|
||||
return agent_class
|
||||
known_modules += ["soil.agents"]
|
||||
return serialization.serialize(agent_class, known_modules=known_modules, **kwargs)[
|
||||
1
|
||||
] # Get the name of the class
|
||||
|
||||
|
||||
def _deserialize_type(agent_class, known_modules=[]):
|
||||
if not isinstance(agent_class, str):
|
||||
return agent_class
|
||||
known = known_modules + ["soil.agents", "soil.agents.custom"]
|
||||
agent_class = serialization.deserializer(agent_class, known_modules=known)
|
||||
return agent_class
|
||||
|
||||
|
||||
class AgentView(Mapping, Set):
|
||||
"""A lazy-loaded list of agents."""
|
||||
|
||||
__slots__ = ("_agents",)
|
||||
|
||||
def __init__(self, agents):
|
||||
self._agents = agents
|
||||
|
||||
def __getstate__(self):
|
||||
return {"_agents": self._agents}
|
||||
|
||||
def __setstate__(self, state):
|
||||
self._agents = state["_agents"]
|
||||
|
||||
# Mapping methods
|
||||
def __len__(self):
|
||||
return len(self._agents)
|
||||
|
||||
def __iter__(self):
|
||||
yield from self._agents.values()
|
||||
|
||||
def __getitem__(self, agent_id):
|
||||
if isinstance(agent_id, slice):
|
||||
raise ValueError(f"Slicing is not supported")
|
||||
if agent_id in self._agents:
|
||||
return self._agents[agent_id]
|
||||
raise ValueError(f"Agent {agent_id} not found")
|
||||
|
||||
def filter(self, *args, **kwargs):
|
||||
yield from filter_agents(self._agents, *args, **kwargs)
|
||||
|
||||
def one(self, *args, **kwargs):
|
||||
return next(filter_agents(self._agents, *args, **kwargs))
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return list(self.filter(*args, **kwargs))
|
||||
|
||||
def __contains__(self, agent_id):
|
||||
return agent_id in self._agents
|
||||
|
||||
def __str__(self):
|
||||
return str(list(unique_id for unique_id in self.keys()))
|
||||
|
||||
def __repr__(self):
|
||||
return f"{self.__class__.__name__}({self})"
|
||||
|
||||
|
||||
def filter_agents(
|
||||
agents: dict,
|
||||
*id_args,
|
||||
unique_id=None,
|
||||
state_id=None,
|
||||
agent_class=None,
|
||||
ignore=None,
|
||||
state=None,
|
||||
limit=None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Filter agents given as a dict, by the criteria given as arguments (e.g., certain type or state id).
|
||||
"""
|
||||
assert isinstance(agents, dict)
|
||||
|
||||
ids = []
|
||||
|
||||
if unique_id is not None:
|
||||
if isinstance(unique_id, list):
|
||||
ids += unique_id
|
||||
else:
|
||||
ids.append(unique_id)
|
||||
|
||||
if id_args:
|
||||
ids += id_args
|
||||
|
||||
if ids:
|
||||
f = (agents[aid] for aid in ids if aid in agents)
|
||||
else:
|
||||
f = agents.values()
|
||||
|
||||
if state_id is not None and not isinstance(state_id, (tuple, list)):
|
||||
state_id = tuple([state_id])
|
||||
|
||||
if agent_class is not None:
|
||||
agent_class = _deserialize_type(agent_class)
|
||||
try:
|
||||
agent_class = tuple(agent_class)
|
||||
except TypeError:
|
||||
agent_class = tuple([agent_class])
|
||||
|
||||
if ignore:
|
||||
f = filter(lambda x: x not in ignore, f)
|
||||
|
||||
if state_id is not None:
|
||||
f = filter(lambda agent: agent.get("state_id", None) in state_id, f)
|
||||
|
||||
if agent_class is not None:
|
||||
f = filter(lambda agent: isinstance(agent, agent_class), f)
|
||||
|
||||
state = state or dict()
|
||||
state.update(kwargs)
|
||||
|
||||
for k, v in state.items():
|
||||
f = filter(lambda agent: getattr(agent, k, None) == v, f)
|
||||
|
||||
if limit is not None:
|
||||
f = islice(f, limit)
|
||||
|
||||
yield from f
|
||||
|
||||
|
||||
def from_config(
|
||||
cfg: config.AgentConfig, random, topology: nx.Graph = None
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
This function turns an agentconfig into a list of individual "agent specifications", which are just a dictionary
|
||||
with the parameters that the environment will use to construct each agent.
