mirror of
https://github.com/gsi-upm/soil
synced 2025-01-06 23:01:27 +00:00
Compare commits
8 Commits
2869b1e1e6
...
be65592055
Author | SHA1 | Date | |
---|---|---|---|
|
be65592055 | ||
|
1d882dcff6 | ||
|
b3e77cbff5 | ||
|
05748a3250 | ||
|
a3fc6a5efa | ||
|
4e95709188 | ||
|
feab0ba79e | ||
|
73282530fd |
@ -20,7 +20,7 @@ docker:
|
||||
test:
|
||||
tags:
|
||||
- docker
|
||||
image: python:3.7
|
||||
image: python:3.8
|
||||
stage: test
|
||||
script:
|
||||
- pip install -r requirements.txt -r test-requirements.txt
|
||||
@ -31,7 +31,7 @@ push_pypi:
|
||||
- tags
|
||||
tags:
|
||||
- docker
|
||||
image: python:3.7
|
||||
image: python:3.8
|
||||
stage: publish
|
||||
script:
|
||||
- echo $CI_COMMIT_TAG > soil/VERSION
|
||||
@ -44,7 +44,7 @@ check_pypi:
|
||||
- tags
|
||||
tags:
|
||||
- docker
|
||||
image: python:3.7
|
||||
image: python:3.8
|
||||
stage: check_published
|
||||
script:
|
||||
- pip install soil==$CI_COMMIT_TAG
|
||||
|
@ -6,15 +6,12 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||
## [0.30 UNRELEASED]
|
||||
### Added
|
||||
* Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>`
|
||||
* Ability to run
|
||||
* Ability to
|
||||
* Ability to run mesa simulations
|
||||
* The `soil.exporters` module to export the results of datacollectors (model.datacollector) into files at the end of trials/simulations
|
||||
* A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology).
|
||||
* FSM agents can now have generators as states. They work similar to normal states, with one caveat. Only `time` values can be yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. The return value *can* be a state, or a `(state, time)` tuple, just like in normal states.
|
||||
### Changed
|
||||
* Configuration schema is very different now. Check `soil.config` for more information. We are also using Pydantic for (de)serialization.
|
||||
* There may be more than one topology/network in the simulation
|
||||
* Ability
|
||||
* Configuration schema is very simplified
|
||||
### Removed
|
||||
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.
|
||||
|
||||
|
29
README.md
29
README.md
@ -1,20 +1,20 @@
|
||||
# [SOIL](https://github.com/gsi-upm/soil)
|
||||
|
||||
|
||||
Soil is an extensible and user-friendly Agent-based Social Simulator for Social Networks.
|
||||
Learn how to run your own simulations with our [documentation](http://soilsim.readthedocs.io).
|
||||
|
||||
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
|
||||
|
||||
**Note**: Mesa 0.30 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/migration_0.30.rst)
|
||||
> **Warning**
|
||||
> Mesa 0.30 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/notes_v0.30.rst)
|
||||
|
||||
## SOIL vs MESA
|
||||
## Features
|
||||
|
||||
SOIL is a batteries-included platform that builds on top of MESA and provides the following out of the box:
|
||||
|
||||
* Integration with (social) networks
|
||||
* The ability to more easily assign agents to your model (and optionally to its network):
|
||||
* Assigning agents to nodes, and vice versa
|
||||
* Using a description (e.g., 2 agents of type `Foo`, 10% of the network should be agents of type `Bar`)
|
||||
* Integration with (social) networks (through `networkx`)
|
||||
* Convenience functions and methods to easily assign agents to your model (and optionally to its network):
|
||||
* Following a given distribution (e.g., 2 agents of type `Foo`, 10% of the network should be agents of type `Bar`)
|
||||
* Based on the topology of the network
|
||||
* **Several types of abstractions for agents**:
|
||||
* Finite state machine, where methods can be turned into a state
|
||||
* Network agents, which have convenience methods to access the model's topology
|
||||
@ -33,15 +33,18 @@ SOIL is a batteries-included platform that builds on top of MESA and provides th
|
||||
* Run models in parallel
|
||||
* Save results to different formats
|
||||
* Simulation configuration files
|
||||
* A command line interface (`soil`), to run multiple
|
||||
* A command line interface (`soil`), to quickly run simulations with different parameters
|
||||
* An integrated debugger (`soil --debug`) with custom functions to print agent states and break at specific states
|
||||
|
||||
Nevertheless, most features in SOIL have been designed to integrate with plain Mesa.
|
||||
|
||||
## Mesa compatibility
|
||||
|
||||
SOIL has been redesigned to integrate well with [Mesa](https://github.com/projectmesa/mesa).
|
||||
For instance, it should be possible to run a `mesa.Model` models using a `soil.Simulation` and the `soil` CLI, or to integrate the `soil.TimedActivation` scheduler on a `mesa.Model`.
|
||||
|
||||
Note that some combinations of `mesa` and `soil` components, while technically possible, are much less useful or even wrong.
|
||||
For instance, you may add any `soil.agent` agent (except for the `soil.NetworkAgent`, as it needs a topology) on a regular `mesa.Model` with a vanilla scheduler from `mesa.time`.
|
||||
But in that case the agents will not get any of the advanced event-based scheduling, and most agent behaviors that depend on that will greatly vary.
|
||||
Note that some combinations of `mesa` and `soil` components, while technically possible, are much less useful or might yield surprising results.
|
||||
For instance, you may add any `soil.agent` agent on a regular `mesa.Model` with a vanilla scheduler from `mesa.time`.
|
||||
But in that case the agents will not get any of the advanced event-based scheduling, and most agent behaviors that depend on that may not work.
|
||||
|
||||
|
||||
## Changes in version 0.3
|
||||
|
35
docs/notes_v0.30.rst
Normal file
35
docs/notes_v0.30.rst
Normal file
@ -0,0 +1,35 @@
|
||||
What are the main changes between version 0.3 and 0.2?
|
||||
######################################################
|
||||
|
||||
Version 0.3 is a major rewrite of the Soil system, focused on simplifying the API, aligning it with Mesa, and making it easier to use.
|
||||
Unfortunately, this comes at the cost of backwards compatibility.
|
||||
|
||||
We drew several lessons from the previous version of Soil, and tried to address them in this version.
|
||||
Mainly:
|
||||
|
||||
- The split between simulation configuration and simulation code was overly complicated for most use cases. As a result, most users ended up reusing configuration.
|
||||
- Storing **all** the simulation data in a database is costly and unnecessary for most use cases. For most use cases, only a handful of variables need to be stored. This fits nicely with Mesa's data collection system.
|
||||
- The API was too complex, and it was difficult to understand how to use it.
|
||||
- Most parts of the API were not aligned with Mesa, which made it difficult to use Mesa's features or to integrate Soil modules with Mesa code, especially for newcomers.
|
||||
- Many parts of the API were tightly coupled, which made it difficult to find bugs, test the system and add new features.
|
||||
|
||||
The 0.30 rewrite should provide a middle ground between Soil's opinionated approach and Mesa's flexibility.
|
||||
The new Soil is less configuration-centric.
|
||||
It aims to provide more modular and convenient functions, most of which can be used in vanilla Mesa.
|
||||
|
||||
How are agents assigned to nodes in the network
|
||||
###############################################
|
||||
|
||||
The constructor of the `NetworkAgent` class has two arguments: `node_id` and `topology`.
|
||||
If `topology` is not provided, it will default to `self.model.topology`.
|
||||
This assignment might err if the model does not have a `topology` attribute, but most Soil environments derive from `NetworkEnvironment`, so they include a topology by default.
|
||||
If `node_id` is not provided, a random node will be selected from the topology, until a node with no agent is found.
|
||||
Then, the `node_id` of that node is assigned to the agent.
|
||||
If no node with no agent is found, a new node is automatically added to the topology.
|
||||
|
||||
|
||||
Can Soil environments include more than one network / topology?
|
||||
###############################################################
|
||||
|
||||
Yes, but each network has to be included manually.
|
||||
Somewhere between 0.20 and 0.30 we included the ability to include multiple networks, but it was deemed too complex and was removed.
|
File diff suppressed because one or more lines are too long
80808
examples/Untitled.ipynb
80808
examples/Untitled.ipynb
File diff suppressed because it is too large
Load Diff
@ -1,54 +0,0 @@
|
||||
---
|
||||
version: '2'
|
||||
name: simple
|
||||
group: tests
|
||||
dir_path: "/tmp/"
|
||||
num_trials: 3
|
||||
max_steps: 100
|
||||
interval: 1
|
||||
seed: "CompleteSeed!"
|
||||
model_class: Environment
|
||||
model_params:
|
||||
am_i_complete: true
|
||||
topology:
|
||||
params:
|
||||
generator: complete_graph
|
||||
n: 12
|
||||
environment:
|
||||
agents:
|
||||
agent_class: CounterModel
|
||||
topology: true
|
||||
state:
|
||||
times: 1
|
||||
# In this group we are not specifying any topology
|
||||
fixed:
|
||||
- name: 'Environment Agent 1'
|
||||
agent_class: BaseAgent
|
||||
group: environment
|
||||
topology: false
|
||||
hidden: true
|
||||
state:
|
||||
times: 10
|
||||
- agent_class: CounterModel
|
||||
id: 0
|
||||
group: fixed_counters
|
||||
state:
|
||||
times: 1
|
||||
total: 0
|
||||
- agent_class: CounterModel
|
||||
group: fixed_counters
|
||||
id: 1
|
||||
distribution:
|
||||
- agent_class: CounterModel
|
||||
weight: 1
|
||||
group: distro_counters
|
||||
state:
|
||||
times: 3
|
||||
- agent_class: AggregatedCounter
|
||||
weight: 0.2
|
||||
override:
|
||||
- filter:
|
||||
agent_class: AggregatedCounter
|
||||
n: 2
|
||||
state:
|
||||
times: 5
|
@ -1,16 +0,0 @@
|
||||
---
|
||||
name: custom-generator
|
||||
description: Using a custom generator for the network
|
||||
num_trials: 3
|
||||
max_steps: 100
|
||||
interval: 1
|
||||
network_params:
|
||||
generator: mymodule.mygenerator
|
||||
# These are custom parameters
|
||||
n: 10
|
||||
n_edges: 5
|
||||
network_agents:
|
||||
- agent_class: CounterModel
|
||||
weight: 1
|
||||
state:
|
||||
state_id: 0
|
@ -1,6 +1,7 @@
|
||||
from networkx import Graph
|
||||
import random
|
||||
import networkx as nx
|
||||
from soil import Simulation, Environment, CounterModel, parameters
|
||||
|
||||
|
||||
def mygenerator(n=5, n_edges=5):
|
||||
@ -20,3 +21,19 @@ def mygenerator(n=5, n_edges=5):
|
||||
n_out = random.choice(nodes)
|
||||
G.add_edge(n_in, n_out)
|
||||
return G
|
||||
|
||||
|
||||
class GeneratorEnv(Environment):
|
||||
"""Using a custom generator for the network"""
|
||||
|
||||
generator: parameters.function = staticmethod(mygenerator)
|
||||
|
||||
def init(self):
|
||||
self.create_network(generator=self.generator, n=10, n_edges=5)
|
||||
self.add_agents(CounterModel)
|
||||
|
||||
|
||||
sim = Simulation(model=GeneratorEnv, max_steps=10, interval=1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
sim.run(dump=False)
|
@ -4,8 +4,7 @@ from soil.time import Delta
|
||||
|
||||
class Fibonacci(FSM):
|
||||
"""Agent that only executes in t_steps that are Fibonacci numbers"""
|
||||
|
||||
defaults = {"prev": 1}
|
||||
prev = 1
|
||||
|
||||
@default_state
|
||||
@state
|
||||
@ -25,23 +24,18 @@ class Odds(FSM):
|
||||
return None, Delta(1 + self.now % 2)
|
||||
|
||||
|
||||
from soil import Simulation
|
||||
from soil import Environment, Simulation
|
||||
from networkx import complete_graph
|
||||
|
||||
simulation = Simulation(
|
||||
model_params={
|
||||
'agents':[
|
||||
{'agent_class': Fibonacci, 'node_id': 0},
|
||||
{'agent_class': Odds, 'node_id': 1}
|
||||
],
|
||||
'topology': {
|
||||
'params': {
|
||||
'generator': 'complete_graph',
|
||||
'n': 2
|
||||
}
|
||||
},
|
||||
},
|
||||
max_time=100,
|
||||
)
|
||||
|
||||
class TimeoutsEnv(Environment):
|
||||
def init(self):
|
||||
self.create_network(generator=complete_graph, n=2)
|
||||
self.add_agent(agent_class=Fibonacci, node_id=0)
|
||||
self.add_agent(agent_class=Odds, node_id=1)
|
||||
|
||||
|
||||
sim = Simulation(model=TimeoutsEnv, max_steps=10, interval=1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
simulation.run(dry_run=True)
|
||||
sim.run(dump=False)
|
@ -2,6 +2,8 @@ This example can be run like with command-line options, like this:
|
||||
|
||||
```bash
|
||||
python cars.py --level DEBUG -e summary --csv
|
||||
#or
|
||||
soil cars.py -e summary
|
||||
```
|
||||
|
||||
This will set the `CSV` (save the agent and model data to a CSV) and `summary` (print the a summary of the data to stdout) exporters, and set the log level to DEBUG.
|
||||
|
@ -56,41 +56,25 @@ class City(EventedEnvironment):
|
||||
:param int height: Height of the internal grid
|
||||
:param int width: Width of the internal grid
|
||||
"""
|
||||
n_cars = 1
|
||||
n_passengers = 10
|
||||
height = 100
|
||||
width = 100
|
||||
|
||||
def init(self):
|
||||
self.grid = MultiGrid(width=self.width, height=self.height, torus=False)
|
||||
if not self.agents:
|
||||
self.add_agents(Driver, k=self.n_cars)
|
||||
self.add_agents(Passenger, k=self.n_passengers)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args,
|
||||
n_cars=1,
|
||||
n_passengers=10,
|
||||
height=100,
|
||||
width=100,
|
||||
agents=None,
|
||||
model_reporters=None,
|
||||
**kwargs,
|
||||
):
|
||||
self.grid = MultiGrid(width=width, height=height, torus=False)
|
||||
if agents is None:
|
||||
agents = []
|
||||
for i in range(n_cars):
|
||||
agents.append({"agent_class": Driver})
|
||||
for i in range(n_passengers):
|
||||
agents.append({"agent_class": Passenger})
|
||||
model_reporters = model_reporters or {
|
||||
"earnings": "total_earnings",
|
||||
"n_passengers": "number_passengers",
|
||||
}
|
||||
print("REPORTERS", model_reporters)
|
||||
super().__init__(
|
||||
*args, agents=agents, model_reporters=model_reporters, **kwargs
|
||||
)
|
||||
for agent in self.agents:
|
||||
self.grid.place_agent(agent, (0, 0))
|
||||
self.grid.move_to_empty(agent)
|
||||
|
||||
@property
|
||||
def total_earnings(self):
|
||||
return sum(d.earnings for d in self.agents(agent_class=Driver))
|
||||
self.total_earnings = 0
|
||||
self.add_model_reporter("total_earnings")
|
||||
|
||||
@report
|
||||
@property
|
||||
def number_passengers(self):
|
||||
return self.count_agents(agent_class=Passenger)
|
||||
@ -150,6 +134,7 @@ class Driver(Evented, FSM):
|
||||
while self.move_towards(self.journey.destination, with_passenger=True):
|
||||
yield
|
||||
self.earnings += self.journey.tip
|
||||
self.model.total_earnings += self.journey.tip
|
||||
self.check_passengers()
|
||||
return self.wandering
|
||||
|
||||
@ -228,16 +213,14 @@ class Passenger(Evented, FSM):
|
||||
except events.TimedOut:
|
||||
pass
|
||||
|
||||
self.info("Got home safe!")
