1
0
mirror of https://github.com/gsi-upm/soil synced 2025-01-07 23:31:27 +00:00

Compare commits

..

No commits in common. "50bca8836211aacd2bd6167fcb2530dd74317886" and "be65592055061d5c43d3c0669d221f6cc0f0acee" have entirely different histories.

78 changed files with 7548 additions and 3462 deletions

View File

@ -3,31 +3,19 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [1.0 UNRELEASED]
Version 1.0 introduced multiple changes, especially on the `Simulation` class and anything related to how configuration is handled.
For an explanation of the general changes in version 1.0, please refer to the file `docs/notes_v1.0.rst`.
## [0.30 UNRELEASED]
### Added
* A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology).
* Environments now have a class method to make them easier to use without a simulation`.run`. Notice that this is different from `run_model`, which is an instance method.
* Ability to run simulations using mesa models
* The `soil.exporters` module to export the results of datacollectors (`model.datacollector`) into files at the end of trials/simulations
* Agents can now have generators as a step function or a state. They work similar to normal functions, with one caveat in the case of `FSM`: only `time` values (or None) can be yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. The return value *can* be a state, or a `(state, time)` tuple, just like in normal states.
* Simulations can now specify a `matrix` with possible values for every simulation parameter. The final parameters will be calculated based on the `parameters` used and a cartesian product (i.e., all possible combinations) of each parameter.
* Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>`
* Ability to run mesa simulations
* The `soil.exporters` module to export the results of datacollectors (model.datacollector) into files at the end of trials/simulations
* A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology).
* FSM agents can now have generators as states. They work similar to normal states, with one caveat. Only `time` values can be yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. The return value *can* be a state, or a `(state, time)` tuple, just like in normal states.
### Changed
* Configuration schema (`Simulation`) is very simplified. All simulations should be checked
* Model / environment variables are expected (but not enforced) to be a single value. This is done to more closely align with mesa
* `Exporter.iteration_end` now takes two parameters: `env` (same as before) and `params` (specific parameters for this environment). We considered including a `parameters` attribute in the environment, but this would not be compatible with mesa.
* `num_trials` renamed to `iterations`
* General renaming of `trial` to `iteration`, to work better with `mesa`
* `model_parameters` renamed to `parameters` in simulation
* Simulation results for every iteration of a simulation with the same name are stored in a single `sqlite` database
* Configuration schema is very simplified
### Removed
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.
## [0.20.7]
### Changed
* Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument)

View File

@ -7,7 +7,7 @@ Learn how to run your own simulations with our [documentation](http://soilsim.re
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
> **Warning**
> Soil 1.0 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/notes_v1.0.rst)
> Mesa 0.30 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/notes_v0.30.rst)
## Features

View File

@ -1,20 +1,7 @@
Welcome to Soil's documentation!
================================
Soil is an opinionated Agent-based Social Simulator in Python focused on Social Networks.
.. image:: soil.png
:width: 80%
:align: center
Soil can be installed through pip (see more details in the :doc:`installation` page):
.. code:: bash
pip install soil
To get started developing your own simulations and agent behaviors, check out our :doc:`Tutorial <soil_tutorial>` and the `examples on GitHub <https://github.com/gsi-upm/soil/tree/master/examples>.
Soil is an Agent-based Social Simulator in Python focused on Social Networks.
If you use Soil in your research, do not forget to cite this paper:
@ -46,6 +33,8 @@ If you use Soil in your research, do not forget to cite this paper:
:caption: Learn more about soil:
installation
quickstart
configuration
Tutorial <soil_tutorial>
..

View File

@ -1,10 +1,7 @@
Installation
------------
Through pip
===========
The easiest way to install Soil is through pip, with Python >= 3.8:
The easiest way to install Soil is through pip, with Python >= 3.4:
.. code:: bash
@ -28,38 +25,4 @@ Or, if you're using using soil programmatically:
import soil
print(soil.__version__)
Web UI
======
Soil also includes a web server that allows you to upload your simulations, change parameters, and visualize the results, including a timeline of the network.
To make it work, you have to install soil like this:
.. code::
pip install soil[web]
Once installed, the soil web UI can be run in two ways:
.. code::
soil-web
# OR
python -m soil.web
Development
===========
The latest version can be downloaded from `GitHub <https://github.com/gsi-upm/soil>`_ and installed manually:
.. code:: bash
git clone https://github.com/gsi-upm/soil
cd soil
python -m venv .venv
source .venv/bin/activate
pip install --editable .
The latest version can be installed through `GitHub <https://github.com/gsi-upm/soil>`_ or `GitLab <https://lab.gsi.upm.es/soil/soil.git>`_.

View File

@ -1,7 +1,7 @@
What are the main changes in version 1.0?
#########################################
What are the main changes between version 0.3 and 0.2?
######################################################
Version 1.0 is a major rewrite of the Soil system, focused on simplifying the API, aligning it with Mesa, and making it easier to use.
Version 0.3 is a major rewrite of the Soil system, focused on simplifying the API, aligning it with Mesa, and making it easier to use.
Unfortunately, this comes at the cost of backwards compatibility.
We drew several lessons from the previous version of Soil, and tried to address them in this version.

BIN
docs/output_21_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

BIN
docs/output_54_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_54_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_55_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_55_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_56_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_61_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_63_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_66_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_67_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 KiB

BIN
docs/output_72_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/output_72_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/output_74_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_75_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

BIN
docs/output_76_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

93
docs/quickstart.rst Normal file
View File

@ -0,0 +1,93 @@
Quickstart
----------
This section shows how to run your first simulation with Soil.
For installation instructions, see :doc:`installation`.
There are mainly two parts in a simulation: agent classes and simulation configuration.
An agent class defines how the agent will behave throughout the simulation.
The configuration includes things such as number of agents to use and their type, network topology to use, etc.
.. image:: soil.png
:width: 80%
:align: center
Soil includes several agent classes in the ``soil.agents`` module, and we will use them in this quickstart.
If you are interested in developing your own agents classes, see :doc:`soil_tutorial`.
Configuration
=============
To get you started, we will use this configuration (:download:`download the file <quickstart.yml>` directly):
.. literalinclude:: quickstart.yml
:language: yaml
The agent type used, SISa, is a very simple model.
It only has three states (neutral, content and discontent),
Its parameters are the probabilities to change from one state to another, either spontaneously or because of contagion from neighboring agents.
Running the simulation
======================
To see the simulation in action, simply point soil to the configuration, and tell it to store the graph and the history of agent states and environment parameters at every point.
.. code::
soil --graph --csv quickstart.yml [13:35:29]
INFO:soil:Using config(s): quickstart
INFO:soil:Dumping results to soil_output/quickstart : ['csv', 'gexf']
INFO:soil:Starting simulation quickstart at 13:35:30.
INFO:soil:Starting Simulation quickstart trial 0 at 13:35:30.
INFO:soil:Finished Simulation quickstart trial 0 at 13:35:49 in 19.43677067756653 seconds
INFO:soil:Starting Dumping simulation quickstart trial 0 at 13:35:49.
INFO:soil:Finished Dumping simulation quickstart trial 0 at 13:35:51 in 1.7733407020568848 seconds
INFO:soil:Dumping results to soil_output/quickstart
INFO:soil:Finished simulation quickstart at 13:35:51 in 21.29862952232361 seconds
The ``CSV`` file should look like this:
.. code::
agent_id,t_step,key,value
env,0,neutral_discontent_spon_prob,0.05
env,0,neutral_discontent_infected_prob,0.1
env,0,neutral_content_spon_prob,0.2
env,0,neutral_content_infected_prob,0.4
env,0,discontent_neutral,0.2
env,0,discontent_content,0.05
env,0,content_discontent,0.05
env,0,variance_d_c,0.05
env,0,variance_c_d,0.1
Results and visualization
=========================
The environment variables are marked as ``agent_id`` env.
Th exported values are only stored when they change.
To find out how to get every key and value at every point in the simulation, check out the :doc:`soil_tutorial`.
The dynamic graph is exported as a .gexf file which could be visualized with
`Gephi <https://gephi.org/users/download/>`__.
Now it is your turn to experiment with the simulation.
Change some of the parameters, such as the number of agents, the probability of becoming content, or the type of network, and see how the results change.
Soil also includes a web server that allows you to upload your simulations, change parameters, and visualize the results, including a timeline of the network.
To make it work, you have to install soil like this:
.. code::
pip install soil[web]
Once installed, the soil web UI can be run in two ways:
.. code::
soil-web
# OR
python -m soil.web

