1
0
mirror of https://github.com/gsi-upm/soil synced 2025-01-05 06:11:27 +00:00

Compare commits

...

22 Commits

Author SHA1 Message Date
J. Fernando Sánchez
cd62c23cb9 WIP: all tests pass 2022-10-13 22:43:16 +02:00
J. Fernando Sánchez
f811ee18c5 WIP 2022-10-06 15:49:19 +02:00
J. Fernando Sánchez
0a9c6d8b19 WIP: removed stats 2022-09-16 18:14:16 +02:00
J. Fernando Sánchez
3dc56892c1 WIP: working config 2022-09-15 19:27:17 +02:00
J. Fernando Sánchez
e41dc3dae2 WIP 2022-09-13 18:16:31 +02:00
J. Fernando Sánchez
bbaed636a8 WIP 2022-07-19 17:18:02 +02:00
J. Fernando Sánchez
6f7481769e WIP 2022-07-19 17:17:23 +02:00
J. Fernando Sánchez
1a8313e4f6 WIP 2022-07-19 17:12:41 +02:00
J. Fernando Sánchez
a40aa55b6a Release 0.20.7 2022-07-06 09:23:46 +02:00
J. Fernando Sánchez
50cba751a6 Release 0.20.6 2022-07-05 12:08:34 +02:00
J. Fernando Sánchez
dfb6d13649 version 0.20.5 2022-05-18 16:13:53 +02:00
J. Fernando Sánchez
5559d37e57 version 0.20.4 2022-05-18 15:20:58 +02:00
J. Fernando Sánchez
2116fe6f38 Bug fixes and minor improvements 2022-05-12 16:14:47 +02:00
J. Fernando Sánchez
affeeb9643 Update examples 2022-04-04 16:47:58 +02:00
J. Fernando Sánchez
42ddc02318 CI: delay PyPI check 2022-03-07 14:35:07 +01:00
J. Fernando Sánchez
cab9a3440b Fix typo CI/CD 2022-03-07 13:57:25 +01:00
J. Fernando Sánchez
db505da49c Minor CI change 2022-03-07 13:35:02 +01:00
J. Fernando Sánchez
8eb8eb16eb Minor CI change 2022-03-07 12:51:22 +01:00
J. Fernando Sánchez
3fc5ca8c08 Fix requirements issue CI/CD 2022-03-07 12:46:01 +01:00
J. Fernando Sánchez
c02e6ea2e8 Fix die bug 2022-03-07 11:17:27 +01:00
J. Fernando Sánchez
38f8a8d110 Merge branch 'mesa'
First iteration to achieve MESA compatibility.
As a side effect, we have removed `simpy`.

For a full list of changes, see `CHANGELOG.md`.
2022-03-07 10:54:47 +01:00
J. Fernando Sánchez
cb72aac980 Add random activation example 2022-03-07 10:48:59 +01:00
75 changed files with 3399 additions and 2292 deletions

View File

@ -1,9 +1,10 @@
stages:
- test
- build
- publish
- check_published
build:
stage: build
docker:
stage: publish
image:
name: gcr.io/kaniko-project/executor:debug
entrypoint: [""]
@ -16,13 +17,37 @@ build:
only:
- tags
test:
except:
- tags # Avoid running tests for tags, because they are already run for the branch
tags:
- docker
image: python:3.7
stage: test
script:
- python setup.py test
- pip install -r requirements.txt -r test-requirements.txt
- python setup.py test
push_pypi:
only:
- tags
tags:
- docker
image: python:3.7
stage: publish
script:
- echo $CI_COMMIT_TAG > soil/VERSION
- pip install twine
- python setup.py sdist bdist_wheel
- TWINE_PASSWORD=$PYPI_PASSWORD TWINE_USERNAME=$PYPI_USERNAME python -m twine upload dist/*
check_pypi:
only:
- tags
tags:
- docker
image: python:3.7
stage: check_published
script:
- pip install soil==$CI_COMMIT_TAG
# Allow PYPI to update its index before we try to install
when: delayed
start_in: 2 minutes

View File

@ -3,10 +3,58 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [Unreleased]
## [0.3 UNRELEASED]
### Added
* Simple debugging capabilities, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents)
### Changed
* Configuration schema is very different now. Check `soil.config` for more information. We are also using Pydantic for (de)serialization.
* There may be more than one topology/network in the simulation
* Agents are split into groups now. Each group may be assigned a given set of agents or an agent distribution, and a network topology to be assigned to.
### Removed
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.
## [0.20.7]
### Changed
* Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument)
### Fixed
* Bug with time.NEVER/time.INFINITY
## [0.20.6]
### Fixed
* Agents now return `time.INFINITY` when dead, instead of 'inf'
* `soil.__init__` does not re-export built-in time (change in `soil.simulation`. It used to create subtle import conflicts when importing soil.time.
* Parallel simulations were broken because lambdas cannot be pickled properly, which is needed for multiprocessing.
### Changed
* Some internal simulation methods do not accept `*args` anymore, to avoid ambiguity and bugs.
## [0.20.5]
### Changed
* Defaults are now set in the agent __init__, not in the environment. This decouples both classes a bit more, and it is more intuitive
## [0.20.4]
### Added
* Agents can now be given any kwargs, which will be used to set their state
* Environments have a default logger `self.logger` and a log method, just like agents
## [0.20.3]
### Fixed
* Default state values are now deepcopied again.
* Seeds for environments only concatenate the trial id (i.e., a number), to provide repeatable results.
* `Environment.run` now calls `Environment.step`, to allow for easy overloading of the environment step
### Removed
* Datacollectors are not being used for now.
* `time.TimedActivation.step` does not use an `until` parameter anymore.
### Changed
* Simulations now run right up to `until` (open interval)
* Time instants (`time.When`) don't need to be floats anymore. Now we can avoid precision issues with big numbers by using ints.
* Rabbits simulation is more idiomatic (using subclasses)
## [0.20.2]
### Fixed
* CI/CD testing issues
## [0.20.1]
### Fixed
* Agents would run another step after dying.
## [0.20.0]
### Added
* Integration with MESA
* `not_agent_ids` paramter to get sql in history
* `not_agent_ids` parameter to get sql in history
### Changed
* `soil.Environment` now also inherits from `mesa.Model`
* `soil.Agent` now also inherits from `mesa.Agent`
@ -16,11 +64,8 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
### Removed
* `simpy` dependency and compatibility. Each agent used to be a simpy generator, but that made debugging and error handling more complex. That has been replaced by a scheduler within the `soil.Environment` class, similar to how `mesa` does it.
* `soil.history` is now a separate package named `tsih`. The keys namedtuple uses `dict_id` instead of `agent_id`.
### Added
* An option to choose whether a database should be used for history
## [0.15.2]
### Fixed
* Pass the right known_modules and parameters to stats discovery in simulation

View File

@ -5,6 +5,42 @@ Learn how to run your own simulations with our [documentation](http://soilsim.re
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
# Changes in version 0.3
Version 0.3 came packed with many changes to provide much better integration with MESA.
For a long time, we tried to keep soil backwards-compatible, but it turned out to be a big endeavour and the resulting code was less readable.
This translates to harder maintenance and a worse experience for newcomers.
In the end, we decided to make some breaking changes.
If you have an older Soil simulation, you have two options:
* Update the necessary configuration files and code. You may use the examples in the `examples` folder for reference, as well as the documentation.
* Keep using a previous `soil` version.
## Mesa compatibility
Soil is in the process of becoming fully compatible with MESA.
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
This is a non-exhaustive list of tasks to achieve compatibility:
- [ ] Integrate `soil.Simulation` with mesa's runners:
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
- [ ] Integrate `soil.Environment` with `mesa.Model`:
- [x] `Soil.Environment` inherits from `mesa.Model`
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
- [ ] Allow for `mesa.Model` to be used in a simulation.
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
- [x] Rename agent.id to unique_id?
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
- [ ] Provide examples
- [ ] Using mesa modules in a soil simulation
- [ ] Using soil modules in a mesa simulation
- [ ] Document the new APIs and usage
## Citation
@ -31,24 +67,6 @@ If you use Soil in your research, don't forget to cite this paper:
```
## Mesa compatibility
Soil is in the process of becoming fully compatible with MESA.
As of this writing,
This is a non-exhaustive list of tasks to achieve compatibility:
* Environments.agents and mesa.Agent.agents are not the same. env is a property, and it only takes into account network and environment agents. Might rename environment_agents to other_agents or sth like that
- [ ] Integrate `soil.Simulation` with mesa's runners:
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
- [ ] Integrate `soil.Environment` with `mesa.Model`:
- [x] `Soil.Environment` inherits from `mesa.Model`
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
- [x] Rename agent.id to unique_id?
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
- [ ] Document the new APIs and usage
@Copyright GSI - Universidad Politécnica de Madrid 2017-2021
[![SOIL](logo_gsi.png)](https://www.gsi.upm.es)

View File

@ -13,7 +13,7 @@ Here's an example (``example.yml``).
This example configuration will run three trials (``num_trials``) of a simulation containing a randomly generated network (``network_params``).
The 100 nodes in the network will be SISaModel agents (``network_agents.agent_type``), which is an agent behavior that is included in Soil.
The 100 nodes in the network will be SISaModel agents (``network_agents.agent_class``), which is an agent behavior that is included in Soil.
10% of the agents (``weight=1``) will start in the content state, 10% in the discontent state, and the remaining 80% (``weight=8``) in the neutral state.
All agents will have access to the environment (``environment_params``), which only contains one variable, ``prob_infected``.
The state of the agents will be updated every 2 seconds (``interval``).
@ -88,9 +88,18 @@ For example, the following configuration is equivalent to :code:`nx.complete_gra
Environment
============
The environment is the place where the shared state of the simulation is stored.
For instance, the probability of disease outbreak.
The configuration file may specify the initial value of the environment parameters:
That means both global parameters, such as the probability of disease outbreak.
But it also means other data, such as a map, or a network topology that connects multiple agents.
As a result, it is also typical to add custom functions in an environment that help agents interact with each other and with the state of the simulation.
Last but not least, an environment controls when and how its agents will be executed.
By default, soil environments incorporate a ``soil.time.TimedActivation`` model for agent execution (more on this on the following section).
Soil environments are very similar, and often interchangeable with, mesa models (``mesa.Model``).
A configuration may specify the initial value of the environment parameters:
.. code:: yaml
@ -98,23 +107,33 @@ The configuration file may specify the initial value of the environment paramete
daily_probability_of_earthquake: 0.001
number_of_earthquakes: 0
All agents have access to the environment parameters.
All agents have access to the environment (and its parameters).
In some scenarios, it is useful to have a custom environment, to provide additional methods or to control the way agents update environment state.
For example, if our agents play the lottery, the environment could provide a method to decide whether the agent wins, instead of leaving it to the agent.
Agents
======
Agents are a way of modelling behavior.
Agents can be characterized with two variables: agent type (``agent_type``) and state.
Only one agent is executed at a time (generally, every ``interval`` seconds), and it has access to its state and the environment parameters.
Agents can be characterized with two variables: agent type (``agent_class``) and state.
The agent type is a ``soil.Agent`` class, which contains the code that encapsulates the behavior of the agent.
The state is a set of variables, which may change during the simulation, and that the code may use to control the behavior.
All agents provide a ``step`` method either explicitly or implicitly (by inheriting it from a superclass), which controls how the agent will behave in each step of the simulation.
When and how agent steps are executed in a simulation depends entirely on the ``environment``.
Most environments will internally use a scheduler (``mesa.time.BaseScheduler``), which controls the activation of agents.
In soil, we generally used the ``soil.time.TimedActivation`` scheduler, which allows agents to specify when their next activation will happen, defaulting to a
When an agent's step is executed (generally, every ``interval`` seconds), the agent has access to its state and the environment.
Through the environment, it can access the network topology and the state of other agents.
There are three three types of agents according to how they are added to the simulation: network agents and environment agent.
There are two types of agents according to how they are added to the simulation: network agents and environment agent.
Network Agents
##############
Network agents are attached to a node in the topology.
The configuration file allows you to specify how agents will be mapped to topology nodes.
@ -123,17 +142,19 @@ Hence, every node in the network will be associated to an agent of that type.
.. code:: yaml
agent_type: SISaModel
agent_class: SISaModel
It is also possible to add more than one type of agent to the simulation, and to control the ratio of each type (using the ``weight`` property).
It is also possible to add more than one type of agent to the simulation.
To control the ratio of each type (using the ``weight`` property).
For instance, with following configuration, it is five times more likely for a node to be assigned a CounterModel type than a SISaModel type.
.. code:: yaml
network_agents:
- agent_type: SISaModel
- agent_class: SISaModel
weight: 1
- agent_type: CounterModel
- agent_class: CounterModel
weight: 5
The third option is to specify the type of agent on the node itself, e.g.:
@ -144,10 +165,10 @@ The third option is to specify the type of agent on the node itself, e.g.:
topology:
nodes:
- id: first
agent_type: BaseAgent
agent_class: BaseAgent
states:
first:
agent_type: SISaModel
agent_class: SISaModel
This would also work with a randomly generated network:
@ -158,9 +179,9 @@ This would also work with a randomly generated network:
network:
generator: complete
n: 5
agent_type: BaseAgent
agent_class: BaseAgent
states:
- agent_type: SISaModel
- agent_class: SISaModel
@ -171,11 +192,11 @@ e.g., to populate the network with SISaModel, roughly 10% of them with a discont
.. code:: yaml
network_agents:
- agent_type: SISaModel
- agent_class: SISaModel
weight: 9
state:
id: neutral
- agent_type: SISaModel
- agent_class: SISaModel
weight: 1
state:
id: discontent
@ -185,7 +206,7 @@ For instance, to add a state for the two nodes in this configuration:
.. code:: yaml
agent_type: SISaModel
agent_class: SISaModel
network:
generator: complete_graph
n: 2
@ -210,10 +231,10 @@ These agents are programmed in much the same way as network agents, the only dif
.. code::
environment_agents:
- agent_type: MyAgent
- agent_class: MyAgent
state:
mood: happy
- agent_type: DummyAgent
- agent_class: DummyAgent
You may use environment agents to model events that a normal agent cannot control, such as natural disasters or chance.

View File

@ -8,15 +8,15 @@ network_params:
n: 100
m: 2
network_agents:
- agent_type: SISaModel
- agent_class: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
- agent_class: SISaModel
weight: 1
state:
id: discontent
- agent_type: SISaModel
- agent_class: SISaModel
weight: 8
state:
id: neutral

View File

@ -3,11 +3,11 @@ name: quickstart
num_trials: 1
max_time: 1000
network_agents:
- agent_type: SISaModel
- agent_class: SISaModel
state:
id: neutral
weight: 1
- agent_type: SISaModel
- agent_class: SISaModel
state:
id: content
weight: 2

View File

@ -1 +1 @@
ipython==7.23
ipython>=7.31.1

12
docs/soil-vs.rst Normal file
View File

@ -0,0 +1,12 @@
### MESA
Starting with version 0.3, Soil has been redesigned to complement Mesa, while remaining compatible with it.
That means that every component in Soil (i.e., Models, Environments, etc.) can be mixed with existing mesa components.
In fact, there are examples that show how that integration may be used, in the `examples/mesa` folder in the repository.
Here are some reasons to use Soil instead of plain mesa:
- Less boilerplate for common scenarios (by some definitions of common)
- Functions to automatically populate a topology with an agent distribution (i.e., different ratios of agent class and state)
- The `soil.Simulation` class allows you to run multiple instances of the same experiment (i.e., multiple trials with the same parameters but a different randomness seed)
- Reporting functions that aggregate multiple

View File

@ -211,11 +211,11 @@ nodes in that network. Notice how node 0 is the only one with a TV.
sim = soil.Simulation(topology=G,
num_trials=1,
max_time=MAX_TIME,
environment_agents=[{'agent_type': NewsEnvironmentAgent,
environment_agents=[{'agent_class': NewsEnvironmentAgent,
'state': {
'event_time': EVENT_TIME
}}],
network_agents=[{'agent_type': NewsSpread,
network_agents=[{'agent_class': NewsSpread,
'weight': 1}],
states={0: {'has_tv': True}},
default_state={'has_tv': False},
@ -285,14 +285,14 @@ For this demo, we will use a python dictionary:
},
'network_agents': [
{
'agent_type': NewsSpread,
'agent_class': NewsSpread,
'weight': 1,
'state': {
'has_tv': False
}
},
{
'agent_type': NewsSpread,
'agent_class': NewsSpread,
'weight': 2,
'state': {
'has_tv': True
@ -300,7 +300,7 @@ For this demo, we will use a python dictionary:
}
],
'environment_agents':[
{'agent_type': NewsEnvironmentAgent,
{'agent_class': NewsEnvironmentAgent,
'state': {
'event_time': 10
}

View File

@ -98,11 +98,11 @@
"max_time: 30\r\n",
"name: Sim_all_dumb\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@ -122,19 +122,19 @@
"max_time: 30\r\n",
"name: Sim_half_herd\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@ -154,12 +154,12 @@
"max_time: 30\r\n",
"name: Sim_all_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
@ -181,12 +181,12 @@
"max_time: 30\r\n",
"name: Sim_wise_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@ -207,12 +207,12 @@
"max_time: 30\r\n",
"name: Sim_all_wise\r\n",
"network_agents:\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",

View File

@ -141,10 +141,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -1758,10 +1758,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -3363,10 +3363,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -4977,10 +4977,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -6591,10 +6591,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -8211,10 +8211,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -9828,10 +9828,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -11448,10 +11448,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -13062,10 +13062,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -14679,10 +14679,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -16296,10 +16296,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -17916,10 +17916,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -19521,10 +19521,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -21144,10 +21144,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -22767,10 +22767,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -24375,10 +24375,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -25992,10 +25992,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -27603,10 +27603,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -29220,10 +29220,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -30819,10 +30819,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -32439,10 +32439,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -34056,10 +34056,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -35676,10 +35676,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -37293,10 +37293,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -38913,10 +38913,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -40518,10 +40518,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -42129,10 +42129,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -43746,10 +43746,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -45357,10 +45357,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -46974,10 +46974,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -48588,10 +48588,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -50202,10 +50202,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -51819,10 +51819,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -53436,10 +53436,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -55041,10 +55041,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -56655,10 +56655,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -58257,10 +58257,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -59877,10 +59877,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -61494,10 +61494,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -63108,10 +63108,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -64713,10 +64713,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -66330,10 +66330,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -67947,10 +67947,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -69561,10 +69561,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -71178,10 +71178,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -72801,10 +72801,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -74418,10 +74418,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -76035,10 +76035,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -77643,10 +77643,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",
@ -79260,10 +79260,10 @@
" 'load_module': 'newsspread',\n",
" 'max_time': 30,\n",
" 'name': 'Sim_all_dumb',\n",
" 'network_agents': [{'agent_type': 'DumbViewer',\n",
" 'network_agents': [{'agent_class': 'DumbViewer',\n",
" 'state': {'has_tv': False},\n",
" 'weight': 1},\n",
" {'agent_type': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" {'agent_class': 'DumbViewer', 'state': {'has_tv': True}, 'weight': 1}],\n",
" 'network_params': {'generator': 'barabasi_albert_graph', 'm': 5, 'n': 500},\n",
" 'num_trials': 50,\n",
" 'seed': 'None',\n",

View File

@ -1,27 +1,61 @@
---
version: '2'
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
max_steps: 100
interval: 1
seed: "CompleteSeed!"