|
||||
self.die()
|
||||
self.die("Got home safe!")
|
||||
|
||||
|
||||
simulation = Simulation(
|
||||
name="RideHailing",
|
||||
model_class=City,
|
||||
model_params={"n_passengers": 2},
|
||||
simulation = Simulation(name="RideHailing",
|
||||
model=City,
|
||||
seed="carsSeed",
|
||||
)
|
||||
max_time=1000,
|
||||
model_params=dict(n_passengers=2))
|
||||
|
||||
if __name__ == "__main__":
|
||||
simulation.run()
|
||||
easy(simulation)
|
@ -1,19 +0,0 @@
|
||||
---
|
||||
name: mesa_sim
|
||||
group: tests
|
||||
dir_path: "/tmp"
|
||||
num_trials: 3
|
||||
max_steps: 100
|
||||
interval: 1
|
||||
seed: '1'
|
||||
model_class: social_wealth.MoneyEnv
|
||||
model_params:
|
||||
generator: social_wealth.graph_generator
|
||||
agents:
|
||||
topology: true
|
||||
distribution:
|
||||
- agent_class: social_wealth.SocialMoneyAgent
|
||||
weight: 1
|
||||
N: 10
|
||||
width: 50
|
||||
height: 50
|
7
examples/mesa/mesa_sim.py
Normal file
7
examples/mesa/mesa_sim.py
Normal file
@ -0,0 +1,7 @@
|
||||
from soil import Simulation
|
||||
from social_wealth import MoneyEnv, graph_generator
|
||||
|
||||
sim = Simulation(name="mesa_sim", dump=False, max_steps=10, interval=2, model=MoneyEnv, model_params=dict(generator=graph_generator, N=10, width=50, height=50))
|
||||
|
||||
if __name__ == "__main__":
|
||||
sim.run()
|
@ -1,5 +1,5 @@
|
||||
from mesa.visualization.ModularVisualization import ModularServer
|
||||
from soil.visualization import UserSettableParameter
|
||||
from mesa.visualization.UserParam import Slider, Choice
|
||||
from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid
|
||||
from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent
|
||||
import networkx as nx
|
||||
@ -64,8 +64,7 @@ chart = ChartModule(
|
||||
)
|
||||
|
||||
model_params = {
|
||||
"N": UserSettableParameter(
|
||||
"slider",
|
||||
"N": Slider(
|
||||
"N",
|
||||
5,
|
||||
1,
|
||||
@ -73,8 +72,7 @@ model_params = {
|
||||
1,
|
||||
description="Choose how many agents to include in the model",
|
||||
),
|
||||
"height": UserSettableParameter(
|
||||
"slider",
|
||||
"height": Slider(
|
||||
"height",
|
||||
5,
|
||||
5,
|
||||
@ -82,8 +80,7 @@ model_params = {
|
||||
1,
|
||||
description="Grid height",
|
||||
),
|
||||
"width": UserSettableParameter(
|
||||
"slider",
|
||||
"width": Slider(
|
||||
"width",
|
||||
5,
|
||||
5,
|
||||
@ -91,8 +88,7 @@ model_params = {
|
||||
1,
|
||||
description="Grid width",
|
||||
),
|
||||
"agent_class": UserSettableParameter(
|
||||
"choice",
|
||||
"agent_class": Choice(
|
||||
"Agent class",
|
||||
value="MoneyAgent",
|
||||
choices=["MoneyAgent", "SocialMoneyAgent"],
|
||||
|
@ -53,7 +53,7 @@ class MoneyAgent(MesaAgent):
|
||||
self.give_money()
|
||||
|
||||
|
||||
class SocialMoneyAgent(NetworkAgent, MoneyAgent):
|
||||
class SocialMoneyAgent(MoneyAgent, NetworkAgent):
|
||||
wealth = 1
|
||||
|
||||
def give_money(self):
|
||||
|
@ -1,133 +0,0 @@
|
||||
---
|
||||
default_state: {}
|
||||
environment_agents: []
|
||||
environment_params:
|
||||
prob_neighbor_spread: 0.0
|
||||
prob_tv_spread: 0.01
|
||||
interval: 1
|
||||
max_steps: 300
|
||||
name: Sim_all_dumb
|
||||
network_agents:
|
||||
- agent_class: newsspread.DumbViewer
|
||||
state:
|
||||
has_tv: false
|
||||
weight: 1
|
||||
- agent_class: newsspread.DumbViewer
|
||||
state:
|
||||
has_tv: true
|
||||
weight: 1
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
num_trials: 50
|
||||
---
|
||||
default_state: {}
|
||||
environment_agents: []
|
||||
environment_params:
|
||||
prob_neighbor_spread: 0.0
|
||||
prob_tv_spread: 0.01
|
||||
interval: 1
|
||||
max_steps: 300
|
||||
name: Sim_half_herd
|
||||
network_agents:
|
||||
- agent_class: newsspread.DumbViewer
|
||||
state:
|
||||
has_tv: false
|
||||
weight: 1
|
||||
- agent_class: newsspread.DumbViewer
|
||||
state:
|
||||
has_tv: true
|
||||
weight: 1
|
||||
- agent_class: newsspread.HerdViewer
|
||||
state:
|
||||
has_tv: false
|
||||
weight: 1
|
||||
- agent_class: newsspread.HerdViewer
|
||||
state:
|
||||
has_tv: true
|
||||
weight: 1
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
num_trials: 50
|
||||
---
|
||||
default_state: {}
|
||||
environment_agents: []
|
||||
environment_params:
|
||||
prob_neighbor_spread: 0.0
|
||||
prob_tv_spread: 0.01
|
||||
interval: 1
|
||||
max_steps: 300
|
||||
name: Sim_all_herd
|
||||
network_agents:
|
||||
- agent_class: newsspread.HerdViewer
|
||||
state:
|
||||
has_tv: true
|
||||
state_id: neutral
|
||||
weight: 1
|
||||
- agent_class: newsspread.HerdViewer
|
||||
state:
|
||||
has_tv: true
|
||||
state_id: neutral
|
||||
weight: 1
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
num_trials: 50
|
||||
---
|
||||
default_state: {}
|
||||
environment_agents: []
|
||||
environment_params:
|
||||
prob_neighbor_spread: 0.0
|
||||
prob_tv_spread: 0.01
|
||||
prob_neighbor_cure: 0.1
|
||||
interval: 1
|
||||
max_steps: 300
|
||||
name: Sim_wise_herd
|
||||
network_agents:
|
||||
- agent_class: newsspread.HerdViewer
|
||||
state:
|
||||
has_tv: true
|
||||
state_id: neutral
|
||||
weight: 1
|
||||
- agent_class: newsspread.WiseViewer
|
||||
state:
|
||||
has_tv: true
|
||||
weight: 1
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
num_trials: 50
|
||||
---
|
||||
default_state: {}
|
||||
environment_agents: []
|
||||
environment_params:
|
||||
prob_neighbor_spread: 0.0
|
||||
prob_tv_spread: 0.01
|
||||
prob_neighbor_cure: 0.1
|
||||
interval: 1
|
||||
max_steps: 300
|
||||
name: Sim_all_wise
|
||||
network_agents:
|
||||
- agent_class: newsspread.WiseViewer
|
||||
state:
|
||||
has_tv: true
|
||||
state_id: neutral
|
||||
weight: 1
|
||||
- agent_class: newsspread.WiseViewer
|
||||
state:
|
||||
has_tv: true
|
||||
weight: 1
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
network_params:
|
||||
generator: barabasi_albert_graph
|
||||
n: 500
|
||||
m: 5
|
||||
num_trials: 50
|
@ -1,87 +0,0 @@
|
||||
from soil.agents import FSM, NetworkAgent, state, default_state, prob
|
||||
import logging
|
||||
|
||||
|
||||
class DumbViewer(FSM, NetworkAgent):
|
||||
"""
|
||||
A viewer that gets infected via TV (if it has one) and tries to infect
|
||||
its neighbors once it's infected.
|
||||
"""
|
||||
|
||||
prob_neighbor_spread = 0.5
|
||||
prob_tv_spread = 0.1
|
||||
has_been_infected = False
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def neutral(self):
|
||||
if self["has_tv"]:
|
||||
if self.prob(self.model["prob_tv_spread"]):
|
||||
return self.infected
|
||||
if self.has_been_infected:
|
||||
return self.infected
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
for neighbor in self.get_neighbors(state_id=self.neutral.id):
|
||||
if self.prob(self.model["prob_neighbor_spread"]):
|
||||
neighbor.infect()
|
||||
|
||||
def infect(self):
|
||||
"""
|
||||
This is not a state. It is a function that other agents can use to try to
|
||||
infect this agent. DumbViewer always gets infected, but other agents like
|
||||
HerdViewer might not become infected right away
|
||||
"""
|
||||
|
||||
self.has_been_infected = True
|
||||
|
||||
|
||||
class HerdViewer(DumbViewer):
|
||||
"""
|
||||
A viewer whose probability of infection depends on the state of its neighbors.
|
||||
"""
|
||||
|
||||
def infect(self):
|
||||
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
|
||||
infected = self.count_neighbors(state_id=self.infected.id)
|
||||
total = self.count_neighbors()
|
||||
prob_infect = self.model["prob_neighbor_spread"] * infected / total
|
||||
self.debug("prob_infect", prob_infect)
|
||||
if self.prob(prob_infect):
|
||||
self.has_been_infected = True
|
||||
|
||||
|
||||
class WiseViewer(HerdViewer):
|
||||
"""
|
||||
A viewer that can change its mind.
|
||||
"""
|
||||
|
||||
defaults = {
|
||||
"prob_neighbor_spread": 0.5,
|
||||
"prob_neighbor_cure": 0.25,
|
||||
"prob_tv_spread": 0.1,
|
||||
}
|
||||
|
||||
@state
|
||||
def cured(self):
|
||||
prob_cure = self.model["prob_neighbor_cure"]
|
||||
for neighbor in self.get_neighbors(state_id=self.infected.id):
|
||||
if self.prob(prob_cure):
|
||||
try:
|
||||
neighbor.cure()
|
||||
except AttributeError:
|
||||
self.debug("Viewer {} cannot be cured".format(neighbor.id))
|
||||
|
||||
def cure(self):
|
||||
self.has_been_cured = True
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
if self.has_been_cured:
|
||||
return self.cured
|
||||
cured = max(self.count_neighbors(self.cured.id), 1.0)
|
||||
infected = max(self.count_neighbors(self.infected.id), 1.0)
|
||||
prob_cure = self.model["prob_neighbor_cure"] * (cured / infected)
|
||||
if self.prob(prob_cure):
|
||||
return self.cured
|
134
examples/newsspread/newsspread_sim.py
Normal file
134
examples/newsspread/newsspread_sim.py
Normal file
@ -0,0 +1,134 @@
|
||||
from soil.agents import FSM, NetworkAgent, state, default_state, prob
|
||||
from soil.parameters import *
|
||||
import logging
|
||||
|
||||
from soil.environment import Environment
|
||||
|
||||
|
||||
class DumbViewer(FSM, NetworkAgent):
|
||||
"""
|
||||
A viewer that gets infected via TV (if it has one) and tries to infect
|
||||
its neighbors once it's infected.
|
||||
"""
|
||||
|
||||
has_been_infected: bool = False
|
||||
has_tv: bool = False
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def neutral(self):
|
||||
if self.has_tv:
|
||||
if self.prob(self.get("prob_tv_spread")):
|
||||
return self.infected
|
||||
if self.has_been_infected:
|
||||
return self.infected
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
for neighbor in self.get_neighbors(state_id=self.neutral.id):
|
||||
if self.prob(self.get("prob_neighbor_spread")):
|
||||
neighbor.infect()
|
||||
|
||||
def infect(self):
|
||||
"""
|
||||
This is not a state. It is a function that other agents can use to try to
|
||||
infect this agent. DumbViewer always gets infected, but other agents like
|
||||
HerdViewer might not become infected right away
|
||||
"""
|
||||
self.has_been_infected = True
|
||||
|
||||
|
||||
class HerdViewer(DumbViewer):
|
||||
"""
|
||||
A viewer whose probability of infection depends on the state of its neighbors.
|
||||
"""
|
||||
|
||||
def infect(self):
|
||||
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
|
||||
infected = self.count_neighbors(state_id=self.infected.id)
|
||||
total = self.count_neighbors()
|
||||
prob_infect = self.get("prob_neighbor_spread") * infected / total
|
||||
self.debug("prob_infect", prob_infect)
|
||||
if self.prob(prob_infect):
|
||||
self.has_been_infected = True
|
||||
|
||||
|
||||
class WiseViewer(HerdViewer):
|
||||
"""
|
||||
A viewer that can change its mind.
|
||||
"""
|
||||
|
||||
@state
|
||||
def cured(self):
|
||||
prob_cure = self.get("prob_neighbor_cure")
|
||||
for neighbor in self.get_neighbors(state_id=self.infected.id):
|
||||
if self.prob(prob_cure):
|
||||
try:
|
||||
neighbor.cure()
|
||||
except AttributeError:
|
||||
self.debug("Viewer {} cannot be cured".format(neighbor.id))
|
||||
|
||||
def cure(self):
|
||||
self.has_been_cured = True
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
if self.has_been_cured:
|
||||
return self.cured
|
||||
cured = max(self.count_neighbors(self.cured.id), 1.0)
|
||||
infected = max(self.count_neighbors(self.infected.id), 1.0)
|
||||
prob_cure = self.get("prob_neighbor_cure") * (cured / infected)
|
||||
if self.prob(prob_cure):
|
||||
return self.cured
|
||||
|
||||
|
||||
class NewsSpread(Environment):
|
||||
ratio_dumb: probability = 1,
|
||||
ratio_herd: probability = 0,
|
||||
ratio_wise: probability = 0,
|
||||
prob_tv_spread: probability = 0.1,
|
||||
prob_neighbor_spread: probability = 0.1,
|
||||
prob_neighbor_cure: probability = 0.05,
|
||||
|
||||
def init(self):
|
||||
self.populate_network([DumbViewer, HerdViewer, WiseViewer],
|
||||
[self.ratio_dumb, self.ratio_herd, self.ratio_wise])
|
||||
|
||||
|
||||
from itertools import product
|
||||
from soil import Simulation
|
||||
|
||||
|
||||
# We want to investigate the effect of different agent distributions on the spread of news.
|
||||
# To do that, we will run different simulations, with a varying ratio of DumbViewers, HerdViewers, and WiseViewers
|
||||
# Because the effect of these agents might also depend on the network structure, we will run our simulations on two different networks:
|
||||
# one with a small-world structure and one with a connected structure.
|
||||
|
||||
counter = 0
|
||||
for [r1, r2] in product([0, 0.5, 1.0], repeat=2):
|
||||
for (generator, netparams) in {
|
||||
"barabasi_albert_graph": {"m": 5},
|
||||
"erdos_renyi_graph": {"p": 0.1},
|
||||
}.items():
|
||||
print(r1, r2, 1-r1-r2, generator)
|
||||
# Create new simulation
|
||||
netparams["n"] = 500
|
||||
Simulation(
|
||||
name='newspread_sim',
|
||||
model=NewsSpread,
|
||||
model_params=dict(
|
||||
ratio_dumb=r1,
|
||||
ratio_herd=r2,
|
||||
ratio_wise=1-r1-r2,
|
||||
network_generator=generator,
|
||||
network_params=netparams,
|
||||
prob_neighbor_spread=0,
|
||||
),
|
||||
num_trials=5,
|
||||
max_steps=300,
|
||||
dump=False,
|
||||
).run()
|
||||
counter += 1
|
||||
# Run all the necessary instances
|
||||
|
||||
print(f"A total of {counter} simulations were run.")