33
docs/quickstart.yml Normal file
View File

@ -0,0 +1,33 @@
---
name: quickstart
num_trials: 1
max_time: 1000
model_params:
agents:
- agent_class: SISaModel
topology: true
state:
id: neutral
weight: 1
- agent_class: SISaModel
topology: true
state:
id: content
weight: 2
topology:
params:
n: 100
k: 5
p: 0.2
generator: newman_watts_strogatz_graph
neutral_discontent_spon_prob: 0.05
neutral_discontent_infected_prob: 0.1
neutral_content_spon_prob: 0.2
neutral_content_infected_prob: 0.4
discontent_neutral: 0.2
discontent_content: 0.05
content_discontent: 0.05
variance_d_c: 0.05
variance_c_d: 0.1
content_neutral: 0.1
standard_variance: 0.1

File diff suppressed because it is too large Load Diff

View File

@ -94,9 +94,9 @@ class Driver(Evented, FSM):
def check_passengers(self):
"""If there are no more passengers, stop forever"""
c = self.count_agents(agent_class=Passenger)
self.debug(f"Passengers left {c}")
self.info(f"Passengers left {c}")
if not c:
self.die("No more passengers")
self.die()
@default_state
@state
@ -129,13 +129,10 @@ class Driver(Evented, FSM):
@state
def driving(self):
"""The journey has been accepted. Pick them up and take them to their destination"""
self.info(f"Driving towards Passenger {self.journey.passenger.unique_id}")
while self.move_towards(self.journey.origin):
yield
self.info(f"Driving {self.journey.passenger.unique_id} from {self.journey.origin} to {self.journey.destination}")
while self.move_towards(self.journey.destination, with_passenger=True):
yield
self.info("Arrived at destination")
self.earnings += self.journey.tip
self.model.total_earnings += self.journey.tip
self.check_passengers()
@ -143,7 +140,7 @@ class Driver(Evented, FSM):
def move_towards(self, target, with_passenger=False):
"""Move one cell at a time towards a target"""
self.debug(f"Moving { self.pos } -> { target }")
self.info(f"Moving { self.pos } -> { target }")
if target[0] == self.pos[0] and target[1] == self.pos[1]:
return False
@ -177,8 +174,8 @@ class Passenger(Evented, FSM):
@state
def asking(self):
destination = (
self.random.randint(0, self.model.grid.height-1),
self.random.randint(0, self.model.grid.width-1),
self.random.randint(0, self.model.grid.height),
self.random.randint(0, self.model.grid.width),
)
self.journey = None
journey = Journey(
@ -190,21 +187,19 @@ class Passenger(Evented, FSM):
timeout = 60
expiration = self.now + timeout
self.info(f"Asking for journey at: { self.pos }")
self.model.broadcast(journey, ttl=timeout, sender=self, agent_class=Driver)
while not self.journey:
self.debug(f"Waiting for responses at: { self.pos }")
self.info(f"Passenger at: { self.pos }. Checking for responses.")
try:
# This will call check_messages behind the scenes, and the agent's status will be updated
# If you want to avoid that, you can call it with: check=False
yield self.received(expiration=expiration)
except events.TimedOut:
self.info(f"Still no response. Waiting at: { self.pos }")
self.info(f"Passenger at: { self.pos }. Asking for journey.")
self.model.broadcast(
journey, ttl=timeout, sender=self, agent_class=Driver
)
expiration = self.now + timeout
self.info(f"Got a response! Waiting for driver")
return self.driving_home
@state
@ -225,7 +220,7 @@ simulation = Simulation(name="RideHailing",
model=City,
seed="carsSeed",
max_time=1000,
parameters=dict(n_passengers=2))
model_params=dict(n_passengers=2))
if __name__ == "__main__":
easy(simulation)

View File

@ -1,7 +1,7 @@
from soil import Simulation
from social_wealth import MoneyEnv, graph_generator
sim = Simulation(name="mesa_sim", dump=False, max_steps=10, interval=2, model=MoneyEnv, parameters=dict(generator=graph_generator, N=10, width=50, height=50))
sim = Simulation(name="mesa_sim", dump=False, max_steps=10, interval=2, model=MoneyEnv, model_params=dict(generator=graph_generator, N=10, width=50, height=50))
if __name__ == "__main__":
sim.run()

View File

@ -63,7 +63,7 @@ chart = ChartModule(
[{"Label": "Gini", "Color": "Black"}], data_collector_name="datacollector"
)
parameters = {
model_params = {
"N": Slider(
"N",
5,
@ -98,12 +98,12 @@ parameters = {
canvas_element = CanvasGrid(
gridPortrayal, parameters["width"].value, parameters["height"].value, 500, 500
gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500
)
server = ModularServer(
MoneyEnv, [grid, chart, canvas_element], "Money Model", parameters
MoneyEnv, [grid, chart, canvas_element], "Money Model", model_params
)
server.port = 8521

View File

@ -116,7 +116,7 @@ for [r1, r2] in product([0, 0.5, 1.0], repeat=2):
Simulation(
name='newspread_sim',
model=NewsSpread,
parameters=dict(
model_params=dict(
ratio_dumb=r1,
ratio_herd=r2,
ratio_wise=1-r1-r2,
@ -124,7 +124,7 @@ for [r1, r2] in product([0, 0.5, 1.0], repeat=2):
network_params=netparams,
prob_neighbor_spread=0,
),
iterations=5,
num_trials=5,
max_steps=300,
dump=False,
).run()

View File

@ -38,7 +38,7 @@ simulation = Simulation(
name="Programmatic",
model=ProgrammaticEnv,
seed='Program',
iterations=1,
num_trials=1,
max_time=100,
dump=False,
)

View File

@ -178,10 +178,10 @@ class Police(FSM):
sim = Simulation(
model=CityPubs,
name="pubcrawl",
iterations=3,
num_trials=3,
max_steps=10,
dump=False,
parameters=dict(
model_params=dict(
network_generator=nx.empty_graph,
network_params={"n": 30},
model=CityPubs,

View File

@ -147,7 +147,7 @@ class RandomAccident(BaseAgent):
self.debug("Rabbits alive: {}".format(rabbits_alive))
sim = Simulation(model=RabbitsImprovedEnv, max_time=100, seed="MySeed", iterations=1)
sim = Simulation(model=RabbitsImprovedEnv, max_time=100, seed="MySeed", num_trials=1)
if __name__ == "__main__":
sim.run()

View File

@ -155,7 +155,7 @@ class RandomAccident(BaseAgent):
sim = Simulation(model=RabbitEnv, max_time=100, seed="MySeed", iterations=1)
sim = Simulation(model=RabbitEnv, max_time=100, seed="MySeed", num_trials=1)
if __name__ == "__main__":
sim.run()

View File

@ -38,7 +38,7 @@ class RandomEnv(Environment):
s = Simulation(
name="Programmatic",
model=RandomEnv,
iterations=1,
num_trials=1,
max_time=100,
dump=False,
)