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_type: CounterModel
weight: 1
state:
state_id: 0
- agent_type: AggregatedCounter
weight: 0.2
environment_agents: []
environment_class: Environment
environment_params:
model_class: Environment
model_params:
am_i_complete: true
default_state:
incidents: 0
states:
- name: 'The first node'
- name: 'The second node'
topologies:
default:
params:
generator: complete_graph
n: 10
another_graph:
params:
generator: complete_graph
n: 2
environment:
agents:
agent_class: CounterModel
topology: default
state:
times: 1
# In this group we are not specifying any topology
fixed:
- name: 'Environment Agent 1'
agent_class: BaseAgent
group: environment
topology: null
hidden: true
state:
times: 10
- agent_class: CounterModel
id: 0
group: other_counters
topology: another_graph
state:
times: 1
total: 0
- agent_class: CounterModel
topology: another_graph
group: other_counters
id: 1
distribution:
- agent_class: CounterModel
weight: 1
group: general_counters
state:
times: 3
- agent_class: AggregatedCounter
weight: 0.2
override:
- filter:
agent_class: AggregatedCounter
n: 2
state:
times: 5

View File

@ -0,0 +1,63 @@
---
version: '2'
id: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_steps: 100
interval: 1
seed: "CompleteSeed!"
model_class: "soil.Environment"
model_params:
topologies:
default:
params:
generator: complete_graph
n: 10
another_graph:
params:
generator: complete_graph
n: 2
agents:
# The values here will be used as default values for any agent
agent_class: CounterModel
topology: default
state:
times: 1
# This specifies a distribution of agents, each with a `weight` or an explicit number of agents
distribution:
- agent_class: CounterModel
weight: 1
# This is inherited from the default settings
#topology: default
state:
times: 3
- agent_class: AggregatedCounter
topology: default
weight: 0.2
fixed:
- name: 'Environment Agent 1'
# All the other agents will assigned to the 'default' group
group: environment
# Do not count this agent towards total limits
hidden: true
agent_class: soil.BaseAgent
topology: null
state:
times: 10
- agent_class: CounterModel
topology: another_graph
id: 0
state:
times: 1
total: 0
- agent_class: CounterModel
topology: another_graph
id: 1
override:
# 2 agents that match this filter will be updated to match the state {times: 5}
- filter:
agent_class: AggregatedCounter
n: 2
state:
times: 5

View File

@ -2,7 +2,7 @@
name: custom-generator
description: Using a custom generator for the network
num_trials: 3
max_time: 100
max_steps: 100
interval: 1
network_params:
generator: mymodule.mygenerator
@ -10,7 +10,7 @@ network_params:
n: 10
n_edges: 5
network_agents:
- agent_type: CounterModel
- agent_class: CounterModel
weight: 1
state:
state_id: 0

View File

@ -1,6 +1,6 @@
from networkx import Graph
import random
import networkx as nx
from random import choice
def mygenerator(n=5, n_edges=5):
'''
@ -14,9 +14,9 @@ def mygenerator(n=5, n_edges=5):
for i in range(n_edges):
nodes = list(G.nodes)
n_in = choice(nodes)
n_in = random.choice(nodes)
nodes.remove(n_in) # Avoid loops
n_out = choice(nodes)
n_out = random.choice(nodes)
G.add_edge(n_in, n_out)
return G
@ -24,4 +24,4 @@ def mygenerator(n=5, n_edges=5):

View File

@ -27,8 +27,8 @@ if __name__ == '__main__':
import logging
logging.basicConfig(level=logging.INFO)
from soil import Simulation
s = Simulation(network_agents=[{'ids': [0], 'agent_type': Fibonacci},
{'ids': [1], 'agent_type': Odds}],
s = Simulation(network_agents=[{'ids': [0], 'agent_class': Fibonacci},
{'ids': [1], 'agent_class': Odds}],
network_params={"generator": "complete_graph", "n": 2},
max_time=100,
)

View File

@ -3,19 +3,22 @@ name: mesa_sim
group: tests
dir_path: "/tmp"
num_trials: 3
max_time: 100
max_steps: 100
interval: 1
seed: '1'
network_params:
generator: social_wealth.graph_generator
n: 5
network_agents:
- agent_type: social_wealth.SocialMoneyAgent
weight: 1
environment_class: social_wealth.MoneyEnv
environment_params:
num_mesa_agents: 5
mesa_agent_type: social_wealth.MoneyAgent
model_class: social_wealth.MoneyEnv
model_params:
topologies:
default:
params:
generator: social_wealth.graph_generator
n: 5
agents:
distribution:
- agent_class: social_wealth.SocialMoneyAgent
topology: default
weight: 1
mesa_agent_class: social_wealth.MoneyAgent
N: 10
width: 50
height: 50

View File

@ -70,7 +70,7 @@ model_params = {
1,
description="Choose how many agents to include in the model",
),
"network_agents": [{"agent_type": SocialMoneyAgent}],
"network_agents": [{"agent_class": SocialMoneyAgent}],
"height": UserSettableParameter(
"slider",
"height",

View File

@ -71,10 +71,9 @@ class SocialMoneyAgent(NetworkAgent, MoneyAgent):
class MoneyEnv(Environment):
"""A model with some number of agents."""
def __init__(self, N, width, height, *args, network_params, **kwargs):
def __init__(self, width, height, *args, topologies, **kwargs):
network_params['n'] = N
super().__init__(*args, network_params=network_params, **kwargs)
super().__init__(*args, topologies=topologies, **kwargs)
self.grid = MultiGrid(width, height, False)
# Create agents
@ -100,7 +99,7 @@ if __name__ == '__main__':
G = graph_generator()
fixed_params = {"topology": G,
"width": 10,
"network_agents": [{"agent_type": SocialMoneyAgent,
"network_agents": [{"agent_class": SocialMoneyAgent,
'weight': 1}],
"height": 10}

View File

@ -89,11 +89,11 @@
"max_time: 30\r\n",
"name: Sim_all_dumb\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@ -113,19 +113,19 @@
"max_time: 30\r\n",
"name: Sim_half_herd\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@ -145,12 +145,12 @@
"max_time: 30\r\n",
"name: Sim_all_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
@ -172,12 +172,12 @@
"max_time: 30\r\n",
"name: Sim_wise_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@ -198,12 +198,12 @@
"max_time: 30\r\n",
"name: Sim_all_wise\r\n",
"network_agents:\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",

View File

@ -1,19 +1,18 @@
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 300
max_steps: 300
name: Sim_all_dumb
network_agents:
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: false
weight: 1
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: true
weight: 1
@ -24,28 +23,27 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 300
max_steps: 300
name: Sim_half_herd
network_agents:
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: false
weight: 1
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: true
weight: 1
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: false
weight: 1
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
weight: 1
@ -56,21 +54,20 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 300
max_steps: 300
name: Sim_all_herd
network_agents:
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
@ -82,22 +79,21 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 300
max_steps: 300
name: Sim_wise_herd
network_agents:
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_type: WiseViewer
- agent_class: newsspread.WiseViewer
state:
has_tv: true
weight: 1
@ -108,22 +104,21 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 300
max_steps: 300
name: Sim_all_wise
network_agents:
- agent_type: WiseViewer
- agent_class: newsspread.WiseViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_type: WiseViewer
- agent_class: newsspread.WiseViewer
state:
has_tv: true
weight: 1

View File

@ -1,8 +1,8 @@
from soil.agents import FSM, state, default_state, prob
from soil.agents import FSM, NetworkAgent, state, default_state, prob
import logging
class DumbViewer(FSM):
class DumbViewer(FSM, NetworkAgent):
'''
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
@ -16,16 +16,22 @@ class DumbViewer(FSM):
@state
def neutral(self):
if self['has_tv']:
if prob(self.env['prob_tv_spread']):
self.set_state(self.infected)
if self.prob(self.model['prob_tv_spread']):
return self.infected
@state
def infected(self):
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
if prob(self.env['prob_neighbor_spread']):
if self.prob(self.model['prob_neighbor_spread']):
neighbor.infect()
def infect(self):
'''
This is not a state. It is a function that other agents can use to try to
infect this agent. DumbViewer always gets infected, but other agents like
HerdViewer might not become infected right away
'''
self.set_state(self.infected)
@ -35,12 +41,13 @@ class HerdViewer(DumbViewer):
'''
def infect(self):
'''Notice again that this is NOT a state. See DumbViewer.infect for reference'''
infected = self.count_neighboring_agents(state_id=self.infected.id)
total = self.count_neighboring_agents()
prob_infect = self.env['prob_neighbor_spread'] * infected/total
prob_infect = self.model['prob_neighbor_spread'] * infected/total
self.debug('prob_infect', prob_infect)
if prob(prob_infect):
self.set_state(self.infected.id)
if self.prob(prob_infect):
self.set_state(self.infected)
class WiseViewer(HerdViewer):
@ -56,9 +63,9 @@ class WiseViewer(HerdViewer):
@state
def cured(self):
prob_cure = self.env['prob_neighbor_cure']
prob_cure = self.model['prob_neighbor_cure']
for neighbor in self.get_neighboring_agents(state_id=self.infected.id):
if prob(prob_cure):
if self.prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
@ -73,7 +80,7 @@ class WiseViewer(HerdViewer):
1.0)
infected = max(self.count_neighboring_agents(self.infected.id),
1.0)
prob_cure = self.env['prob_neighbor_cure'] * (cured/infected)
if prob(prob_cure):
return self.cure()
prob_cure = self.model['prob_neighbor_cure'] * (cured/infected)
if self.prob(prob_cure):
return self.cured
return self.set_state(super().infected)

View File

@ -18,21 +18,23 @@ class MyAgent(agents.FSM):
@agents.default_state
@agents.state
def neutral(self):
self.info('I am running')
self.debug('I am running')
if agents.prob(0.2):
self.info('This runs 2/10 times on average')
s = Simulation(name='Programmatic',
network_params={'generator': mygenerator},
num_trials=1,
max_time=100,
agent_type=MyAgent,
agent_class=MyAgent,
dry_run=True)
# By default, logging will only print WARNING logs (and above).
# You need to choose a lower logging level to get INFO/DEBUG traces
logging.basicConfig(level=logging.INFO)
envs = s.run()
s.dump_yaml()
for env in envs:
env.dump_csv()
# Uncomment this to output the simulation to a YAML file
# s.dump_yaml('simulation.yaml')

View File

@ -1,6 +1,5 @@
from soil.agents import FSM, state, default_state
from soil.agents import FSM, NetworkAgent, state, default_state
from soil import Environment
from random import random, shuffle
from itertools import islice
import logging
@ -53,7 +52,7 @@ class CityPubs(Environment):
pub['occupancy'] -= 1
class Patron(FSM):
class Patron(FSM, NetworkAgent):
'''Agent that looks for friends to drink with. It will do three things:
1) Look for other patrons to drink with
2) Look for a bar where the agent and other agents in the same group can get in.
@ -61,12 +60,10 @@ class Patron(FSM):
'''
level = logging.DEBUG
defaults = {
'pub': None,
'drunk': False,
'pints': 0,
'max_pints': 3,
}
pub = None
drunk = False
pints = 0
max_pints = 3
@default_state
@state
@ -90,9 +87,9 @@ class Patron(FSM):
return self.sober_in_pub
self.debug('I am looking for a pub')
group = list(self.get_neighboring_agents())
for pub in self.env.available_pubs():
for pub in self.model.available_pubs():
self.debug('We\'re trying to get into {}: total: {}'.format(pub, len(group)))
if self.env.enter(pub, self, *group):
if self.model.enter(pub, self, *group):
self.info('We\'re all {} getting in {}!'.format(len(group), pub))
return self.sober_in_pub
@ -128,8 +125,8 @@ class Patron(FSM):
Try to become friends with another agent. The chances of
success depend on both agents' openness.
'''
if force or self['openness'] > random():
self.env.add_edge(self, other_agent)
if force or self['openness'] > self.random.random():
self.model.add_edge(self, other_agent)
self.info('Made some friend {}'.format(other_agent))
return True
return False
@ -138,7 +135,7 @@ class Patron(FSM):
''' Look for random agents around me and try to befriend them'''
befriended = False
k = int(10*self['openness'])
shuffle(others)
self.random.shuffle(others)
for friend in islice(others, k): # random.choice >= 3.7
if friend == self:
continue

View File

@ -1,25 +1,25 @@
---
name: pubcrawl
num_trials: 3
max_time: 10
max_steps: 10
dump: false
network_params:
# Generate 100 empty nodes. They will be assigned a network agent
generator: empty_graph
n: 30
network_agents:
- agent_type: pubcrawl.Patron
- agent_class: pubcrawl.Patron
description: Extroverted patron
state:
openness: 1.0
weight: 9
- agent_type: pubcrawl.Patron
- agent_class: pubcrawl.Patron
description: Introverted patron
state:
openness: 0.1
weight: 1
environment_agents:
- agent_type: pubcrawl.Police
- agent_class: pubcrawl.Police
environment_class: pubcrawl.CityPubs
environment_params:
altercations: 0

View File

@ -0,0 +1,4 @@
There are two similar implementations of this simulation.
- `basic`. Using simple primites
- `improved`. Using more advanced features such as the `time` module to avoid unnecessary computations (i.e., skip steps), and generator functions.

View File

@ -0,0 +1,130 @@
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from soil.time import Delta
from enum import Enum
from collections import Counter
import logging
import math
class RabbitModel(FSM, NetworkAgent):
sexual_maturity = 30
life_expectancy = 300
@default_state
@state
def newborn(self):
self.info('I am a newborn.')
self.age = 0
self.offspring = 0
return self.youngling
@state
def youngling(self):
self.age += 1
if self.age >= self.sexual_maturity:
self.info(f'I am fertile! My age is {self.age}')
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
@state
def dead(self):
self.die()
class Male(RabbitModel):
max_females = 5
mating_prob = 0.001
@state
def fertile(self):
self.age += 1
if self.age > self.life_expectancy:
return self.dead
# Males try to mate
for f in self.model.agents(agent_class=Female,
state_id=Female.fertile.id,
limit=self.max_females):
self.debug('FOUND A FEMALE: ', repr(f), self.mating_prob)
if self.prob(self['mating_prob']):
f.impregnate(self)
break # Take a break
class Female(RabbitModel):
gestation = 100
@state
def fertile(self):
# Just wait for a Male
self.age += 1
if self.age > self.life_expectancy:
return self.dead
def impregnate(self, male):
self.info(f'{repr(male)} impregnating female {repr(self)}')
self.mate = male
self.pregnancy = -1
self.set_state(self.pregnant, when=self.now)
self.number_of_babies = int(8+4*self.random.random())
self.debug('I am pregnant')
@state
def pregnant(self):
self.age += 1
self.pregnancy += 1
if self.prob(self.age / self.life_expectancy):
return self.die()
if self.pregnancy >= self.gestation:
self.info('Having {} babies'.format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class,
topology=self.topology,
**state)
child.add_edge(self)
try:
child.add_edge(self.mate)
self.model.agents[self.mate].offspring += 1
except ValueError:
self.debug('The father has passed away')
self.offspring += 1
self.mate = None
return self.fertile
@state
def dead(self):
super().dead()
if 'pregnancy' in self and self['pregnancy'] > -1:
self.info('A mother has died carrying a baby!!')
class RandomAccident(BaseAgent):
level = logging.INFO
def step(self):
rabbits_alive = self.model.topology.number_of_nodes()
if not rabbits_alive:
return self.die()
prob_death = self.model.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.iter_agents(agent_class=RabbitModel):
if i.state.id == i.dead.id:
continue
if self.prob(prob_death):
self.info('I killed a rabbit: {}'.format(i.id))
rabbits_alive -= 1
i.set_state(i.dead)
self.debug('Rabbits alive: {}'.format(rabbits_alive))

View File

@ -0,0 +1,41 @@
---
version: '2'
name: rabbits_basic
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: soil.environment.Environment
model_params:
agents:
topology: default
agent_class: rabbit_agents.RabbitModel
distribution:
- agent_class: rabbit_agents.Male
topology: default
weight: 1
- agent_class: rabbit_agents.Female
topology: default
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: null
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topologies:
default:
topology:
directed: true
links: []
nodes:
- id: 1
- id: 0
extra:
visualization_params: {}

View File

@ -0,0 +1,130 @@
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from soil.time import Delta, When, NEVER
from enum import Enum
import logging
import math
class RabbitModel(FSM, NetworkAgent):
mating_prob = 0.005
offspring = 0
birth = None
sexual_maturity = 3
life_expectancy = 30
@default_state
@state
def newborn(self):
self.birth = self.now
self.info(f'I am a newborn.')
self.model['rabbits_alive'] = self.model.get('rabbits_alive', 0) + 1
# Here we can skip the `youngling` state by using a coroutine/generator.
while self.age < self.sexual_maturity:
interval = self.sexual_maturity - self.age
yield Delta(interval)
self.info(f'I am fertile! My age is {self.age}')
return self.fertile
@property
def age(self):
return self.now - self.birth
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
def step(self):
super().step()
if self.prob(self.age / self.life_expectancy):
return self.die()
class Male(RabbitModel):
max_females = 5
@state
def fertile(self):
# Males try to mate
for f in self.model.agents(agent_class=Female,
state_id=Female.fertile.id,
limit=self.max_females):
self.debug('Found a female:', repr(f))
if self.prob(self['mating_prob']):
f.impregnate(self)
break # Take a break, don't try to impregnate the rest
class Female(RabbitModel):
due_date = None
age_of_pregnancy = None
gestation = 10
mate = None
@state
def fertile(self):
return self.fertile, NEVER
@state
def pregnant(self):
self.info('I am pregnant')
if self.age > self.life_expectancy:
return self.dead
self.due_date = self.now + self.gestation
number_of_babies = int(8+4*self.random.random())
while self.now < self.due_date:
yield When(self.due_date)
self.info('Having {} babies'.format(number_of_babies))
for i in range(number_of_babies):
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class,
topology=self.topology)
self.model.add_edge(self, child)
self.model.add_edge(self.mate, child)
self.offspring += 1
self.model.agents[self.mate].offspring += 1
self.mate = None
self.due_date = None
return self.fertile
@state
def dead(self):
super().dead()
if self.due_date is not None:
self.info('A mother has died carrying a baby!!')
def impregnate(self, male):
self.info(f'{repr(male)} impregnating female {repr(self)}')
self.mate = male
self.set_state(self.pregnant, when=self.now)
class RandomAccident(BaseAgent):
level = logging.INFO
def step(self):
rabbits_total = self.model.topology.number_of_nodes()
if 'rabbits_alive' not in self.model:
self.model['rabbits_alive'] = 0
rabbits_alive = self.model.get('rabbits_alive', rabbits_total)
prob_death = self.model.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.model.network_agents:
if i.state.id == i.dead.id:
continue
if self.prob(prob_death):
self.info('I killed a rabbit: {}'.format(i.id))
rabbits_alive = self.model['rabbits_alive'] = rabbits_alive -1
i.set_state(i.dead)
self.debug('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
if self.model.count_agents(state_id=RabbitModel.dead.id) == self.model.topology.number_of_nodes():
self.die()

View File

@ -0,0 +1,41 @@
---
version: '2'
name: rabbits_improved
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: soil.environment.Environment
model_params:
agents:
topology: default
agent_class: rabbit_agents.RabbitModel
distribution:
- agent_class: rabbit_agents.Male
topology: default
weight: 1
- agent_class: rabbit_agents.Female
topology: default
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: null
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topologies:
default:
topology:
directed: true
links: []
nodes:
- id: 1
- id: 0
extra:
visualization_params: {}

View File

@ -1,122 +0,0 @@
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from enum import Enum
from random import random, choice
import logging
import math
class Genders(Enum):
male = 'male'
female = 'female'
class RabbitModel(FSM):
level = logging.INFO
defaults = {
'age': 0,
'gender': Genders.male.value,
'mating_prob': 0.001,
'offspring': 0,
}
sexual_maturity = 3 #4*30
life_expectancy = 365 * 3
gestation = 33
pregnancy = -1
max_females = 5
@default_state
@state
def newborn(self):
self.debug(f'I am a newborn at age {self["age"]}')
self['age'] += 1
if self['age'] >= self.sexual_maturity:
self.debug('I am fertile!')
return self.fertile
@state
def fertile(self):
self['age'] += 1
if self['age'] > self.life_expectancy:
return self.dead
if self['gender'] == Genders.female.value:
return
# Males try to mate
for f in self.get_agents(state_id=self.fertile.id, gender=Genders.female.value, limit_neighbors=False, limit=self.max_females):
r = random()
if r < self['mating_prob']:
self.impregnate(f)
break # Take a break
def impregnate(self, whom):
if self['gender'] == Genders.female.value:
raise NotImplementedError('Females cannot impregnate')
whom['pregnancy'] = 0
whom['mate'] = self.id
whom.set_state(whom.pregnant)
self.debug('{} impregnating: {}. {}'.format(self.id, whom.id, whom.state))
@state
def pregnant(self):
self['age'] += 1
if self['age'] > self.life_expectancy:
return self.dead
self['pregnancy'] += 1
self.debug('Pregnancy: {}'.format(self['pregnancy']))
if self['pregnancy'] >= self.gestation:
number_of_babies = int(8+4*random())
self.info('Having {} babies'.format(number_of_babies))
for i in range(number_of_babies):
state = {}
state['gender'] = choice(list(Genders)).value
child = self.env.add_node(self.__class__, state)
self.env.add_edge(self.id, child.id)
self.env.add_edge(self['mate'], child.id)
# self.add_edge()
self.debug('A BABY IS COMING TO LIFE')
self.env['rabbits_alive'] = self.env.get('rabbits_alive', self.topology.number_of_nodes())+1
self.debug('Rabbits alive: {}'.format(self.env['rabbits_alive']))
self['offspring'] += 1
self.env.get_agent(self['mate'])['offspring'] += 1
del self['mate']
self['pregnancy'] = -1
return self.fertile
@state
def dead(self):
self.info('Agent {} is dying'.format(self.id))
if 'pregnancy' in self and self['pregnancy'] > -1:
self.info('A mother has died carrying a baby!!')
self.die()
return
class RandomAccident(NetworkAgent):
level = logging.DEBUG
def step(self):
rabbits_total = self.topology.number_of_nodes()
if 'rabbits_alive' not in self.env:
self.env['rabbits_alive'] = 0
rabbits_alive = self.env.get('rabbits_alive', rabbits_total)
prob_death = self.env.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.env.network_agents:
if i.state['id'] == i.dead.id:
continue
r = random()
if r < prob_death:
self.debug('I killed a rabbit: {}'.format(i.id))
rabbits_alive = self.env['rabbits_alive'] = rabbits_alive -1
self.log('Rabbits alive: {}'.format(self.env['rabbits_alive']))
i.set_state(i.dead)
self.log('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
if self.count_agents(state_id=RabbitModel.dead.id) == self.topology.number_of_nodes():
self.die()

View File

@ -1,23 +0,0 @@
---
load_module: rabbit_agents
name: rabbits_example
max_time: 150
interval: 1
seed: MySeed
agent_type: RabbitModel
environment_agents:
- agent_type: RandomAccident
environment_params:
prob_death: 0.001
default_state:
mating_prob: 0.01
topology:
nodes:
- id: 1
state:
gender: female
- id: 0
state:
gender: male
directed: true
links: []

View File

@ -0,0 +1,44 @@
'''
Example of setting a
Example of a fully programmatic simulation, without definition files.