|
||||
|
||||
This function does NOT return a list of agents, mostly because some attributes to the agent are not known at the
|
||||
time of calling this function, such as `unique_id`.
|
||||
"""
|
||||
default = cfg or config.AgentConfig()
|
||||
if not isinstance(cfg, config.AgentConfig):
|
||||
cfg = config.AgentConfig(**cfg)
|
||||
|
||||
agents = []
|
||||
|
||||
assigned_total = 0
|
||||
assigned_network = 0
|
||||
|
||||
if cfg.fixed is not None:
|
||||
agents, assigned_total, assigned_network = _from_fixed(
|
||||
cfg.fixed, topology=cfg.topology, default=cfg
|
||||
)
|
||||
|
||||
n = cfg.n
|
||||
|
||||
if cfg.distribution:
|
||||
topo_size = len(topology) if topology else 0
|
||||
|
||||
networked = []
|
||||
total = []
|
||||
|
||||
for d in cfg.distribution:
|
||||
if d.strategy == config.Strategy.topology:
|
||||
topo = d.topology if ("topology" in d.__fields_set__) else cfg.topology
|
||||
if not topo:
|
||||
raise ValueError(
|
||||
'The "topology" strategy only works if the topology parameter is set to True'
|
||||
)
|
||||
if not topo_size:
|
||||
raise ValueError(
|
||||
f"Topology does not have enough free nodes to assign one to the agent"
|
||||
)
|
||||
|
||||
networked.append(d)
|
||||
|
||||
if d.strategy == config.Strategy.total:
|
||||
if not cfg.n:
|
||||
raise ValueError(
|
||||
'Cannot use the "total" strategy without providing the total number of agents'
|
||||
)
|
||||
total.append(d)
|
||||
|
||||
if networked:
|
||||
new_agents = _from_distro(
|
||||
networked,
|
||||
n=topo_size - assigned_network,
|
||||
topology=topo,
|
||||
default=cfg,
|
||||
random=random,
|
||||
)
|
||||
assigned_total += len(new_agents)
|
||||
assigned_network += len(new_agents)
|
||||
agents += new_agents
|
||||
|
||||
if total:
|
||||
remaining = n - assigned_total
|
||||
agents += _from_distro(total, n=remaining, default=cfg, random=random)
|
||||
|
||||
if assigned_network < topo_size:
|
||||
utils.logger.warn(
|
||||
f"The total number of agents does not match the total number of nodes in "
|
||||
"every topology. This may be due to a definition error: assigned: "
|
||||
f"{ assigned } total size: { topo_size }"
|
||||
)
|
||||
|
||||
return agents
|
||||
|
||||
|
||||
def _from_fixed(
|
||||
lst: List[config.FixedAgentConfig],
|
||||
topology: bool,
|
||||
default: config.SingleAgentConfig,
|
||||
) -> List[Dict[str, Any]]:
|
||||
agents = []
|
||||
|
||||
counts_total = 0
|
||||
counts_network = 0
|
||||
|
||||
for fixed in lst:
|
||||
agent = {}
|
||||
if default:
|
||||
agent = default.state.copy()
|
||||
agent.update(fixed.state)
|
||||
cls = serialization.deserialize(
|
||||
fixed.agent_class or (default and default.agent_class)
|
||||
)
|
||||
agent["agent_class"] = cls
|
||||
topo = (
|
||||
fixed.topology
|
||||
if ("topology" in fixed.__fields_set__)
|
||||
else topology or default.topology
|
||||
)
|
||||
|
||||
if topo:
|
||||
agent["topology"] = True
|
||||
counts_network += 1
|
||||
if not fixed.hidden:
|
||||
counts_total += 1
|
||||
agents.append(agent)
|
||||
|
||||
return agents, counts_total, counts_network
|
||||
|
||||
|
||||
def _from_distro(
|
||||
distro: List[config.AgentDistro],
|
||||
n: int,
|
||||