View File

@ -2,7 +2,6 @@ import networkx as nx
from soil.agents import Geo, NetworkAgent, FSM, custom, state, default_state
from soil import Environment, Simulation
from soil.parameters import *
from soil.utils import int_seed
class TerroristEnvironment(Environment):
@ -39,8 +38,9 @@ class TerroristEnvironment(Environment):
HavenModel
], [self.ratio_civil, self.ratio_leader, self.ratio_training, self.ratio_haven])
def generator(self, *args, **kwargs):
return nx.random_geometric_graph(*args, **kwargs, seed=int_seed(self._seed))
@staticmethod
def generator(*args, **kwargs):
return nx.random_geometric_graph(*args, **kwargs)
class TerroristSpreadModel(FSM, Geo):
"""
@ -137,7 +137,7 @@ class TerroristSpreadModel(FSM, Geo):
def ego_search(self, steps=1, center=False, agent=None, **kwargs):
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
node = agent.node_id if agent else self.node_id
node = agent.node_id
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
@ -279,26 +279,26 @@ class TerroristNetworkModel(TerroristSpreadModel):
)
)
neighbours = set(
agent.unique_id
agent.id
for agent in self.get_neighbors(agent_class=TerroristNetworkModel)
)
search = (close_ups | step_neighbours) - neighbours
for agent in self.get_agents(search):
social_distance = 1 / self.shortest_path_length(agent.unique_id)
spatial_proximity = 1 - self.get_distance(agent.unique_id)
social_distance = 1 / self.shortest_path_length(agent.id)
spatial_proximity = 1 - self.get_distance(agent.id)
prob_new_interaction = (
self.weight_social_distance * social_distance
+ self.weight_link_distance * spatial_proximity
)
if (
agent.state_id == "civilian"
agent["id"] == agent.civilian.id
and self.random.random() < prob_new_interaction
):
self.add_edge(agent)
break
def get_distance(self, target):
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.unique_id]
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.id]
target_x, target_y = nx.get_node_attributes(self.G, "pos")[target]
dx = abs(source_x - target_x)
dy = abs(source_y - target_y)
@ -306,17 +306,16 @@ class TerroristNetworkModel(TerroristSpreadModel):
def shortest_path_length(self, target):
try:
return nx.shortest_path_length(self.G, self.unique_id, target)
return nx.shortest_path_length(self.G, self.id, target)
except nx.NetworkXNoPath:
return float("inf")
sim = Simulation(
model=TerroristEnvironment,
iterations=1,
num_trials=1,
name="TerroristNetworkModel_sim",
max_steps=150,
seed="default2",
skip_test=False,
dump=False,
)

File diff suppressed because one or more lines are too long

View File

@ -9,5 +9,4 @@ Mesa>=1.2
pydantic>=1.9
sqlalchemy>=1.4
typing-extensions>=4.4
annotated-types>=0.4
tqdm>=4.64
annotated-types>=0.4

View File

@ -1,7 +1,3 @@
[metadata]
long_description = file: README.md
long_description_content_type = text/markdown
[aliases]
test=pytest
[tool:pytest]

View File

@ -1 +1 @@
1.0.0rc1
0.30.0rc4

View File

@ -16,7 +16,6 @@ except NameError:
basestring = str
from pathlib import Path
from .analysis import *
from .agents import *
from . import agents
from .simulation import *
@ -88,7 +87,7 @@ def main(
"--graph",
"-g",
action="store_true",
help="Dump each iteration's network topology as a GEXF graph. Defaults to false.",
help="Dump each trial's network topology as a GEXF graph. Defaults to false.",
)
parser.add_argument(
"--csv",
@ -117,21 +116,9 @@ def main(
help="Export environment and/or simulations using this exporter",
)
parser.add_argument(
"--max_time",
default="-1",
help="Set maximum time for the simulation to run. ",
)
parser.add_argument(
"--max_steps",
default="-1",
help="Set maximum number of steps for the simulation to run.",
)
parser.add_argument(
"--iterations",
"--until",
default="",
help="Set maximum number of iterations (runs) for the simulation.",
help="Set maximum time for the simulation to run. ",
)
parser.add_argument(
@ -160,8 +147,7 @@ def main(
)
args = parser.parse_args()
level = getattr(logging, (args.level or "INFO").upper())
logger.setLevel(level)
logger.setLevel(getattr(logging, (args.level or "INFO").upper()))
if args.version:
return
@ -199,14 +185,11 @@ def main(
debug=debug,
exporters=exporters,
num_processes=args.num_processes,
level=level,
outdir=output,
exporter_params=exp_params,
**kwargs)
if args.seed is not None:
opts["seed"] = args.seed
if args.iterations:
opts["iterations"] =int(args.iterations)
if sim:
logger.info("Loading simulation instance")
@ -235,7 +218,7 @@ def main(
k, v = s.split("=", 1)[:2]
v = eval(v)
tail, *head = k.rsplit(".", 1)[::-1]
target = sim.parameters
target = sim.model_params
if head:
for part in head[0].split("."):
try:
@ -250,9 +233,7 @@ def main(
if args.only_convert:
print(sim.to_yaml())
continue
max_time = float(args.max_time) if args.max_time != "-1" else None
max_steps = float(args.max_steps) if args.max_steps != "-1" else None
res.append(sim.run(max_time=max_time, max_steps=max_steps))
res.append(sim.run(until=args.until))
except Exception as ex:
if args.pdb:

View File

@ -6,9 +6,9 @@ from . import NetworkAgent
class Geo(NetworkAgent):
"""In this type of network, nodes have a "pos" attribute."""
def geo_search(self, radius, center=False, **kwargs):
def geo_search(self, radius, agent=None, center=False, **kwargs):
"""Get a list of nodes whose coordinates are closer than *radius* to *node*."""
node = self.node_id
node = agent.node
G = self.subgraph(**kwargs)

View File

@ -220,7 +220,7 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
def _check_alive(self):
if not self.alive:
raise time.DeadAgent(self.unique_id)
def log(self, *message, level=logging.INFO, **kwargs):
if not self.logger.isEnabledFor(level):
return
@ -669,4 +669,4 @@ except ImportError:
def custom(cls, **kwargs):
"""Create a new class from a template class and keyword arguments"""
return type(cls.__name__, (cls,), kwargs)
return type(cls.__name__, (cls,), kwargs)

View File

@ -5,7 +5,7 @@ from functools import partial, wraps
import inspect
def state(name=None, default=False):
def state(name=None):
def decorator(func, name=None):
"""
A state function should return either a state id, or a tuple (state_id, when)
@ -40,7 +40,7 @@ def state(name=None, default=False):
self._last_except = None
func.id = name or func.__name__
func.is_default = default
func.is_default = False
return func
if callable(name):
@ -101,10 +101,6 @@ class FSM(BaseAgent, metaclass=MetaFSM):
if init:
self.init()
@classmethod
def states(cls):
return list(cls._states.keys())
def step(self):
self.debug(f"Agent {self.unique_id} @ state {self.state_id}")

View File

@ -40,11 +40,14 @@ class NetworkAgent(BaseAgent):
def iter_agents(self, unique_id=None, *, limit_neighbors=False, **kwargs):
unique_ids = None
if unique_ids is not None:
try:
unique_ids = set(unique_id)
except TypeError:
unique_ids = set([unique_id])
if isinstance(unique_id, list):
unique_ids = set(unique_id)
elif unique_id is not None:
unique_ids = set(
[
unique_id,
]
)
if limit_neighbors:
neighbor_ids = set()

View File

@ -1,49 +0,0 @@
import os
import sqlalchemy
import pandas as pd
from collections import namedtuple
def plot(env, agent_df=None, model_df=None, steps=False, ignore=["agent_count", ]):
"""Plot the model dataframe and agent dataframe together."""
if agent_df is None:
agent_df = env.agent_df()
if model_df is None:
model_df = env.model_df()
ignore = list(ignore)
if not steps:
ignore.append("step")
else:
ignore.append("time")
ax = model_df.drop(ignore, axis='columns').plot();
if not agent_df.empty:
agent_df.unstack().apply(lambda x: x.value_counts(),
axis=1).fillna(0).plot(ax=ax, secondary_y=True);
Results = namedtuple("Results", ["config", "parameters", "env", "agents"])
#TODO implement reading from CSV and SQLITE
def read_sql(fpath=None, name=None, include_agents=False):
if not (fpath is None) ^ (name is None):
raise ValueError("Specify either a path or a simulation name")
if name:
fpath = os.path.join("soil_output", name, f"{name}.sqlite")
fpath = os.path.abspath(fpath)
# TODO: improve url parsing. This is a hacky way to check we weren't given a URL
if "://" not in fpath:
fpath = f"sqlite:///{fpath}"
engine = sqlalchemy.create_engine(fpath)
with engine.connect() as conn:
env = pd.read_sql_table("env", con=conn,
index_col="step").reset_index().set_index([
"simulation_id", "params_id",
"iteration_id", "step"
])
agents = pd.read_sql_table("agents", con=conn, index_col=["simulation_id", "params_id", "iteration_id", "step", "agent_id"])
config = pd.read_sql_table("configuration", con=conn, index_col="simulation_id")
parameters = pd.read_sql_table("parameters", con=conn, index_col=["iteration_id", "params_id", "simulation_id"])
try:
parameters = parameters.pivot(columns="key", values="value")
except Exception as e:
print(f"warning: coult not pivot parameters: {e}")
return Results(config, parameters, env, agents)