'''
from soil import Simulation, agents
from soil.time import Delta
import logging
class MyAgent(agents.FSM):
'''
An agent that first does a ping
'''
defaults = {'pong_counts': 2}
@agents.default_state
@agents.state
def ping(self):
self.info('Ping')
return self.pong, Delta(self.random.expovariate(1/16))
@agents.state
def pong(self):
self.info('Pong')
self.pong_counts -= 1
self.info(str(self.pong_counts))
if self.pong_counts < 1:
return self.die()
return None, Delta(self.random.expovariate(1/16))
s = Simulation(name='Programmatic',
network_agents=[{'agent_class': MyAgent, 'id': 0}],
topology={'nodes': [{'id': 0}], 'links': []},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True)
logging.basicConfig(level=logging.INFO)
envs = s.run()

View File

@ -6,20 +6,20 @@ template:
group: simple
num_trials: 1
interval: 1
max_time: 2
max_steps: 2
seed: "CompleteSeed!"
dump: false
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_type: CounterModel
weight: "{{ x1 }}"
state:
state_id: 0
- agent_type: AggregatedCounter
weight: "{{ 1 - x1 }}"
environment_params:
model_params:
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_class: CounterModel
weight: "{{ x1 }}"
state:
state_id: 0
- agent_class: AggregatedCounter
weight: "{{ 1 - x1 }}"
name: "{{ x3 }}"
skip_test: true
vars:

View File

@ -1,4 +1,3 @@
import random
import networkx as nx
from soil.agents import Geo, NetworkAgent, FSM, state, default_state
from soil import Environment
@ -26,26 +25,26 @@ class TerroristSpreadModel(FSM, Geo):
self.prob_interaction = model.environment_params['prob_interaction']
if self['id'] == self.civilian.id: # Civilian
self.mean_belief = random.uniform(0.00, 0.5)
self.mean_belief = self.random.uniform(0.00, 0.5)
elif self['id'] == self.terrorist.id: # Terrorist
self.mean_belief = random.uniform(0.8, 1.00)
self.mean_belief = self.random.uniform(0.8, 1.00)
elif self['id'] == self.leader.id: # Leader
self.mean_belief = 1.00
else:
raise Exception('Invalid state id: {}'.format(self['id']))
if 'min_vulnerability' in model.environment_params:
self.vulnerability = random.uniform( model.environment_params['min_vulnerability'], model.environment_params['max_vulnerability'] )
self.vulnerability = self.random.uniform( model.environment_params['min_vulnerability'], model.environment_params['max_vulnerability'] )
else :
self.vulnerability = random.uniform( 0, model.environment_params['max_vulnerability'] )
self.vulnerability = self.random.uniform( 0, model.environment_params['max_vulnerability'] )
@state
def civilian(self):
neighbours = list(self.get_neighboring_agents(agent_type=TerroristSpreadModel))
neighbours = list(self.get_neighboring_agents(agent_class=TerroristSpreadModel))
if len(neighbours) > 0:
# Only interact with some of the neighbors
interactions = list(n for n in neighbours if random.random() <= self.prob_interaction)
interactions = list(n for n in neighbours if self.random.random() <= self.prob_interaction)
influence = sum( self.degree(i) for i in interactions )
mean_belief = sum( i.mean_belief * self.degree(i) / influence for i in interactions )
mean_belief = mean_belief * self.information_spread_intensity + self.mean_belief * ( 1 - self.information_spread_intensity )
@ -64,7 +63,7 @@ class TerroristSpreadModel(FSM, Geo):
@state
def terrorist(self):
neighbours = self.get_agents(state_id=[self.terrorist.id, self.leader.id],
agent_type=TerroristSpreadModel,
agent_class=TerroristSpreadModel,
limit_neighbors=True)
if len(neighbours) > 0:
influence = sum( self.degree(n) for n in neighbours )
@ -82,6 +81,26 @@ class TerroristSpreadModel(FSM, Geo):
return
return self.leader
def ego_search(self, steps=1, center=False, node=None, **kwargs):
'''Get a list of nodes in the ego network of *node* of radius *steps*'''
node = as_node(node if node is not None else self)
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_degree')) or getattr(self.model, '_last_step', 0) < self.now:
self.model._degree = nx.degree_centrality(self.G)
self.model._last_step = self.now
return self.model._degree[node]
def betweenness(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_betweenness')) or getattr(self.model, '_last_step', 0) < self.now:
self.model._betweenness = nx.betweenness_centrality(self.G)
self.model._last_step = self.now
return self.model._betweenness[node]
class TrainingAreaModel(FSM, Geo):
"""
@ -103,7 +122,7 @@ class TrainingAreaModel(FSM, Geo):
@default_state
@state
def terrorist(self):
for neighbour in self.get_neighboring_agents(agent_type=TerroristSpreadModel):
for neighbour in self.get_neighboring_agents(agent_class=TerroristSpreadModel):
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.training_influence )
@ -129,7 +148,7 @@ class HavenModel(FSM, Geo):
self.max_vulnerability = model.environment_params['max_vulnerability']
def get_occupants(self, **kwargs):
return self.get_neighboring_agents(agent_type=TerroristSpreadModel, **kwargs)
return self.get_neighboring_agents(agent_class=TerroristSpreadModel, **kwargs)
@state
def civilian(self):
@ -182,27 +201,27 @@ class TerroristNetworkModel(TerroristSpreadModel):
def update_relationships(self):
if self.count_neighboring_agents(state_id=self.civilian.id) == 0:
close_ups = set(self.geo_search(radius=self.vision_range, agent_type=TerroristNetworkModel))
step_neighbours = set(self.ego_search(self.sphere_influence, agent_type=TerroristNetworkModel, center=False))
neighbours = set(agent.id for agent in self.get_neighboring_agents(agent_type=TerroristNetworkModel))
close_ups = set(self.geo_search(radius=self.vision_range, agent_class=TerroristNetworkModel))
step_neighbours = set(self.ego_search(self.sphere_influence, agent_class=TerroristNetworkModel, center=False))
neighbours = set(agent.id for agent in self.get_neighboring_agents(agent_class=TerroristNetworkModel))
search = (close_ups | step_neighbours) - neighbours
for agent in self.get_agents(search):
social_distance = 1 / self.shortest_path_length(agent.id)
spatial_proximity = ( 1 - self.get_distance(agent.id) )
prob_new_interaction = self.weight_social_distance * social_distance + self.weight_link_distance * spatial_proximity
if agent['id'] == agent.civilian.id and random.random() < prob_new_interaction:
if agent['id'] == agent.civilian.id and self.random.random() < prob_new_interaction:
self.add_edge(agent)
break
def get_distance(self, target):
source_x, source_y = nx.get_node_attributes(self.topology, 'pos')[self.id]
target_x, target_y = nx.get_node_attributes(self.topology, 'pos')[target]
source_x, source_y = nx.get_node_attributes(self.G, 'pos')[self.id]
target_x, target_y = nx.get_node_attributes(self.G, 'pos')[target]
dx = abs( source_x - target_x )
dy = abs( source_y - target_y )
return ( dx ** 2 + dy ** 2 ) ** ( 1 / 2 )
def shortest_path_length(self, target):
try:
return nx.shortest_path_length(self.topology, self.id, target)
return nx.shortest_path_length(self.G, self.id, target)
except nx.NetworkXNoPath:
return float('inf')

View File

@ -1,32 +1,31 @@
name: TerroristNetworkModel_sim
load_module: TerroristNetworkModel
max_time: 150
max_steps: 150
num_trials: 1
network_params:
generator: random_geometric_graph
radius: 0.2
# generator: geographical_threshold_graph
# theta: 20
n: 100
network_agents:
- agent_type: TerroristNetworkModel
weight: 0.8
state:
id: civilian # Civilians
- agent_type: TerroristNetworkModel
weight: 0.1
state:
id: leader # Leaders
- agent_type: TrainingAreaModel
weight: 0.05
state:
id: terrorist # Terrorism
- agent_type: HavenModel
weight: 0.05
state:
id: civilian # Civilian
model_params:
network_params:
generator: random_geometric_graph
radius: 0.2
# generator: geographical_threshold_graph
# theta: 20
n: 100
network_agents:
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.8
state:
id: civilian # Civilians
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.1
state:
id: leader # Leaders
- agent_class: TerroristNetworkModel.TrainingAreaModel
weight: 0.05
state:
id: terrorist # Terrorism
- agent_class: TerroristNetworkModel.HavenModel
weight: 0.05
state:
id: civilian # Civilian
environment_params:
# TerroristSpreadModel
information_spread_intensity: 0.7
terrorist_additional_influence: 0.035

View File

@ -1,14 +1,15 @@
---
name: torvalds_example
max_time: 10
max_steps: 10
interval: 2
agent_type: CounterModel
default_state:
skill_level: 'beginner'
network_params:
path: 'torvalds.edgelist'
states:
Torvalds:
skill_level: 'God'
balkian:
skill_level: 'developer'
model_params:
agent_class: CounterModel
default_state:
skill_level: 'beginner'
network_params:
path: 'torvalds.edgelist'
states:
Torvalds:
skill_level: 'God'
balkian:
skill_level: 'developer'

View File

@ -12330,11 +12330,11 @@ Notice how node 0 is the only one with a TV.</p>
<span class="n">sim</span> <span class="o">=</span> <span class="n">soil</span><span class="o">.</span><span class="n">Simulation</span><span class="p">(</span><span class="n">topology</span><span class="o">=</span><span class="n">G</span><span class="p">,</span>
<span class="n">num_trials</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">max_time</span><span class="o">=</span><span class="n">MAX_TIME</span><span class="p">,</span>
<span class="n">environment_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="n">environment_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;event_time&#39;</span><span class="p">:</span> <span class="n">EVENT_TIME</span>
<span class="p">}}],</span>
<span class="n">network_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="n">network_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">}],</span>
<span class="n">states</span><span class="o">=</span><span class="p">{</span><span class="mi">0</span><span class="p">:</span> <span class="p">{</span><span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">True</span><span class="p">}},</span>
<span class="n">default_state</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">False</span><span class="p">},</span>
@ -12468,14 +12468,14 @@ For this demo, we will use a python dictionary:</p>
<span class="p">},</span>
<span class="s1">&#39;network_agents&#39;</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">False</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="p">{</span>
<span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">True</span>
@ -12483,7 +12483,7 @@ For this demo, we will use a python dictionary:</p>
<span class="p">}</span>
<span class="p">],</span>
<span class="s1">&#39;environment_agents&#39;</span><span class="p">:[</span>
<span class="p">{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="p">{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;event_time&#39;</span><span class="p">:</span> <span class="mi">10</span>
<span class="p">}</span>

View File

@ -459,11 +459,11 @@
"sim = soil.Simulation(topology=G,\n",
" num_trials=1,\n",
" max_time=MAX_TIME,\n",
" environment_agents=[{'agent_type': NewsEnvironmentAgent,\n",
" environment_agents=[{'agent_class': NewsEnvironmentAgent,\n",
" 'state': {\n",
" 'event_time': EVENT_TIME\n",
" }}],\n",
" network_agents=[{'agent_type': NewsSpread,\n",
" network_agents=[{'agent_class': NewsSpread,\n",
" 'weight': 1}],\n",
" states={0: {'has_tv': True}},\n",
" default_state={'has_tv': False},\n",
@ -588,14 +588,14 @@
" },\n",
" 'network_agents': [\n",
" {\n",
" 'agent_type': NewsSpread,\n",
" 'agent_class': NewsSpread,\n",
" 'weight': 1,\n",
" 'state': {\n",
" 'has_tv': False\n",
" }\n",
" },\n",
" {\n",
" 'agent_type': NewsSpread,\n",
" 'agent_class': NewsSpread,\n",
" 'weight': 2,\n",
" 'state': {\n",
" 'has_tv': True\n",
@ -603,7 +603,7 @@
" }\n",
" ],\n",
" 'environment_agents':[\n",
" {'agent_type': NewsEnvironmentAgent,\n",
" {'agent_class': NewsEnvironmentAgent,\n",
" 'state': {\n",
" 'event_time': 10\n",
" }\n",

View File

@ -2,8 +2,9 @@ networkx>=2.5
numpy
matplotlib
pyyaml>=5.1
pandas>=0.23
pandas>=1
SALib>=1.3
Jinja2
Mesa>=0.8
tsih>=0.1.5
Mesa>=1
pydantic>=1.9
sqlalchemy>=1.4

View File

@ -49,6 +49,7 @@ setup(
extras_require=extras_require,
tests_require=test_reqs,
setup_requires=['pytest-runner', ],
pytest_plugins = ['pytest_profiling'],
include_package_data=True,
entry_points={
'console_scripts':

View File

@ -1 +1 @@
0.20.0
0.20.7

View File

@ -1,8 +1,10 @@
from __future__ import annotations
import importlib
import sys
import os
import pdb
import logging
import traceback
from .version import __version__
@ -16,11 +18,10 @@ from . import agents
from .simulation import *
from .environment import Environment
from . import serialization
from . import analysis
from .utils import logger
from .time import *
def main():
def main(cfg='simulation.yml', **kwargs):
import argparse
from . import simulation
@ -29,20 +30,22 @@ def main():
parser = argparse.ArgumentParser(description='Run a SOIL simulation')
parser.add_argument('file', type=str,
nargs="?",
default='simulation.yml',
default=cfg,
help='Configuration file for the simulation (e.g., YAML or JSON)')
parser.add_argument('--version', action='store_true',
help='Show version info and exit')
parser.add_argument('--module', '-m', type=str,
help='file containing the code of any custom agents.')
parser.add_argument('--dry-run', '--dry', action='store_true',
help='Do not store the results of the simulation.')
help='Do not store the results of the simulation to disk, show in terminal instead.')
parser.add_argument('--pdb', action='store_true',
help='Use a pdb console in case of exception.')
parser.add_argument('--debug', action='store_true',
help='Run a customized version of a pdb console to debug a simulation.')
parser.add_argument('--graph', '-g', action='store_true',
help='Dump GEXF graph. Defaults to false.')
help='Dump each trial\'s network topology as a GEXF graph. Defaults to false.')
parser.add_argument('--csv', action='store_true',
help='Dump history in CSV format. Defaults to false.')
help='Dump all data collected in CSV format. Defaults to false.')
parser.add_argument('--level', type=str,
help='Logging level')
parser.add_argument('--output', '-o', type=str, default="soil_output",
@ -51,9 +54,22 @@ def main():
help='Run trials serially and synchronously instead of in parallel. Defaults to false.')
parser.add_argument('-e', '--exporter', action='append',
help='Export environment and/or simulations using this exporter')
parser.add_argument('--only-convert', '--convert', action='store_true',
help='Do not run the simulation, only convert the configuration file(s) and output them.')
parser.add_argument("--set",
metavar="KEY=VALUE",
action='append',
help="Set a number of parameters that will be passed to the simulation."
"(do not put spaces before or after the = sign). "
"If a value contains spaces, you should define "
"it with double quotes: "
'foo="this is a sentence". Note that '
"values are always treated as strings.")
args = parser.parse_args()
logging.basicConfig(level=getattr(logging, (args.level or 'INFO').upper()))
logger.setLevel(getattr(logging, (args.level or 'INFO').upper()))
if args.version:
return
@ -65,6 +81,11 @@ def main():
logger.info('Loading config file: {}'.format(args.file))
if args.pdb or args.debug:
args.synchronous = True
if args.debug:
os.environ['SOIL_DEBUG'] = 'true'
try:
exporters = list(args.exporter or ['default', ])
if args.csv:
@ -78,18 +99,48 @@ def main():
if not os.path.exists(args.file):
logger.error('Please, input a valid file')
return
simulation.run_from_config(args.file,
dry_run=args.dry_run,
exporters=exporters,
parallel=(not args.synchronous),
outdir=args.output,
exporter_params=exp_params)
except Exception:
for sim in simulation.iter_from_config(args.file):
if args.set:
for s in args.set:
k, v = s.split('=', 1)[:2]
v = eval(v)
tail, *head = k.rsplit('.', 1)[::-1]
target = sim
if head:
for part in head[0].split('.'):
try:
target = getattr(target, part)
except AttributeError:
target = target[part]
try:
setattr(target, tail, v)
except AttributeError:
target[tail] = v
if args.only_convert:
print(sim.to_yaml())
continue
sim.run_simulation(dry_run=args.dry_run,
exporters=exporters,
parallel=(not args.synchronous),
outdir=args.output,
exporter_params=exp_params,
**kwargs)
except Exception as ex:
if args.pdb:
pdb.post_mortem()
from .debugging import post_mortem
print(traceback.format_exc())
post_mortem()
else:
raise
def easy(cfg, debug=False):
sim = simulation.from_config(cfg)
if debug or os.environ.get('SOIL_DEBUG'):
from .debugging import setup
setup(sys._getframe().f_back)
return sim
if __name__ == '__main__':
main()

View File

@ -1,4 +1,3 @@
import random
from . import FSM, state, default_state
@ -16,13 +15,13 @@ class BassModel(FSM):
@default_state
@state
def innovation(self):
if random.random() < self.innovation_prob:
if self.prob(self.innovation_prob):
self.sentimentCorrelation = 1
return self.aware
else:
aware_neighbors = self.get_neighboring_agents(state_id=self.aware.id)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (self['imitation_prob']*num_neighbors_aware):
if self.prob((self['imitation_prob']*num_neighbors_aware)):
self.sentimentCorrelation = 1
return self.aware

View File

@ -1,4 +1,3 @@
import random
from . import FSM, state, default_state
@ -39,10 +38,10 @@ class BigMarketModel(FSM):
@state
def enterprise(self):
if random.random() < self.tweet_probability: # Tweets
if self.random.random() < self.tweet_probability: # Tweets
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbour users
for x in aware_neighbors:
if random.uniform(0,10) < 5:
if self.random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 # Increments for enterprise
else:
x.sentiment_about[self.id] -= 0.1 # Decrements for enterprise
@ -57,11 +56,11 @@ class BigMarketModel(FSM):
@state
def user(self):
if random.random() < self.tweet_probability: # Tweets
if random.random() < self.tweet_relevant_probability: # Tweets something relevant
if self.random.random() < self.tweet_probability: # Tweets
if self.random.random() < self.tweet_relevant_probability: # Tweets something relevant
# Tweet probability per enterprise
for i in range(len(self.enterprises)):
random_num = random.random()
random_num = self.random.random()
if random_num < self.tweet_probability_about[i]:
# The condition is fulfilled, sentiments are evaluated towards that enterprise
if self.sentiment_about[i] < 0:

View File

@ -7,9 +7,13 @@ class CounterModel(NetworkAgent):
in each step and adds it to its state.
"""
times = 0
neighbors = 0
total = 0
def step(self):
# Outside effects
total = len(list(self.get_agents()))
total = len(list(self.model.schedule._agents))
neighbors = len(list(self.get_neighboring_agents()))
self['times'] = self.get('times', 0) + 1
self['neighbors'] = neighbors
@ -22,17 +26,15 @@ class AggregatedCounter(NetworkAgent):
in each step and adds it to its state.