|
@ -1,7 +1,7 @@
|
||||
"""
|
||||
Example of a fully programmatic simulation, without definition files.
|
||||
"""
|
||||
from soil import Simulation, agents
|
||||
from soil import Simulation, Environment, agents
|
||||
from networkx import Graph
|
||||
import logging
|
||||
|
||||
@ -14,7 +14,7 @@ def mygenerator():
|
||||
return G
|
||||
|
||||
|
||||
class MyAgent(agents.FSM):
|
||||
class MyAgent(agents.NetworkAgent, agents.FSM):
|
||||
times_run = 0
|
||||
@agents.default_state
|
||||
@agents.state
|
||||
@ -25,26 +25,22 @@ class MyAgent(agents.FSM):
|
||||
self.info("This runs 2/10 times on average")
|
||||
|
||||
|
||||
class ProgrammaticEnv(Environment):
|
||||
|
||||
def init(self):
|
||||
self.create_network(generator=mygenerator)
|
||||
assert len(self.G)
|
||||
self.populate_network(agent_class=MyAgent)
|
||||
self.add_agent_reporter('times_run')
|
||||
|
||||
|
||||
simulation = Simulation(
|
||||
name="Programmatic",
|
||||
model_params={
|
||||
'topology': {
|
||||
'params': {
|
||||
'generator': mygenerator
|
||||
},
|
||||
},
|
||||
'agents': {
|
||||
'distribution': [{
|
||||
'agent_class': MyAgent,
|
||||
'topology': True,
|
||||
}]
|
||||
}
|
||||
},
|
||||
model=ProgrammaticEnv,
|
||||
seed='Program',
|
||||
agent_reporters={'times_run': 'times_run'},
|
||||
num_trials=1,
|
||||
max_time=100,
|
||||
dry_run=True,
|
||||
dump=False,
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
@ -1,26 +0,0 @@
|
||||
---
|
||||
name: pubcrawl
|
||||
num_trials: 3
|
||||
max_steps: 10
|
||||
dump: false
|
||||
network_params:
|
||||
# Generate 100 empty nodes. They will be assigned a network agent
|
||||
generator: empty_graph
|
||||
n: 30
|
||||
network_agents:
|
||||
- agent_class: pubcrawl.Patron
|
||||
description: Extroverted patron
|
||||
state:
|
||||
openness: 1.0
|
||||
weight: 9
|
||||
- agent_class: pubcrawl.Patron
|
||||
description: Introverted patron
|
||||
state:
|
||||
openness: 0.1
|
||||
weight: 1
|
||||
environment_agents:
|
||||
- agent_class: pubcrawl.Police
|
||||
environment_class: pubcrawl.CityPubs
|
||||
environment_params:
|
||||
altercations: 0
|
||||
number_of_pubs: 3
|
@ -1,6 +1,7 @@
|
||||
from soil.agents import FSM, NetworkAgent, state, default_state
|
||||
from soil import Environment
|
||||
from soil import Environment, Simulation, parameters
|
||||
from itertools import islice
|
||||
import networkx as nx
|
||||
import logging
|
||||
|
||||
|
||||
@ -8,19 +9,24 @@ class CityPubs(Environment):
|
||||
"""Environment with Pubs"""
|
||||
|
||||
level = logging.INFO
|
||||
number_of_pubs: parameters.Integer = 3
|
||||
ratio_extroverted: parameters.probability = 0.1
|
||||
pub_capacity: parameters.Integer = 10
|
||||
|
||||
def __init__(self, *args, number_of_pubs=3, pub_capacity=10, **kwargs):
|
||||
super(CityPubs, self).__init__(*args, **kwargs)
|
||||
pubs = {}
|
||||
for i in range(number_of_pubs):
|
||||
def init(self):
|
||||
self.pubs = {}
|
||||
for i in range(self.number_of_pubs):
|
||||
newpub = {
|
||||
"name": "The awesome pub #{}".format(i),
|
||||
"open": True,
|
||||
"capacity": pub_capacity,
|
||||
"capacity": self.pub_capacity,
|
||||
"occupancy": 0,
|
||||
}
|
||||
pubs[newpub["name"]] = newpub
|
||||
self["pubs"] = pubs
|
||||
self.pubs[newpub["name"]] = newpub
|
||||
self.add_agent(agent_class=Police)
|
||||
self.populate_network([Patron.w(openness=0.1), Patron.w(openness=1)],
|
||||
[self.ratio_extroverted, 1-self.ratio_extroverted])
|
||||
assert all(["agent" in node and isinstance(node["agent"], Patron) for (_, node) in self.G.nodes(data=True)])
|
||||
|
||||
def enter(self, pub_id, *nodes):
|
||||
"""Agents will try to enter. The pub checks if it is possible"""
|
||||
@ -146,10 +152,10 @@ class Patron(FSM, NetworkAgent):
|
||||
continue
|
||||
if friend.befriend(self):
|
||||
self.befriend(friend, force=True)
|
||||
self.debug("Hooray! new friend: {}".format(friend.id))
|
||||
self.debug("Hooray! new friend: {}".format(friend.unique_id))
|
||||
befriended = True
|
||||
else:
|
||||
self.debug("{} does not want to be friends".format(friend.id))
|
||||
self.debug("{} does not want to be friends".format(friend.unique_id))
|
||||
return befriended
|
||||
|
||||
|
||||
@ -163,13 +169,27 @@ class Police(FSM):
|
||||
def patrol(self):
|
||||
drunksters = list(self.get_agents(drunk=True, state_id=Patron.drunk_in_pub.id))
|
||||
for drunk in drunksters:
|
||||
self.info("Kicking out the trash: {}".format(drunk.id))
|
||||
self.info("Kicking out the trash: {}".format(drunk.unique_id))
|
||||
drunk.kick_out()
|
||||
else:
|
||||
self.info("No trash to take out. Too bad.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from soil import run_from_config
|
||||
sim = Simulation(
|
||||
model=CityPubs,
|
||||
name="pubcrawl",
|
||||
num_trials=3,
|
||||
max_steps=10,
|
||||
dump=False,
|
||||
model_params=dict(
|
||||
network_generator=nx.empty_graph,
|
||||
network_params={"n": 30},
|
||||
model=CityPubs,
|
||||
altercations=0,
|
||||
number_of_pubs=3,
|
||||
)
|
||||
)
|
||||
|
||||
run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)
|
||||
|
||||
if __name__ == "__main__":
|
||||
sim.run(parallel=False)
|
@ -1,42 +0,0 @@
|
||||
---
|
||||
version: '2'
|
||||
name: rabbits_basic
|
||||
num_trials: 1
|
||||
seed: MySeed
|
||||
description: null
|
||||
group: null
|
||||
interval: 1.0
|
||||
max_time: 100
|
||||
model_class: rabbit_agents.RabbitEnv
|
||||
model_params:
|
||||
agents:
|
||||
topology: true
|
||||
distribution:
|
||||
- agent_class: rabbit_agents.Male
|
||||
weight: 1
|
||||
- agent_class: rabbit_agents.Female
|
||||
weight: 1
|
||||
fixed:
|
||||
- agent_class: rabbit_agents.RandomAccident
|
||||
topology: false
|
||||
hidden: true
|
||||
state:
|
||||
group: environment
|
||||
state:
|
||||
group: network
|
||||
mating_prob: 0.1
|
||||
prob_death: 0.001
|
||||
topology:
|
||||
fixed:
|
||||
directed: true
|
||||
links: []
|
||||
nodes:
|
||||
- id: 1
|
||||
- id: 0
|
||||
model_reporters:
|
||||
num_males: 'num_males'
|
||||
num_females: 'num_females'
|
||||
num_rabbits: |
|
||||
py:lambda env: env.num_males + env.num_females
|
||||
extra:
|
||||
visualization_params: {}
|
@ -1,42 +0,0 @@
|
||||
---
|
||||
version: '2'
|
||||
name: rabbits_improved
|
||||
num_trials: 1
|
||||
seed: MySeed
|
||||
description: null
|
||||
group: null
|
||||
interval: 1.0
|
||||
max_time: 100
|
||||
model_class: rabbit_agents.RabbitEnv
|
||||
model_params:
|
||||
agents:
|
||||
topology: true
|
||||
distribution:
|
||||
- agent_class: rabbit_agents.Male
|
||||
weight: 1
|
||||
- agent_class: rabbit_agents.Female
|
||||
weight: 1
|
||||
fixed:
|
||||
- agent_class: rabbit_agents.RandomAccident
|
||||
topology: false
|
||||
hidden: true
|
||||
state:
|
||||
group: environment
|
||||
state:
|
||||
group: network
|
||||
mating_prob: 0.1
|
||||
prob_death: 0.001
|
||||
topology:
|
||||
fixed:
|
||||
directed: true
|
||||
links: []
|
||||
nodes:
|
||||
- id: 1
|
||||
- id: 0
|
||||
model_reporters:
|
||||
num_males: 'num_males'
|
||||
num_females: 'num_females'
|
||||
num_rabbits: |
|
||||
py:lambda env: env.num_males + env.num_females
|
||||
extra:
|
||||
visualization_params: {}
|
@ -1,23 +1,20 @@
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, Simulation
|
||||
from soil.time import Delta
|
||||
from enum import Enum
|
||||
from collections import Counter
|
||||
import logging
|
||||
import math
|
||||
|
||||
from rabbits_basic_sim import RabbitEnv
|
||||
|
||||
class RabbitEnv(Environment):
|
||||
@property
|
||||
def num_rabbits(self):
|
||||
return self.count_agents(agent_class=Rabbit)
|
||||
|
||||
@property
|
||||
def num_males(self):
|
||||
return self.count_agents(agent_class=Male)
|
||||
|
||||
@property
|
||||
def num_females(self):
|
||||
return self.count_agents(agent_class=Female)
|
||||
class RabbitsImprovedEnv(RabbitEnv):
|
||||
def init(self):
|
||||
"""Initialize the environment with the new versions of the agents"""
|
||||
a1 = self.add_node(Male)
|
||||
a2 = self.add_node(Female)
|
||||
a1.add_edge(a2)
|
||||
self.add_agent(RandomAccident)
|
||||
|
||||
|
||||
class Rabbit(FSM, NetworkAgent):
|
||||
@ -150,8 +147,7 @@ class RandomAccident(BaseAgent):
|
||||
self.debug("Rabbits alive: {}".format(rabbits_alive))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from soil import easy
|
||||
sim = Simulation(model=RabbitsImprovedEnv, max_time=100, seed="MySeed", num_trials=1)
|
||||
|
||||
with easy("rabbits.yml") as sim:
|
||||
if __name__ == "__main__":
|
||||
sim.run()
|
@ -1,20 +1,29 @@
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, Simulation, report, parameters as params
|
||||
from collections import Counter
|
||||
import logging
|
||||
import math
|
||||
|
||||
|
||||
class RabbitEnv(Environment):
|
||||
prob_death = 1e-100
|
||||
prob_death: params.probability = 1e-100
|
||||
|
||||
def init(self):
|
||||
a1 = self.add_node(Male)
|
||||
a2 = self.add_node(Female)
|
||||
a1.add_edge(a2)
|
||||
self.add_agent(RandomAccident)
|
||||
|
||||
@report
|
||||
@property
|
||||
def num_rabbits(self):
|
||||
return self.count_agents(agent_class=Rabbit)
|
||||
|
||||
@report
|
||||
@property
|
||||
def num_males(self):
|
||||
return self.count_agents(agent_class=Male)
|
||||
|
||||
@report
|
||||
@property
|
||||
def num_females(self):
|
||||
return self.count_agents(agent_class=Female)
|
||||
@ -145,8 +154,8 @@ class RandomAccident(BaseAgent):
|
||||
self.debug("Rabbits alive: {}".format(rabbits_alive))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from soil import easy
|
||||
|
||||
with easy("rabbits.yml") as sim:
|
||||
sim = Simulation(model=RabbitEnv, max_time=100, seed="MySeed", num_trials=1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
sim.run()
|
@ -2,7 +2,7 @@
|
||||
Example of setting a
|
||||
Example of a fully programmatic simulation, without definition files.
|
||||
"""
|
||||
from soil import Simulation, agents
|
||||
from soil import Simulation, agents, Environment
|
||||
from soil.time import Delta
|
||||
|
||||
|
||||
@ -29,14 +29,18 @@ class MyAgent(agents.FSM):
|
||||
return None, Delta(self.random.expovariate(1 / 16))
|
||||
|
||||
|
||||
class RandomEnv(Environment):
|
||||
|
||||
def init(self):
|
||||
self.add_agent(agent_class=MyAgent)
|
||||
|
||||
|
||||
s = Simulation(
|
||||
name="Programmatic",
|
||||
model_params={
|
||||
'agents': [{'agent_class': MyAgent}],
|
||||
},
|
||||
model=RandomEnv,
|
||||
num_trials=1,
|
||||
max_time=100,
|
||||
dry_run=True,
|
||||
dump=False,
|
||||
)
|
||||
|
||||
|
@ -1,30 +0,0 @@
|
||||
---
|
||||
sampler:
|
||||
method: "SALib.sample.morris.sample"
|
||||
N: 10
|
||||
template:
|
||||
group: simple
|
||||
num_trials: 1
|
||||
interval: 1
|
||||
max_steps: 2
|
||||
seed: "CompleteSeed!"
|
||||
dump: false
|
||||
model_params:
|
||||
network_params:
|
||||
generator: complete_graph
|
||||
n: 10
|
||||
network_agents:
|
||||
- agent_class: CounterModel
|
||||
weight: "{{ x1 }}"
|
||||
state:
|
||||
state_id: 0
|
||||
- agent_class: AggregatedCounter
|
||||
weight: "{{ 1 - x1 }}"
|
||||
name: "{{ x3 }}"
|
||||
skip_test: true
|
||||
vars:
|
||||
bounds:
|
||||
x1: [0, 1]
|
||||
x2: [1, 2]
|
||||
fixed:
|
||||
x3: ["a", "b", "c"]
|
@ -1,62 +0,0 @@
|
||||
name: TerroristNetworkModel_sim
|
||||
max_steps: 150
|
||||
num_trials: 1
|
||||
model_params:
|
||||
network_params:
|
||||
generator: random_geometric_graph
|
||||
radius: 0.2
|
||||
# generator: geographical_threshold_graph
|
||||
# theta: 20
|
||||
n: 100
|
||||
network_agents:
|
||||
- agent_class: TerroristNetworkModel.TerroristNetworkModel
|
||||
weight: 0.8
|
||||
state:
|
||||
id: civilian # Civilians
|
||||
- agent_class: TerroristNetworkModel.TerroristNetworkModel
|
||||
weight: 0.1
|
||||
state:
|
||||
id: leader # Leaders
|
||||
- agent_class: TerroristNetworkModel.TrainingAreaModel
|
||||
weight: 0.05
|
||||
state:
|
||||
id: terrorist # Terrorism
|
||||
- agent_class: TerroristNetworkModel.HavenModel
|
||||
weight: 0.05
|
||||
state:
|
||||
id: civilian # Civilian
|
||||
|
||||
# TerroristSpreadModel
|
||||
information_spread_intensity: 0.7
|
||||
terrorist_additional_influence: 0.035
|
||||
max_vulnerability: 0.7
|
||||
prob_interaction: 0.5
|
||||
|
||||
# TrainingAreaModel and HavenModel
|
||||
training_influence: 0.20
|
||||
haven_influence: 0.20
|
||||
|
||||
# TerroristNetworkModel
|
||||
vision_range: 0.30
|
||||
sphere_influence: 2
|
||||
weight_social_distance: 0.035
|
||||
weight_link_distance: 0.035
|
||||
|
||||
visualization_params:
|
||||
# Icons downloaded from https://www.iconfinder.com/
|
||||
shape_property: agent
|
||||
shapes:
|
||||
TrainingAreaModel: target
|
||||
HavenModel: home
|
||||
TerroristNetworkModel: person
|
||||
colors:
|
||||
- attr_id: civilian
|
||||
color: '#40de40'
|
||||
- attr_id: terrorist
|
||||
color: red
|
||||
- attr_id: leader
|
||||
color: '#c16a6a'
|
||||
background_image: 'map_4800x2860.jpg'
|
||||
background_opacity: '0.9'
|
||||
background_filter_color: 'blue'
|
||||
skip_test: true # This simulation takes too long for automated tests.