default: config.SingleAgentConfig,
|
||||
random,
|
||||
topology: str = None
|
||||
) -> List[Dict[str, Any]]:
|
||||
|
||||
agents = []
|
||||
|
||||
if n is None:
|
||||
if any(lambda dist: dist.n is None, distro):
|
||||
raise ValueError(
|
||||
"You must provide a total number of agents, or the number of each type"
|
||||
)
|
||||
n = sum(dist.n for dist in distro)
|
||||
|
||||
weights = list(dist.weight if dist.weight is not None else 1 for dist in distro)
|
||||
minw = min(weights)
|
||||
norm = list(weight / minw for weight in weights)
|
||||
total = sum(norm)
|
||||
chunk = n // total
|
||||
|
||||
# random.choices would be enough to get a weighted distribution. But it can vary a lot for smaller k
|
||||
# So instead we calculate our own distribution to make sure the actual ratios are close to what we would expect
|
||||
|
||||
# Calculate how many times each has to appear
|
||||
indices = list(
|
||||
chain.from_iterable([idx] * int(n * chunk) for (idx, n) in enumerate(norm))
|
||||
)
|
||||
|
||||
# Complete with random agents following the original weight distribution
|
||||
if len(indices) < n:
|
||||
indices += random.choices(
|
||||
list(range(len(distro))),
|
||||
weights=[d.weight for d in distro],
|
||||
k=n - len(indices),
|
||||
)
|
||||
|
||||
# Deserialize classes for efficiency
|
||||
classes = list(
|
||||
serialization.deserialize(i.agent_class or default.agent_class) for i in distro
|
||||
)
|
||||
|
||||
# Add them in random order
|
||||
random.shuffle(indices)
|
||||
|
||||
for idx in indices:
|
||||
d = distro[idx]
|
||||
agent = d.state.copy()
|
||||
cls = classes[idx]
|
||||
agent["agent_class"] = cls
|
||||
if default:
|
||||
agent.update(default.state)
|
||||
topology = (
|
||||
d.topology
|
||||
if ("topology" in d.__fields_set__)
|
||||
else topology or default.topology
|
||||
)
|
||||
if topology:
|
||||
agent["topology"] = topology
|
||||
agents.append(agent)
|
||||
|
||||
return agents
|
||||
def delay(self, delay=1):
|
||||
return time.Delay(delay)
|
||||
|
||||
|
||||
from .network_agents import *
|
||||
from .fsm import *
|
||||
from .evented import *
|
||||
from typing import Optional
|
||||
from .view import *
|
||||
|
||||
|
||||
class Agent(NetworkAgent, FSM, EventedAgent):
|
||||
"""Default agent class, has both network and event capabilities"""
|
||||
class Noop(EventedAgent, BaseAgent):
|
||||
def step(self):
|
||||
return
|
||||
|
||||
|
||||
from ..environment import NetworkEnvironment
|
||||
class Agent(FSM, EventedAgent, NetworkAgent):
|
||||
"""Default agent class, has network, FSM and event capabilities"""
|
||||
|
||||
|
||||
# Additional types of agents
|
||||
from .BassModel import *
|
||||
from .IndependentCascadeModel import *
|
||||
from .SISaModel import *
|
||||
from .CounterModel import *
|
||||
|
||||
|
||||
try:
|
||||
import scipy
|
||||
from .Geo import Geo
|
||||
except ImportError:
|
||||
import sys
|
||||
|
||||
print("Could not load the Geo Agent, scipy is not installed", file=sys.stderr)
|
||||
|
||||
|
||||
def custom(cls, **kwargs):
|
||||
"""Create a new class from a template class and keyword arguments"""
|
||||
return type(cls.__name__, (cls,), kwargs)
|
@@ -1,77 +1,34 @@
|
||||