"""
defaults = {
'times': 0,
'neighbors': 0,
'total': 0
}
times = 0
neighbors = 0
total = 0
def step(self):
# Outside effects
self['times'] += 1
neighbors = len(list(self.get_neighboring_agents()))
self['neighbors'] += neighbors
total = len(list(self.get_agents()))
total = len(list(self.model.schedule.agents))
self['total'] += total
self.debug('Running for step: {}. Total: {}'.format(self.now, total))

View File

@ -1,4 +1,3 @@
import random
from . import BaseAgent
@ -23,7 +22,7 @@ class IndependentCascadeModel(BaseAgent):
def behaviour(self):
aware_neighbors_1_time_step = []
# Outside effects
if random.random() < self.innovation_prob:
if self.prob(self.innovation_prob):
if self.state['id'] == 0:
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
@ -40,7 +39,7 @@ class IndependentCascadeModel(BaseAgent):
if x.state['time_awareness'] == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (self.imitation_prob*num_neighbors_aware):
if self.prob(self.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
else:

View File

@ -1,4 +1,3 @@
import random
import numpy as np
from . import BaseAgent
@ -24,23 +23,26 @@ class SpreadModelM2(BaseAgent):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
self.prob_infect = np.random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
# Use a single generator with the same seed as `self.random`
random = np.random.default_rng(seed=self._seed)
self.prob_neutral_making_denier = random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
self.prob_cured_healing_infected = np.random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = np.random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_infect = random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_healing_infected = np.random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = np.random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = np.random.normal(environment.environment_params['prob_generate_anti_rumor'],
self.prob_cured_healing_infected = random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_healing_infected = random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = random.normal(environment.environment_params['prob_generate_anti_rumor'],
environment.environment_params['standard_variance'])
def step(self):
@ -58,7 +60,7 @@ class SpreadModelM2(BaseAgent):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
if random.random() < self.prob_neutral_making_denier:
if self.prob(self.prob_neutral_making_denier):
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
@ -66,7 +68,7 @@ class SpreadModelM2(BaseAgent):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
if self.prob(self.prob_infect):
neighbor.state['id'] = 1 # Infected
def cured_behaviour(self):
@ -74,13 +76,13 @@ class SpreadModelM2(BaseAgent):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
if self.prob(self.prob_cured_healing_infected):
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
@ -88,19 +90,19 @@ class SpreadModelM2(BaseAgent):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
if self.prob(self.prob_cured_healing_infected):
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state['id'] = 2 # Cured
@ -165,7 +167,7 @@ class ControlModelM2(BaseAgent):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
if random.random() < self.prob_neutral_making_denier:
if self.random(self.prob_neutral_making_denier):
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
@ -173,7 +175,7 @@ class ControlModelM2(BaseAgent):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
if self.prob(self.prob_infect):
neighbor.state['id'] = 1 # Infected
self.state['visible'] = False
@ -183,13 +185,13 @@ class ControlModelM2(BaseAgent):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
if self.prob(self.prob_cured_healing_infected):
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
@ -198,19 +200,19 @@ class ControlModelM2(BaseAgent):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
if self.prob(self.prob_cured_healing_infected):
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state['id'] = 2 # Cured
def beacon_off_behaviour(self):
@ -224,19 +226,19 @@ class ControlModelM2(BaseAgent):
# Cure (M2 feature added)
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_generate_anti_rumor:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state['id'] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state['id'] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state['id'] = 3 # Vaccinated

View File

@ -1,4 +1,3 @@
import random
import numpy as np
from . import FSM, state
@ -32,62 +31,64 @@ class SISaModel(FSM):
def __init__(self, environment, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
self.neutral_discontent_spon_prob = np.random.normal(self.env['neutral_discontent_spon_prob'],
random = np.random.default_rng(seed=self._seed)
self.neutral_discontent_spon_prob = random.normal(self.env['neutral_discontent_spon_prob'],
self.env['standard_variance'])
self.neutral_discontent_infected_prob = np.random.normal(self.env['neutral_discontent_infected_prob'],
self.neutral_discontent_infected_prob = random.normal(self.env['neutral_discontent_infected_prob'],
self.env['standard_variance'])
self.neutral_content_spon_prob = np.random.normal(self.env['neutral_content_spon_prob'],
self.neutral_content_spon_prob = random.normal(self.env['neutral_content_spon_prob'],
self.env['standard_variance'])
self.neutral_content_infected_prob = np.random.normal(self.env['neutral_content_infected_prob'],
self.neutral_content_infected_prob = random.normal(self.env['neutral_content_infected_prob'],
self.env['standard_variance'])
self.discontent_neutral = np.random.normal(self.env['discontent_neutral'],
self.discontent_neutral = random.normal(self.env['discontent_neutral'],
self.env['standard_variance'])
self.discontent_content = np.random.normal(self.env['discontent_content'],
self.discontent_content = random.normal(self.env['discontent_content'],
self.env['variance_d_c'])
self.content_discontent = np.random.normal(self.env['content_discontent'],
self.content_discontent = random.normal(self.env['content_discontent'],
self.env['variance_c_d'])
self.content_neutral = np.random.normal(self.env['content_neutral'],
self.content_neutral = random.normal(self.env['content_neutral'],
self.env['standard_variance'])
@state
def neutral(self):
# Spontaneous effects
if random.random() < self.neutral_discontent_spon_prob:
if self.prob(self.neutral_discontent_spon_prob):
return self.discontent
if random.random() < self.neutral_content_spon_prob:
if self.prob(self.neutral_content_spon_prob):
return self.content
# Infected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent)
if random.random() < discontent_neighbors * self.neutral_discontent_infected_prob:
if self.prob(scontent_neighbors * self.neutral_discontent_infected_prob):
return self.discontent
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
if random.random() < content_neighbors * self.neutral_content_infected_prob:
if self.prob(s * self.neutral_content_infected_prob):
return self.content
return self.neutral
@state
def discontent(self):
# Healing
if random.random() < self.discontent_neutral:
if self.prob(self.discontent_neutral):
return self.neutral
# Superinfected
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
if random.random() < content_neighbors * self.discontent_content:
if self.prob(s * self.discontent_content):
return self.content
return self.discontent
@state
def content(self):
# Healing
if random.random() < self.content_neutral:
if self.prob(self.content_neutral):
return self.neutral
# Superinfected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent.id)
if random.random() < discontent_neighbors * self.content_discontent:
if self.prob(scontent_neighbors * self.content_discontent):
self.discontent
return self.content

View File

@ -1,4 +1,3 @@
import random
from . import BaseAgent
@ -68,10 +67,10 @@ class SentimentCorrelationModel(BaseAgent):
disgust_prob = self.disgust_prob+(len(disgusted_neighbors_1_time_step)*self.disgust_prob)
outside_effects_prob = self.outside_effects_prob
num = random.random()
num = self.random.random()
if num<outside_effects_prob:
self.state['id'] = random.randint(1, 4)
self.state['id'] = self.random.randint(1, 4)
self.state['sentimentCorrelation'] = self.state['id'] # It is stored when it has been infected for the dynamic network
self.state['time_awareness'][self.state['id']-1] = self.env.now

File diff suppressed because it is too large Load Diff

View File

@ -1,206 +0,0 @@
import pandas as pd
import glob
import yaml
from os.path import join
from . import serialization
from tsih import History
def read_data(*args, group=False, **kwargs):
iterable = _read_data(*args, **kwargs)
if group:
return group_trials(iterable)
else:
return list(iterable)
def _read_data(pattern, *args, from_csv=False, process_args=None, **kwargs):
if not process_args:
process_args = {}
for folder in glob.glob(pattern):
config_file = glob.glob(join(folder, '*.yml'))[0]
config = yaml.load(open(config_file), Loader=yaml.SafeLoader)
df = None
if from_csv:
for trial_data in sorted(glob.glob(join(folder,
'*.environment.csv'))):
df = read_csv(trial_data, **kwargs)
yield config_file, df, config
else:
for trial_data in sorted(glob.glob(join(folder, '*.sqlite'))):
df = read_sql(trial_data, **kwargs)
yield config_file, df, config
def read_sql(db, *args, **kwargs):
h = History(db_path=db, backup=False, readonly=True)
df = h.read_sql(*args, **kwargs)
return df
def read_csv(filename, keys=None, convert_types=False, **kwargs):
'''
Read a CSV in canonical form: ::
<agent_id, t_step, key, value, value_type>
'''
df = pd.read_csv(filename)
if convert_types:
df = convert_types_slow(df)
if keys:
df = df[df['key'].isin(keys)]
df = process_one(df)
return df
def convert_row(row):
row['value'] = serialization.deserialize(row['value_type'], row['value'])
return row
def convert_types_slow(df):
'''
Go over every column in a dataframe and convert it to the type determined by the `get_types`
function.
This is a slow operation.
'''
dtypes = get_types(df)
for k, v in dtypes.items():
t = df[df['key']==k]
t['value'] = t['value'].astype(v)
df = df.apply(convert_row, axis=1)
return df
def split_processed(df):
env = df.loc[:, df.columns.get_level_values(1).isin(['env', 'stats'])]
agents = df.loc[:, ~df.columns.get_level_values(1).isin(['env', 'stats'])]
return env, agents
def split_df(df):
'''
Split a dataframe in two dataframes: one with the history of agents,
and one with the environment history
'''
envmask = (df['agent_id'] == 'env')
n_env = envmask.sum()
if n_env == len(df):
return df, None
elif n_env == 0:
return None, df
agents, env = [x for _, x in df.groupby(envmask)]
return env, agents
def process(df, **kwargs):
'''
Process a dataframe in canonical form ``(t_step, agent_id, key, value, value_type)`` into
two dataframes with a column per key: one with the history of the agents, and one for the
history of the environment.
'''
env, agents = split_df(df)
return process_one(env, **kwargs), process_one(agents, **kwargs)
def get_types(df):
'''
Get the value type for every key stored in a raw history dataframe.
'''
dtypes = df.groupby(by=['key'])['value_type'].unique()
return {k:v[0] for k,v in dtypes.iteritems()}
def process_one(df, *keys, columns=['key', 'agent_id'], values='value',
fill=True, index=['t_step',],
aggfunc='first', **kwargs):
'''
Process a dataframe in canonical form ``(t_step, agent_id, key, value, value_type)`` into
a dataframe with a column per key
'''
if df is None:
return df
if keys:
df = df[df['key'].isin(keys)]
df = df.pivot_table(values=values, index=index, columns=columns,
aggfunc=aggfunc, **kwargs)
if fill:
df = fillna(df)
return df
def get_count(df, *keys):
'''
For every t_step and key, get the value count.
The result is a dataframe with `t_step` as index, an a multiindex column based on `key` and the values found for each `key`.
'''
if keys:
df = df[list(keys)]
df.columns = df.columns.remove_unused_levels()
counts = pd.DataFrame()
for key in df.columns.levels[0]:
g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0)
for value, series in g.iteritems():
counts[key, value] = series
counts.columns = pd.MultiIndex.from_tuples(counts.columns)
return counts
def get_majority(df, *keys):
'''
For every t_step and key, get the value of the majority of agents
The result is a dataframe with `t_step` as index, and columns based on `key`.
'''
df = get_count(df, *keys)
return df.stack(level=0).idxmax(axis=1).unstack()
def get_value(df, *keys, aggfunc='sum'):
'''
For every t_step and key, get the value of *numeric columns*, aggregated using a specific function.
'''
if keys:
df = df[list(keys)]
df.columns = df.columns.remove_unused_levels()
df = df.select_dtypes('number')
return df.groupby(level='key', axis=1).agg(aggfunc)
def plot_all(*args, plot_args={}, **kwargs):
'''
Read all the trial data and plot the result of applying a function on them.
'''
dfs = do_all(*args, **kwargs)
ps = []
for line in dfs:
f, df, config = line
if len(df) < 1:
continue
df.plot(title=config['name'], **plot_args)
ps.append(df)
return ps
def do_all(pattern, func, *keys, include_env=False, **kwargs):
for config_file, df, config in read_data(pattern, keys=keys):
if len(df) < 1:
continue
p = func(df, *keys, **kwargs)
yield config_file, p, config
def group_trials(trials, aggfunc=['mean', 'min', 'max', 'std']):
trials = list(trials)
trials = list(map(lambda x: x[1] if isinstance(x, tuple) else x, trials))
return pd.concat(trials).groupby(level=0).agg(aggfunc).reorder_levels([2, 0,1] ,axis=1)
def fillna(df):
new_df = df.ffill(axis=0)
return new_df

266
soil/config.py Normal file
View File

@ -0,0 +1,266 @@
from __future__ import annotations
from enum import Enum
from pydantic import BaseModel, ValidationError, validator, root_validator
import yaml
import os
import sys
from typing import Any, Callable, Dict, List, Optional, Union, Type
from pydantic import BaseModel, Extra
from . import environment, utils
import networkx as nx
# Could use TypeAlias in python >= 3.10
nodeId = int
class Node(BaseModel):
id: nodeId
state: Optional[Dict[str, Any]] = {}
class Edge(BaseModel):
source: nodeId
target: nodeId
value: Optional[float] = 1
class Topology(BaseModel):
nodes: List[Node]
directed: bool
links: List[Edge]
class NetParams(BaseModel, extra=Extra.allow):
generator: Union[Callable, str]
n: int
class NetConfig(BaseModel):
params: Optional[NetParams]
topology: Optional[Union[Topology, nx.Graph]]
path: Optional[str]
class Config:
arbitrary_types_allowed = True
@staticmethod
def default():
return NetConfig(topology=None, params=None)
@root_validator
def validate_all(cls, values):
if 'params' not in values and 'topology' not in values:
raise ValueError('You must specify either a topology or the parameters to generate a graph')
return values
class EnvConfig(BaseModel):
@staticmethod
def default():
return EnvConfig()
class SingleAgentConfig(BaseModel):
agent_class: Optional[Union[Type, str]] = None
unique_id: Optional[int] = None
topology: Optional[str] = None
node_id: Optional[Union[int, str]] = None
state: Optional[Dict[str, Any]] = {}
class FixedAgentConfig(SingleAgentConfig):
n: Optional[int] = 1
hidden: Optional[bool] = False # Do not count this agent towards total agent count
@root_validator
def validate_all(cls, values):
if values.get('agent_id', None) is not None and values.get('n', 1) > 1:
raise ValueError(f"An agent_id can only be provided when there is only one agent ({values.get('n')} given)")
return values
class OverrideAgentConfig(FixedAgentConfig):
filter: Optional[Dict[str, Any]] = None
class Strategy(Enum):
topology = 'topology'
total = 'total'
class AgentDistro(SingleAgentConfig):
weight: Optional[float] = 1
strategy: Strategy = Strategy.topology
class AgentConfig(SingleAgentConfig):
n: Optional[int] = None
topology: Optional[str]
distribution: Optional[List[AgentDistro]] = None
fixed: Optional[List[FixedAgentConfig]] = None
override: Optional[List[OverrideAgentConfig]] = None
@staticmethod
def default():
return AgentConfig()
@root_validator
def validate_all(cls, values):
if 'distribution' in values and ('n' not in values and 'topology' not in values):
raise ValueError("You need to provide the number of agents or a topology to extract the value from.")
return values
class Config(BaseModel, extra=Extra.allow):
version: Optional[str] = '1'
name: str = 'Unnamed Simulation'
description: Optional[str] = None
group: str = None
dir_path: Optional[str] = None
num_trials: int = 1
max_time: float = 100
max_steps: int = -1
interval: float = 1
seed: str = ""
dry_run: bool = False
model_class: Union[Type, str] = environment.Environment
model_params: Optional[Dict[str, Any]] = {}
visualization_params: Optional[Dict[str, Any]] = {}
@classmethod
def from_raw(cls, cfg):
if isinstance(cfg, Config):
return cfg
if cfg.get('version', '1') == '1' and any(k in cfg for k in ['agents', 'agent_class', 'topology', 'environment_class']):
return convert_old(cfg)
return Config(**cfg)
def convert_old(old, strict=True):
'''
Try to convert old style configs into the new format.
This is still a work in progress and might not work in many cases.
'''
utils.logger.warning('The old configuration format is deprecated. The converted file MAY NOT yield the right results')
new = old.copy()
network = {}
if 'topology' in old:
del new['topology']
network['topology'] = old['topology']
if 'network_params' in old and old['network_params']:
del new['network_params']
for (k, v) in old['network_params'].items():
if k == 'path':
network['path'] = v
else:
network.setdefault('params', {})[k] = v
topologies = {}
if network:
topologies['default'] = network
agents = {'fixed': [], 'distribution': []}
def updated_agent(agent):
'''Convert an agent definition'''
newagent = dict(agent)
return newagent
by_weight = []
fixed = []
override = []
if 'environment_agents' in new:
for agent in new['environment_agents']:
agent.setdefault('state', {})['group'] = 'environment'
if 'agent_id' in agent:
agent['state']['name'] = agent['agent_id']
del agent['agent_id']
agent['hidden'] = True
agent['topology'] = None
fixed.append(updated_agent(agent))
del new['environment_agents']
if 'agent_class' in old:
del new['agent_class']
agents['agent_class'] = old['agent_class']
if 'default_state' in old:
del new['default_state']
agents['state'] = old['default_state']
if 'network_agents' in old:
agents['topology'] = 'default'
agents.setdefault('state', {})['group'] = 'network'
for agent in new['network_agents']:
agent = updated_agent(agent)
if 'agent_id' in agent:
agent['state']['name'] = agent['agent_id']
del agent['agent_id']
fixed.append(agent)
else:
by_weight.append(agent)
del new['network_agents']
if 'agent_class' in old and (not fixed and not by_weight):
agents['topology'] = 'default'
by_weight = [{'agent_class': old['agent_class'], 'weight': 1}]
# TODO: translate states properly
if 'states' in old:
del new['states']
states = old['states']
if isinstance(states, dict):
states = states.items()
else:
states = enumerate(states)
for (k, v) in states:
override.append({'filter': {'node_id': k},
'state': v})
agents['override'] = override
agents['fixed'] = fixed
agents['distribution'] = by_weight
model_params = {}
if 'environment_params' in new:
del new['environment_params']
model_params = dict(old['environment_params'])
if 'environment_class' in old:
del new['environment_class']
new['model_class'] = old['environment_class']
if 'dump' in old:
del new['dump']
new['dry_run'] = not old['dump']
model_params['topologies'] = topologies
model_params['agents'] = agents
return Config(version='2',
model_params=model_params,
**new)

View File

@ -2,25 +2,5 @@ from mesa import DataCollector as MDC
class SoilDataCollector(MDC):
def __init__(self, environment, *args, **kwargs):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Populate model and env reporters so they have a key per
# So they can be shown in the web interface
self.environment = environment
@property
def model_vars(self):
pass
@model_vars.setter
def model_vars(self, value):
pass
@property
def agent_reporters(self):
self.model._history._
pass

151
soil/debugging.py Normal file
View File

@ -0,0 +1,151 @@
from __future__ import annotations
import pdb
import sys
import os
from textwrap import indent
from functools import wraps
from .agents import FSM, MetaFSM
def wrapcmd(func):
@wraps(func)
def wrapper(self, arg: str, temporary=False):
sys.settrace(self.trace_dispatch)
known = globals()
known.update(self.curframe.f_globals)
known.update(self.curframe.f_locals)
known['agent'] = known.get('self', None)
known['model'] = known.get('self', {}).get('model')
known['attrs'] = arg.strip().split()
exec(func.__code__, known, known)
return wrapper
class Debug(pdb.Pdb):
def __init__(self, *args, skip_soil=False, **kwargs):
skip = kwargs.get('skip', [])
if skip_soil:
skip.append('soil.*')
skip.append('mesa.*')
super(Debug, self).__init__(*args, skip=skip, **kwargs)
self.prompt = "[soil-pdb] "
@staticmethod
def _soil_agents(model, attrs=None, pretty=True, **kwargs):
for agent in model.agents(**kwargs):
d = agent
print(' - ' + indent(agent.to_str(keys=attrs, pretty=pretty), ' '))
@wrapcmd
def do_soil_agents():
return Debug._soil_agents(model, attrs=attrs or None)
do_sa = do_soil_agents
@wrapcmd
def do_soil_list():
return Debug._soil_agents(model, attrs=['state_id'], pretty=False)
do_sl = do_soil_list
@wrapcmd
def do_soil_self():
if not agent:
print('No agent available')
return
keys = None
if attrs:
keys = []
for k in attrs:
for key in agent.keys():
if key.startswith(k):
keys.append(key)
print(agent.to_str(pretty=True, keys=keys))
do_ss = do_soil_self
def do_break_state(self, arg: str, temporary=False):
'''
Break before a specified state is stepped into.