|
@ -1,8 +1,47 @@
|
||||
import networkx as nx
|
||||
from soil.agents import Geo, NetworkAgent, FSM, state, default_state
|
||||
from soil import Environment
|
||||
from soil.agents import Geo, NetworkAgent, FSM, custom, state, default_state
|
||||
from soil import Environment, Simulation
|
||||
from soil.parameters import *
|
||||
|
||||
|
||||
class TerroristEnvironment(Environment):
|
||||
n: Integer = 100
|
||||
radius: Float = 0.2
|
||||
|
||||
information_spread_intensity: probability = 0.7
|
||||
terrorist_additional_influence: probability = 0.03
|
||||
terrorist_additional_influence: probability = 0.035
|
||||
max_vulnerability: probability = 0.7
|
||||
prob_interaction: probability = 0.5
|
||||
|
||||
# TrainingAreaModel and HavenModel
|
||||
training_influence: probability = 0.20
|
||||
haven_influence: probability = 0.20
|
||||
|
||||
# TerroristNetworkModel
|
||||
vision_range: Float = 0.30
|
||||
sphere_influence: Integer = 2
|
||||
weight_social_distance: Float = 0.035
|
||||
weight_link_distance: Float = 0.035
|
||||
|
||||
ratio_civil: probability = 0.8
|
||||
ratio_leader: probability = 0.1
|
||||
ratio_training: probability = 0.05
|
||||
ratio_haven: probability = 0.05
|
||||
|
||||
def init(self):
|
||||
self.create_network(generator=self.generator, n=self.n, radius=self.radius)
|
||||
self.populate_network([
|
||||
TerroristNetworkModel.w(state_id='civilian'),
|
||||
TerroristNetworkModel.w(state_id='leader'),
|
||||
TrainingAreaModel,
|
||||
HavenModel
|
||||
], [self.ratio_civil, self.ratio_leader, self.ratio_training, self.ratio_haven])
|
||||
|
||||
@staticmethod
|
||||
def generator(*args, **kwargs):
|
||||
return nx.random_geometric_graph(*args, **kwargs)
|
||||
|
||||
class TerroristSpreadModel(FSM, Geo):
|
||||
"""
|
||||
Settings:
|
||||
@ -13,47 +52,35 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
min_vulnerability (optional else zero)
|
||||
|
||||
max_vulnerability
|
||||
|
||||
prob_interaction
|
||||
"""
|
||||
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||
information_spread_intensity = 0.1
|
||||
terrorist_additional_influence = 0.1
|
||||
min_vulnerability = 0
|
||||
max_vulnerability = 1
|
||||
|
||||
self.information_spread_intensity = model.environment_params[
|
||||
"information_spread_intensity"
|
||||
]
|
||||
self.terrorist_additional_influence = model.environment_params[
|
||||
"terrorist_additional_influence"
|
||||
]
|
||||
self.prob_interaction = model.environment_params["prob_interaction"]
|
||||
|
||||
if self["id"] == self.civilian.id: # Civilian
|
||||
self.mean_belief = self.random.uniform(0.00, 0.5)
|
||||
elif self["id"] == self.terrorist.id: # Terrorist
|
||||
def init(self):
|
||||
if self.state_id == self.civilian.id: # Civilian
|
||||
self.mean_belief = self.model.random.uniform(0.00, 0.5)
|
||||
elif self.state_id == self.terrorist.id: # Terrorist
|
||||
self.mean_belief = self.random.uniform(0.8, 1.00)
|
||||
elif self["id"] == self.leader.id: # Leader
|
||||
elif self.state_id == self.leader.id: # Leader
|
||||
self.mean_belief = 1.00
|
||||
else:
|
||||
raise Exception("Invalid state id: {}".format(self["id"]))
|
||||
|
||||
if "min_vulnerability" in model.environment_params:
|
||||
self.vulnerability = self.random.uniform(
|
||||
model.environment_params["min_vulnerability"],
|
||||
model.environment_params["max_vulnerability"],
|
||||
)
|
||||
else:
|
||||
self.vulnerability = self.random.uniform(
|
||||
0, model.environment_params["max_vulnerability"]
|
||||
self.get("min_vulnerability", 0), self.get("max_vulnerability", 1)
|
||||
)
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def civilian(self):
|
||||
neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel))
|
||||
if len(neighbours) > 0:
|
||||
# Only interact with some of the neighbors
|
||||
interactions = list(
|
||||
n for n in neighbours if self.random.random() <= self.prob_interaction
|
||||
n for n in neighbours if self.random.random() <= self.model.prob_interaction
|
||||
)
|
||||
influence = sum(self.degree(i) for i in interactions)
|
||||
mean_belief = sum(
|
||||
@ -99,7 +126,7 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
)
|
||||
|
||||
# Check if there are any leaders in the group
|
||||
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours))
|
||||
leaders = list(filter(lambda x: x.state_id == self.leader.id, neighbours))
|
||||
if not leaders:
|
||||
# Check if this is the potential leader
|
||||
# Stop once it's found. Otherwise, set self as leader
|
||||
@ -110,12 +137,11 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
|
||||
def ego_search(self, steps=1, center=False, agent=None, **kwargs):
|
||||
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
|
||||
node = agent.node
|
||||
node = agent.node_id
|
||||
G = self.subgraph(**kwargs)
|
||||
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
|
||||
|
||||
def degree(self, agent, force=False):
|
||||
node = agent.node
|
||||
if (
|
||||
force
|
||||
or (not hasattr(self.model, "_degree"))
|
||||
@ -123,10 +149,9 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
):
|
||||
self.model._degree = nx.degree_centrality(self.G)
|
||||
self.model._last_step = self.now
|
||||
return self.model._degree[node]
|
||||
return self.model._degree[agent.node_id]
|
||||
|
||||
def betweenness(self, agent, force=False):
|
||||
node = agent.node
|
||||
if (
|
||||
force
|
||||
or (not hasattr(self.model, "_betweenness"))
|
||||
@ -134,7 +159,7 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
):
|
||||
self.model._betweenness = nx.betweenness_centrality(self.G)
|
||||
self.model._last_step = self.now
|
||||
return self.model._betweenness[node]
|
||||
return self.model._betweenness[agent.node_id]
|
||||
|
||||
|
||||
class TrainingAreaModel(FSM, Geo):
|
||||
@ -147,13 +172,12 @@ class TrainingAreaModel(FSM, Geo):
|
||||
Requires TerroristSpreadModel.
|
||||
"""
|
||||
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||
self.training_influence = model.environment_params["training_influence"]
|
||||
if "min_vulnerability" in model.environment_params:
|
||||
self.min_vulnerability = model.environment_params["min_vulnerability"]
|
||||
else:
|
||||
self.min_vulnerability = 0
|
||||
training_influence = 0.1
|
||||
min_vulnerability = 0
|
||||
|
||||
def init(self):
|
||||
self.mean_believe = 1
|
||||
self.vulnerability = 0
|
||||
|
||||
@default_state
|
||||
@state
|
||||
@ -177,18 +201,19 @@ class HavenModel(FSM, Geo):
|
||||
Requires TerroristSpreadModel.
|
||||
"""
|
||||
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||
self.haven_influence = model.environment_params["haven_influence"]
|
||||
if "min_vulnerability" in model.environment_params:
|
||||
self.min_vulnerability = model.environment_params["min_vulnerability"]
|
||||
else:
|
||||
self.min_vulnerability = 0
|
||||
self.max_vulnerability = model.environment_params["max_vulnerability"]
|
||||
min_vulnerability = 0
|
||||
haven_influence = 0.1
|
||||
max_vulnerability = 0.5
|
||||
|
||||
def init(self):
|
||||
self.mean_believe = 0
|
||||
self.vulnerability = 0
|
||||
|
||||
def get_occupants(self, **kwargs):
|
||||
return self.get_neighbors(agent_class=TerroristSpreadModel, **kwargs)
|
||||
return self.get_neighbors(agent_class=TerroristSpreadModel,
|
||||
**kwargs)
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def civilian(self):
|
||||
civilians = self.get_occupants(state_id=self.civilian.id)
|
||||
@ -224,13 +249,10 @@ class TerroristNetworkModel(TerroristSpreadModel):
|
||||
weight_link_distance
|
||||
"""
|
||||
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||
|
||||
self.vision_range = model.environment_params["vision_range"]
|
||||
self.sphere_influence = model.environment_params["sphere_influence"]
|
||||
self.weight_social_distance = model.environment_params["weight_social_distance"]
|
||||
self.weight_link_distance = model.environment_params["weight_link_distance"]
|
||||
sphere_influence: float = 1
|
||||
vision_range: float = 1
|
||||
weight_social_distance: float = 0.5
|
||||
weight_link_distance: float = 0.2
|
||||
|
||||
@state
|
||||
def terrorist(self):
|
||||
@ -287,3 +309,32 @@ class TerroristNetworkModel(TerroristSpreadModel):
|
||||
return nx.shortest_path_length(self.G, self.id, target)
|
||||
except nx.NetworkXNoPath:
|
||||
return float("inf")
|
||||
|
||||
|
||||
sim = Simulation(
|
||||
model=TerroristEnvironment,
|
||||
num_trials=1,
|
||||
name="TerroristNetworkModel_sim",
|
||||
max_steps=150,
|
||||
skip_test=False,
|
||||
dump=False,
|
||||
)
|
||||
|
||||
# TODO: integrate visualization
|
||||
# visualization_params:
|
||||
# # Icons downloaded from https://www.iconfinder.com/
|
||||
# shape_property: agent
|
||||
# shapes:
|
||||
# TrainingAreaModel: target
|
||||
# HavenModel: home
|
||||
# TerroristNetworkModel: person
|
||||
# colors:
|
||||
# - attr_id: civilian
|
||||
# color: '#40de40'
|
||||
# - attr_id: terrorist
|
||||
# color: red
|
||||
# - attr_id: leader
|
||||
# color: '#c16a6a'
|
||||
# background_image: 'map_4800x2860.jpg'
|
||||
# background_opacity: '0.9'
|
||||
# background_filter_color: 'blue'
|
@ -1,15 +0,0 @@
|
||||
---
|
||||
name: torvalds_example
|
||||
max_steps: 10
|
||||
interval: 2
|
||||
model_params:
|
||||
agent_class: CounterModel
|
||||
default_state:
|
||||
skill_level: 'beginner'
|
||||
network_params:
|
||||
path: 'torvalds.edgelist'
|
||||
states:
|
||||
Torvalds:
|
||||
skill_level: 'God'
|
||||
balkian:
|
||||
skill_level: 'developer'
|
25
examples/torvalds_sim.py
Normal file
25
examples/torvalds_sim.py
Normal file
@ -0,0 +1,25 @@
|
||||
from soil import Environment, Simulation, CounterModel, report
|
||||
|
||||
|
||||
# Get directory path for current file
|
||||
import os, sys, inspect
|
||||
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
||||
|
||||
class TorvaldsEnv(Environment):
|
||||
|
||||
def init(self):
|
||||
self.create_network(path=os.path.join(currentdir, 'torvalds.edgelist'))
|
||||
self.populate_network(CounterModel, skill_level='beginner')
|
||||
self.agent(node_id="Torvalds").skill_level = 'God'
|
||||
self.agent(node_id="balkian").skill_level = 'developer'
|
||||
self.add_agent_reporter("times")
|
||||
|
||||
@report
|
||||
def god_developers(self):
|
||||
return self.count_agents(skill_level='God')
|
||||
|
||||
|
||||
sim = Simulation(name='torvalds_example',
|
||||
max_steps=10,
|
||||
interval=2,
|
||||
model=TorvaldsEnv)
|
File diff suppressed because one or more lines are too long
@ -5,6 +5,8 @@ pyyaml>=5.1
|
||||
pandas>=1
|
||||
SALib>=1.3
|
||||
Jinja2
|
||||
Mesa>=1.1
|
||||
Mesa>=1.2
|
||||
pydantic>=1.9
|
||||
sqlalchemy>=1.4
|
||||
typing-extensions>=4.4
|
||||
annotated-types>=0.4
|
7
setup.py
7
setup.py
@ -44,13 +44,18 @@ setup(
|
||||
'Operating System :: MacOS :: MacOS X',
|
||||
'Operating System :: Microsoft :: Windows',
|
||||
'Operating System :: POSIX',
|
||||
'Programming Language :: Python :: 3'],
|
||||
"Programming Language :: Python :: 3 :: Only",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
],
|
||||
install_requires=install_reqs,
|
||||
extras_require=extras_require,
|
||||
tests_require=test_reqs,
|
||||
setup_requires=['pytest-runner', ],
|
||||
pytest_plugins = ['pytest_profiling'],
|
||||
include_package_data=True,
|
||||
python_requires=">=3.8",
|
||||
entry_points={
|
||||
'console_scripts':
|
||||
['soil = soil.__main__:main',
|
||||
|
@ -24,15 +24,15 @@ from .datacollection import SoilCollector
|
||||
from . import serialization
|
||||
from .utils import logger
|
||||
from .time import *
|
||||
from .decorators import *
|
||||
|
||||
|
||||
def main(
|
||||
cfg="simulation.yml",
|
||||
exporters=None,
|
||||
parallel=None,
|
||||
num_processes=1,
|
||||
output="soil_output",
|
||||
*,
|
||||
do_run=False,
|
||||
debug=False,
|
||||
pdb=False,
|
||||
**kwargs,
|
||||
@ -68,6 +68,11 @@ def main(
|
||||
"--dry-run",
|
||||
"--dry",
|
||||
action="store_true",
|
||||
help="Do not run the simulation",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-dump",
|
||||
action="store_true",
|
||||
help="Do not store the results of the simulation to disk, show in terminal instead.",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -97,11 +102,10 @@ def main(
|
||||
default=output or "soil_output",
|
||||
help="folder to write results to. It defaults to the current directory.",
|
||||
)
|
||||
if parallel is None:
|
||||
parser.add_argument(
|
||||
"--synchronous",
|
||||
action="store_true",
|
||||
help="Run trials serially and synchronously instead of in parallel. Defaults to false.",
|
||||
"--num-processes",
|
||||
default=num_processes,
|
||||
help="Number of processes to use for parallel execution. Defaults to 1.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -111,6 +115,17 @@ def main(
|
||||
default=[],
|
||||
help="Export environment and/or simulations using this exporter",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--until",
|
||||
default="",
|
||||
help="Set maximum time for the simulation to run. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
default=None,
|
||||
help="Manually set a seed for the simulation.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--only-convert",
|
||||
@ -137,9 +152,6 @@ def main(
|
||||
if args.version:
|
||||
return
|
||||
|
||||
if parallel is None:
|
||||
parallel = not args.synchronous
|
||||
|
||||
exporters = exporters or [
|
||||
"default",
|
||||
]
|
||||
@ -167,42 +179,46 @@ def main(
|
||||
res = []
|
||||
try:
|
||||
exp_params = {}
|
||||
opts = dict(
|
||||
dry_run=args.dry_run,
|
||||
dump=not args.no_dump,
|
||||
debug=debug,
|
||||
exporters=exporters,
|
||||
num_processes=args.num_processes,
|
||||
outdir=output,
|
||||
exporter_params=exp_params,
|
||||
**kwargs)
|
||||
if args.seed is not None:
|
||||
opts["seed"] = args.seed
|
||||
|
||||
if sim:
|
||||
logger.info("Loading simulation instance")
|
||||
sim.dry_run = args.dry_run
|
||||
sim.exporters = exporters
|
||||
sim.parallel = parallel
|
||||
sim.outdir = output
|
||||
sims = [
|
||||
sim,
|
||||
]
|
||||
for (k, v) in opts.items():
|
||||
setattr(sim, k, v)
|
||||
sims = [sim]
|
||||
else:
|
||||
logger.info("Loading config file: {}".format(args.file))
|
||||
if not os.path.exists(args.file):
|
||||
logger.error("Please, input a valid file")
|
||||
return
|
||||
|
||||
assert opts["debug"] == debug
|
||||
sims = list(
|
||||
simulation.iter_from_config(
|
||||
simulation.iter_from_file(
|
||||
args.file,
|
||||
dry_run=args.dry_run,
|
||||
exporters=exporters,
|
||||
parallel=parallel,
|
||||
outdir=output,
|
||||
exporter_params=exp_params,
|
||||
**kwargs,
|
||||
**opts,
|
||||
)
|
||||
)
|
||||
|
||||
for sim in sims:
|
||||
assert sim.debug == debug
|
||||
|
||||
if args.set:
|
||||
for s in args.set:
|
||||
k, v = s.split("=", 1)[:2]
|
||||
v = eval(v)
|
||||
tail, *head = k.rsplit(".", 1)[::-1]
|
||||
target = sim
|
||||
target = sim.model_params
|
||||
if head:
|
||||
for part in head[0].split("."):
|
||||
try:
|
||||
@ -217,11 +233,7 @@ def main(
|
||||
if args.only_convert:
|
||||
print(sim.to_yaml())
|
||||
continue
|
||||
if do_run:
|
||||
res.append(sim.run())
|
||||
else:
|
||||
print("not running")
|
||||
res.append(sim)
|
||||
res.append(sim.run(until=args.until))
|
||||
|
||||
except Exception as ex:
|
||||
if args.pdb:
|
||||
@ -242,7 +254,7 @@ def main(
|
||||
@contextmanager
|
||||
def easy(cfg, pdb=False, debug=False, **kwargs):
|
||||
try:
|
||||
yield main(cfg, debug=debug, pdb=pdb, **kwargs)[0]
|
||||
return main(cfg, debug=debug, pdb=pdb, **kwargs)[0]
|
||||
except Exception as e:
|
||||
if os.environ.get("SOIL_POSTMORTEM"):
|
||||
from .debugging import post_mortem
|
||||
@ -253,4 +265,4 @@ def easy(cfg, pdb=False, debug=False, **kwargs):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(do_run=True)
|
||||
main()
|
||||
|
@ -2,8 +2,8 @@ from . import main as init_main
|
||||
|
||||
|
||||
def main():
|
||||
init_main(do_run=True)
|
||||
init_main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
init_main(do_run=True)
|
||||
init_main()
|
||||
|
@ -1,6 +1,12 @@
|
||||
from . import NetworkAgent
|
||||
from . import BaseAgent, NetworkAgent
|
||||
|
||||
|
||||
class Ticker(BaseAgent):
|
||||
times = 0
|
||||
|
||||
def step(self):
|
||||
self.times += 1
|
||||
|
||||
class CounterModel(NetworkAgent):
|
||||
"""
|
||||
Dummy behaviour. It counts the number of nodes in the network and neighbors
|
||||
|
@ -11,13 +11,15 @@ import inspect
|
||||
import types
|
||||
import textwrap
|
||||
import networkx as nx
|
||||
import warnings
|
||||
import sys
|
||||
|
||||
from typing import Any
|
||||
|
||||
from mesa import Agent as MesaAgent
|
||||
from mesa import Agent as MesaAgent, Model
|
||||
from typing import Dict, List
|
||||
|
||||
from .. import serialization, utils, time, config
|
||||
from .. import serialization, network, utils, time, config
|
||||
|
||||
|
||||
IGNORED_FIELDS = ("model", "logger")
|
||||
@ -90,7 +92,7 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
Any attribute that is not preceded by an underscore (`_`) will also be added to its state.