View File

@ -8,10 +8,8 @@ class SoilCollector(MDC):
tables = tables or {}
if 'agent_count' not in model_reporters:
model_reporters['agent_count'] = lambda m: m.schedule.get_agent_count()
if 'time' not in model_reporters:
model_reporters['time'] = lambda m: m.now
# if 'state_id' not in agent_reporters:
# agent_reporters['state_id'] = lambda agent: getattr(agent, 'state_id', None)
if 'state_id' not in agent_reporters:
agent_reporters['agent_id'] = lambda agent: getattr(agent, 'state_id', None)
super().__init__(model_reporters=model_reporters,
agent_reporters=agent_reporters,

View File

@ -34,13 +34,11 @@ class BaseEnvironment(Model):
:meth:`soil.environment.Environment.get` method.
"""
collector_class = datacollection.SoilCollector
def __new__(cls,
*args: Any,
seed="default",
dir_path=None,
collector_class: type = None,
collector_class: type = datacollection.SoilCollector,
agent_reporters: Optional[Any] = None,
model_reporters: Optional[Any] = None,
tables: Optional[Any] = None,
@ -48,7 +46,6 @@ class BaseEnvironment(Model):
"""Create a new model with a default seed value"""
self = super().__new__(cls, *args, seed=seed, **kwargs)
self.dir_path = dir_path or os.getcwd()
collector_class = collector_class or cls.collector_class
collector_class = serialization.deserialize(collector_class)
self.datacollector = collector_class(
model_reporters=model_reporters,
@ -72,7 +69,6 @@ class BaseEnvironment(Model):
dir_path=None,
schedule_class=time.TimedActivation,
interval=1,
logger = None,
agents: Optional[Dict] = None,
collector_class: type = datacollection.SoilCollector,
agent_reporters: Optional[Any] = None,
@ -84,15 +80,10 @@ class BaseEnvironment(Model):
super().__init__()
self.current_id = -1
self.id = id
if logger:
self.logger = logger
else:
self.logger = utils.logger.getChild(self.id)
if schedule_class is None:
schedule_class = time.TimedActivation
@ -102,6 +93,8 @@ class BaseEnvironment(Model):
self.interval = interval
self.schedule = schedule_class(self)
self.logger = utils.logger.getChild(self.id)
for (k, v) in env_params.items():
self[k] = v
@ -109,7 +102,6 @@ class BaseEnvironment(Model):
self.add_agents(**agents)
if init:
self.init()
self.datacollector.collect(self)
def init(self):
pass
@ -123,22 +115,6 @@ class BaseEnvironment(Model):
def count_agents(self, *args, **kwargs):
return sum(1 for i in self.agents(*args, **kwargs))
def agent_df(self, steps=False):
df = self.datacollector.get_agent_vars_dataframe()
if steps:
df.index.rename(["step", "agent_id"], inplace=True)
return df
model_df = self.datacollector.get_model_vars_dataframe()
df.index = df.index.set_levels(model_df.time, level=0).rename(["time", "agent_id"])
return df
def model_df(self, steps=False):
df = self.datacollector.get_model_vars_dataframe()
if steps:
return df
df.index.rename("step", inplace=True)
return df.reset_index().set_index("time")
@property
def now(self):
@ -195,12 +171,11 @@ class BaseEnvironment(Model):
self.schedule.step()
self.datacollector.collect(self)
if self.logger.isEnabledFor(logging.DEBUG):
msg = "Model data:\n"
max_width = max(len(k) for k in self.datacollector.model_vars.keys())
for (k, v) in self.datacollector.model_vars.items():
msg += f"\t{k:<{max_width}}: {v[-1]:>6}\n"
self.logger.debug(f"--- Steps: {self.schedule.steps:^5} - Time: {self.now:^5} --- " + msg)
msg = "Model data:\n"
max_width = max(len(k) for k in self.datacollector.model_vars.keys())
for (k, v) in self.datacollector.model_vars.items():
msg += f"\t{k:<{max_width}}: {v[-1]:>6}\n"
self.logger.info(f"--- Steps: {self.schedule.steps:^5} - Time: {self.now:^5} --- " + msg)
def add_model_reporter(self, name, func=None):
if not func:
@ -211,18 +186,9 @@ class BaseEnvironment(Model):
if agent_type:
reporter = lambda a: getattr(a, name) if isinstance(a, agent_type) else None
else:
reporter = lambda a: getattr(a, name, None)
reporter = name
self.datacollector._new_agent_reporter(name, reporter)
@classmethod
def run(cls, *,
iterations=1,
num_processes=1, **kwargs):
from .simulation import Simulation
return Simulation(name=cls.__name__,
model=cls, iterations=iterations,
num_processes=num_processes, **kwargs).run()
def __getitem__(self, key):
try:
return getattr(self, key)
@ -284,7 +250,6 @@ class NetworkEnvironment(BaseEnvironment):
self._check_agent_nodes()
if init:
self.init()
self.datacollector.collect(self)
def add_agent(self, agent_class, *args, node_id=None, topology=None, **kwargs):
if node_id is None and topology is None:
@ -408,7 +373,7 @@ class EventedEnvironment(BaseEnvironment):
for agent in self.agents(**kwargs):
if agent == sender:
continue
self.logger.debug(f"Telling {repr(agent)}: {msg} ttl={ttl}")
self.logger.info(f"Telling {repr(agent)}: {msg} ttl={ttl}")
try:
inbox = agent._inbox
except AttributeError:

View File

@ -8,10 +8,9 @@ from textwrap import dedent, indent
import matplotlib.pyplot as plt
import networkx as nx
import pandas as pd
from .serialization import deserialize, serialize
from .serialization import deserialize
from .utils import try_backup, open_or_reuse, logger, timer
@ -69,12 +68,12 @@ class Exporter:
"""Method to call when the simulation ends"""
pass
def iteration_start(self, env):
"""Method to call when a iteration start"""
def trial_start(self, env):
"""Method to call when a trial start"""
pass
def iteration_end(self, env, params, params_id):
"""Method to call when a iteration ends"""
def trial_end(self, env):
"""Method to call when a trial ends"""
pass
def output(self, f, mode="w", **kwargs):
@ -86,39 +85,27 @@ class Exporter:
f = os.path.join(self.outdir, f)
except TypeError:
pass
return open_or_reuse(f, mode=mode, backup=self.simulation.backup, **kwargs)
return open_or_reuse(f, mode=mode, **kwargs)
def get_dfs(self, env, **kwargs):
yield from get_dc_dfs(env.datacollector,
simulation_id=self.simulation.id,
iteration_id=env.id,
**kwargs)
def get_dfs(self, env):
yield from get_dc_dfs(env.datacollector, trial_id=env.id)
def get_dc_dfs(dc, **kwargs):
dfs = {}
dfe = dc.get_model_vars_dataframe()
dfe.index.rename("step", inplace=True)
dfs["env"] = dfe
try:
dfa = dc.get_agent_vars_dataframe()
dfa.index.rename(["step", "agent_id"], inplace=True)
dfs["agents"] = dfa
except UserWarning:
pass
def get_dc_dfs(dc, trial_id=None):
dfs = {
"env": dc.get_model_vars_dataframe(),
"agents": dc.get_agent_vars_dataframe(),
}
for table_name in dc.tables:
dfs[table_name] = dc.get_table_dataframe(table_name)
for (name, df) in dfs.items():
for (k, v) in kwargs.items():
df[k] = v
df.set_index(["simulation_id", "iteration_id"], append=True, inplace=True)
if trial_id:
for (name, df) in dfs.items():
df["trial_id"] = trial_id
yield from dfs.items()
class SQLite(Exporter):
"""Writes sqlite results"""
sim_started = False
def sim_start(self):
if not self.dump:
@ -126,64 +113,46 @@ class SQLite(Exporter):
return
self.dbpath = os.path.join(self.outdir, f"{self.simulation.name}.sqlite")
logger.info("Dumping results to %s", self.dbpath)
if self.simulation.backup:
try_backup(self.dbpath, remove=True)
if self.simulation.overwrite:
if os.path.exists(self.dbpath):
os.remove(self.dbpath)
self.engine = create_engine(f"sqlite:///{self.dbpath}", echo=False)
try_backup(self.dbpath, remove=True)
sim_dict = {k: serialize(v)[0] for (k,v) in self.simulation.to_dict().items()}
sim_dict["simulation_id"] = self.simulation.id
df = pd.DataFrame([sim_dict])
df.to_sql("configuration", con=self.engine, if_exists="append")
def iteration_end(self, env, params, params_id, *args, **kwargs):
def trial_end(self, env):
if not self.dump:
logger.info("Running in NO DUMP mode. Results will NOT be saved to a DB.")
logger.info("Running in NO DUMP mode, the database will NOT be created")
return
with timer(
"Dumping simulation {} iteration {}".format(self.simulation.name, env.id)
"Dumping simulation {} trial {}".format(self.simulation.name, env.id)
):
pd.DataFrame([{"simulation_id": self.simulation.id,
"params_id": params_id,
"iteration_id": env.id,
"key": k,
"value": serialize(v)[0]} for (k,v) in params.items()]).to_sql("parameters", con=self.engine, if_exists="append")
engine = create_engine(f"sqlite:///{self.dbpath}", echo=False)
for (t, df) in self.get_dfs(env, params_id=params_id):
df.to_sql(t, con=self.engine, if_exists="append")
for (t, df) in self.get_dfs(env):
df.to_sql(t, con=engine, if_exists="append")
class csv(Exporter):
"""Export the state of each environment (and its agents) a CSV file for the simulation"""
def sim_start(self):
super().sim_start()
"""Export the state of each environment (and its agents) in a separate CSV file"""
def iteration_end(self, env, params, params_id, *args, **kwargs):
def trial_end(self, env):
with timer(
"[CSV] Dumping simulation {} iteration {} @ dir {}".format(
"[CSV] Dumping simulation {} trial {} @ dir {}".format(
self.simulation.name, env.id, self.outdir
)
):
for (df_name, df) in self.get_dfs(env, params_id=params_id):
with self.output("{}.{}.csv".format(env.id, df_name), mode="a") as f:
for (df_name, df) in self.get_dfs(env):
with self.output("{}.{}.csv".format(env.id, df_name)) as f:
df.to_csv(f)
# TODO: reimplement GEXF exporting without history
class gexf(Exporter):
def iteration_end(self, env, *args, **kwargs):
def trial_end(self, env):
if not self.dump:
logger.info("Not dumping GEXF (NO_DUMP mode)")
return
with timer(
"[GEXF] Dumping simulation {} iteration {}".format(self.simulation.name, env.id)
"[GEXF] Dumping simulation {} trial {}".format(self.simulation.name, env.id)
):
with self.output("{}.gexf".format(env.id), mode="wb") as f:
network.dump_gexf(env.history_to_graph(), f)
@ -195,13 +164,13 @@ class dummy(Exporter):
with self.output("dummy", "w") as f:
f.write("simulation started @ {}\n".format(current_time()))
def iteration_start(self, env):
def trial_start(self, env):
with self.output("dummy", "w") as f:
f.write("iteration started@ {}\n".format(current_time()))
f.write("trial started@ {}\n".format(current_time()))
def iteration_end(self, env, *args, **kwargs):
def trial_end(self, env):
with self.output("dummy", "w") as f:
f.write("iteration ended@ {}\n".format(current_time()))
f.write("trial ended@ {}\n".format(current_time()))
def sim_end(self):
with self.output("dummy", "a") as f:
@ -209,7 +178,7 @@ class dummy(Exporter):
class graphdrawing(Exporter):
def iteration_end(self, env, *args, **kwargs):
def trial_end(self, env):
# Outside effects
f = plt.figure()
nx.draw(
@ -224,9 +193,9 @@ class graphdrawing(Exporter):
class summary(Exporter):
"""Print a summary of each iteration to sys.stdout"""
"""Print a summary of each trial to sys.stdout"""
def iteration_end(self, env, *args, **kwargs):
def trial_end(self, env):
msg = ""
for (t, df) in self.get_dfs(env):
if not len(df):
@ -258,7 +227,7 @@ class YAML(Exporter):
if not self.dump:
logger.debug("NOT dumping results")
return
with self.output(self.simulation.id + ".dumped.yml") as f:
with self.output(self.simulation.name + ".dumped.yml") as f:
logger.info(f"Dumping simulation configuration to {self.outdir}")
f.write(self.simulation.to_yaml())
@ -269,14 +238,19 @@ class default(Exporter):
exporter_cls = exporter_cls or [YAML, SQLite]
self.inner = [cls(*args, **kwargs) for cls in exporter_cls]
def sim_start(self, *args, **kwargs):
def sim_start(self):
for exporter in self.inner:
exporter.sim_start(*args, **kwargs)
exporter.sim_start()
def sim_end(self, *args, **kwargs):
def sim_end(self):
for exporter in self.inner:
exporter.sim_end(*args, **kwargs)
exporter.sim_end()
def iteration_end(self, *args, **kwargs):
def trial_start(self, env):
for exporter in self.inner:
exporter.iteration_end(*args, **kwargs)
exporter.trial_start(env)
def trial_end(self, env):
for exporter in self.inner:
exporter.trial_end(env)

View File

@ -140,7 +140,7 @@ def get_module(modname):
module = importlib.import_module(modname)
KNOWN_MODULES[modname] = module
return KNOWN_MODULES[modname]
def name(value, known_modules=KNOWN_MODULES):
"""Return a name that can be imported, to serialize/deserialize an object"""
@ -181,7 +181,7 @@ def serialize_dict(d, known_modules=KNOWN_MODULES):
d = dict(d)
except (ValueError, TypeError) as ex:
return serialize(d)[0]
for (k, v) in reversed(list(d.items())):
for (k, v) in d.items():
if isinstance(v, dict):
d[k] = serialize_dict(v, known_modules=known_modules)
elif isinstance(v, list):