'''
klass = None
state = arg.strip()
if not state:
self.error("Specify at least a state name")
return
comma = arg.find(':')
if comma > 0:
state = arg[comma+1:].lstrip()
klass = arg[:comma].rstrip()
klass = eval(klass,
self.curframe.f_globals,
self.curframe_locals)
if klass:
klasses = [klass]
else:
klasses = [k for k in self.curframe.f_globals.values() if isinstance(k, type) and issubclass(k, FSM)]
print(klasses)
if not klasses:
self.error('No agent classes found')
for klass in klasses:
try:
func = getattr(klass, state)
except AttributeError:
continue
if hasattr(func, '__func__'):
func = func.__func__
code = func.__code__
#use co_name to identify the bkpt (function names
#could be aliased, but co_name is invariant)
funcname = code.co_name
lineno = code.co_firstlineno
filename = code.co_filename
# Check for reasonable breakpoint
line = self.checkline(filename, lineno)
if not line:
raise ValueError('no line found')
# now set the break point
cond = None
existing = self.get_breaks(filename, line)
if existing:
self.message("Breakpoint already exists at %s:%d" %
(filename, line))
continue
err = self.set_break(filename, line, temporary, cond, funcname)
if err:
self.error(err)
else:
bp = self.get_breaks(filename, line)[-1]
self.message("Breakpoint %d at %s:%d" %
(bp.number, bp.file, bp.line))
do_bs = do_break_state
def setup(frame=None):
debugger = Debug()
frame = frame or sys._getframe().f_back
debugger.set_trace(frame)
def debug_env():
if os.environ.get('SOIL_DEBUG'):
return setup(frame=sys._getframe().f_back)
def post_mortem(traceback=None):
p = Debug()
t = sys.exc_info()[2]
p.reset()
p.interaction(None, t)

View File

@ -1,105 +1,130 @@
from __future__ import annotations
import os
import sqlite3
import csv
import math
import random
import yaml
import tempfile
import pandas as pd
import logging
from typing import Any, Dict, Optional, Union
from collections import namedtuple
from time import time as current_time
from copy import deepcopy
from networkx.readwrite import json_graph
import networkx as nx
from tsih import History, Record, Key, NoHistory
from mesa import Model
from mesa.datacollection import DataCollector
from . import serialization, agents, analysis, utils, time
from . import agents as agentmod, config, serialization, utils, time, network
# These properties will be copied when pickling/unpickling the environment
_CONFIG_PROPS = [ 'name',
'states',
'default_state',
'interval',
]
class Environment(Model):
Record = namedtuple('Record', 'dict_id t_step key value')
class BaseEnvironment(Model):
"""
The environment is key in a simulation. It contains the network topology,
a reference to network and environment agents, as well as the environment
params, which are used as shared state between agents.
The environment is key in a simulation. It controls how agents interact,
and what information is available to them.
This is an opinionated version of `mesa.Model` class, which adds many
convenience methods and abstractions.
The environment parameters and the state of every agent can be accessed
both by using the environment as a dictionary or with the environment's
both by using the environment as a dictionary and with the environment's
:meth:`soil.environment.Environment.get` method.
"""
def __init__(self, name=None,
network_agents=None,
environment_agents=None,
states=None,
default_state=None,
interval=1,
network_params=None,
seed=None,
topology=None,
def __init__(self,
id='unnamed_env',
seed='default',
schedule=None,
initial_time=0,
environment_params=None,
history=True,
dir_path=None,
**kwargs):
interval=1,
agent_class=None,
agents: [tuple[type, Dict[str, Any]]] = {},
agent_reporters: Optional[Any] = None,
model_reporters: Optional[Any] = None,
tables: Optional[Any] = None,
**env_params):
super().__init__(seed=seed)
self.current_id = -1
super().__init__()
self.id = id
self.dir_path = dir_path or os.getcwd()
self.schedule = schedule
if schedule is None:
self.schedule = time.TimedActivation()
schedule = time.TimedActivation(self)
self.schedule = schedule
self.name = name or 'UnnamedEnvironment'
seed = seed or current_time()
random.seed(seed)
if isinstance(states, list):
states = dict(enumerate(states))
self.states = deepcopy(states) if states else {}
self.default_state = deepcopy(default_state) or {}
self.agent_class = agent_class or agentmod.BaseAgent
if topology is None:
network_params = network_params or {}
topology = serialization.load_network(network_params,
dir_path=dir_path)
if not topology:
topology = nx.Graph()
self.G = nx.Graph(topology)
self.init_agents(agents)
self.env_params = env_params or {}
self.environment_params = environment_params or {}
self.environment_params.update(kwargs)
self._env_agents = {}
self.interval = interval
if history:
history = History
else:
history = NoHistory
self._history = history(name=self.name,
backup=True)
self['SEED'] = seed
if network_agents:
distro = agents.calculate_distribution(network_agents)
self.network_agents = agents._convert_agent_types(distro)
else:
self.network_agents = []
self.logger = utils.logger.getChild(self.id)
environment_agents = environment_agents or []
if environment_agents:
distro = agents.calculate_distribution(environment_agents)
environment_agents = agents._convert_agent_types(distro)
self.environment_agents = environment_agents
self.datacollector = DataCollector(
model_reporters=model_reporters,
agent_reporters=agent_reporters,
tables=tables,
)
def _read_single_agent(self, agent):
agent = dict(**agent)
cls = agent.pop('agent_class', None) or self.agent_class
unique_id = agent.pop('unique_id', None)
if unique_id is None:
unique_id = self.next_id()
return serialization.deserialize(cls)(unique_id=unique_id,
model=self, **agent)
def init_agents(self, agents: Union[config.AgentConfig, [Dict[str, Any]]] = {}):
if not agents:
return
lst = agents
override = []
if not isinstance(lst, list):
if not isinstance(agents, config.AgentConfig):
lst = config.AgentConfig(**agents)
if lst.override:
override = lst.override
lst = agentmod.from_config(lst,
topologies=getattr(self, 'topologies', None),
random=self.random)
#TODO: check override is working again. It cannot (easily) be part of agents.from_config anymore,
# because it needs attribute such as unique_id, which are only present after init
new_agents = [self._read_single_agent(agent) for agent in lst]
for a in new_agents:
self.schedule.add(a)
for rule in override:
for agent in agentmod.filter_agents(self.schedule._agents, **rule.filter):
for attr, value in rule.state.items():
setattr(agent, attr, value)
@property
def agents(self):
return agentmod.AgentView(self.schedule._agents)
def find_one(self, *args, **kwargs):
return agentmod.AgentView(self.schedule._agents).one(*args, **kwargs)
def count_agents(self, *args, **kwargs):
return sum(1 for i in self.agents(*args, **kwargs))
@property
def now(self):
@ -107,271 +132,171 @@ class Environment(Model):
return self.schedule.time
raise Exception('The environment has not been scheduled, so it has no sense of time')
@property
def agents(self):
yield from self.environment_agents
yield from self.network_agents
@property
def environment_agents(self):
for ref in self._env_agents.values():
yield ref
@environment_agents.setter
def environment_agents(self, environment_agents):
self._environment_agents = environment_agents
self._env_agents = agents._definition_to_dict(definition=environment_agents)
@property
def network_agents(self):
for i in self.G.nodes():
node = self.G.nodes[i]
if 'agent' in node:
yield node['agent']
@network_agents.setter
def network_agents(self, network_agents):
self._network_agents = network_agents
for ix in self.G.nodes():
self.init_agent(ix, agent_definitions=network_agents)
def init_agent(self, agent_id, agent_definitions):
node = self.G.nodes[agent_id]
init = False
state = dict(node)
agent_type = None
if 'agent_type' in self.states.get(agent_id, {}):
agent_type = self.states[agent_id]['agent_type']
elif 'agent_type' in node:
agent_type = node['agent_type']
elif 'agent_type' in self.default_state:
agent_type = self.default_state['agent_type']
if agent_type:
agent_type = agents.deserialize_type(agent_type)
elif agent_definitions:
agent_type, state = agents._agent_from_definition(agent_definitions, unique_id=agent_id)
else:
serialization.logger.debug('Skipping node {}'.format(agent_id))
return
return self.set_agent(agent_id, agent_type, state)
def set_agent(self, agent_id, agent_type, state=None):
node = self.G.nodes[agent_id]
defstate = deepcopy(self.default_state) or {}
defstate.update(self.states.get(agent_id, {}))
defstate.update(node.get('state', {}))
if state:
defstate.update(state)
def add_agent(self, agent_id, agent_class, **kwargs):
a = None
if agent_type:
state = defstate
a = agent_type(model=self,
unique_id=agent_id)
if agent_class:
a = agent_class(model=self,
unique_id=agent_id,
**kwargs)
for (k, v) in getattr(a, 'defaults', {}).items():
if not hasattr(a, k) or getattr(a, k) is None:
setattr(a, k, v)
for (k, v) in state.items():
setattr(a, k, v)
node['agent'] = a
self.schedule.add(a)
return a
def add_node(self, agent_type, state=None):
agent_id = int(len(self.G.nodes()))
self.G.add_node(agent_id)
a = self.set_agent(agent_id, agent_type, state)
a['visible'] = True
return a
def add_edge(self, agent1, agent2, start=None, **attrs):
if hasattr(agent1, 'id'):
agent1 = agent1.id
if hasattr(agent2, 'id'):
agent2 = agent2.id
start = start or self.now
return self.G.add_edge(agent1, agent2, **attrs)
def log(self, message, *args, level=logging.INFO, **kwargs):
if not self.logger.isEnabledFor(level):
return
message = message + " ".join(str(i) for i in args)
message = " @{:>3}: {}".format(self.now, message)
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
extra = {}
extra['now'] = self.now
extra['id'] = self.id
return self.logger.log(level, message, extra=extra)
def step(self):
'''
Advance one step in the simulation, and update the data collection and scheduler appropriately
'''
super().step()
self.datacollector.collect(self)
self.logger.info(f'--- Step {self.now:^5} ---')
self.schedule.step()
def run(self, until, *args, **kwargs):
self._save_state()
while self.schedule.next_time <= until and not math.isinf(self.schedule.next_time):
self.schedule.step(until=until)
utils.logger.debug(f'Simulation step {self.schedule.time}/{until}. Next: {self.schedule.next_time}')
self._history.flush_cache()
def _save_state(self, now=None):
serialization.logger.debug('Saving state @{}'.format(self.now))
self._history.save_records(self.state_to_tuples(now=now))
def __getitem__(self, key):
if isinstance(key, tuple):
self._history.flush_cache()
return self._history[key]
return self.environment_params[key]
def __setitem__(self, key, value):
if isinstance(key, tuple):
k = Key(*key)
self._history.save_record(*k,
value=value)
return
self.environment_params[key] = value
self._history.save_record(dict_id='env',
t_step=self.now,
key=key,
value=value)
self.datacollector.collect(self)
def __contains__(self, key):
return key in self.environment_params
return key in self.env_params
def get(self, key, default=None):
'''
Get the value of an environment attribute in a
given point in the simulation (history).
If key is an attribute name, this method returns
the current value.
To get values at other times, use a
:meth: `soil.history.Key` tuple.
Get the value of an environment attribute.
Return `default` if the value is not set.
'''
return self[key] if key in self else default
return self.env_params.get(key, default)
def get_agent(self, agent_id):
return self.G.nodes[agent_id]['agent']
def __getitem__(self, key):
return self.env_params.get(key)
def get_agents(self, nodes=None):
if nodes is None:
return self.agents
return (self.G.nodes[i]['agent'] for i in nodes)
def __setitem__(self, key, value):
return self.env_params.__setitem__(key, value)
def dump_csv(self, f):
with utils.open_or_reuse(f, 'w') as f:
cr = csv.writer(f)
cr.writerow(('agent_id', 't_step', 'key', 'value'))
for i in self.history_to_tuples():
cr.writerow(i)
def dump_gexf(self, f):
G = self.history_to_graph()
# Workaround for geometric models
# See soil/soil#4
for node in G.nodes():
if 'pos' in G.nodes[node]:
G.nodes[node]['viz'] = {"position": {"x": G.nodes[node]['pos'][0], "y": G.nodes[node]['pos'][1], "z": 0.0}}
del (G.nodes[node]['pos'])
nx.write_gexf(G, f, version="1.2draft")
def dump(self, *args, formats=None, **kwargs):
if not formats:
return
functions = {
'csv': self.dump_csv,
'gexf': self.dump_gexf
}
for f in formats:
if f in functions:
functions[f](*args, **kwargs)
else:
raise ValueError('Unknown format: {}'.format(f))
def dump_sqlite(self, f):
return self._history.dump(f)
def state_to_tuples(self, now=None):
def _agent_to_tuples(self, agent, now=None):
if now is None:
now = self.now
for k, v in self.environment_params.items():
for k, v in agent.state.items():
yield Record(dict_id=agent.id,
t_step=now,
key=k,
value=v)
def state_to_tuples(self, agent_id=None, now=None):
if now is None:
now = self.now
if agent_id:
agent = self.agents[agent_id]
yield from self._agent_to_tuples(agent, now)
return
for k, v in self.env_params.items():
yield Record(dict_id='env',
t_step=now,
key=k,
value=v)
for agent in self.agents:
for k, v in agent.state.items():
yield Record(dict_id=agent.id,
t_step=now,
key=k,
value=v)
def history_to_tuples(self):
return self._history.to_tuples()
def history_to_graph(self):
G = nx.Graph(self.G)
for agent in self.network_agents:
attributes = {'agent': str(agent.__class__)}
lastattributes = {}
spells = []
lastvisible = False
laststep = None
history = self[agent.id, None, None]
if not history:
continue
for t_step, attribute, value in sorted(list(history)):
if attribute == 'visible':
nowvisible = value
if nowvisible and not lastvisible:
laststep = t_step
if not nowvisible and lastvisible:
spells.append((laststep, t_step))
lastvisible = nowvisible
continue
key = 'attr_' + attribute
if key not in attributes:
attributes[key] = list()
if key not in lastattributes:
lastattributes[key] = (value, t_step)
elif lastattributes[key][0] != value:
last_value, laststep = lastattributes[key]
commit_value = (last_value, laststep, t_step)
if key not in attributes:
attributes[key] = list()
attributes[key].append(commit_value)
lastattributes[key] = (value, t_step)
for k, v in lastattributes.items():
attributes[k].append((v[0], v[1], None))
if lastvisible:
spells.append((laststep, None))
if spells:
G.add_node(agent.id, spells=spells, **attributes)
else:
G.add_node(agent.id, **attributes)
return G
def __getstate__(self):
state = {}
for prop in _CONFIG_PROPS:
state[prop] = self.__dict__[prop]
state['G'] = json_graph.node_link_data(self.G)
state['environment_agents'] = self._env_agents
state['history'] = self._history
state['schedule'] = self.schedule
return state
def __setstate__(self, state):
for prop in _CONFIG_PROPS:
self.__dict__[prop] = state[prop]
self._env_agents = state['environment_agents']
self.G = json_graph.node_link_graph(state['G'])
self._history = state['history']
# self._env = None
self.schedule = state['schedule']
self._queue = []
yield from self._agent_to_tuples(agent, now)
SoilEnvironment = Environment
class NetworkEnvironment(BaseEnvironment):
def __init__(self, *args, topology: nx.Graph = None, topologies: Dict[str, config.NetConfig] = {}, **kwargs):
agents = kwargs.pop('agents', None)
super().__init__(*args, agents=None, **kwargs)
self._node_ids = {}
assert not hasattr(self, 'topologies')
if topology is not None:
if topologies:
raise ValueError('Please, provide either a single topology or a dictionary of them')
topologies = {'default': topology}
self.topologies = {}
for (name, cfg) in topologies.items():
self.set_topology(cfg=cfg, graph=name)
self.init_agents(agents)
def _read_single_agent(self, agent, unique_id=None):
agent = dict(agent)
if agent.get('topology', None) is not None:
topology = agent.get('topology')
if unique_id is None:
unique_id = self.next_id()
if topology:
node_id = self.agent_to_node(unique_id, graph_name=topology, node_id=agent.get('node_id'))
agent['node_id'] = node_id
agent['topology'] = topology
agent['unique_id'] = unique_id
return super()._read_single_agent(agent)
@property
def topology(self):
return self.topologies['default']
def set_topology(self, cfg=None, dir_path=None, graph='default'):
topology = cfg
if not isinstance(cfg, nx.Graph):
topology = network.from_config(cfg, dir_path=dir_path or self.dir_path)
self.topologies[graph] = topology
def topology_for(self, unique_id):
return self.topologies[self._node_ids[unique_id][0]]
@property
def network_agents(self):
yield from self.agents(agent_class=agentmod.NetworkAgent)
def agent_to_node(self, unique_id, graph_name='default',
node_id=None, shuffle=False):
node_id = network.agent_to_node(G=self.topologies[graph_name],
agent_id=unique_id,
node_id=node_id,
shuffle=shuffle,
random=self.random)
self._node_ids[unique_id] = (graph_name, node_id)
return node_id
def add_node(self, agent_class, topology, **kwargs):
unique_id = self.next_id()
self.topologies[topology].add_node(unique_id)
node_id = self.agent_to_node(unique_id=unique_id, node_id=unique_id, graph_name=topology)
a = self.add_agent(unique_id=unique_id, agent_class=agent_class, node_id=node_id, topology=topology, **kwargs)
a['visible'] = True
return a
def add_edge(self, agent1, agent2, start=None, graph='default', **attrs):
agent1 = agent1.node_id
agent2 = agent2.node_id
return self.topologies[graph].add_edge(agent1, agent2, start=start)
def add_agent(self, unique_id, state=None, graph='default', **kwargs):
node = self.topologies[graph].nodes[unique_id]
node_state = node.get('state', {})
if node_state:
node_state.update(state or {})
state = node_state
a = super().add_agent(unique_id, state=state, **kwargs)
node['agent'] = a
return a
def node_id_for(self, agent_id):
return self._node_ids[agent_id][1]
Environment = NetworkEnvironment

View File

@ -1,7 +1,8 @@
import os
import csv as csvlib
import time
from time import time as current_time
from io import BytesIO
from sqlalchemy import create_engine
import matplotlib.pyplot as plt
import networkx as nx
@ -11,7 +12,7 @@ from .serialization import deserialize
from .utils import open_or_reuse, logger, timer
from . import utils
from . import utils, network
class DryRunner(BytesIO):
@ -53,15 +54,19 @@ class Exporter:
self.dry_run = dry_run
self.copy_to = copy_to
def start(self):
def sim_start(self):
'''Method to call when the simulation starts'''
pass
def end(self, stats):
def sim_end(self):
'''Method to call when the simulation ends'''
pass
def trial(self, env, stats):
def trial_start(self, env):
'''Method to call when a trial start'''
pass
def trial_end(self, env):
'''Method to call when a trial ends'''
pass
@ -80,79 +85,130 @@ class Exporter:
class default(Exporter):
'''Default exporter. Writes sqlite results, as well as the simulation YAML'''
def start(self):
def sim_start(self):
if not self.dry_run:
logger.info('Dumping results to %s', self.outdir)
self.simulation.dump_yaml(outdir=self.outdir)
with self.output(self.simulation.name + '.dumped.yml') as f:
f.write(self.simulation.to_yaml())
else:
logger.info('NOT dumping results')
def trial(self, env, stats):
def trial_end(self, env):
if not self.dry_run:
with timer('Dumping simulation {} trial {}'.format(self.simulation.name,
env.name)):
with self.output('{}.sqlite'.format(env.name), mode='wb') as f:
env.dump_sqlite(f)
env.id)):
engine = create_engine('sqlite:///{}.sqlite'.format(env.id), echo=False)
def end(self, stats):
with timer('Dumping simulation {}\'s stats'.format(self.simulation.name)):
with self.output('{}.sqlite'.format(self.simulation.name), mode='wb') as f:
self.simulation.dump_sqlite(f)
dc = env.datacollector
for (t, df) in get_dc_dfs(dc):
df.to_sql(t, con=engine, if_exists='append')
def get_dc_dfs(dc):
dfs = {'env': dc.get_model_vars_dataframe(),
'agents': dc.get_agent_vars_dataframe() }
for table_name in dc.tables:
dfs[table_name] = dc.get_table_dataframe(table_name)
yield from dfs.items()
class csv(Exporter):
'''Export the state of each environment (and its agents) in a separate CSV file'''
def trial(self, env, stats):
def trial_end(self, env):
with timer('[CSV] Dumping simulation {} trial {} @ dir {}'.format(self.simulation.name,
env.name,
env.id,
self.outdir)):
with self.output('{}.csv'.format(env.name)) as f:
env.dump_csv(f)
with self.output('{}.stats.csv'.format(env.name)) as f:
statwriter = csvlib.writer(f, delimiter='\t', quotechar='"', quoting=csvlib.QUOTE_ALL)
for stat in stats:
statwriter.writerow(stat)
for (df_name, df) in get_dc_dfs(env.datacollector):
with self.output('{}.{}.csv'.format(env.id, df_name)) as f:
df.to_csv(f)
#TODO: reimplement GEXF exporting without history
class gexf(Exporter):
def trial(self, env, stats):
def trial_end(self, env):
if self.dry_run:
logger.info('Not dumping GEXF in dry_run mode')
return
with timer('[GEXF] Dumping simulation {} trial {}'.format(self.simulation.name,
env.name)):
with self.output('{}.gexf'.format(env.name), mode='wb') as f:
env.dump_gexf(f)
env.id)):
with self.output('{}.gexf'.format(env.id), mode='wb') as f:
network.dump_gexf(env.history_to_graph(), f)
self.dump_gexf(env, f)
class dummy(Exporter):
def start(self):
def sim_start(self):
with self.output('dummy', 'w') as f:
f.write('simulation started @ {}\n'.format(time.time()))
f.write('simulation started @ {}\n'.format(current_time()))
def trial(self, env, stats):
def trial_start(self, env):
with self.output('dummy', 'w') as f:
for i in env.history_to_tuples():
f.write(','.join(map(str, i)))
f.write('\n')
f.write('trial started@ {}\n'.format(current_time()))
def sim(self, stats):
def trial_end(self, env):
with self.output('dummy', 'w') as f:
f.write('trial ended@ {}\n'.format(current_time()))
def sim_end(self):
with self.output('dummy', 'a') as f:
f.write('simulation ended @ {}\n'.format(time.time()))
f.write('simulation ended @ {}\n'.format(current_time()))
class graphdrawing(Exporter):
def trial(self, env, stats):
def trial_end(self, env):
# Outside effects
f = plt.figure()
nx.draw(env.G, node_size=10, width=0.2, pos=nx.spring_layout(env.G, scale=100), ax=f.add_subplot(111))
with open('graph-{}.png'.format(env.name)) as f:
with open('graph-{}.png'.format(env.id)) as f:
f.savefig(f)
'''
Convert an environment into a NetworkX graph
'''
def env_to_graph(env, history=None):
G = nx.Graph(env.G)
for agent in env.network_agents:
attributes = {'agent': str(agent.__class__)}
lastattributes = {}
spells = []
lastvisible = False
laststep = None
if not history:
history = sorted(list(env.state_to_tuples()))
for _, t_step, attribute, value in history:
if attribute == 'visible':
nowvisible = value
if nowvisible and not lastvisible:
laststep = t_step
if not nowvisible and lastvisible:
spells.append((laststep, t_step))
lastvisible = nowvisible
continue
key = 'attr_' + attribute
if key not in attributes:
attributes[key] = list()
if key not in lastattributes:
lastattributes[key] = (value, t_step)
elif lastattributes[key][0] != value:
last_value, laststep = lastattributes[key]
commit_value = (last_value, laststep, t_step)
if key not in attributes:
attributes[key] = list()
attributes[key].append(commit_value)
lastattributes[key] = (value, t_step)
for k, v in lastattributes.items():
attributes[k].append((v[0], v[1], None))
if lastvisible:
spells.append((laststep, None))
if spells:
G.add_node(agent.id, spells=spells, **attributes)
else:
G.add_node(agent.id, **attributes)
return G

78
soil/network.py Normal file
View File

@ -0,0 +1,78 @@
from __future__ import annotations
from typing import Dict
import os
import sys
import random
import networkx as nx
from . import config, serialization, basestring
def from_config(cfg: config.NetConfig, dir_path: str = None):
if not isinstance(cfg, config.NetConfig):
cfg = config.NetConfig(**cfg)
if cfg.path:
path = cfg.path
if dir_path and not os.path.isabs(path):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
kwargs = {}
if extension == 'gexf':
kwargs['version'] = '1.2draft'
kwargs['node_type'] = int
try:
method = getattr(nx.readwrite, 'read_' + extension)
except AttributeError:
raise AttributeError('Unknown format')
return method(path, **kwargs)
if cfg.params:
net_args = cfg.params.dict()
net_gen = net_args.pop('generator')
if dir_path not in sys.path:
sys.path.append(dir_path)
method = serialization.deserializer(net_gen,
known_modules=['networkx.generators',])
return method(**net_args)
if isinstance(cfg.topology, config.Topology):
cfg = cfg.topology.dict()
if isinstance(cfg, str) or isinstance(cfg, dict):
return nx.json_graph.node_link_graph(cfg)
return nx.Graph()
def agent_to_node(G, agent_id, node_id=None, shuffle=False, random=random):
'''
Link an agent to a node in a topology.