|
||||
"""
|
||||
|
||||
def __init__(self, unique_id, model, name=None, interval=None, **kwargs):
|
||||
def __init__(self, unique_id, model, name=None, init=True, interval=None, **kwargs):
|
||||
assert isinstance(unique_id, int)
|
||||
super().__init__(unique_id=unique_id, model=model)
|
||||
|
||||
@ -116,6 +118,11 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
for (k, v) in kwargs.items():
|
||||
|
||||
setattr(self, k, v)
|
||||
if init:
|
||||
self.init()
|
||||
|
||||
def init(self):
|
||||
pass
|
||||
|
||||
def __hash__(self):
|
||||
return hash(self.unique_id)
|
||||
@ -123,9 +130,16 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
def prob(self, probability):
|
||||
return prob(probability, self.model.random)
|
||||
|
||||
@classmethod
|
||||
def w(cls, **kwargs):
|
||||
return custom(cls, **kwargs)
|
||||
|
||||
# TODO: refactor to clean up mesa compatibility
|
||||
@property
|
||||
def id(self):
|
||||
msg = "This attribute is deprecated. Use `unique_id` instead"
|
||||
warnings.warn(msg, DeprecationWarning)
|
||||
print(msg, file=sys.stderr)
|
||||
return self.unique_id
|
||||
|
||||
@classmethod
|
||||
@ -175,7 +189,11 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
return it
|
||||
|
||||
def get(self, key, default=None):
|
||||
return self[key] if key in self else default
|
||||
if key in self:
|
||||
return self[key]
|
||||
elif key in self.model:
|
||||
return self.model[key]
|
||||
return default
|
||||
|
||||
@property
|
||||
def now(self):
|
||||
@ -185,8 +203,10 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
# No environment
|
||||
return None
|
||||
|
||||
def die(self):
|
||||
self.info(f"agent dying")
|
||||
def die(self, msg=None):
|
||||
if msg:
|
||||
self.info("Agent dying:", msg)
|
||||
self.debug(f"agent dying")
|
||||
self.alive = False
|
||||
try:
|
||||
self.model.schedule.remove(self)
|
||||
@ -195,15 +215,16 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
return time.NEVER
|
||||
|
||||
def step(self):
|
||||
raise NotImplementedError("Agent must implement step method")
|
||||
|
||||
def _check_alive(self):
|
||||
if not self.alive:
|
||||
raise time.DeadAgent(self.unique_id)
|
||||
super().step()
|
||||
return time.Delta(self.interval)
|
||||
|
||||
def log(self, message, *args, level=logging.INFO, **kwargs):
|
||||
def log(self, *message, level=logging.INFO, **kwargs):
|
||||
if not self.logger.isEnabledFor(level):
|
||||
return
|
||||
message = message + " ".join(str(i) for i in args)
|
||||
message = " ".join(str(i) for i in message)
|
||||
message = "[@{:>4}]\t{:>10}: {}".format(self.now, repr(self), message)
|
||||
for k, v in kwargs:
|
||||
message += " {k}={v} ".format(k, v)
|
||||
@ -376,7 +397,7 @@ class AgentView(Mapping, Set):
|
||||
|
||||
|
||||
def filter_agents(
|
||||
agents,
|
||||
agents: dict,
|
||||
*id_args,
|
||||
unique_id=None,
|
||||
state_id=None,
|
||||
@ -621,12 +642,16 @@ def _from_distro(
|
||||
from .network_agents import *
|
||||
from .fsm import *
|
||||
from .evented import *
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class Agent(NetworkAgent, FSM, EventedAgent):
|
||||
"""Default agent class, has both network and event capabilities"""
|
||||
|
||||
|
||||
from ..environment import NetworkEnvironment
|
||||
|
||||
|
||||
from .BassModel import *
|
||||
from .IndependentCascadeModel import *
|
||||
from .SISaModel import *
|
||||
@ -640,3 +665,8 @@ except ImportError:
|
||||
import sys
|
||||
|
||||
print("Could not load the Geo Agent, scipy is not installed", file=sys.stderr)
|
||||
|
||||
|
||||
def custom(cls, **kwargs):
|
||||
"""Create a new class from a template class and keyword arguments"""
|
||||
return type(cls.__name__, (cls,), kwargs)
|
@ -1,4 +1,5 @@
|
||||
from . import MetaAgent, BaseAgent
|
||||
from ..time import Delta
|
||||
|
||||
from functools import partial, wraps
|
||||
import inspect
|
||||
@ -85,8 +86,8 @@ class MetaFSM(MetaAgent):
|
||||
|
||||
|
||||
class FSM(BaseAgent, metaclass=MetaFSM):
|
||||
def __init__(self, **kwargs):
|
||||
super(FSM, self).__init__(**kwargs)
|
||||
def __init__(self, init=True, **kwargs):
|
||||
super().__init__(**kwargs, init=False)
|
||||
if not hasattr(self, "state_id"):
|
||||
if not self._default_state:
|
||||
raise ValueError(
|
||||
@ -95,12 +96,15 @@ class FSM(BaseAgent, metaclass=MetaFSM):
|
||||
self.state_id = self._default_state.id
|
||||
|
||||
self._coroutine = None
|
||||
self.default_interval = Delta(self.model.interval)
|
||||
self._set_state(self.state_id)
|
||||
if init:
|
||||
self.init()
|
||||
|
||||
def step(self):
|
||||
self.debug(f"Agent {self.unique_id} @ state {self.state_id}")
|
||||
default_interval = super().step()
|
||||
|
||||
self._check_alive()
|
||||
next_state = self._states[self.state_id](self)
|
||||
|
||||
when = None
|
||||
@ -120,7 +124,7 @@ class FSM(BaseAgent, metaclass=MetaFSM):
|
||||
if next_state is not None:
|
||||
self._set_state(next_state)
|
||||
|
||||
return when or default_interval
|
||||
return when or self.default_interval
|
||||
|
||||
def _set_state(self, state, when=None):
|
||||
if hasattr(state, "id"):
|
||||
@ -132,8 +136,8 @@ class FSM(BaseAgent, metaclass=MetaFSM):
|
||||
self.model.schedule.add(self, when=when)
|
||||
return state
|
||||
|
||||
def die(self):
|
||||
return self.dead, super().die()
|
||||
def die(self, *args, **kwargs):
|
||||
return self.dead, super().die(*args, **kwargs)
|
||||
|
||||
@state
|
||||
def dead(self):
|
||||
|
@ -2,23 +2,37 @@ from . import BaseAgent
|
||||
|
||||
|
||||
class NetworkAgent(BaseAgent):
|
||||
def __init__(self, *args, topology, node_id, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
def __init__(self, *args, topology=None, init=True, node_id=None, **kwargs):
|
||||
super().__init__(*args, init=False, **kwargs)
|
||||
|
||||
assert topology is not None
|
||||
assert node_id is not None
|
||||
self.G = topology
|
||||
self.G = topology or self.model.G
|
||||
assert self.G
|
||||
if node_id is None:
|
||||
nodes = self.random.choices(list(self.G.nodes), k=len(self.G))
|
||||
for n_id in nodes:
|
||||
if "agent" not in self.G.nodes[n_id] or self.G.nodes[n_id]["agent"] is None:
|
||||
node_id = n_id
|
||||
break
|
||||
else:
|
||||
node_id = len(self.G)
|
||||
self.info(f"All nodes ({len(self.G)}) have an agent assigned, adding a new node to the graph for agent {self.unique_id}")
|
||||
self.G.add_node(node_id)
|
||||
assert node_id is not None
|
||||
self.G.nodes[node_id]["agent"] = self
|
||||
self.node_id = node_id
|
||||
if init:
|
||||
self.init()
|
||||
|
||||
def count_neighbors(self, state_id=None, **kwargs):
|
||||
return len(self.get_neighbors(state_id=state_id, **kwargs))
|
||||
if init:
|
||||
self.init()
|
||||
|
||||
def iter_neighbors(self, **kwargs):
|
||||
return self.iter_agents(limit_neighbors=True, **kwargs)
|
||||
|
||||
def get_neighbors(self, **kwargs):
|
||||
return list(self.iter_neighbors())
|
||||
return list(self.iter_neighbors(**kwargs))
|
||||
|
||||
@property
|
||||
def node(self):
|
||||
@ -38,8 +52,9 @@ class NetworkAgent(BaseAgent):
|
||||
if limit_neighbors:
|
||||
neighbor_ids = set()
|
||||
for node_id in self.G.neighbors(self.node_id):
|
||||
if self.G.nodes[node_id].get("agent") is not None:
|
||||
neighbor_ids.add(node_id)
|
||||
agent = self.G.nodes[node_id].get("agent")
|
||||
if agent is not None:
|
||||
neighbor_ids.add(agent.unique_id)
|
||||
if unique_ids:
|
||||
unique_ids = unique_ids & neighbor_ids
|
||||
else:
|
||||
|
267
soil/config.py
267
soil/config.py
@ -1,267 +1,2 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from enum import Enum
|
||||
from pydantic import BaseModel, ValidationError, validator, root_validator
|
||||
|
||||
import yaml
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
from typing import Any, Callable, Dict, List, Optional, Union, Type
|
||||
from pydantic import BaseModel, Extra
|
||||
|
||||
from . import environment, utils
|
||||
|
||||
import networkx as nx
|
||||
|
||||
|
||||
# Could use TypeAlias in python >= 3.10
|
||||
nodeId = int
|
||||
|
||||
|
||||
class Node(BaseModel):
|
||||
id: nodeId
|
||||
state: Optional[Dict[str, Any]] = {}
|
||||
|
||||
|
||||
class Edge(BaseModel):
|
||||
source: nodeId
|
||||
target: nodeId
|
||||
value: Optional[float] = 1
|
||||
|
||||
|
||||
class Topology(BaseModel):
|
||||
nodes: List[Node]
|
||||
directed: bool
|
||||
links: List[Edge]
|
||||
|
||||
|
||||
class NetConfig(BaseModel):
|
||||
params: Optional[Dict[str, Any]]
|
||||
fixed: Optional[Union[Topology, nx.Graph]]
|
||||
path: Optional[str]
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
@staticmethod
|
||||
def default():
|
||||
return NetConfig(topology=None, params=None)
|
||||
|
||||
@root_validator
|
||||
def validate_all(cls, values):
|
||||
if "params" not in values and "topology" not in values:
|
||||
raise ValueError(
|
||||
"You must specify either a topology or the parameters to generate a graph"
|
||||
)
|
||||
return values
|
||||
|
||||
|
||||
class EnvConfig(BaseModel):
|
||||
@staticmethod
|
||||
def default():
|
||||
return EnvConfig()
|
||||
|
||||
|
||||
class SingleAgentConfig(BaseModel):
|
||||
agent_class: Optional[Union[Type, str]] = None
|
||||
unique_id: Optional[int] = None
|
||||
topology: Optional[bool] = False
|
||||
node_id: Optional[Union[int, str]] = None
|
||||
state: Optional[Dict[str, Any]] = {}
|
||||
|
||||
|
||||
class FixedAgentConfig(SingleAgentConfig):
|
||||
n: Optional[int] = 1
|
||||
hidden: Optional[bool] = False # Do not count this agent towards total agent count
|
||||
|
||||
@root_validator
|
||||
def validate_all(cls, values):
|
||||
if values.get("unique_id", None) is not None and values.get("n", 1) > 1:
|
||||
raise ValueError(
|
||||
f"An unique_id can only be provided when there is only one agent ({values.get('n')} given)"
|
||||
)
|
||||
return values
|
||||
|
||||
|
||||
class OverrideAgentConfig(FixedAgentConfig):
|
||||
filter: Optional[Dict[str, Any]] = None
|
||||
|
||||
|
||||
class Strategy(Enum):
|
||||
topology = "topology"
|
||||
total = "total"
|
||||
|
||||
|
||||
class AgentDistro(SingleAgentConfig):
|
||||
weight: Optional[float] = 1
|
||||
strategy: Strategy = Strategy.topology
|
||||
|
||||
|
||||
class AgentConfig(SingleAgentConfig):
|
||||
n: Optional[int] = None
|
||||
distribution: Optional[List[AgentDistro]] = None
|
||||
fixed: Optional[List[FixedAgentConfig]] = None
|
||||
override: Optional[List[OverrideAgentConfig]] = None
|
||||
|
||||
@staticmethod
|
||||
def default():
|
||||
return AgentConfig()
|
||||
|
||||
@root_validator
|
||||
def validate_all(cls, values):
|
||||
if "distribution" in values and (
|
||||
"n" not in values and "topology" not in values
|
||||
):
|
||||
raise ValueError(
|
||||
"You need to provide the number of agents or a topology to extract the value from."