from . import BaseAgent
|
||||
from ..events import Message, Tell, Ask, TimedOut
|
||||
from ..time import BaseCond
|
||||
from .. import environment, events
|
||||
from functools import partial
|
||||
from collections import deque
|
||||
from types import coroutine
|
||||
|
||||
|
||||
class ReceivedOrTimeout(BaseCond):
|
||||
def __init__(
|
||||
self, agent, expiration=None, timeout=None, check=True, ignore=False, **kwargs
|
||||
):
|
||||
if expiration is None:
|
||||
if timeout is not None:
|
||||
expiration = agent.now + timeout
|
||||
self.expiration = expiration
|
||||
self.ignore = ignore
|
||||
self.check = check
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def expired(self, time):
|
||||
return self.expiration and self.expiration < time
|
||||
|
||||
def ready(self, agent, time):
|
||||
return len(agent._inbox) or self.expired(time)
|
||||
|
||||
def return_value(self, agent):
|
||||
if not self.ignore and self.expired(agent.now):
|
||||
raise TimedOut("No messages received")
|
||||
if self.check:
|
||||
agent.check_messages()
|
||||
return None
|
||||
|
||||
def schedule_next(self, time, delta, first=False):
|
||||
if self._delta is not None:
|
||||
delta = self._delta
|
||||
return (time + delta, self)
|
||||
|
||||
def __repr__(self):
|
||||
return f"ReceivedOrTimeout(expires={self.expiration})"
|
||||
# from soilent import Scheduler
|
||||
|
||||
|
||||
class EventedAgent(BaseAgent):
|
||||
# scheduler_class = Scheduler
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._inbox = deque()
|
||||
self._processed = 0
|
||||
assert isinstance(self.model, environment.EventedEnvironment), "EventedAgent requires an EventedEnvironment"
|
||||
self.model.register(self)
|
||||
|
||||
def on_receive(self, *args, **kwargs):
|
||||
pass
|
||||
def received(self, **kwargs):
|
||||
return self.model.received(agent=self, **kwargs)
|
||||
|
||||
def received(self, *args, **kwargs):
|
||||
return ReceivedOrTimeout(self, *args, **kwargs)
|
||||
def tell(self, msg, **kwargs):
|
||||
return self.model.tell(msg, recipient=self, **kwargs)
|
||||
|
||||
def tell(self, msg, sender=None):
|
||||
self._inbox.append(Tell(timestamp=self.now, payload=msg, sender=sender))
|
||||
def broadcast(self, msg, **kwargs):
|
||||
return self.model.broadcast(msg, sender=self, **kwargs)
|
||||
|
||||
def ask(self, msg, timeout=None, **kwargs):
|
||||
ask = Ask(timestamp=self.now, payload=msg, sender=self)
|
||||
self._inbox.append(ask)
|
||||
expiration = float("inf") if timeout is None else self.now + timeout
|
||||
return ask.replied(expiration=expiration, **kwargs)
|
||||
def ask(self, msg, **kwargs):
|
||||
return self.model.ask(msg, recipient=self, **kwargs)
|
||||
|
||||
def check_messages(self):
|
||||
changed = False
|
||||
while self._inbox:
|
||||
msg = self._inbox.popleft()
|
||||
self._processed += 1
|
||||
if msg.expired(self.now):
|
||||
continue
|
||||
changed = True
|
||||
reply = self.on_receive(msg.payload, sender=msg.sender)
|
||||
if isinstance(msg, Ask):
|
||||
msg.reply = reply
|
||||
return changed
|
||||
def process_messages(self):
|
||||
return self.model.process_messages(self.model.inbox_for(self))
|
||||
|
||||
|
||||
Evented = EventedAgent
|
||||
|