If node_id is None, a node without an agent_id will be found.
'''
#TODO: test
if node_id is None:
candidates = list(G.nodes(data=True))
if shuffle:
random.shuffle(candidates)
for next_id, data in candidates:
if data.get('agent_id', None) is None:
node_id = next_id
break
if node_id is None:
raise ValueError(f"Not enough nodes in topology to assign one to agent {agent_id}")
G.nodes[node_id]['agent_id'] = agent_id
return node_id
def dump_gexf(G, f):
for node in G.nodes():
if 'pos' in G.nodes[node]:
G.nodes[node]['viz'] = {"position": {"x": G.nodes[node]['pos'][0], "y": G.nodes[node]['pos'][1], "z": 0.0}}
del (G.nodes[node]['pos'])
nx.write_gexf(G, f, version="1.2draft")

View File

@ -2,10 +2,13 @@ import os
import logging
import ast
import sys
import re
import importlib
from glob import glob
from itertools import product, chain
from .config import Config
import yaml
import networkx as nx
@ -15,38 +18,39 @@ from jinja2 import Template
logger = logging.getLogger('soil')
def load_network(network_params, dir_path=None):
G = nx.Graph()
# def load_network(network_params, dir_path=None):
# G = nx.Graph()
if 'path' in network_params:
path = network_params['path']
if dir_path and not os.path.isabs(path):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
kwargs = {}
if extension == 'gexf':
kwargs['version'] = '1.2draft'
kwargs['node_type'] = int
try:
method = getattr(nx.readwrite, 'read_' + extension)
except AttributeError:
raise AttributeError('Unknown format')
G = method(path, **kwargs)
# if not network_params:
# return G
elif 'generator' in network_params:
net_args = network_params.copy()
net_gen = net_args.pop('generator')
# if 'path' in network_params:
# path = network_params['path']
# if dir_path and not os.path.isabs(path):
# path = os.path.join(dir_path, path)
# extension = os.path.splitext(path)[1][1:]
# kwargs = {}
# if extension == 'gexf':
# kwargs['version'] = '1.2draft'
# kwargs['node_type'] = int
# try:
# method = getattr(nx.readwrite, 'read_' + extension)
# except AttributeError:
# raise AttributeError('Unknown format')
# G = method(path, **kwargs)
if dir_path not in sys.path:
sys.path.append(dir_path)
# elif 'generator' in network_params:
# net_args = network_params.copy()
# net_gen = net_args.pop('generator')
method = deserializer(net_gen,
known_modules=['networkx.generators',])
G = method(**net_args)
return G
# if dir_path not in sys.path:
# sys.path.append(dir_path)
# method = deserializer(net_gen,
# known_modules=['networkx.generators',])
# G = method(**net_args)
# return G
def load_file(infile):
@ -118,23 +122,26 @@ def params_for_template(config):
def load_files(*patterns, **kwargs):
for pattern in patterns:
for i in glob(pattern, **kwargs):
for config in load_file(i):
for cfg in load_file(i):
path = os.path.abspath(i)
if 'dir_path' not in config:
config['dir_path'] = os.path.dirname(path)
yield config, path
yield Config.from_raw(cfg), path
def load_config(config):
if isinstance(config, dict):
yield config, os.getcwd()
def load_config(cfg):
if isinstance(cfg, Config):
yield cfg, os.getcwd()
elif isinstance(cfg, dict):
yield Config.from_raw(cfg), os.getcwd()
else:
yield from load_files(config)
yield from load_files(cfg)
builtins = importlib.import_module('builtins')
def name(value, known_modules=[]):
KNOWN_MODULES = ['soil', ]
def name(value, known_modules=KNOWN_MODULES):
'''Return a name that can be imported, to serialize/deserialize an object'''
if value is None:
return 'None'
@ -163,13 +170,30 @@ def serializer(type_):
return lambda x: x
def serialize(v, known_modules=[]):
def serialize(v, known_modules=KNOWN_MODULES):
'''Get a text representation of an object.'''
tname = name(v, known_modules=known_modules)
func = serializer(tname)
return func(v), tname
def deserializer(type_, known_modules=[]):
def serialize_dict(d, known_modules=KNOWN_MODULES):
d = dict(d)
for (k, v) in d.items():
if isinstance(v, dict):
d[k] = serialize_dict(v, known_modules=known_modules)
elif isinstance(v, list):
for ix in range(len(v)):
v[ix] = serialize_dict(v[ix], known_modules=known_modules)
elif isinstance(v, type):
d[k] = serialize(v, known_modules=known_modules)[1]
return d
IS_CLASS = re.compile(r"<class '(.*)'>")
def deserializer(type_, known_modules=KNOWN_MODULES):
if type(type_) != str: # Already deserialized
return type_
if type_ == 'str':
@ -179,17 +203,23 @@ def deserializer(type_, known_modules=[]):
if hasattr(builtins, type_): # Check if it's a builtin type
cls = getattr(builtins, type_)
return lambda x=None: ast.literal_eval(x) if x is not None else cls()
match = IS_CLASS.match(type_)
if match:
modname, tname = match.group(1).rsplit(".", 1)
module = importlib.import_module(modname)
cls = getattr(module, tname)
return getattr(cls, 'deserialize', cls)
# Otherwise, see if we can find the module and the class
modules = known_modules or []
options = []
for mod in modules:
for mod in known_modules:
if mod:
options.append((mod, type_))
if '.' in type_: # Fully qualified module
module, type_ = type_.rsplit(".", 1)
options.append ((module, type_))
options.append((module, type_))
errors = []
for modname, tname in options:
@ -212,11 +242,11 @@ def deserialize(type_, value=None, **kwargs):
return des(value)
def deserialize_all(names, *args, known_modules=['soil'], **kwargs):
'''Return the set of exporters for a simulation, given the exporter names'''
exporters = []
def deserialize_all(names, *args, known_modules=KNOWN_MODULES, **kwargs):
'''Return the list of deserialized objects'''
objects = []
for name in names:
mod = deserialize(name, known_modules=known_modules)
exporters.append(mod(*args, **kwargs))
return exporters
objects.append(mod(*args, **kwargs))
return objects

View File

@ -1,166 +1,86 @@
import os
import time
from time import time as current_time, strftime
import importlib
import sys
import yaml
import traceback
import inspect
import logging
import networkx as nx
from networkx.readwrite import json_graph
from multiprocessing import Pool
from functools import partial
from tsih import History
from textwrap import dedent
from dataclasses import dataclass, field, asdict
from typing import Any, Dict, Union, Optional
from networkx.readwrite import json_graph
from functools import partial
import pickle
from . import serialization, utils, basestring, agents
from .environment import Environment
from .utils import logger
from .utils import logger, run_and_return_exceptions
from .exporters import default
from .stats import defaultStats
from .time import INFINITY
from .config import Config, convert_old
#TODO: change documentation for simulation
@dataclass
class Simulation:
"""
Similar to nsim.NetworkSimulation with three main differences:
1) agent type can be specified by name or by class.
2) instead of just one type, a network agents distribution can be used.
The distribution specifies the weight (or probability) of each
agent type in the topology. This is an example distribution: ::
[
{'agent_type': 'agent_type_1',
'weight': 0.2,
'state': {
'id': 0
}
},
{'agent_type': 'agent_type_2',
'weight': 0.8,
'state': {
'id': 1
}
}
]
In this example, 20% of the nodes will be marked as type
'agent_type_1'.
3) if no initial state is given, each node's state will be set
to `{'id': 0}`.
Parameters
---------
name : str, optional
config (optional): :class:`config.Config`
name of the Simulation
group : str, optional
a group name can be used to link simulations
topology : networkx.Graph instance, optional
network_params : dict
parameters used to create a topology with networkx, if no topology is given
network_agents : dict
definition of agents to populate the topology with
agent_type : NetworkAgent subclass, optional
Default type of NetworkAgent to use for nodes not specified in network_agents
states : list, optional
List of initial states corresponding to the nodes in the topology. Basic form is a list of integers
whose value indicates the state
dir_path: str, optional
Directory path to load simulation assets (files, modules...)
seed : str, optional
Seed to use for the random generator
num_trials : int, optional
Number of independent simulation runs
max_time : int, optional
Time how long the simulation should run
environment_params : dict, optional
Dictionary of globally-shared environmental parameters
environment_agents: dict, optional
Similar to network_agents. Distribution of Agents that control the environment
environment_class: soil.environment.Environment subclass, optional
Class for the environment. It defailts to soil.environment.Environment
load_module : str, module name, deprecated
If specified, soil will load the content of this module under 'soil.agents.custom'
kwargs: parameters to use to initialize a new configuration, if one has not been provided.
"""
version: str = '2'
name: str = 'Unnamed simulation'
description: Optional[str] = ''
group: str = None
model_class: Union[str, type] = 'soil.Environment'
model_params: dict = field(default_factory=dict)
seed: str = field(default_factory=lambda: current_time())
dir_path: str = field(default_factory=lambda: os.getcwd())
max_time: float = float('inf')
max_steps: int = -1
interval: int = 1
num_trials: int = 3
dry_run: bool = False
extra: Dict[str, Any] = field(default_factory=dict)
def __init__(self, name=None, group=None, topology=None, network_params=None,
network_agents=None, agent_type=None, states=None,
default_state=None, interval=1, num_trials=1,
max_time=100, load_module=None, seed=None,
dir_path=None, environment_agents=None,
environment_params=None, environment_class=None,
**kwargs):
@classmethod
def from_dict(cls, env):
self.load_module = load_module
self.network_params = network_params
self.name = name or 'Unnamed'
self.seed = str(seed or name)
self._id = '{}_{}'.format(self.name, time.strftime("%Y-%m-%d_%H.%M.%S"))
self.group = group or ''
self.num_trials = num_trials
self.max_time = max_time
self.default_state = default_state or {}
self.dir_path = dir_path or os.getcwd()
self.interval = interval
ignored = {k: v for k, v in env.items()
if k not in inspect.signature(cls).parameters}
sys.path += list(x for x in [os.getcwd(), self.dir_path] if x not in sys.path)
kwargs = {k:v for k, v in env.items() if k not in ignored}
if ignored:
kwargs.setdefault('extra', {}).update(ignored)
if ignored:
print(f'Warning: Ignoring these parameters (added to "extra"): { ignored }')
if topology is None:
topology = serialization.load_network(network_params,
dir_path=self.dir_path)
elif isinstance(topology, basestring) or isinstance(topology, dict):
topology = json_graph.node_link_graph(topology)
self.topology = nx.Graph(topology)
self.environment_params = environment_params or {}
self.environment_class = serialization.deserialize(environment_class,
known_modules=['soil.environment', ]) or Environment
environment_agents = environment_agents or []
self.environment_agents = agents._convert_agent_types(environment_agents,
known_modules=[self.load_module])
distro = agents.calculate_distribution(network_agents,
agent_type)
self.network_agents = agents._convert_agent_types(distro,
known_modules=[self.load_module])
self.states = agents._validate_states(states,
self.topology)
self._history = History(name=self.name,
backup=False)
return cls(**kwargs)
def run_simulation(self, *args, **kwargs):
return self.run(*args, **kwargs)
def run(self, *args, **kwargs):
'''Run the simulation and return the list of resulting environments'''
logger.info(dedent('''
Simulation:
---
''') +
self.to_yaml())
return list(self.run_gen(*args, **kwargs))
def _run_sync_or_async(self, parallel=False, *args, **kwargs):
if parallel and not os.environ.get('SENPY_DEBUG', None):
p = Pool()
func = partial(self.run_trial_exceptions,
*args,
**kwargs)
for i in p.imap_unordered(func, range(self.num_trials)):
if isinstance(i, Exception):
logger.error('Trial failed:\n\t%s', i.message)
continue
yield i
else:
for i in range(self.num_trials):
yield self.run_trial(*args,
**kwargs)
def run_gen(self, *args, parallel=False, dry_run=False,
exporters=[default, ], stats=[], outdir=None, exporter_params={},
stats_params={}, log_level=None,
def run_gen(self, parallel=False, dry_run=False,
exporters=[default, ], outdir=None, exporter_params={},
log_level=None,
**kwargs):
'''Run the simulation and yield the resulting environments.'''
if log_level:
@ -169,190 +89,133 @@ class Simulation:
logger.info('Output directory: %s', outdir)
exporters = serialization.deserialize_all(exporters,
simulation=self,
known_modules=['soil.exporters',],
known_modules=['soil.exporters', ],
dry_run=dry_run,
outdir=outdir,
**exporter_params)
stats = serialization.deserialize_all(simulation=self,
names=stats,
known_modules=['soil.stats',],
**stats_params)
with utils.timer('simulation {}'.format(self.name)):
for stat in stats:
stat.start()
for exporter in exporters:
exporter.start()
for env in self._run_sync_or_async(*args,
parallel=parallel,
log_level=log_level,
**kwargs):
exporter.sim_start()
collected = list(stat.trial(env) for stat in stats)
saved = self.save_stats(collected, t_step=env.now, trial_id=env.name)
for env in utils.run_parallel(func=self.run_trial,
iterable=range(int(self.num_trials)),
parallel=parallel,
log_level=log_level,
**kwargs):
for exporter in exporters:
exporter.trial(env, saved)
exporter.trial_start(env)
for exporter in exporters:
exporter.trial_end(env)
yield env
collected = list(stat.end() for stat in stats)
saved = self.save_stats(collected)
for exporter in exporters:
exporter.end(saved)
def save_stats(self, collection, **kwargs):
stats = dict(kwargs)
for stat in collection:
stats.update(stat)
self._history.save_stats(utils.flatten_dict(stats))
return stats
def get_stats(self, **kwargs):
return self._history.get_stats(**kwargs)
def log_stats(self, stats):
logger.info('Stats: \n{}'.format(yaml.dump(stats, default_flow_style=False)))
exporter.sim_end()
def get_env(self, trial_id=0, **kwargs):
'''Create an environment for a trial of the simulation'''
opts = self.environment_params.copy()
opts.update({
'name': trial_id,
'topology': self.topology.copy(),
'network_params': self.network_params,
'seed': '{}_trial_{}'.format(self.seed, trial_id),
'initial_time': 0,
'interval': self.interval,
'network_agents': self.network_agents,
'initial_time': 0,
'states': self.states,
'dir_path': self.dir_path,
'default_state': self.default_state,
'environment_agents': self.environment_agents,
})
opts.update(kwargs)
env = self.environment_class(**opts)
return env
def deserialize_reporters(reporters):
for (k, v) in reporters.items():
if isinstance(v, str) and v.startswith('py:'):
reporters[k] = serialization.deserialize(value.lsplit(':', 1)[1])
def run_trial(self, until=None, log_level=logging.INFO, **opts):
model_params = self.model_params.copy()
model_params.update(kwargs)
agent_reporters = deserialize_reporters(model_params.pop('agent_reporters', {}))
model_reporters = deserialize_reporters(model_params.pop('model_reporters', {}))
env = serialization.deserialize(self.model_class)
return env(id=f'{self.name}_trial_{trial_id}',
seed=f'{self.seed}_trial_{trial_id}',
dir_path=self.dir_path,
agent_reporters=agent_reporters,
model_reporters=model_reporters,
**model_params)
def run_trial(self, trial_id=None, until=None, log_file=False, log_level=logging.INFO, **opts):
"""
Run a single trial of the simulation
"""
trial_id = '{}_trial_{}'.format(self.name, time.time()).replace('.', '-')
if log_level:
logger.setLevel(log_level)
# Set-up trial environment and graph
until = until or self.max_time
env = self.get_env(trial_id=trial_id, **opts)
# Set up agents on nodes
model = self.get_env(trial_id, **opts)
trial_id = trial_id if trial_id is not None else current_time()
with utils.timer('Simulation {} trial {}'.format(self.name, trial_id)):
env.run(until)
return env
return self.run_model(model=model, trial_id=trial_id, until=until, log_level=log_level)
def run_trial_exceptions(self, *args, **kwargs):
'''
A wrapper for run_trial that catches exceptions and returns them.