View File

@ -1,26 +1,23 @@
import os
from time import time as current_time, strftime
import importlib
import sys
import yaml
import hashlib
import traceback
import inspect
import logging
import networkx as nx
from tqdm.auto import tqdm
from textwrap import dedent
from dataclasses import dataclass, field, asdict, replace
from typing import Any, Dict, Union, Optional, List
from networkx.readwrite import json_graph
from functools import partial
from contextlib import contextmanager
from itertools import product
import json
import pickle
from . import serialization, exporters, utils, basestring, agents
from .environment import Environment
@ -44,13 +41,11 @@ def do_not_run():
def _iter_queued():
while _QUEUED:
(cls, params) = _QUEUED.pop(0)
yield replace(cls, parameters=params)
(cls, args, kwargs) = _QUEUED.pop(0)
yield replace(cls, **kwargs)
# TODO: change documentation for simulation
# TODO: rename iterations to iterations
# TODO: make parameters a dict of iterable/any
@dataclass
class Simulation:
"""
@ -62,21 +57,18 @@ class Simulation:
description: A description of the simulation.
group: The group that the simulation belongs to.
model: The model to use for the simulation. This can be a string or a class.
parameters: The parameters to pass to the model.
matrix: A matrix of values for each parameter.
model_params: The parameters to pass to the model.
seed: The seed to use for the simulation.
dir_path: The directory path to use for the simulation.
max_time: The maximum time to run the simulation.
max_steps: The maximum number of steps to run the simulation.
interval: The interval to use for the simulation.
iterations: The number of iterations (times) to run the simulation.
num_trials: The number of trials (times) to run the simulation.
num_processes: The number of processes to use for the simulation. If greater than one, simulations will be performed in parallel. This may make debugging and error handling difficult.
tables: The tables to use in the simulation datacollector
agent_reporters: The agent reporters to use in the datacollector
model_reporters: The model reporters to use in the datacollector
dry_run: Whether or not to run the simulation. If True, the simulation will not be run.
backup: Whether or not to backup the simulation. If True, the simulation files will be backed up to a different directory.
overwrite: Whether or not to replace existing simulation data.
source_file: Python file to use to find additional classes.
"""
@ -85,28 +77,24 @@ class Simulation:
name: Optional[str] = None
description: Optional[str] = ""
group: str = None
backup: bool = False
overwrite: bool = False
dry_run: bool = False
dump: bool = False
model: Union[str, type] = "soil.Environment"
parameters: dict = field(default_factory=dict)
matrix: dict = field(default_factory=dict)
seed: str = "default"
model_params: dict = field(default_factory=dict)
seed: str = field(default_factory=lambda: current_time())
dir_path: str = field(default_factory=lambda: os.getcwd())
max_time: float = None
max_steps: int = None
max_time: float = float("inf")
max_steps: int = -1
interval: int = 1
iterations: int = 1
num_trials: int = 1
num_processes: Optional[int] = 1
exporters: Optional[List[str]] = field(default_factory=lambda: [exporters.default])
model_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
agent_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
tables: Optional[Dict[str, Any]] = field(default_factory=dict)
outdir: str = field(default_factory=lambda: os.path.join(os.getcwd(), "soil_output"))
# outdir: Optional[str] = None
outdir: Optional[str] = None
exporter_params: Optional[Dict[str, Any]] = field(default_factory=dict)
level: int = logging.INFO
dry_run: bool = False
dump: bool = False
extra: Dict[str, Any] = field(default_factory=dict)
skip_test: Optional[bool] = False
debug: Optional[bool] = False
@ -115,39 +103,14 @@ class Simulation:
if isinstance(self.model, str):
self.name = self.model
else:
self.name = self.model.__name__
self.logger = logger.getChild(self.name)
self.logger.setLevel(self.level)
self.name = self.model.__class__.__name__
if self.source_file:
source_file = self.source_file
if not os.path.isabs(source_file):
source_file = os.path.abspath(os.path.join(self.dir_path, source_file))
serialization.add_source_file(source_file)
self.source_file = source_file
def run_simulation(self, *args, **kwargs):
return self.run(*args, **kwargs)
if isinstance(self.model, str):
self.model = serialization.deserialize(self.model)
def deserialize_reporters(reporters):
for (k, v) in reporters.items():
if isinstance(v, str) and v.startswith("py:"):
reporters[k] = serialization.deserialize(v.split(":", 1)[1])
return reporters
self.agent_reporters = deserialize_reporters(self.agent_reporters)
self.model_reporters = deserialize_reporters(self.model_reporters)
self.tables = deserialize_reporters(self.tables)
if self.source_file:
serialization.remove_source_file(self.source_file)
self.id = f"{self.name}_{current_time()}"
def run(self, **kwargs):
def run(self, *args, **kwargs):
"""Run the simulation and return the list of resulting environments"""
if kwargs:
return replace(self, **kwargs).run()
self.logger.debug(
logger.info(
dedent(
"""
Simulation:
@ -156,156 +119,179 @@ class Simulation:
)
+ self.to_yaml()
)
param_combinations = self._collect_params(**kwargs)
if _AVOID_RUNNING:
_QUEUED.extend((self, param) for param in param_combinations)
_QUEUED.append((self, args, kwargs))
return []
return list(self._run_gen(*args, **kwargs))
self.logger.debug("Using exporters: %s", self.exporters or [])
def _run_gen(
self,
num_processes=1,
dry_run=None,
dump=None,
exporters=None,
outdir=None,
exporter_params={},
log_level=None,
**kwargs,
):
"""Run the simulation and yield the resulting environments."""
if log_level:
logger.setLevel(log_level)
outdir = outdir or self.outdir
logger.info("Using exporters: %s", exporters or [])
logger.info("Output directory: %s", outdir)
if dry_run is None:
dry_run = self.dry_run
if dump is None:
dump = self.dump
if exporters is None:
exporters = self.exporters
if not exporter_params:
exporter_params = self.exporter_params
exporters = serialization.deserialize_all(
self.exporters,
exporters,
simulation=self,
known_modules=[
"soil.exporters",
],
dump=self.dump and not self.dry_run,
outdir=self.outdir,
**self.exporter_params,
dump=dump and not dry_run,
outdir=outdir,
**exporter_params,
)
results = []
for exporter in exporters:
exporter.sim_start()
for params in tqdm(param_combinations, desc=self.name, unit="configuration"):
for (k, v) in params.items():
tqdm.write(f"{k} = {v}")
sha = hashlib.sha256()
sha.update(repr(sorted(params.items())).encode())
params_id = sha.hexdigest()[:7]
for env in self._run_iters_for_params(params):
for exporter in exporters:
exporter.iteration_end(env, params, params_id)
results.append(env)
for exporter in exporters:
exporter.sim_end()
return results
def _collect_params(self):
parameters = []
if self.parameters:
parameters.append(self.parameters)
if self.matrix:
assert isinstance(self.matrix, dict)
for values in product(*(self.matrix.values())):
parameters.append(dict(zip(self.matrix.keys(), values)))
if not parameters:
parameters = [{}]
if self.dump:
self.logger.info("Output directory: %s", self.outdir)
return parameters
def _run_iters_for_params(
self,
params
):
"""Run the simulation and yield the resulting environments."""
if self.source_file:
source_file = self.source_file
if not os.path.isabs(source_file):
source_file = os.path.abspath(os.path.join(self.dir_path, source_file))
serialization.add_source_file(source_file)
try:
if self.source_file:
serialization.add_source_file(self.source_file)
with utils.timer(f"running for config {params}"):
if self.dry_run:
def func(*args, **kwargs):
return None
else:
func = self._run_model
with utils.timer("simulation {}".format(self.name)):
for exporter in exporters:
exporter.sim_start()
for env in tqdm(utils.run_parallel(
func=func,
iterable=range(self.iterations),
**params,
), total=self.iterations, leave=False):
if env is None and self.dry_run:
if dry_run:
def func(*args, **kwargs):
return None
else:
func = self.run_trial
for env in utils.run_parallel(
func=self.run_trial,
iterable=range(int(self.num_trials)),
num_processes=num_processes,
log_level=log_level,
**kwargs,
):
if env is None and dry_run:
continue
for exporter in exporters:
exporter.trial_end(env)
yield env
for exporter in exporters:
exporter.sim_end()
finally:
if self.source_file:
serialization.remove_source_file(self.source_file)
pass
# TODO: reintroduce
# if self.source_file:
# serialization.remove_source_file(self.source_file)
def _get_env(self, iteration_id, params):
"""Create an environment for a iteration of the simulation"""
def get_env(self, trial_id=0, model_params=None, **kwargs):
"""Create an environment for a trial of the simulation"""
iteration_id = str(iteration_id)
def deserialize_reporters(reporters):
for (k, v) in reporters.items():
if isinstance(v, str) and v.startswith("py:"):
reporters[k] = serialization.deserialize(v.split(":", 1)[1])
return reporters
agent_reporters = self.agent_reporters
agent_reporters.update(params.pop("agent_reporters", {}))
model_reporters = self.model_reporters
model_reporters.update(params.pop("model_reporters", {}))
params = self.model_params.copy()
if model_params:
params.update(model_params)
params.update(kwargs)
return self.model(
id=iteration_id,
seed=f"{self.seed}_iteration_{iteration_id}",
agent_reporters = self.agent_reporters.copy()
agent_reporters.update(deserialize_reporters(params.pop("agent_reporters", {})))
model_reporters = self.model_reporters.copy()
model_reporters.update(deserialize_reporters(params.pop("model_reporters", {})))
tables = self.tables.copy()
tables.update(deserialize_reporters(params.pop("tables", {})))
env = serialization.deserialize(self.model)
return env(
id=f"{self.name}_trial_{trial_id}",
seed=f"{self.seed}_trial_{trial_id}",
dir_path=self.dir_path,
interval=self.interval,
logger=self.logger.getChild(iteration_id),
agent_reporters=agent_reporters,
model_reporters=model_reporters,
tables=self.tables,
tables=tables,
**params,
)
def _run_model(self, iteration_id, **params):
def run_trial(
self, trial_id=None, until=None, log_file=False, log_level=logging.INFO, **opts
):
"""
Run a single iteration of the simulation
Run a single trial of the simulation
"""
# Set-up iteration environment and graph
model = self._get_env(iteration_id, params)
with utils.timer("Simulation {} iteration {}".format(self.name, iteration_id)):
max_time = self.max_time
max_steps = self.max_steps
if (max_time is not None) and (max_steps is not None):
is_done = lambda model: (not model.running) or (model.schedule.time >= max_time) or (model.schedule.steps >= max_steps)
elif max_time is not None:
is_done = lambda model: (not model.running) or (model.schedule.time >= max_time)
elif max_steps is not None:
is_done = lambda model: (not model.running) or (model.schedule.steps >= max_steps)
else:
is_done = lambda model: not model.running
if not model.schedule.agents:
raise Exception("No agents in model. This is probably a bug. Make sure that the model has agents scheduled after its initialization.")
newline = "\n"
self.logger.debug(
dedent(
f"""
Model stats:
Agent count: { model.schedule.get_agent_count() }):
Topology size: { len(model.G) if hasattr(model, "G") else 0 }
"""
)
if log_level:
logger.setLevel(log_level)
model = self.get_env(trial_id, **opts)
trial_id = trial_id if trial_id is not None else current_time()
with utils.timer("Simulation {} trial {}".format(self.name, trial_id)):
return self.run_model(
model=model, trial_id=trial_id, until=until, log_level=log_level
)
if self.debug:
set_trace()
def run_model(self, model, until=None, **opts):
# Set-up trial environment and graph
until = float(until or self.max_time or "inf")
while not is_done(model):
self.logger.debug(
f'Simulation time {model.schedule.time}/{max_time}.'
)
model.step()
# Set up agents on nodes
def is_done():
return not model.running
if until and hasattr(model.schedule, "time"):
prev = is_done
def is_done():
return prev() or model.schedule.time >= until
if not model.schedule.agents:
raise Exception("No agents in model. This is probably a bug. Make sure that the model has agents scheduled after its initialization.")
if self.max_steps and self.max_steps > 0 and hasattr(model.schedule, "steps"):
prev_steps = is_done
def is_done():
return prev_steps() or model.schedule.steps >= self.max_steps
newline = "\n"
logger.info(
dedent(
f"""
Model stats:
Agent count: { model.schedule.get_agent_count() }):
Topology size: { len(model.G) if hasattr(model, "G") else 0 }
"""
)
)
if self.debug:
set_trace()
while not is_done():
utils.logger.debug(
f'Simulation time {model.schedule.time}/{until}.'
)
model.step()
return model
@ -347,9 +333,10 @@ def from_config(conf_or_path):
return lst[0]
def iter_from_py(pyfile, module_name='imported_file', **kwargs):
def iter_from_py(pyfile, module_name='custom_simulation', **kwargs):
"""Try to load every Simulation instance in a given Python file"""
import importlib
import inspect
added = False
sims = []
assert not _AVOID_RUNNING
@ -390,6 +377,3 @@ def run_from_file(*files, **kwargs):
for sim in iter_from_file(*files):
logger.info(f"Using config(s): {sim.name}")
sim.run_simulation(**kwargs)
def run(env, iterations=1, num_processes=1, dump=False, name="test", **kwargs):
return Simulation(model=env, iterations=iterations, name=name, dump=dump, num_processes=num_processes, **kwargs).run()