|
||||
)
|
||||
return values
|
||||
|
||||
|
||||
class Config(BaseModel, extra=Extra.allow):
|
||||
version: Optional[str] = "1"
|
||||
|
||||
name: str = "Unnamed Simulation"
|
||||
description: Optional[str] = None
|
||||
group: str = None
|
||||
dir_path: Optional[str] = None
|
||||
num_trials: int = 1
|
||||
max_time: float = 100
|
||||
max_steps: int = -1
|
||||
num_processes: int = 1
|
||||
interval: float = 1
|
||||
seed: str = ""
|
||||
dry_run: bool = False
|
||||
skip_test: bool = False
|
||||
|
||||
model_class: Union[Type, str] = environment.Environment
|
||||
model_params: Optional[Dict[str, Any]] = {}
|
||||
|
||||
visualization_params: Optional[Dict[str, Any]] = {}
|
||||
|
||||
@classmethod
|
||||
def from_raw(cls, cfg):
|
||||
if isinstance(cfg, Config):
|
||||
def load_config(cfg):
|
||||
return cfg
|
||||
if cfg.get("version", "1") == "1" and any(
|
||||
k in cfg for k in ["agents", "agent_class", "topology", "environment_class"]
|
||||
):
|
||||
return convert_old(cfg)
|
||||
return Config(**cfg)
|
||||
|
||||
|
||||
def convert_old(old, strict=True):
|
||||
"""
|
||||
Try to convert old style configs into the new format.
|
||||
|
||||
This is still a work in progress and might not work in many cases.
|
||||
"""
|
||||
|
||||
utils.logger.warning(
|
||||
"The old configuration format is deprecated. The converted file MAY NOT yield the right results"
|
||||
)
|
||||
|
||||
new = old.copy()
|
||||
|
||||
network = {}
|
||||
|
||||
if "topology" in old:
|
||||
del new["topology"]
|
||||
network["topology"] = old["topology"]
|
||||
|
||||
if "network_params" in old and old["network_params"]:
|
||||
del new["network_params"]
|
||||
for (k, v) in old["network_params"].items():
|
||||
if k == "path":
|
||||
network["path"] = v
|
||||
else:
|
||||
network.setdefault("params", {})[k] = v
|
||||
|
||||
topology = None
|
||||
if network:
|
||||
topology = network
|
||||
|
||||
agents = {"fixed": [], "distribution": []}
|
||||
|
||||
def updated_agent(agent):
|
||||
"""Convert an agent definition"""
|
||||
newagent = dict(agent)
|
||||
return newagent
|
||||
|
||||
by_weight = []
|
||||
fixed = []
|
||||
override = []
|
||||
|
||||
if "environment_agents" in new:
|
||||
|
||||
for agent in new["environment_agents"]:
|
||||
agent.setdefault("state", {})["group"] = "environment"
|
||||
if "agent_id" in agent:
|
||||
agent["state"]["name"] = agent["agent_id"]
|
||||
del agent["agent_id"]
|
||||
agent["hidden"] = True
|
||||
agent["topology"] = False
|
||||
fixed.append(updated_agent(agent))
|
||||
del new["environment_agents"]
|
||||
|
||||
if "agent_class" in old:
|
||||
del new["agent_class"]
|
||||
agents["agent_class"] = old["agent_class"]
|
||||
|
||||
if "default_state" in old:
|
||||
del new["default_state"]
|
||||
agents["state"] = old["default_state"]
|
||||
|
||||
if "network_agents" in old:
|
||||
agents["topology"] = True
|
||||
|
||||
agents.setdefault("state", {})["group"] = "network"
|
||||
|
||||
for agent in new["network_agents"]:
|
||||
agent = updated_agent(agent)
|
||||
if "agent_id" in agent:
|
||||
agent["state"]["name"] = agent["agent_id"]
|
||||
del agent["agent_id"]
|
||||
fixed.append(agent)
|
||||
else:
|
||||
by_weight.append(agent)
|
||||
del new["network_agents"]
|
||||
|
||||
if "agent_class" in old and (not fixed and not by_weight):
|
||||
agents["topology"] = True
|
||||
by_weight = [{"agent_class": old["agent_class"], "weight": 1}]
|
||||
|
||||
# TODO: translate states properly
|
||||
if "states" in old:
|
||||
del new["states"]
|
||||
states = old["states"]
|
||||
if isinstance(states, dict):
|
||||
states = states.items()
|
||||
else:
|
||||
states = enumerate(states)
|
||||
for (k, v) in states:
|
||||
override.append({"filter": {"node_id": k}, "state": v})
|
||||
|
||||
agents["override"] = override
|
||||
agents["fixed"] = fixed
|
||||
agents["distribution"] = by_weight
|
||||
|
||||
model_params = {}
|
||||
if "environment_params" in new:
|
||||
del new["environment_params"]
|
||||
model_params = dict(old["environment_params"])
|
||||
|
||||
if "environment_class" in old:
|
||||
del new["environment_class"]
|
||||
new["model_class"] = old["environment_class"]
|
||||
|
||||
if "dump" in old:
|
||||
del new["dump"]
|
||||
new["dry_run"] = not old["dump"]
|
||||
|
||||
model_params["topology"] = topology
|
||||
model_params["agents"] = agents
|
||||
|
||||
return Config(version="2", model_params=model_params, **new)
|
||||
|
@ -9,7 +9,7 @@ class SoilCollector(MDC):
|
||||
if 'agent_count' not in model_reporters:
|
||||
model_reporters['agent_count'] = lambda m: m.schedule.get_agent_count()
|
||||
if 'state_id' not in agent_reporters:
|
||||
agent_reporters['agent_id'] = lambda agent: agent.get('state_id', None)
|
||||
agent_reporters['agent_id'] = lambda agent: getattr(agent, 'state_id', None)
|
||||
|
||||
super().__init__(model_reporters=model_reporters,
|
||||
agent_reporters=agent_reporters,
|
||||
|
@ -8,6 +8,7 @@ from textwrap import indent
|
||||
from functools import wraps
|
||||
|
||||
from .agents import FSM, MetaFSM
|
||||
from mesa import Model, Agent
|
||||
|
||||
|
||||
def wrapcmd(func):
|
||||
@ -15,14 +16,22 @@ def wrapcmd(func):
|
||||
def wrapper(self, arg: str, temporary=False):
|
||||
sys.settrace(self.trace_dispatch)
|
||||
|
||||
lastself = self
|
||||
known = globals()
|
||||
known.update(self.curframe.f_globals)
|
||||
known.update(self.curframe.f_locals)
|
||||
known["agent"] = known.get("self", None)
|
||||
known["model"] = known.get("self", {}).get("model")
|
||||
known["attrs"] = arg.strip().split()
|
||||
|
||||
exec(func.__code__, known, known)
|
||||
this = known.get("self", None)
|
||||
|
||||
if isinstance(this, Model):
|
||||
known["model"] = this
|
||||
elif isinstance(this, Agent):
|
||||
known["agent"] = this
|
||||
known["model"] = this.model
|
||||
|
||||
known["self"] = lastself
|
||||
return exec(func.__code__, known, known)
|
||||
|
||||
return wrapper
|
||||
|
||||
@ -57,6 +66,7 @@ class Debug(pdb.Pdb):
|
||||
do_sl = do_soil_list
|
||||
|
||||
def do_continue_state(self, arg):
|
||||
"""Continue until next time this state is reached"""
|
||||
self.do_break_state(arg, temporary=True)
|
||||
return self.do_continue("")
|
||||
|
||||
@ -80,6 +90,49 @@ class Debug(pdb.Pdb):
|
||||
|
||||
do_aa = do_soil_agent
|
||||
|
||||
def do_break_step(self, arg: str):
|
||||
"""
|
||||
Break before the next step.
|
||||
"""
|
||||
try:
|
||||
known = globals()
|
||||
known.update(self.curframe.f_globals)
|
||||
known.update(self.curframe.f_locals)
|
||||
func = getattr(known["model"], "step")
|
||||
except AttributeError as ex:
|
||||
self.error(f"The model does not have a step function: {ex}")
|
||||
return
|
||||
if hasattr(func, "__func__"):
|
||||
func = func.__func__
|
||||
|
||||
code = func.__code__
|
||||
# use co_name to identify the bkpt (function names
|
||||
# could be aliased, but co_name is invariant)
|
||||
funcname = code.co_name
|
||||
lineno = code.co_firstlineno
|
||||
filename = code.co_filename
|
||||
|
||||
# Check for reasonable breakpoint
|
||||
line = self.checkline(filename, lineno)
|
||||
if not line:
|
||||
raise ValueError("no line found")
|
||||
# now set the break point
|
||||
|
||||
existing = self.get_breaks(filename, line)
|
||||
if existing:
|
||||
self.message("Breakpoint already exists at %s:%d" % (filename, line))
|
||||
return
|
||||
cond = f"self.schedule.steps > {model.schedule.steps}"
|
||||
err = self.set_break(filename, line, True, cond, funcname)
|
||||
if err:
|
||||
self.error(err)
|
||||
else:
|
||||
bp = self.get_breaks(filename, line)[-1]
|
||||
self.message("Breakpoint %d at %s:%d" % (bp.number, bp.file, bp.line))
|
||||
return self.do_continue("")
|
||||
|
||||
do_bstep = do_break_step
|
||||
|
||||
def do_break_state(self, arg: str, instances=None, temporary=False):
|
||||
"""
|
||||
Break before a specified state is stepped into.
|
||||
|
6
soil/decorators.py
Normal file
6
soil/decorators.py
Normal file
@ -0,0 +1,6 @@
|
||||
def report(f: property):
|
||||
if isinstance(f, property):
|
||||
setattr(f.fget, "add_to_report", True)
|
||||
else:
|
||||
setattr(f, "add_to_report", True)
|
||||
return f
|
@ -6,20 +6,21 @@ import math
|
||||
import logging
|
||||
import inspect
|
||||
|
||||
from typing import Any, Dict, Optional, Union, List
|
||||
from typing import Any, Callable, Dict, Optional, Union, List, Type
|
||||
from collections import namedtuple
|
||||
from time import time as current_time
|
||||
from copy import deepcopy
|
||||
from networkx.readwrite import json_graph
|
||||
|
||||
|
||||
import networkx as nx
|
||||
|
||||
from mesa import Model
|
||||
from mesa import Model, Agent
|
||||
|
||||
from . import agents as agentmod, config, datacollection, serialization, utils, time, network, events
|
||||
from . import agents as agentmod, datacollection, serialization, utils, time, network, events
|
||||
|
||||
|
||||
# TODO: maybe add metaclass to read attributes of a model
|
||||
|
||||
class BaseEnvironment(Model):
|
||||
"""
|
||||
The environment is key in a simulation. It controls how agents interact,
|
||||
@ -33,105 +34,83 @@ class BaseEnvironment(Model):
|
||||
:meth:`soil.environment.Environment.get` method.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
id="unnamed_env",
|
||||
def __new__(cls,
|
||||
*args: Any,
|
||||
seed="default",
|
||||
schedule_class=time.TimedActivation,
|
||||
dir_path=None,
|
||||
interval=1,
|
||||
agent_class=None,
|
||||
agents: List[tuple[type, Dict[str, Any]]] = {},
|
||||
collector_class: type = datacollection.SoilCollector,
|
||||
agent_reporters: Optional[Any] = None,
|
||||
model_reporters: Optional[Any] = None,
|
||||
tables: Optional[Any] = None,
|
||||
**env_params,
|
||||
):
|
||||
|
||||
super().__init__(seed=seed)
|
||||
|
||||
self.current_id = -1
|
||||
|
||||
self.id = id
|
||||
|
||||
**kwargs: Any) -> Any:
|
||||
"""Create a new model with a default seed value"""
|
||||
self = super().__new__(cls, *args, seed=seed, **kwargs)
|
||||
self.dir_path = dir_path or os.getcwd()
|
||||
|
||||
if schedule_class is None:
|
||||
schedule_class = time.TimedActivation
|
||||
else:
|
||||
schedule_class = serialization.deserialize(schedule_class)
|
||||
self.schedule = schedule_class(self)
|
||||
|
||||
self.agent_class = agent_class or agentmod.BaseAgent
|
||||
|
||||
self.interval = interval
|
||||
self.init_agents(agents)
|
||||
|
||||
self.logger = utils.logger.getChild(self.id)
|
||||
|
||||
collector_class = serialization.deserialize(collector_class)
|
||||
self.datacollector = collector_class(
|
||||
model_reporters=model_reporters,
|
||||
agent_reporters=agent_reporters,
|
||||
tables=tables,
|
||||
)
|
||||
for k in dir(cls):
|
||||
v = getattr(cls, k)
|
||||
if isinstance(v, property):
|
||||
v = v.fget
|
||||
if getattr(v, "add_to_report", False):
|
||||
self.add_model_reporter(k, v)
|
||||
|
||||
return self
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
id="unnamed_env",
|
||||
seed="default",
|
||||
dir_path=None,
|
||||
schedule_class=time.TimedActivation,
|
||||
interval=1,
|
||||
agents: Optional[Dict] = None,
|
||||
collector_class: type = datacollection.SoilCollector,
|
||||
agent_reporters: Optional[Any] = None,
|
||||
model_reporters: Optional[Any] = None,
|
||||
tables: Optional[Any] = None,
|
||||
init: bool = True,
|
||||
**env_params,
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.current_id = -1
|
||||
|
||||
self.id = id
|
||||
|
||||
|
||||
if schedule_class is None:
|
||||
schedule_class = time.TimedActivation
|
||||
else:
|
||||
schedule_class = serialization.deserialize(schedule_class)
|
||||
|
||||
self.interval = interval
|
||||
self.schedule = schedule_class(self)
|
||||
|
||||
self.logger = utils.logger.getChild(self.id)
|
||||
|
||||
for (k, v) in env_params.items():
|
||||
self[k] = v
|
||||
|
||||
def _agent_from_dict(self, agent):
|
||||
"""
|
||||
Translate an agent dictionary into an agent
|
||||
"""
|
||||
agent = dict(**agent)
|
||||
cls = agent.pop("agent_class", None) or self.agent_class
|
||||
unique_id = agent.pop("unique_id", None)
|
||||
if unique_id is None:
|
||||
unique_id = self.next_id()
|
||||
if agents:
|
||||
self.add_agents(**agents)
|
||||
if init:
|
||||
self.init()
|
||||
|
||||
return serialization.deserialize(cls)(unique_id=unique_id, model=self, **agent)
|
||||
|
||||
def init_agents(self, agents: Union[config.AgentConfig, List[Dict[str, Any]]] = {}):
|
||||
"""
|
||||
Initialize the agents in the model from either a `soil.config.AgentConfig` or a list of
|
||||
dictionaries that each describes an agent.