It is meant for async simulations
'''
try:
return self.run_trial(*args, **kwargs)
except Exception as ex:
if ex.__cause__ is not None:
ex = ex.__cause__
ex.message = ''.join(traceback.format_exception(type(ex), ex, ex.__traceback__)[:])
return ex
def run_model(self, model, until=None, **opts):
# Set-up trial environment and graph
until = float(until or self.max_time or 'inf')
# Set up agents on nodes
def is_done():
return False
if until and hasattr(model.schedule, 'time'):
prev = is_done
def is_done():
return prev() or model.schedule.time >= until
if self.max_steps and self.max_steps > 0 and hasattr(model.schedule, 'steps'):
prev_steps = is_done
def is_done():
return prev_steps() or model.schedule.steps >= self.max_steps
newline = '\n'
logger.info(dedent(f'''
Model stats:
Agents (total: { model.schedule.get_agent_count() }):
- { (newline + ' - ').join(str(a) for a in model.schedule.agents) }'''
f'''
Topologies (size):
- { dict( (k, len(v)) for (k, v) in model.topologies.items()) }
''' if getattr(model, "topologies", None) else ''
))
while not is_done():
utils.logger.debug(f'Simulation time {model.schedule.time}/{until}. Next: {getattr(model.schedule, "next_time", model.schedule.time + self.interval)}')
model.step()
return model
def to_dict(self):
return self.__getstate__()
d = asdict(self)
if not isinstance(d['model_class'], str):
d['model_class'] = serialization.name(d['model_class'])
d['model_params'] = serialization.serialize_dict(d['model_params'])
d['dir_path'] = str(d['dir_path'])
d['version'] = '2'
return d
def to_yaml(self):
return yaml.dump(self.to_dict())
def dump_yaml(self, f=None, outdir=None):
if not f and not outdir:
raise ValueError('specify a file or an output directory')
if not f:
f = os.path.join(outdir, '{}.dumped.yml'.format(self.name))
with utils.open_or_reuse(f, 'w') as f:
f.write(self.to_yaml())
def dump_pickle(self, f=None, outdir=None):
if not outdir and not f:
raise ValueError('specify a file or an output directory')
if not f:
f = os.path.join(outdir,
'{}.simulation.pickle'.format(self.name))
with utils.open_or_reuse(f, 'wb') as f:
pickle.dump(self, f)
def dump_sqlite(self, f):
return self._history.dump(f)
def __getstate__(self):
state={}
for k, v in self.__dict__.items():
if k[0] != '_':
state[k] = v
state['topology'] = json_graph.node_link_data(self.topology)
state['network_agents'] = agents.serialize_definition(self.network_agents,
known_modules = [])
state['environment_agents'] = agents.serialize_definition(self.environment_agents,
known_modules = [])
state['environment_class'] = serialization.serialize(self.environment_class,
known_modules=['soil.environment'])[1] # func, name
if state['load_module'] is None:
del state['load_module']
return state
def __setstate__(self, state):
self.__dict__ = state
self.load_module = getattr(self, 'load_module', None)
if self.dir_path not in sys.path:
sys.path += [self.dir_path, os.getcwd()]
self.topology = json_graph.node_link_graph(state['topology'])
self.network_agents = agents.calculate_distribution(agents._convert_agent_types(self.network_agents))
self.environment_agents = agents._convert_agent_types(self.environment_agents,
known_modules=[self.load_module])
self.environment_class = serialization.deserialize(self.environment_class,
known_modules=[self.load_module, 'soil.environment', ]) # func, name
def all_from_config(config):
configs = list(serialization.load_config(config))
for config, _ in configs:
sim = Simulation(**config)
yield sim
def iter_from_config(*cfgs):
for config in cfgs:
configs = list(serialization.load_config(config))
for config, path in configs:
d = dict(config)
if 'dir_path' not in d:
d['dir_path'] = os.path.dirname(path)
yield Simulation.from_dict(d)
def from_config(conf_or_path):
config = list(serialization.load_config(conf_or_path))
if len(config) > 1:
lst = list(iter_from_config(conf_or_path))
if len(lst) > 1:
raise AttributeError('Provide only one configuration')
config = config[0][0]
sim = Simulation(**config)
return sim
return lst[0]
def run_from_config(*configs, **kwargs):
for config_def in configs:
# logger.info("Found {} config(s)".format(len(ls)))
for config, path in serialization.load_config(config_def):
name = config.get('name', 'unnamed')
logger.info("Using config(s): {name}".format(name=name))
dir_path = config.pop('dir_path', os.path.dirname(path))
sim = Simulation(dir_path=dir_path,
**config)
sim.run_simulation(**kwargs)
for sim in iter_from_config(*configs):
logger.info(f"Using config(s): {sim.name}")
sim.run_simulation(**kwargs)

View File

@ -1,106 +0,0 @@
import pandas as pd
from collections import Counter
class Stats:
'''
Interface for all stats. It is not necessary, but it is useful
if you don't plan to implement all the methods.
'''
def __init__(self, simulation):
self.simulation = simulation
def start(self):
'''Method to call when the simulation starts'''
pass
def end(self):
'''Method to call when the simulation ends'''
return {}
def trial(self, env):
'''Method to call when a trial ends'''
return {}
class distribution(Stats):
'''
Calculate the distribution of agent states at the end of each trial,
the mean value, and its deviation.
'''
def start(self):
self.means = []
self.counts = []
def trial(self, env):
df = env[None, None, None].df()
df = df.drop('SEED', axis=1)
ix = df.index[-1]
attrs = df.columns.get_level_values(0)
vc = {}
stats = {
'mean': {},
'count': {},
}
for a in attrs:
t = df.loc[(ix, a)]
try:
stats['mean'][a] = t.mean()
self.means.append(('mean', a, t.mean()))
except TypeError:
pass
for name, count in t.value_counts().iteritems():
if a not in stats['count']:
stats['count'][a] = {}
stats['count'][a][name] = count
self.counts.append(('count', a, name, count))
return stats
def end(self):
dfm = pd.DataFrame(self.means, columns=['metric', 'key', 'value'])
dfc = pd.DataFrame(self.counts, columns=['metric', 'key', 'value', 'count'])
count = {}
mean = {}
if self.means:
res = dfm.groupby(by=['key']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
mean = res['value'].to_dict()
if self.counts:
res = dfc.groupby(by=['key', 'value']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
for k,v in res['count'].to_dict().items():
if k not in count:
count[k] = {}
for tup, times in v.items():
subkey, subcount = tup
if subkey not in count[k]:
count[k][subkey] = {}
count[k][subkey][subcount] = times
return {'count': count, 'mean': mean}
class defaultStats(Stats):
def trial(self, env):
c = Counter()
c.update(a.__class__.__name__ for a in env.network_agents)
c2 = Counter()
c2.update(a['id'] for a in env.network_agents)
return {
'network ': {
'n_nodes': env.G.number_of_nodes(),
'n_edges': env.G.number_of_edges(),
},
'agents': {
'model_count': dict(c),
'state_count': dict(c2),
}
}

View File

@ -1,20 +1,27 @@
from mesa.time import BaseScheduler
from queue import Empty
from heapq import heappush, heappop
from heapq import heappush, heappop, heapify
import math
from .utils import logger
from mesa import Agent
from mesa import Agent as MesaAgent
INFINITY = float('inf')
class When:
def __init__(self, time):
self._time = float(time)
if isinstance(time, When):
return time
self._time = time
def abs(self, time):
return self._time
class Delta:
NEVER = When(INFINITY)
class Delta(When):
def __init__(self, delta):
self._delta = delta
@ -31,57 +38,62 @@ class TimedActivation(BaseScheduler):
"""
def __init__(self, *args, **kwargs):
super().__init__(self)
super().__init__(*args, **kwargs)
self._next = {}
self._queue = []
self.next_time = 0
self.logger = logger.getChild(f'time_{ self.model }')
def add(self, agent: Agent):
if agent.unique_id not in self._agents:
heappush(self._queue, (self.time, agent.unique_id))
super().add(agent)
def add(self, agent: MesaAgent, when=None):
if when is None:
when = self.time
if agent.unique_id in self._agents:
self._queue.remove((self._next[agent.unique_id], agent.unique_id))
del self._agents[agent.unique_id]
heapify(self._queue)
heappush(self._queue, (when, agent.unique_id))
self._next[agent.unique_id] = when
super().add(agent)
def step(self, until: float =float('inf')) -> None:
def step(self) -> None:
"""
Executes agents in order, one at a time. After each step,
an agent will signal when it wants to be scheduled next.
"""
when = None
agent_id = None
unsched = []
until = until or float('inf')
self.logger.debug(f'Simulation step {self.next_time}')
if not self.model.running:
return
self.time = self.next_time
when = self.time
while self._queue and self._queue[0][0] == self.time:
(when, agent_id) = heappop(self._queue)
self.logger.debug(f'Stepping agent {agent_id}')
agent = self._agents[agent_id]
returned = agent.step()
if not agent.alive:
self.remove(agent)
continue
when = (returned or Delta(1)).abs(self.time)
if when < self.time:
raise Exception("Cannot schedule an agent for a time in the past ({} < {})".format(when, self.time))
self._next[agent_id] = when
heappush(self._queue, (when, agent_id))
self.steps += 1
if not self._queue:
self.time = until
self.next_time = float('inf')
return
self.time = INFINITY
self.next_time = INFINITY
self.model.running = False
return self.time
(when, agent_id) = self._queue[0]
if until and when > until:
self.time = until
self.next_time = when
return
self.time = when
next_time = float("inf")
while when == self.time:
heappop(self._queue)
logger.debug(f'Stepping agent {agent_id}')
when = (self._agents[agent_id].step() or Delta(1)).abs(self.time)
heappush(self._queue, (when, agent_id))
if when < next_time:
next_time = when
if not self._queue or self._queue[0][0] > self.time:
agent_id = None
break
else:
(when, agent_id) = self._queue[0]
if when and when < self.time:
raise Exception("Invalid scheduling time")
self.next_time = next_time
self.steps += 1
self.next_time = self._queue[0][0]
self.logger.debug(f'Next step: {self.next_time}')

View File

@ -1,55 +1,70 @@
import logging
import time
from time import time as current_time, strftime, gmtime, localtime
import os
import traceback
from functools import partial
from shutil import copyfile
from multiprocessing import Pool
from contextlib import contextmanager
logger = logging.getLogger('soil')
# logging.basicConfig()
# logger.setLevel(logging.INFO)
logger.setLevel(logging.INFO)
timeformat = "%H:%M:%S"
if os.environ.get('SOIL_VERBOSE', ''):
logformat = "[%(levelname)-5.5s][%(asctime)s][%(name)s]: %(message)s"
else:
logformat = "[%(levelname)-5.5s][%(asctime)s] %(message)s"
logFormatter = logging.Formatter(logformat, timeformat)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
@contextmanager
def timer(name='task', pre="", function=logger.info, to_object=None):
start = time.time()
start = current_time()
function('{}Starting {} at {}.'.format(pre, name,
time.strftime("%X", time.gmtime(start))))
strftime("%X", gmtime(start))))
yield start
end = time.time()
end = current_time()
function('{}Finished {} at {} in {} seconds'.format(pre, name,
time.strftime("%X", time.gmtime(end)),
strftime("%X", gmtime(end)),
str(end-start)))
if to_object:
to_object.start = start
to_object.end = end
def safe_open(path, mode='r', backup=True, **kwargs):
outdir = os.path.dirname(path)
if outdir and not os.path.exists(outdir):
os.makedirs(outdir)
if backup and 'w' in mode and os.path.exists(path):
creation = os.path.getctime(path)
stamp = time.strftime('%Y-%m-%d_%H.%M.%S', time.localtime(creation))
stamp = strftime('%Y-%m-%d_%H.%M.%S', localtime(creation))
backup_dir = os.path.join(outdir, 'backup')
if not os.path.exists(backup_dir):
os.makedirs(backup_dir)
newpath = os.path.join(backup_dir, '{}@{}'.format(os.path.basename(path),
stamp))
stamp))
copyfile(path, newpath)
return open(path, mode=mode, **kwargs)
@contextmanager
def open_or_reuse(f, *args, **kwargs):
try:
return safe_open(f, *args, **kwargs)
with safe_open(f, *args, **kwargs) as f:
yield f
except (AttributeError, TypeError):
return f
yield f
def flatten_dict(d):
if not isinstance(d, dict):
@ -87,3 +102,32 @@ def unflatten_dict(d):
target = target[token]
target[tokens[-1]] = v
return out
def run_and_return_exceptions(func, *args, **kwargs):
'''
A wrapper for run_trial that catches exceptions and returns them.
It is meant for async simulations.
'''
try:
return func(*args, **kwargs)
except Exception as ex:
if ex.__cause__ is not None:
ex = ex.__cause__
ex.message = ''.join(traceback.format_exception(type(ex), ex, ex.__traceback__)[:])
return ex
def run_parallel(func, iterable, parallel=False, **kwargs):
if parallel and not os.environ.get('SOIL_DEBUG', None):
p = Pool()
wrapped_func = partial(run_and_return_exceptions,
func, **kwargs)
for i in p.imap_unordered(wrapped_func, iterable):
if isinstance(i, Exception):
logger.error('Trial failed:\n\t%s', i.message)
continue
yield i
else:
for i in iterable:
yield func(i, **kwargs)

View File

@ -6,11 +6,11 @@ network_params:
n: 100
m: 2
network_agents:
- agent_type: ControlModelM2
- agent_class: ControlModelM2
weight: 0.1
state:
id: 1
- agent_type: ControlModelM2
- agent_class: ControlModelM2
weight: 0.9
state:
id: 0

View File

@ -1,4 +1,4 @@
pytest
mesa>=0.8.9
pytest-profiling
scipy>=1.3
tornado

View File

@ -0,0 +1,50 @@
---
version: '2'
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
model_class: Environment
model_params:
topologies:
default:
params:
generator: complete_graph
n: 4
agents:
agent_class: CounterModel
state:
group: network
times: 1
topology: 'default'
distribution:
- agent_class: CounterModel
weight: 0.25
state:
state_id: 0
times: 1
- agent_class: AggregatedCounter
weight: 0.5
state:
times: 2
override:
- filter:
node_id: 1
state:
name: 'Node 1'
- filter:
node_id: 2
state:
name: 'Node 2'
fixed:
- agent_class: BaseAgent
hidden: true
topology: null
state:
name: 'Environment Agent 1'
times: 10
group: environment
am_i_complete: true

37
tests/old_complete.yml Normal file
View File

@ -0,0 +1,37 @@
---
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
network_params:
generator: complete_graph
n: 4
network_agents:
- agent_class: CounterModel
weight: 0.25
state:
state_id: 0
times: 1
- agent_class: AggregatedCounter
weight: 0.5
state:
times: 2
environment_agents:
- agent_id: 'Environment Agent 1'
agent_class: BaseAgent
state:
times: 10
environment_class: Environment
environment_params:
am_i_complete: true
agent_class: CounterModel
default_state:
times: 1
states:
1:
name: 'Node 1'
2:
name: 'Node 2'

24
tests/test_agents.py Normal file
View File

@ -0,0 +1,24 @@
from unittest import TestCase
import pytest
from soil import agents, environment
from soil import time as stime
class Dead(agents.FSM):
@agents.default_state
@agents.state
def only(self):
return self.die()
class TestMain(TestCase):
def test_die_raises_exception(self):
d = Dead(unique_id=0, model=environment.Environment())
d.step()
with pytest.raises(agents.DeadAgent):
d.step()
def test_die_returns_infinity(self):
d = Dead(unique_id=0, model=environment.Environment())
ret = d.step().abs(0)
print(ret, 'next')
assert ret == stime.INFINITY

View File

@ -1,90 +0,0 @@
from unittest import TestCase
import os
import pandas as pd
import yaml
from functools import partial
from os.path import join
from soil import simulation, analysis, agents
ROOT = os.path.abspath(os.path.dirname(__file__))
class Ping(agents.FSM):
defaults = {
'count': 0,
}
@agents.default_state
@agents.state
def even(self):
self.debug(f'Even {self["count"]}')
self['count'] += 1
return self.odd
@agents.state
def odd(self):
self.debug(f'Odd {self["count"]}')
self['count'] += 1
return self.even
class TestAnalysis(TestCase):
# Code to generate a simple sqlite history
def setUp(self):
"""
The initial states should be applied to the agent and the
agent should be able to update its state."""
config = {
'name': 'analysis',
'seed': 'seed',
'network_params': {
'generator': 'complete_graph',
'n': 2
},
'agent_type': Ping,
'states': [{'interval': 1}, {'interval': 2}],
'max_time': 30,
'num_trials': 1,
'environment_params': {
}
}
s = simulation.from_config(config)
self.env = s.run_simulation(dry_run=True)[0]
def test_saved(self):
env = self.env
assert env.get_agent(0)['count', 0] == 1
assert env.get_agent(0)['count', 29] == 30
assert env.get_agent(1)['count', 0] == 1
assert env.get_agent(1)['count', 29] == 15
assert env['env', 29, None]['SEED'] == env['env', 29, 'SEED']
def test_count(self):
env = self.env
df = analysis.read_sql(env._history.db_path)
res = analysis.get_count(df, 'SEED', 'state_id')
assert res['SEED'][self.env['SEED']].iloc[0] == 1
assert res['SEED'][self.env['SEED']].iloc[-1] == 1
assert res['state_id']['odd'].iloc[0] == 2
assert res['state_id']['even'].iloc[0] == 0
assert res['state_id']['odd'].iloc[-1] == 1
assert res['state_id']['even'].iloc[-1] == 1
def test_value(self):
env = self.env
df = analysis.read_sql(env._history.db_path)
res_sum = analysis.get_value(df, 'count')
assert res_sum['count'].iloc[0] == 2
import numpy as np
res_mean = analysis.get_value(df, 'count', aggfunc=np.mean)
assert res_mean['count'].iloc[15] == (16+8)/2
res_total = analysis.get_majority(df)
res_total['SEED'].iloc[0] == self.env['SEED']

152
tests/test_config.py Normal file
View File

@ -0,0 +1,152 @@
from unittest import TestCase
import os
import yaml
import copy
from os.path import join
from soil import simulation, serialization, config, network, agents, utils
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
FORCE_TESTS = os.environ.get('FORCE_TESTS', '')
def isequal(a, b):
if isinstance(a, dict):
for (k, v) in a.items():
if v:
isequal(a[k], b[k])
else:
assert not b.get(k, None)
return
assert a == b
class TestConfig(TestCase):
def test_conversion(self):
expected = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
old = serialization.load_file(join(ROOT, "old_complete.yml"))[0]
converted_defaults = config.convert_old(old, strict=False)
converted = converted_defaults.dict(exclude_unset=True)
isequal(converted, expected)
def test_configuration_changes(self):
"""
The configuration should not change after running
the simulation.
"""
config = serialization.load_file(join(EXAMPLES, 'complete.yml'))[0]
s = simulation.from_config(config)
init_config = copy.copy(s.to_dict())
s.run_simulation(dry_run=True)
nconfig = s.to_dict()
# del nconfig['to
isequal(init_config, nconfig)
def test_topology_config(self):
netconfig = config.NetConfig(**{
'path': join(ROOT, 'test.gexf')
})
net = network.from_config(netconfig, dir_path=ROOT)
assert len(net.nodes) == 2
assert len(net.edges) == 1
def test_env_from_config(self):
"""
Simple configuration that tests that the graph is loaded, and that
network agents are initialized properly.
"""
cfg = {
'name': 'CounterAgent',
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'agent_class': 'CounterModel',
# 'states': [{'times': 10}, {'times': 20}],
'max_time': 2,
'dry_run': True,
'num_trials': 1,
'environment_params': {
}
}
conf = config.convert_old(cfg)
s = simulation.from_config(conf)
env = s.get_env()
assert len(env.topologies['default'].nodes) == 2
assert len(env.topologies['default'].edges) == 1
assert len(env.agents) == 2
assert env.agents[0].G == env.topologies['default']
def test_agents_from_config(self):
'''We test that the known complete configuration produces
the right agents in the right groups'''
cfg = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
s = simulation.from_config(cfg)
env = s.get_env()
assert len(env.topologies['default'].nodes) == 4
assert len(env.agents(group='network')) == 4
assert len(env.agents(group='environment')) == 1
def test_yaml(self):
"""
The YAML version of a newly created configuration should be equivalent
to the configuration file used.
Values not present in the original config file should have reasonable
defaults.