View File

@ -1,6 +1,6 @@
from mesa.time import BaseScheduler
from queue import Empty
from heapq import heappush, heappop, heapreplace
from heapq import heappush, heappop
import math
from inspect import getsource
@ -99,8 +99,7 @@ class TimedActivation(BaseScheduler):
self._shuffle = shuffle
# self.step_interval = getattr(self.model, "interval", 1)
self.step_interval = self.model.interval
self.logger = getattr(self.model, "logger", logger).getChild(f"time_{ self.model }")
self.next_time = self.time
self.logger = logger.getChild(f"time_{ self.model }")
def add(self, agent: MesaAgent, when=None):
if when is None:
@ -111,7 +110,7 @@ class TimedActivation(BaseScheduler):
self._schedule(agent, None, when)
super().add(agent)
def _schedule(self, agent, condition=None, when=None, replace=False):
def _schedule(self, agent, condition=None, when=None):
if condition:
if not when:
when, condition = condition.schedule_next(
@ -126,10 +125,7 @@ class TimedActivation(BaseScheduler):
else:
key = (when, agent.unique_id, condition)
self._next[agent.unique_id] = key
if replace:
heapreplace(self._queue, (key, agent))
else:
heappush(self._queue, (key, agent))
heappush(self._queue, (key, agent))
def step(self) -> None:
"""
@ -148,9 +144,10 @@ class TimedActivation(BaseScheduler):
if when > self.time:
break
heappop(self._queue)
if cond:
if not cond.ready(agent, self.time):
self._schedule(agent, cond, replace=True)
self._schedule(agent, cond)
continue
try:
agent._last_return = cond.return_value(agent)
@ -167,38 +164,36 @@ class TimedActivation(BaseScheduler):
returned = agent.step()
except DeadAgent:
agent.alive = False
heappop(self._queue)
continue
# Check status for MESA agents
if not getattr(agent, "alive", True):
heappop(self._queue)
continue
if returned:
next_check = returned.schedule_next(
self.time, self.step_interval, first=True
)
self._schedule(agent, when=next_check[0], condition=next_check[1], replace=True)
self._schedule(agent, when=next_check[0], condition=next_check[1])
else:
next_check = (self.time + self.step_interval, None)
self._schedule(agent, replace=True)
self._schedule(agent)
self.steps += 1
if not self._queue:
self.model.running = False
self.time = INFINITY
return
self.model.running = False
return self.time
next_time = self._queue[0][0][0]
if next_time < self.time:
raise Exception(
f"An agent has been scheduled for a time in the past, there is probably an error ({when} < {self.time})"
)
self.logger.debug("Updating time step: %s -> %s ", self.time, next_time)
self.logger.debug(f"Updating time step: {self.time} -> {next_time}")
self.time = next_time

View File

@ -10,7 +10,7 @@ from multiprocessing import Pool, cpu_count
from contextlib import contextmanager
logger = logging.getLogger("soil")
logger.setLevel(logging.WARNING)
logger.setLevel(logging.INFO)
timeformat = "%H:%M:%S"
@ -24,7 +24,7 @@ consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logging.basicConfig(
level=logging.INFO,
level=logging.DEBUG,
handlers=[
consoleHandler,
],
@ -60,7 +60,7 @@ def try_backup(path, remove=False):
if not os.path.exists(backup_dir):
os.makedirs(backup_dir)
newpath = os.path.join(backup_dir, "{}@{}".format(os.path.basename(path), stamp))
if remove:
if move:
move(path, newpath)
else:
copyfile(path, newpath)
@ -126,7 +126,7 @@ def unflatten_dict(d):
def run_and_return_exceptions(func, *args, **kwargs):
"""
A wrapper for a function that catches exceptions and returns them.
A wrapper for run_trial that catches exceptions and returns them.
It is meant for async simulations.
"""
try:
@ -154,7 +154,3 @@ def run_parallel(func, iterable, num_processes=1, **kwargs):
else:
for i in iterable:
yield func(i, **kwargs)
def int_seed(seed: str):
return int.from_bytes(seed.encode(), "little")

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.0 MiB

View File

@ -54,7 +54,8 @@ class TestAgents(TestCase):
class MyAgent(agents.FSM):
run = 0
@agents.state("original", default=True)
@agents.default_state
@agents.state("original")
def root(self):
self.run += 1
return self.other
@ -64,11 +65,10 @@ class TestAgents(TestCase):
self.run += 1
e = environment.Environment()
a = e.add_agent(MyAgent)
e.step()
a = MyAgent(model=e, unique_id=e.next_id())
a.step()
assert a.run == 1
a.step()
print("DONE")
def test_broadcast(self):
"""

View File

@ -28,16 +28,13 @@ class TestConfig(TestCase):
def test_torvalds_config(self):
sim = simulation.from_config(os.path.join(ROOT, "test_config.yml"))
MAX_STEPS = 10
INTERVAL = 2
assert sim.interval == INTERVAL
assert sim.max_steps == MAX_STEPS
assert sim.interval == 2
envs = sim.run()
assert len(envs) == 1
env = envs[0]
assert env.interval == 2
assert env.count_agents() == 3
assert env.now == INTERVAL * MAX_STEPS
assert env.now == 20
def make_example_test(path, cfg):
@ -45,10 +42,10 @@ def make_example_test(path, cfg):
root = os.getcwd()
print(path)
s = simulation.from_config(cfg)
iterations = s.max_time * s.iterations
iterations = s.max_time * s.num_trials
if iterations > 1000:
s.max_time = 100
s.iterations = 1
s.num_trials = 1
if cfg.skip_test and not FORCE_TESTS:
self.skipTest('Example ignored.')
envs = s.run_simulation(dump=False)
@ -56,7 +53,7 @@ def make_example_test(path, cfg):
for env in envs:
assert env
try:
n = cfg.parameters['topology']['params']['n']
n = cfg.model_params['topology']['params']['n']
assert len(list(env.network_agents)) == n
assert env.now > 0 # It has run
assert env.now <= cfg.max_time # But not further than allowed