|
||||
|
||||
If given a list of dictionaries, an agent will be created for each dictionary. The agent
|
||||
class can be specified through the `agent_class` key. The rest of the items will be used
|
||||
as parameters to the agent.
|
||||
"""
|
||||
if not agents:
|
||||
return
|
||||
|
||||
lst = agents
|
||||
override = []
|
||||
if not isinstance(lst, list):
|
||||
if not isinstance(agents, config.AgentConfig):
|
||||
lst = config.AgentConfig(**agents)
|
||||
if lst.override:
|
||||
override = lst.override
|
||||
lst = self._agent_dict_from_config(lst)
|
||||
|
||||
# TODO: check override is working again. It cannot (easily) be part of agents.from_config anymore,
|
||||
# because it needs attribute such as unique_id, which are only present after init
|
||||
new_agents = [self._agent_from_dict(agent) for agent in lst]
|
||||
|
||||
for a in new_agents:
|
||||
self.schedule.add(a)
|
||||
|
||||
for rule in override:
|
||||
for agent in agentmod.filter_agents(self.schedule._agents, **rule.filter):
|
||||
for attr, value in rule.state.items():
|
||||
setattr(agent, attr, value)
|
||||
|
||||
def _agent_dict_from_config(self, cfg):
|
||||
return agentmod.from_config(cfg, random=self.random)
|
||||
def init(self):
|
||||
pass
|
||||
|
||||
@property
|
||||
def agents(self):
|
||||
return agentmod.AgentView(self.schedule._agents)
|
||||
|
||||
def find_one(self, *args, **kwargs):
|
||||
def agent(self, *args, **kwargs):
|
||||
return agentmod.AgentView(self.schedule._agents).one(*args, **kwargs)
|
||||
|
||||
def count_agents(self, *args, **kwargs):
|
||||
@ -144,17 +123,34 @@ class BaseEnvironment(Model):
|
||||
raise Exception(
|
||||
"The environment has not been scheduled, so it has no sense of time"
|
||||
)
|
||||
def init_agents(self):
|
||||
pass
|
||||
|
||||
def add_agent(self, unique_id=None, **kwargs):
|
||||
def add_agent(self, agent_class, unique_id=None, **agent):
|
||||
if unique_id is None:
|
||||
unique_id = self.next_id()
|
||||
|
||||
kwargs["unique_id"] = unique_id
|
||||
a = self._agent_from_dict(kwargs)
|
||||
agent["unique_id"] = unique_id
|
||||
|
||||
agent = dict(**agent)
|
||||
unique_id = agent.pop("unique_id", None)
|
||||
if unique_id is None:
|
||||
unique_id = self.next_id()
|
||||
|
||||
a = serialization.deserialize(agent_class)(unique_id=unique_id, model=self, **agent)
|
||||
|
||||
self.schedule.add(a)
|
||||
return a
|
||||
|
||||
def add_agents(self, agent_classes: List[type], k, weights: Optional[List[float]] = None, **kwargs):
|
||||
if isinstance(agent_classes, type):
|
||||
agent_classes = [agent_classes]
|
||||
if weights is None:
|
||||
weights = [1] * len(agent_classes)
|
||||
|
||||
for cls in self.random.choices(agent_classes, weights=weights, k=k):
|
||||
self.add_agent(agent_class=cls, **kwargs)
|
||||
|
||||
def log(self, message, *args, level=logging.INFO, **kwargs):
|
||||
if not self.logger.isEnabledFor(level):
|
||||
return
|
||||
@ -172,12 +168,27 @@ class BaseEnvironment(Model):
|
||||
Advance one step in the simulation, and update the data collection and scheduler appropriately
|
||||
"""
|
||||
super().step()
|
||||
# self.logger.info(
|
||||
# "--- Step: {:^5} - Time: {now:^5} ---", steps=self.schedule.steps, now=self.now
|
||||
# )
|
||||
self.schedule.step()
|
||||
self.datacollector.collect(self)
|
||||
|
||||
msg = "Model data:\n"
|
||||
max_width = max(len(k) for k in self.datacollector.model_vars.keys())
|
||||
for (k, v) in self.datacollector.model_vars.items():
|
||||
msg += f"\t{k:<{max_width}}: {v[-1]:>6}\n"
|
||||
self.logger.info(f"--- Steps: {self.schedule.steps:^5} - Time: {self.now:^5} --- " + msg)
|
||||
|
||||
def add_model_reporter(self, name, func=None):
|
||||
if not func:
|
||||
func = lambda env: getattr(env, name)
|
||||
self.datacollector._new_model_reporter(name, func)
|
||||
|
||||
def add_agent_reporter(self, name, agent_type=None):
|
||||
if agent_type:
|
||||
reporter = lambda a: getattr(a, name) if isinstance(a, agent_type) else None
|
||||
else:
|
||||
reporter = name
|
||||
self.datacollector._new_agent_reporter(name, reporter)
|
||||
|
||||
def __getitem__(self, key):
|
||||
try:
|
||||
return getattr(self, key)
|
||||
@ -214,67 +225,71 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
and methods to associate agents to nodes and vice versa.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, *args, topology: Union[config.NetConfig, nx.Graph] = None, **kwargs
|
||||
):
|
||||
agents = kwargs.pop("agents", None)
|
||||
super().__init__(*args, agents=None, **kwargs)
|
||||
def __init__(self,
|
||||
*args,
|
||||
topology: Optional[Union[nx.Graph, str]] = None,
|
||||
agent_class: Optional[Type[agentmod.Agent]] = None,
|
||||
network_generator: Optional[Callable] = None,
|
||||
network_params: Optional[Dict] = {},
|
||||
init=True,
|
||||
**kwargs):
|
||||
self.topology = topology
|
||||
self.network_generator = network_generator
|
||||
self.network_params = network_params
|
||||
if topology or network_params or network_generator:
|
||||
self.create_network(topology, generator=network_generator, **network_params)
|
||||
else:
|
||||
self.G = nx.Graph()
|
||||
super().__init__(*args, **kwargs, init=False)
|
||||
|
||||
if topology is None:
|
||||
topology = nx.Graph()
|
||||
elif not isinstance(topology, nx.Graph):
|
||||
topology = network.from_config(topology, dir_path=self.dir_path)
|
||||
self.agent_class = agent_class
|
||||
if agent_class:
|
||||
self.agent_class = serialization.deserialize(agent_class)
|
||||
if self.agent_class:
|
||||
self.populate_network(self.agent_class)
|
||||
self._check_agent_nodes()
|
||||
if init:
|
||||
self.init()
|
||||
|
||||
def add_agent(self, agent_class, *args, node_id=None, topology=None, **kwargs):
|
||||
if node_id is None and topology is None:
|
||||
return super().add_agent(agent_class, *args, **kwargs)
|
||||
try:
|
||||
a = super().add_agent(agent_class, *args, node_id=node_id, **kwargs)
|
||||
except TypeError:
|
||||
self.logger.warning(f"Agent constructor for {agent_class} does not have a node_id attribute. Might be a bug.")
|
||||
a = super().add_agent(agent_class, *args, **kwargs)
|
||||
self.G.nodes[node_id]["agent"] = a
|
||||
return a
|
||||
|
||||
def add_agents(self, *args, k=None, **kwargs):
|
||||
if not k and not self.G:
|
||||
raise ValueError("Cannot add agents to an empty network")
|
||||
super().add_agents(*args, k=k or len(self.G), **kwargs)
|
||||
|
||||
def create_network(self, topology=None, generator=None, path=None, **network_params):
|
||||
if topology is not None:
|
||||
topology = network.from_topology(topology, dir_path=self.dir_path)
|
||||
elif path is not None:
|
||||
topology = network.from_topology(path, dir_path=self.dir_path)
|
||||
elif generator is not None:
|
||||
topology = network.from_params(generator=generator, dir_path=self.dir_path, **network_params)
|
||||
else:
|
||||
raise ValueError("topology must be a networkx.Graph or a string, or network_generator must be provided")
|
||||
self.G = topology
|
||||
|
||||
self.init_agents(agents)
|
||||
|
||||
def init_agents(self, *args, **kwargs):
|
||||
"""Initialize the agents from a"""
|
||||
super().init_agents(*args, **kwargs)
|
||||
for agent in self.schedule._agents.values():
|
||||
self._init_node(agent)
|
||||
|
||||
def _init_node(self, agent):
|
||||
"""
|
||||
Make sure the node for a given agent has the proper attributes.
|
||||
"""
|
||||
if hasattr(agent, "node_id"):
|
||||
self.G.nodes[agent.node_id]["agent"] = agent
|
||||
|
||||
def _agent_dict_from_config(self, cfg):
|
||||
return agentmod.from_config(cfg, topology=self.G, random=self.random)
|
||||
|
||||
def _agent_from_dict(self, agent, unique_id=None):
|
||||
agent = dict(agent)
|
||||
|
||||
if not agent.get("topology", False):
|
||||
return super()._agent_from_dict(agent)
|
||||
|
||||
if unique_id is None:
|
||||
unique_id = self.next_id()
|
||||
node_id = agent.get("node_id", None)
|
||||
if node_id is None:
|
||||
node_id = network.find_unassigned(self.G, random=self.random)
|
||||
self.G.nodes[node_id]["agent"] = None
|
||||
agent["node_id"] = node_id
|
||||
agent["unique_id"] = unique_id
|
||||
agent["topology"] = self.G
|
||||
node_attrs = self.G.nodes[node_id]
|
||||
node_attrs.pop('agent', None)
|
||||
node_attrs.update(agent)
|
||||
agent = node_attrs
|
||||
|
||||
a = super()._agent_from_dict(agent)
|
||||
self._init_node(a)
|
||||
|
||||
return a
|
||||
|
||||
@property
|
||||
def network_agents(self):
|
||||
for a in self.schedule._agents.values():
|
||||
if isinstance(a, agentmod.NetworkAgent):
|
||||
yield a
|
||||
"""Return agents still alive and assigned to a node in the network."""
|
||||
for (id, data) in self.G.nodes(data=True):
|
||||
if "agent" in data:
|
||||
agent = data["agent"]
|
||||
if getattr(agent, "alive", True):
|
||||
yield agent
|
||||
|
||||
def add_node(self, agent_class, unique_id=None, node_id=None, **kwargs):
|
||||
if unique_id is None:
|
||||
@ -290,7 +305,6 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
self.G.add_node(node_id)
|
||||
|
||||
assert "agent" not in self.G.nodes[node_id]
|
||||
self.G.nodes[node_id]["agent"] = None # Reserve
|
||||
|
||||
a = self.add_agent(
|
||||
unique_id=unique_id,
|
||||
@ -302,24 +316,56 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
a["visible"] = True
|
||||
return a
|
||||
|
||||
def add_agent(self, *args, **kwargs):
|
||||
a = super().add_agent(*args, **kwargs)
|
||||
if hasattr(a, "node_id"):
|
||||
assert self.G.nodes[a.node_id]["agent"] == a
|
||||
return a
|
||||
def _check_agent_nodes(self):
|
||||
"""
|
||||
Detect nodes that have agents assigned to them.
|
||||
"""
|
||||
for (id, data) in self.G.nodes(data=True):
|
||||
if "agent_id" in data:
|
||||
agent = self.agents(data["agent_id"])
|
||||
self.G.nodes[id]["agent"] = agent
|
||||
assert not getattr(agent, "node_id", None) or agent.node_id == id
|
||||
agent.node_id = id
|
||||
for agent in self.agents():
|
||||
if hasattr(agent, "node_id"):
|
||||
node_id = agent["node_id"]
|
||||
if node_id not in self.G.nodes:
|
||||
raise ValueError(f"Agent {agent} is assigned to node {agent.node_id} which is not in the network")
|
||||
node = self.G.nodes[node_id]
|
||||
if node.get("agent") is not None and node["agent"] != agent:
|
||||
raise ValueError(f"Node {node_id} already has a different agent assigned to it")
|
||||
self.G.nodes[node_id]["agent"] = agent
|
||||
|
||||
def add_agents(self, agent_classes: List[type], k=None, weights: Optional[List[float]] = None, **kwargs):
|
||||
if k is None:
|
||||
k = len(self.G)
|
||||
if not k:
|
||||
raise ValueError("Cannot add agents to an empty network")
|
||||
super().add_agents(agent_classes, k=k, weights=weights, **kwargs)
|
||||
|
||||
def agent_for_node_id(self, node_id):
|
||||
return self.G.nodes[node_id].get("agent")
|
||||
|
||||
def populate_network(self, agent_class, weights=None, **agent_params):
|
||||
if not hasattr(agent_class, "len"):
|
||||
def populate_network(self, agent_class: List[Model], weights: List[float] = None, **agent_params):
|
||||
if isinstance(agent_class, type):
|
||||
agent_class = [agent_class]
|
||||
weights = None
|
||||
for (node_id, node) in self.G.nodes(data=True):
|
||||
else:
|
||||
agent_class = list(agent_class)
|
||||
if not weights:
|
||||
weights = [1] * len(agent_class)
|
||||
assert len(self.G)
|
||||
classes = self.random.choices(agent_class, weights, k=len(self.G))
|
||||
toadd = []
|
||||
for (cls, (node_id, node)) in zip(classes, self.G.nodes(data=True)):
|
||||
if "agent" in node:
|
||||
continue
|
||||
a_class = self.random.choices(agent_class, weights)[0]
|
||||
self.add_agent(node_id=node_id, topology=self.G, agent_class=a_class, **agent_params)
|
||||
node["agent"] = None # Reserve
|
||||
toadd.append(dict(node_id=node_id, topology=self.G, agent_class=cls, **agent_params))
|
||||
for d in toadd:
|
||||
a = self.add_agent(**d)
|
||||
self.G.nodes[d["node_id"]]["agent"] = a
|
||||
assert all("agent" in node for (_, node) in self.G.nodes(data=True))
|
||||
assert len(list(self.network_agents))
|
||||
|
||||
|
||||
class EventedEnvironment(BaseEnvironment):
|
||||
|
@ -38,7 +38,7 @@ class DryRunner(BytesIO):
|
||||
except UnicodeDecodeError:
|
||||
pass
|
||||
logger.info(
|
||||
"**Not** written to {} (dry run mode):\n\n{}\n\n".format(
|
||||
"**Not** written to {} (no_dump mode):\n\n{}\n\n".format(
|
||||
self.__fname, content
|
||||
)
|
||||
)
|
||||
@ -51,12 +51,12 @@ class Exporter:
|
||||
if you don't plan to implement all the methods.