"""
with utils.timer('loading'):
config = serialization.load_file(join(EXAMPLES, 'complete.yml'))[0]
s = simulation.from_config(config)
with utils.timer('serializing'):
serial = s.to_yaml()
with utils.timer('recovering'):
recovered = yaml.load(serial, Loader=yaml.SafeLoader)
for (k, v) in config.items():
assert recovered[k] == v
def make_example_test(path, cfg):
def wrapped(self):
root = os.getcwd()
print(path)
s = simulation.from_config(cfg)
# for s in simulation.all_from_config(path):
# iterations = s.config.max_time * s.config.num_trials
# if iterations > 1000:
# s.config.max_time = 100
# s.config.num_trials = 1
# if config.get('skip_test', False) and not FORCE_TESTS:
# self.skipTest('Example ignored.')
# envs = s.run_simulation(dry_run=True)
# assert envs
# for env in envs:
# assert env
# try:
# n = config['network_params']['n']
# assert len(list(env.network_agents)) == n
# assert env.now > 0 # It has run
# assert env.now <= config['max_time'] # But not further than allowed
# except KeyError:
# pass
return wrapped
def add_example_tests():
for config, path in serialization.load_files(
join(EXAMPLES, '*', '*.yml'),
join(EXAMPLES, '*.yml'),
):
p = make_example_test(path=path, cfg=config)
fname = os.path.basename(path)
p.__name__ = 'test_example_file_%s' % fname
p.__doc__ = '%s should be a valid configuration' % fname
setattr(TestConfig, p.__name__, p)
del p
add_example_tests()

View File

@ -2,7 +2,7 @@ from unittest import TestCase
import os
from os.path import join
from soil import serialization, simulation
from soil import serialization, simulation, config
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
@ -14,36 +14,37 @@ class TestExamples(TestCase):
pass
def make_example_test(path, config):
def make_example_test(path, cfg):
def wrapped(self):
root = os.getcwd()
for s in simulation.all_from_config(path):
iterations = s.max_time * s.num_trials
if iterations > 1000:
s.max_time = 100
for s in simulation.iter_from_config(cfg):
iterations = s.max_steps * s.num_trials
if iterations < 0 or iterations > 1000:
s.max_steps = 100
s.num_trials = 1
if config.get('skip_test', False) and not FORCE_TESTS:
assert isinstance(cfg, config.Config)
if getattr(cfg, 'skip_test', False) and not FORCE_TESTS:
self.skipTest('Example ignored.')
envs = s.run_simulation(dry_run=True)
assert envs
for env in envs:
assert env
try:
n = config['network_params']['n']
n = cfg.model_params['network_params']['n']
assert len(list(env.network_agents)) == n
assert env.now > 0 # It has run
assert env.now <= config['max_time'] # But not further than allowed
except KeyError:
pass
assert env.schedule.steps > 0 # It has run
assert env.schedule.steps <= s.max_steps # But not further than allowed
return wrapped
def add_example_tests():
for config, path in serialization.load_files(
for cfg, path in serialization.load_files(
join(EXAMPLES, '*', '*.yml'),
join(EXAMPLES, '*.yml'),
):
p = make_example_test(path=path, config=config)
p = make_example_test(path=path, cfg=config.Config.from_raw(cfg))
fname = os.path.basename(path)
p.__name__ = 'test_example_file_%s' % fname
p.__doc__ = '%s should be a valid configuration' % fname

View File

@ -2,13 +2,12 @@ import os
import io
import tempfile
import shutil
from time import time
from unittest import TestCase
from soil import exporters
from soil import simulation
from soil import agents
from soil.stats import distribution
class Dummy(exporters.Exporter):
started = False
@ -19,45 +18,53 @@ class Dummy(exporters.Exporter):
called_trial = 0
called_end = 0
def start(self):
def sim_start(self):
self.__class__.called_start += 1
self.__class__.started = True
def trial(self, env, stats):
def trial_end(self, env):
assert env
self.__class__.trials += 1
self.__class__.total_time += env.now
self.__class__.called_trial += 1
def end(self, stats):
def sim_end(self):
self.__class__.ended = True
self.__class__.called_end += 1
class Exporters(TestCase):
def test_basic(self):
# We need to add at least one agent to make sure the scheduler
# ticks every step
num_trials = 5
max_time = 2
config = {
'name': 'exporter_sim',
'network_params': {},
'agent_type': 'CounterModel',
'max_time': 2,
'num_trials': 5,
'environment_params': {}
'model_params': {
'agents': [{
'agent_class': agents.BaseAgent
}]
},
'max_time': max_time,
'num_trials': num_trials,
}
s = simulation.from_config(config)
for env in s.run_simulation(exporters=[Dummy], dry_run=True):
assert env.now <= 2
assert len(env.agents) == 1
assert env.now == max_time
assert Dummy.started
assert Dummy.ended
assert Dummy.called_start == 1
assert Dummy.called_end == 1
assert Dummy.called_trial == 5
assert Dummy.trials == 5
assert Dummy.total_time == 2*5
assert Dummy.called_trial == num_trials
assert Dummy.trials == num_trials
assert Dummy.total_time == max_time * num_trials
def test_writing(self):
'''Try to write CSV, GEXF, sqlite and YAML (without dry_run)'''
'''Try to write CSV, sqlite and YAML (without dry_run)'''
n_trials = 5
config = {
'name': 'exporter_sim',
@ -65,9 +72,10 @@ class Exporters(TestCase):
'generator': 'complete_graph',
'n': 4
},
'agent_type': 'CounterModel',
'agent_class': 'CounterModel',
'max_time': 2,
'num_trials': n_trials,
'dry_run': False,
'environment_params': {}
}
output = io.StringIO()
@ -76,9 +84,8 @@ class Exporters(TestCase):
envs = s.run_simulation(exporters=[
exporters.default,
exporters.csv,
exporters.gexf,
],
stats=[distribution,],
dry_run=False,
outdir=tmpdir,
exporter_params={'copy_to': output})
result = output.getvalue()
@ -90,11 +97,7 @@ class Exporters(TestCase):
try:
for e in envs:
with open(os.path.join(simdir, '{}.gexf'.format(e.name))) as f:
result = f.read()
assert result
with open(os.path.join(simdir, '{}.csv'.format(e.name))) as f:
with open(os.path.join(simdir, '{}.env.csv'.format(e.id))) as f:
result = f.read()
assert result
finally:

View File

@ -1,23 +1,20 @@
from unittest import TestCase
import os
import io
import yaml
import pickle
import networkx as nx
from functools import partial
from os.path import join
from soil import (simulation, Environment, agents, serialization,
utils)
from soil import (simulation, Environment, agents, network, serialization,
utils, config)
from soil.time import Delta
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
class CustomAgent(agents.FSM):
class CustomAgent(agents.FSM, agents.NetworkAgent):
@agents.default_state
@agents.state
def normal(self):
@ -27,137 +24,108 @@ class CustomAgent(agents.FSM):
def unreachable(self):
return
class TestMain(TestCase):
def test_load_graph(self):
"""
Load a graph from file if the extension is known.
Raise an exception otherwise.
"""
config = {
'network_params': {
'path': join(ROOT, 'test.gexf')
}
}
G = serialization.load_network(config['network_params'])
assert G
assert len(G) == 2
with self.assertRaises(AttributeError):
config = {
'network_params': {
'path': join(ROOT, 'unknown.extension')
}
}
G = serialization.load_network(config['network_params'])
print(G)
def test_generate_barabasi(self):
"""
If no path is given, a generator and network parameters
should be used to generate a network
"""
config = {
'network_params': {
'generator': 'barabasi_albert_graph'
}
}
with self.assertRaises(TypeError):
G = serialization.load_network(config['network_params'])
config['network_params']['n'] = 100
config['network_params']['m'] = 10
G = serialization.load_network(config['network_params'])
assert len(G) == 100
def test_empty_simulation(self):
"""A simulation with a base behaviour should do nothing"""
config = {
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'agent_type': 'BaseAgent',
'environment_params': {
'model_params': {
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'agent_class': 'BaseAgent',
}
}
s = simulation.from_config(config)
s.run_simulation(dry_run=True)
def test_network_agent(self):
"""
The initial states should be applied to the agent and the
agent should be able to update its state."""
config = {
'name': 'CounterAgent',
'num_trials': 1,
'max_time': 2,
'model_params': {
'network_params': {
'generator': nx.complete_graph,
'n': 2,
},
'agent_class': 'CounterModel',
'states': {
0: {'times': 10},
1: {'times': 20},
},
}
}
s = simulation.from_config(config)
def test_counter_agent(self):
"""
The initial states should be applied to the agent and the
agent should be able to update its state."""
config = {
'version': '2',
'name': 'CounterAgent',
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'agent_type': 'CounterModel',
'states': [{'times': 10}, {'times': 20}],
'max_time': 2,
'dry_run': True,
'num_trials': 1,
'environment_params': {
'max_time': 2,
'model_params': {
'topologies': {
'default': {
'path': join(ROOT, 'test.gexf')
}
},
'agents': {
'agent_class': 'CounterModel',
'topology': 'default',
'fixed': [{'state': {'times': 10}}, {'state': {'times': 20}}],
}
}
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
assert env.get_agent(0)['times', 0] == 11
assert env.get_agent(0)['times', 1] == 12
assert env.get_agent(1)['times', 0] == 21
assert env.get_agent(1)['times', 1] == 22
env = s.get_env()
assert isinstance(env.agents[0], agents.CounterModel)
assert env.agents[0].G == env.topologies['default']
assert env.agents[0]['times'] == 10
assert env.agents[0]['times'] == 10
env.step()
assert env.agents[0]['times'] == 11
assert env.agents[1]['times'] == 21
def test_counter_agent_history(self):
"""
The evolution of the state should be recorded in the logging agent
"""
def test_init_and_count_agents(self):
"""Agents should be properly initialized and counting should filter them properly"""
#TODO: separate this test into two or more test cases
config = {
'name': 'CounterAgent',
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'network_agents': [{
'agent_type': 'AggregatedCounter',
'weight': 1,
'state': {'state_id': 0}
}],
'max_time': 10,
'environment_params': {
}
'model_params': {
'agents': [{'agent_class': CustomAgent, 'weight': 1, 'topology': 'default'},
{'agent_class': CustomAgent, 'weight': 3, 'topology': 'default'},
],
'topologies': {
'default': {
'path': join(ROOT, 'test.gexf')
}
},
},
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
for agent in env.network_agents:
last = 0
assert len(agent[None, None]) == 11
for step, total in sorted(agent['total', None]):
assert total == last + 2
last = total
assert env.agents[0].weight == 1
assert env.count_agents() == 2
assert env.count_agents(weight=1) == 1
assert env.count_agents(weight=3) == 1
assert env.count_agents(agent_class=CustomAgent) == 2
def test_custom_agent(self):
"""Allow for search of neighbors with a certain state_id"""
config = {
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'network_agents': [{
'agent_type': CustomAgent,
'weight': 1
}],
'max_time': 10,
'environment_params': {
}
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
assert env.get_agent(1).count_agents(state_id='normal') == 2
assert env.get_agent(1).count_agents(state_id='normal', limit_neighbors=True) == 1
assert env.get_agent(0).neighbors == 1
def test_torvalds_example(self):
"""A complete example from a documentation should work."""
config = serialization.load_file(join(EXAMPLES, 'torvalds.yml'))[0]
config['network_params']['path'] = join(EXAMPLES,
config['network_params']['path'])
config['model_params']['network_params']['path'] = join(EXAMPLES,
config['model_params']['network_params']['path'])
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
for a in env.network_agents:
@ -175,80 +143,15 @@ class TestMain(TestCase):
assert a.state['total'] == 3
assert a.state['neighbors'] == 1
def test_yaml(self):
"""
The YAML version of a newly created simulation
should be equivalent to the configuration file used
"""
with utils.timer('loading'):
config = serialization.load_file(join(EXAMPLES, 'complete.yml'))[0]
s = simulation.from_config(config)
with utils.timer('serializing'):
serial = s.to_yaml()
with utils.timer('recovering'):
recovered = yaml.load(serial, Loader=yaml.SafeLoader)
with utils.timer('deleting'):
del recovered['topology']
assert config == recovered
def test_configuration_changes(self):
"""
The configuration should not change after running
the simulation.
"""
config = serialization.load_file(join(EXAMPLES, 'complete.yml'))[0]
s = simulation.from_config(config)
s.run_simulation(dry_run=True)
nconfig = s.to_dict()
del nconfig['topology']
assert config == nconfig
def test_row_conversion(self):
env = Environment()
env['test'] = 'test_value'
res = list(env.history_to_tuples())
assert len(res) == len(env.environment_params)
env.schedule.time = 1
env['test'] = 'second_value'
res = list(env.history_to_tuples())
assert env['env', 0, 'test' ] == 'test_value'
assert env['env', 1, 'test' ] == 'second_value'
def test_save_geometric(self):
"""
There is a bug in networkx that prevents it from creating a GEXF file
from geometric models. We should work around it.
"""
G = nx.random_geometric_graph(20, 0.1)
env = Environment(topology=G)
f = io.BytesIO()
env.dump_gexf(f)
def test_save_graph(self):
'''
The history_to_graph method should return a valid networkx graph.
The state of the agent should be encoded as intervals in the nx graph.
'''
G = nx.cycle_graph(5)
distribution = agents.calculate_distribution(None, agents.BaseAgent)
env = Environment(topology=G, network_agents=distribution)
env[0, 0, 'testvalue'] = 'start'
env[0, 10, 'testvalue'] = 'finish'
nG = env.history_to_graph()
values = nG.nodes[0]['attr_testvalue']
assert ('start', 0, 10) in values
assert ('finish', 10, None) in values
def test_serialize_class(self):
ser, name = serialization.serialize(agents.BaseAgent)
ser, name = serialization.serialize(agents.BaseAgent, known_modules=[])
assert name == 'soil.agents.BaseAgent'
assert ser == agents.BaseAgent
ser, name = serialization.serialize(agents.BaseAgent, known_modules=['soil', ])
assert name == 'BaseAgent'
assert ser == agents.BaseAgent
ser, name = serialization.serialize(CustomAgent)
assert name == 'test_main.CustomAgent'
assert ser == CustomAgent
@ -262,7 +165,7 @@ class TestMain(TestCase):
des = serialization.deserialize(name, ser)
assert i == des
def test_serialize_agent_type(self):
def test_serialize_agent_class(self):
'''A class from soil.agents should be serialized without the module part'''
ser = agents.serialize_type(CustomAgent)
assert ser == 'test_main.CustomAgent'
@ -273,65 +176,35 @@ class TestMain(TestCase):
def test_deserialize_agent_distribution(self):
agent_distro = [
{
'agent_type': 'CounterModel',
'agent_class': 'CounterModel',
'weight': 1
},
{
'agent_type': 'test_main.CustomAgent',
'agent_class': 'test_main.CustomAgent',
'weight': 2
},
]
converted = agents.deserialize_definition(agent_distro)
assert converted[0]['agent_type'] == agents.CounterModel
assert converted[1]['agent_type'] == CustomAgent
assert converted[0]['agent_class'] == agents.CounterModel
assert converted[1]['agent_class'] == CustomAgent
pickle.dumps(converted)
def test_serialize_agent_distribution(self):
agent_distro = [
{
'agent_type': agents.CounterModel,
'agent_class': agents.CounterModel,
'weight': 1
},
{
'agent_type': CustomAgent,
'agent_class': CustomAgent,
'weight': 2
},
]
converted = agents.serialize_definition(agent_distro)
assert converted[0]['agent_type'] == 'CounterModel'
assert converted[1]['agent_type'] == 'test_main.CustomAgent'
assert converted[0]['agent_class'] == 'CounterModel'
assert converted[1]['agent_class'] == 'test_main.CustomAgent'
pickle.dumps(converted)
def test_pickle_agent_environment(self):
env = Environment(name='Test')
a = agents.BaseAgent(model=env, unique_id=25)
a['key'] = 'test'
pickled = pickle.dumps(a)
recovered = pickle.loads(pickled)
assert recovered.env.name == 'Test'
assert list(recovered.env._history.to_tuples())
assert recovered['key', 0] == 'test'
assert recovered['key'] == 'test'
def test_subgraph(self):
'''An agent should be able to subgraph the global topology'''
G = nx.Graph()
G.add_node(3)
G.add_edge(1, 2)
distro = agents.calculate_distribution(agent_type=agents.NetworkAgent)
env = Environment(name='Test', topology=G, network_agents=distro)
lst = list(env.network_agents)
a2 = env.get_agent(2)
a3 = env.get_agent(3)
assert len(a2.subgraph(limit_neighbors=True)) == 2
assert len(a3.subgraph(limit_neighbors=True)) == 1
assert len(a3.subgraph(limit_neighbors=True, center=False)) == 0
assert len(a3.subgraph(agent_type=agents.NetworkAgent)) == 3
def test_templates(self):
'''Loading a template should result in several configs'''
configs = serialization.load_file(join(EXAMPLES, 'template.yml'))
@ -340,19 +213,23 @@ class TestMain(TestCase):
def test_until(self):
config = {
'name': 'until_sim',
'network_params': {},
'agent_type': 'CounterModel',
'model_params': {
'network_params': {},
'agents': {
'fixed': [{
'agent_class': agents.BaseAgent,
}]
},
},
'max_time': 2,
'num_trials': 50,
'environment_params': {}
}
s = simulation.from_config(config)
runs = list(s.run_simulation(dry_run=True))
over = list(x.now for x in runs if x.now>2)
over = list(x.now for x in runs if x.now > 2)
assert len(runs) == config['num_trials']
assert len(over) == 0
def test_fsm(self):
'''Basic state change'''
class ToggleAgent(agents.FSM):

133
tests/test_network.py Normal file
View File

@ -0,0 +1,133 @@
from unittest import TestCase
import io
import os
import networkx as nx
from os.path import join
from soil import config, network, environment, agents, simulation
from test_main import CustomAgent
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
class TestNetwork(TestCase):
def test_load_graph(self):
"""
Load a graph from file if the extension is known.
Raise an exception otherwise.
"""
config = {
'network_params': {
'path': join(ROOT, 'test.gexf')
}
}
G = network.from_config(config['network_params'])
assert G
assert len(G) == 2
with self.assertRaises(AttributeError):
config = {
'network_params': {
'path': join(ROOT, 'unknown.extension')
}
}
G = network.from_config(config['network_params'])
print(G)
def test_generate_barabasi(self):
"""
If no path is given, a generator and network parameters
should be used to generate a network
"""
cfg = {
'params': {
'generator': 'barabasi_albert_graph'
}
}
with self.assertRaises(Exception):
G = network.from_config(cfg)
cfg['params']['n'] = 100
cfg['params']['m'] = 10
G = network.from_config(cfg)
assert len(G) == 100
def test_save_geometric(self):
"""
There is a bug in networkx that prevents it from creating a GEXF file
from geometric models. We should work around it.
"""
G = nx.random_geometric_graph(20, 0.1)
env = environment.NetworkEnvironment(topology=G)
f = io.BytesIO()
assert env.topologies['default']
network.dump_gexf(env.topologies['default'], f)
def test_networkenvironment_creation(self):
"""Networkenvironment should accept netconfig as parameters"""
model_params = {
'topologies': {
'default': {
'path': join(ROOT, 'test.gexf')
}
},
'agents': {
'topology': 'default',
'distribution': [{
'agent_class': CustomAgent,
}]
}
}
env = environment.Environment(**model_params)
assert env.topologies
env.step()
assert len(env.topologies['default']) == 2
assert len(env.agents) == 2
assert env.agents[1].count_agents(state_id='normal') == 2
assert env.agents[1].count_agents(state_id='normal', limit_neighbors=True) == 1
assert env.agents[0].neighbors == 1
def test_custom_agent_neighbors(self):
"""Allow for search of neighbors with a certain state_id"""
config = {
'model_params': {
'topologies': {
'default': {
'path': join(ROOT, 'test.gexf')
}
},
'agents': {
'topology': 'default',
'distribution': [
{
'weight': 1,
'agent_class': CustomAgent
}
]
}
},
'max_time': 10,
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
assert env.agents[1].count_agents(state_id='normal') == 2
assert env.agents[1].count_agents(state_id='normal', limit_neighbors=True) == 1
assert env.agents[0].neighbors == 1
def test_subgraph(self):
'''An agent should be able to subgraph the global topology'''
G = nx.Graph()
G.add_node(3)
G.add_edge(1, 2)
distro = agents.calculate_distribution(agent_class=agents.NetworkAgent)
aconfig = config.AgentConfig(distribution=distro, topology='default')
env = environment.Environment(name='Test', topologies={'default': G}, agents=aconfig)
lst = list(env.network_agents)
a2 = env.find_one(node_id=2)
a3 = env.find_one(node_id=3)
assert len(a2.subgraph(limit_neighbors=True)) == 2
assert len(a3.subgraph(limit_neighbors=True)) == 1
assert len(a3.subgraph(limit_neighbors=True, center=False)) == 0
assert len(a3.subgraph(agent_class=agents.NetworkAgent)) == 3

View File

@ -1,34 +0,0 @@
from unittest import TestCase
from soil import simulation, stats
from soil.utils import unflatten_dict
class Stats(TestCase):
def test_distribution(self):
'''The distribution exporter should write the number of agents in each state'''
config = {
'name': 'exporter_sim',
'network_params': {
'generator': 'complete_graph',
'n': 4
},
'agent_type': 'CounterModel',
'max_time': 2,
'num_trials': 5,
'environment_params': {}
}
s = simulation.from_config(config)
for env in s.run_simulation(stats=[stats.distribution]):
pass
# stats_res = unflatten_dict(dict(env._history['stats', -1, None]))
allstats = s.get_stats()
for stat in allstats:
assert 'count' in stat
assert 'mean' in stat
if 'trial_id' in stat:
assert stat['mean']['neighbors'] == 3
assert stat['count']['total']['4'] == 4
else:
assert stat['count']['count']['neighbors']['3'] == 20
assert stat['mean']['min']['neighbors'] == stat['mean']['max']['neighbors']