View File

@ -28,22 +28,17 @@ def get_test_for_sims(sims, path):
if sim.skip_test and not FORCE_TESTS:
continue
run = True
if sim.max_steps is None:
sim.max_steps = 100
iterations = sim.max_steps * sim.iterations
iterations = sim.max_steps * sim.num_trials
if iterations < 0 or iterations > 1000:
sim.max_steps = 100
sim.iterations = 1
envs = sim.run(dump=False)
sim.num_trials = 1
envs = sim.run_simulation(dump=False)
assert envs
for env in envs:
assert env
assert env.now > 0
try:
n = sim.parameters["network_params"]["n"]
n = sim.model_params["network_params"]["n"]
assert len(list(env.network_agents)) == n
except KeyError:
pass

View File

@ -9,29 +9,28 @@ from soil import exporters
from soil import environment
from soil import simulation
from soil import agents
from soil import decorators
from mesa import Agent as MesaAgent
class Dummy(exporters.Exporter):
started = False
iterations = 0
trials = 0
ended = False
total_time = 0
called_start = 0
called_iteration = 0
called_trial = 0
called_end = 0
def sim_start(self):
self.__class__.called_start += 1
self.__class__.started = True
def iteration_end(self, env, *args, **kwargs):
def trial_end(self, env):
assert env
self.__class__.iterations += 1
self.__class__.trials += 1
self.__class__.total_time += env.now
self.__class__.called_iteration += 1
self.__class__.called_trial += 1
def sim_end(self):
self.__class__.ended = True
@ -45,78 +44,77 @@ class Exporters(TestCase):
class SimpleEnv(environment.Environment):
def init(self):
self.add_agent(agent_class=MesaAgent)
iterations = 5
num_trials = 5
max_time = 2
s = simulation.Simulation(iterations=iterations,
max_time=max_time, name="exporter_sim",
exporters=[Dummy], dump=False, model=SimpleEnv)
s = simulation.Simulation(num_trials=num_trials, max_time=max_time, name="exporter_sim",
dump=False, model=SimpleEnv)
for env in s.run():
for env in s.run_simulation(exporters=[Dummy], dump=False):
assert len(env.agents) == 1
assert Dummy.started
assert Dummy.ended
assert Dummy.called_start == 1
assert Dummy.called_end == 1
assert Dummy.called_iteration == iterations
assert Dummy.iterations == iterations
assert Dummy.total_time == max_time * iterations
assert Dummy.called_trial == num_trials
assert Dummy.trials == num_trials
assert Dummy.total_time == max_time * num_trials
def test_writing(self):
"""Try to write CSV, sqlite and YAML (without no_dump)"""
n_iterations = 5
n_trials = 5
n_nodes = 4
max_time = 2
config = {
"name": "exporter_sim",
"model_params": {
"network_generator": "complete_graph",
"network_params": {"n": n_nodes},
"agent_class": "CounterModel",
},
"max_time": max_time,
"num_trials": n_trials,
"dump": True,
}
output = io.StringIO()
s = simulation.from_config(config)
tmpdir = tempfile.mkdtemp()
class ConstantEnv(environment.Environment):
@decorators.report
@property
def constant(self):
return 1
s = simulation.Simulation(
model=ConstantEnv,
name="exporter_sim",
envs = s.run_simulation(
exporters=[
exporters.default,
exporters.csv,
],
exporter_params={"copy_to": output},
parameters=dict(
network_generator="complete_graph",
network_params={"n": n_nodes},
agent_class="CounterModel",
agent_reporters={"times": "times"},
),
max_time=max_time,
outdir=tmpdir,
iterations=n_iterations,
model_params={
"agent_reporters": {"times": "times"},
"model_reporters": {
"constant": lambda x: 1,
},
},
dump=True,
outdir=tmpdir,
exporter_params={"copy_to": output},
)
envs = s.run()
result = output.getvalue()
simdir = os.path.join(tmpdir, s.group or "", s.name)
with open(os.path.join(simdir, "{}.dumped.yml".format(s.id))) as f:
with open(os.path.join(simdir, "{}.dumped.yml".format(s.name))) as f:
result = f.read()
assert result
try:
dbpath = os.path.join(simdir, f"{s.name}.sqlite")
db = sqlite3.connect(dbpath)
cur = db.cursor()
agent_entries = cur.execute("SELECT times FROM agents WHERE times > 0").fetchall()
env_entries = cur.execute("SELECT constant from env WHERE constant == 1").fetchall()
assert len(agent_entries) == n_nodes * n_iterations * max_time
assert len(env_entries) == n_iterations * (max_time + 1) # +1 for the initial state
for e in envs:
dbpath = os.path.join(simdir, f"{s.name}.sqlite")
db = sqlite3.connect(dbpath)
cur = db.cursor()
agent_entries = cur.execute("SELECT times FROM agents WHERE times > 0").fetchall()
env_entries = cur.execute("SELECT constant from env WHERE constant == 1").fetchall()
assert len(agent_entries) == n_nodes * n_trials * max_time
assert len(env_entries) == n_trials * max_time
with open(os.path.join(simdir, "{}.env.csv".format(e.id))) as f:
result = f.read()
assert result
finally:
shutil.rmtree(tmpdir)

View File

@ -30,14 +30,14 @@ class TestMain(TestCase):
def test_empty_simulation(self):
"""A simulation with a base behaviour should do nothing"""
config = {
"parameters": {
"model_params": {
"topology": join(ROOT, "test.gexf"),
"agent_class": MesaAgent,
},
"max_time": 1
}
s = simulation.from_config(config)
s.run(dump=False)
s.run_simulation(dump=False)
def test_network_agent(self):
"""
@ -45,9 +45,9 @@ class TestMain(TestCase):
agent should be able to update its state."""
config = {
"name": "CounterAgent",
"iterations": 1,
"num_trials": 1,
"max_time": 2,
"parameters": {
"model_params": {
"network_params": {
"generator": nx.complete_graph,
"n": 2,
@ -93,7 +93,7 @@ class TestMain(TestCase):
try:
os.chdir(os.path.dirname(pyfile))
s = simulation.from_py(pyfile)
env = s.run(dump=False)[0]
env = s.run_simulation(dump=False)[0]
for a in env.network_agents:
skill_level = a["skill_level"]
if a.node_id == "Torvalds":
@ -157,11 +157,11 @@ class TestMain(TestCase):
n_trials = 50
max_time = 2
s = simulation.Simulation(
parameters=dict(agents=dict(agent_classes=[CheckRun], k=1)),
iterations=n_trials,
model_params=dict(agents=dict(agent_classes=[CheckRun], k=1)),
num_trials=n_trials,
max_time=max_time,
)
runs = list(s.run(dump=False))
runs = list(s.run_simulation(dump=False))
over = list(x.now for x in runs if x.now > 2)
assert len(runs) == n_trials
assert len(over) == 0
@ -212,24 +212,13 @@ class TestMain(TestCase):
for sim in sims:
assert sim
assert sim.name == "newspread_sim"
assert sim.iterations == 5
assert sim.num_trials == 5
assert sim.max_steps == 300
assert not sim.dump
assert sim.parameters
assert "ratio_dumb" in sim.parameters
assert "ratio_herd" in sim.parameters
assert "ratio_wise" in sim.parameters
assert "network_generator" in sim.parameters
assert "network_params" in sim.parameters
assert "prob_neighbor_spread" in sim.parameters
def test_config_matrix(self):
"""It should be possible to specify a matrix of parameters"""
a = [1, 2]
b = [3, 4]
sim = simulation.Simulation(matrix=dict(a=a, b=b))
configs = sim._collect_params()
assert len(configs) == len(a) * len(b)
for i in a:
for j in b:
assert {"a": i, "b": j} in configs
assert sim.model_params
assert "ratio_dumb" in sim.model_params
assert "ratio_herd" in sim.model_params
assert "ratio_wise" in sim.model_params
assert "network_generator" in sim.model_params
assert "network_params" in sim.model_params
assert "prob_neighbor_spread" in sim.model_params