|
||||
"""
|
||||
|
||||
def __init__(self, simulation, outdir=None, dry_run=None, copy_to=None):
|
||||
def __init__(self, simulation, outdir=None, dump=True, copy_to=None):
|
||||
self.simulation = simulation
|
||||
outdir = outdir or os.path.join(os.getcwd(), "soil_output")
|
||||
self.outdir = os.path.join(outdir, simulation.group or "", simulation.name)
|
||||
self.dry_run = dry_run
|
||||
if copy_to is None and dry_run:
|
||||
self.dump = dump
|
||||
if copy_to is None and not dump:
|
||||
copy_to = sys.stdout
|
||||
self.copy_to = copy_to
|
||||
|
||||
@ -77,7 +77,7 @@ class Exporter:
|
||||
pass
|
||||
|
||||
def output(self, f, mode="w", **kwargs):
|
||||
if self.dry_run:
|
||||
if not self.dump:
|
||||
f = DryRunner(f, copy_to=self.copy_to)
|
||||
else:
|
||||
try:
|
||||
@ -108,16 +108,16 @@ class SQLite(Exporter):
|
||||
"""Writes sqlite results"""
|
||||
|
||||
def sim_start(self):
|
||||
if self.dry_run:
|
||||
logger.info("NOT dumping results")
|
||||
if not self.dump:
|
||||
logger.debug("NOT dumping results")
|
||||
return
|
||||
self.dbpath = os.path.join(self.outdir, f"{self.simulation.name}.sqlite")
|
||||
logger.info("Dumping results to %s", self.dbpath)
|
||||
try_backup(self.dbpath, remove=True)
|
||||
|
||||
def trial_end(self, env):
|
||||
if self.dry_run:
|
||||
logger.info("Running in DRY_RUN mode, the database will NOT be created")
|
||||
if not self.dump:
|
||||
logger.info("Running in NO DUMP mode, the database will NOT be created")
|
||||
return
|
||||
|
||||
with timer(
|
||||
@ -147,8 +147,8 @@ class csv(Exporter):
|
||||
# TODO: reimplement GEXF exporting without history
|
||||
class gexf(Exporter):
|
||||
def trial_end(self, env):
|
||||
if self.dry_run:
|
||||
logger.info("Not dumping GEXF in dry_run mode")
|
||||
if not self.dump:
|
||||
logger.info("Not dumping GEXF (NO_DUMP mode)")
|
||||
return
|
||||
|
||||
with timer(
|
||||
@ -224,8 +224,8 @@ class YAML(Exporter):
|
||||
"""Writes the configuration of the simulation to a YAML file"""
|
||||
|
||||
def sim_start(self):
|
||||
if self.dry_run:
|
||||
logger.info("NOT dumping results")
|
||||
if not self.dump:
|
||||
logger.debug("NOT dumping results")
|
||||
return
|
||||
with self.output(self.simulation.name + ".dumped.yml") as f:
|
||||
logger.info(f"Dumping simulation configuration to {self.outdir}")
|
||||
@ -235,7 +235,7 @@ class default(Exporter):
|
||||
"""Default exporter. Writes sqlite results, as well as the simulation YAML"""
|
||||
|
||||
def __init__(self, *args, exporter_cls=[], **kwargs):
|
||||
exporter_cls = exporter_cls or [YAML, SQLite, summary]
|
||||
exporter_cls = exporter_cls or [YAML, SQLite]
|
||||
self.inner = [cls(*args, **kwargs) for cls in exporter_cls]
|
||||
|
||||
def sim_start(self):
|
||||
|
@ -10,12 +10,21 @@ import networkx as nx
|
||||
from . import config, serialization, basestring
|
||||
|
||||
|
||||
def from_config(cfg: config.NetConfig, dir_path: str = None):
|
||||
if not isinstance(cfg, config.NetConfig):
|
||||
cfg = config.NetConfig(**cfg)
|
||||
def from_topology(topology, dir_path: str = None):
|
||||
if topology is None:
|
||||
return nx.Graph()
|
||||
if isinstance(topology, nx.Graph):
|
||||
return topology
|
||||
|
||||
if cfg.path:
|
||||
path = cfg.path
|
||||
# If it's a dict, assume it's a node-link graph
|
||||
if isinstance(topology, dict):
|
||||
try:
|
||||
return nx.json_graph.node_link_graph(topology)
|
||||
except Exception as ex:
|
||||
raise ValueError("Unknown topology format")
|
||||
|
||||
# Otherwise, treat like a path
|
||||
path = topology
|
||||
if dir_path and not os.path.isabs(path):
|
||||
path = os.path.join(dir_path, path)
|
||||
extension = os.path.splitext(path)[1][1:]
|
||||
@ -29,28 +38,19 @@ def from_config(cfg: config.NetConfig, dir_path: str = None):
|
||||
raise AttributeError("Unknown format")
|
||||
return method(path, **kwargs)
|
||||
|
||||
if cfg.params:
|
||||
net_args = dict(cfg.params)
|
||||
net_gen = net_args.pop("generator")
|
||||
|
||||
def from_params(generator, dir_path: str = None, **params):
|
||||
|
||||
if dir_path not in sys.path:
|
||||
sys.path.append(dir_path)
|
||||
|
||||
method = serialization.deserializer(
|
||||
net_gen,
|
||||
generator,
|
||||
known_modules=[
|
||||
"networkx.generators",
|
||||
],
|
||||
)
|
||||
return method(**net_args)
|
||||
|
||||
if isinstance(cfg.fixed, config.Topology):
|
||||
cfg = cfg.fixed.dict()
|
||||
|
||||
if isinstance(cfg, str) or isinstance(cfg, dict):
|
||||
return nx.json_graph.node_link_graph(cfg)
|
||||
|
||||
return nx.Graph()
|
||||
return method(**params)
|
||||
|
||||
|
||||
def find_unassigned(G, shuffle=False, random=random):
|
||||
|
32
soil/parameters.py
Normal file
32
soil/parameters.py
Normal file
@ -0,0 +1,32 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing_extensions import Annotated
|
||||
import annotated_types
|
||||
from typing import *
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
class Parameter:
|
||||
pass
|
||||
|
||||
|
||||
def floatrange(
|
||||
*,
|
||||
gt: Optional[float] = None,
|
||||
ge: Optional[float] = None,
|
||||
lt: Optional[float] = None,
|
||||
le: Optional[float] = None,
|
||||
multiple_of: Optional[float] = None,
|
||||
) -> type[float]:
|
||||
return Annotated[
|
||||
float,
|
||||
annotated_types.Interval(gt=gt, ge=ge, lt=lt, le=le),
|
||||
annotated_types.MultipleOf(multiple_of) if multiple_of is not None else None,
|
||||
]
|
||||
|
||||
function = Annotated[Callable, Parameter]
|
||||
Integer = Annotated[int, Parameter]
|
||||
Float = Annotated[float, Parameter]
|
||||
|
||||
|
||||
probability = floatrange(ge=0, le=1)
|
@ -4,14 +4,15 @@ import ast
|
||||
import sys
|
||||
import re
|
||||
import importlib
|
||||
import importlib.machinery, importlib.util
|
||||
from glob import glob
|
||||
from itertools import product, chain
|
||||
|
||||
from .config import Config
|
||||
|
||||
import yaml
|
||||
import networkx as nx
|
||||
|
||||
from . import config
|
||||
|
||||
from jinja2 import Template
|
||||
|
||||
|
||||
@ -90,23 +91,55 @@ def load_files(*patterns, **kwargs):
|
||||
for i in glob(pattern, **kwargs, recursive=True):
|
||||
for cfg in load_file(i):
|
||||
path = os.path.abspath(i)
|
||||
yield Config.from_raw(cfg), path
|
||||
yield cfg, path
|
||||
|
||||
|
||||
def load_config(cfg):
|
||||
if isinstance(cfg, Config):
|
||||
yield cfg, os.getcwd()
|
||||
elif isinstance(cfg, dict):
|
||||
yield Config.from_raw(cfg), os.getcwd()
|
||||
if isinstance(cfg, dict):
|
||||
yield config.load_config(cfg), os.getcwd()
|
||||
else:
|
||||
yield from load_files(cfg)
|
||||
|
||||
|
||||
builtins = importlib.import_module("builtins")
|
||||
|
||||
KNOWN_MODULES = [
|
||||
"soil",
|
||||
]
|
||||
KNOWN_MODULES = {
|
||||
'soil': None,
|
||||
|
||||
}
|
||||
|
||||
MODULE_FILES = {}
|
||||
|
||||
def add_source_file(file):
|
||||
"""Add a file to the list of known modules"""
|
||||
file = os.path.abspath(file)
|
||||
if file in MODULE_FILES:
|
||||
logger.warning(f"File {file} already added as module {MODULE_FILES[file]}. Reloading")
|
||||
remove_source_file(file)
|
||||
modname = f"imported_module_{len(MODULE_FILES)}"
|
||||
loader = importlib.machinery.SourceFileLoader(modname, file)
|
||||
spec = importlib.util.spec_from_loader(loader.name, loader)
|
||||
my_module = importlib.util.module_from_spec(spec)
|
||||
loader.exec_module(my_module)
|
||||
MODULE_FILES[file] = modname
|
||||
KNOWN_MODULES[modname] = my_module
|
||||
|
||||
def remove_source_file(file):
|
||||
"""Remove a file from the list of known modules"""
|
||||
file = os.path.abspath(file)
|
||||
modname = None
|
||||
try:
|
||||
modname = MODULE_FILES.pop(file)
|
||||
KNOWN_MODULES.pop(modname)
|
||||
except KeyError as ex:
|
||||
raise ValueError(f"File {file} had not been added as a module: {ex}")
|
||||
|
||||
def get_module(modname):
|
||||
"""Get a module from the list of known modules"""
|
||||
if modname not in KNOWN_MODULES or KNOWN_MODULES[modname] is None:
|
||||
module = importlib.import_module(modname)
|
||||
KNOWN_MODULES[modname] = module
|
||||
return KNOWN_MODULES[modname]
|
||||
|
||||
|
||||
def name(value, known_modules=KNOWN_MODULES):
|
||||
@ -124,9 +157,7 @@ def name(value, known_modules=KNOWN_MODULES):
|
||||
if known_modules and modname in known_modules:
|
||||
return tname
|
||||
for kmod in known_modules:
|
||||
if not kmod:
|
||||
continue
|
||||
module = importlib.import_module(kmod)
|
||||
module = get_module(kmod)
|
||||
if hasattr(module, tname):
|
||||
return tname
|
||||
return "{}.{}".format(modname, tname)
|
||||
@ -177,7 +208,7 @@ def deserializer(type_, known_modules=KNOWN_MODULES):
|
||||
match = IS_CLASS.match(type_)
|
||||
if match:
|
||||
modname, tname = match.group(1).rsplit(".", 1)
|
||||
module = importlib.import_module(modname)
|
||||
module = get_module(modname)
|
||||
cls = getattr(module, tname)
|
||||
return getattr(cls, "deserialize", cls)
|
||||
|
||||
@ -195,7 +226,7 @@ def deserializer(type_, known_modules=KNOWN_MODULES):
|
||||
errors = []
|
||||
for modname, tname in options:
|
||||
try:
|
||||
module = importlib.import_module(modname)
|
||||
module = get_module(modname)
|
||||
cls = getattr(module, tname)
|
||||
return getattr(cls, "deserialize", cls)
|
||||
except (ImportError, AttributeError) as ex:
|
||||
|
@ -10,37 +10,74 @@ import networkx as nx
|
||||
|
||||
from textwrap import dedent
|
||||
|
||||
from dataclasses import dataclass, field, asdict
|
||||
from dataclasses import dataclass, field, asdict, replace
|
||||
from typing import Any, Dict, Union, Optional, List
|
||||
|
||||
|
||||
from networkx.readwrite import json_graph
|
||||
from functools import partial
|
||||
from contextlib import contextmanager
|
||||
import pickle
|
||||
|
||||
from . import serialization, exporters, utils, basestring, agents
|
||||
from .environment import Environment
|
||||
from .utils import logger, run_and_return_exceptions
|
||||
from .config import Config, convert_old
|
||||
from .debugging import set_trace
|
||||
|
||||
_AVOID_RUNNING = False
|
||||
_QUEUED = []
|
||||
|
||||
@contextmanager
|
||||
def do_not_run():
|
||||
global _AVOID_RUNNING
|
||||
_AVOID_RUNNING = True
|
||||
try:
|
||||
logger.debug("NOT RUNNING")
|
||||
yield
|
||||
finally:
|
||||
logger.debug("RUNNING AGAIN")
|
||||
_AVOID_RUNNING = False
|
||||
|
||||
|
||||
def _iter_queued():
|
||||
while _QUEUED:
|
||||
(cls, args, kwargs) = _QUEUED.pop(0)
|
||||
yield replace(cls, **kwargs)
|
||||
|
||||
|
||||
# TODO: change documentation for simulation
|
||||
@dataclass
|
||||
class Simulation:
|
||||
"""
|
||||
Parameters
|
||||
---------
|
||||
config (optional): :class:`config.Config`
|
||||
name of the Simulation
|
||||
A simulation is a collection of agents and a model. It is responsible for running the model and agents, and collecting data from them.
|
||||
|
||||
kwargs: parameters to use to initialize a new configuration, if one not been provided.
|
||||
Args:
|
||||
version: The version of the simulation. This is used to determine how to load the simulation.
|
||||
name: The name of the simulation.
|
||||
description: A description of the simulation.
|
||||
group: The group that the simulation belongs to.
|
||||
model: The model to use for the simulation. This can be a string or a class.
|
||||
model_params: The parameters to pass to the model.
|
||||
seed: The seed to use for the simulation.
|
||||
dir_path: The directory path to use for the simulation.
|
||||
max_time: The maximum time to run the simulation.
|
||||
max_steps: The maximum number of steps to run the simulation.
|
||||
interval: The interval to use for the simulation.
|
||||
num_trials: The number of trials (times) to run the simulation.
|
||||
num_processes: The number of processes to use for the simulation. If greater than one, simulations will be performed in parallel. This may make debugging and error handling difficult.
|
||||
tables: The tables to use in the simulation datacollector
|
||||
agent_reporters: The agent reporters to use in the datacollector
|
||||
model_reporters: The model reporters to use in the datacollector
|
||||
dry_run: Whether or not to run the simulation. If True, the simulation will not be run.
|
||||
source_file: Python file to use to find additional classes.
|
||||
"""
|
||||
|
||||
version: str = "2"
|
||||
name: str = "Unnamed simulation"
|
||||
source_file: Optional[str] = None
|
||||
name: Optional[str] = None
|
||||
description: Optional[str] = ""
|
||||
group: str = None
|
||||
model_class: Union[str, type] = "soil.Environment"
|
||||
model: Union[str, type] = "soil.Environment"
|
||||
model_params: dict = field(default_factory=dict)
|
||||
seed: str = field(default_factory=lambda: current_time())
|
||||
dir_path: str = field(default_factory=lambda: os.getcwd())
|
||||
@ -49,7 +86,6 @@ class Simulation:
|
||||
interval: int = 1
|
||||
num_trials: int = 1
|
||||
num_processes: Optional[int] = 1
|
||||
parallel: Optional[bool] = False
|
||||
exporters: Optional[List[str]] = field(default_factory=lambda: [exporters.default])
|
||||
model_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
|
||||
agent_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
|
||||
@ -57,24 +93,17 @@ class Simulation:
|
||||
outdir: Optional[str] = None
|
||||
exporter_params: Optional[Dict[str, Any]] = field(default_factory=dict)
|
||||
dry_run: bool = False
|
||||
dump: bool = False
|
||||
extra: Dict[str, Any] = field(default_factory=dict)
|
||||
skip_test: Optional[bool] = False
|
||||
debug: Optional[bool] = False
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, env, **kwargs):
|
||||
|
||||
ignored = {
|
||||
k: v for k, v in env.items() if k not in inspect.signature(cls).parameters
|
||||
}
|
||||
|
||||
d = {k: v for k, v in env.items() if k not in ignored}
|
||||
if ignored:
|
||||
d.setdefault("extra", {}).update(ignored)
|
||||
if ignored:
|
||||
logger.warning(f'Ignoring these parameters (added to "extra"): { ignored }')
|
||||
d.update(kwargs)
|
||||
|
||||
return cls(**d)
|
||||
def __post_init__(self):
|
||||
if self.name is None:
|
||||
if isinstance(self.model, str):
|
||||
self.name = self.model
|
||||
else:
|
||||
self.name = self.model.__class__.__name__
|
||||
|
||||
def run_simulation(self, *args, **kwargs):
|
||||
return self.run(*args, **kwargs)
|
||||
@ -90,12 +119,16 @@ class Simulation:
|
||||
)
|
||||
+ self.to_yaml()
|
||||
)
|
||||
return list(self.run_gen(*args, **kwargs))
|
||||
if _AVOID_RUNNING:
|
||||
_QUEUED.append((self, args, kwargs))
|
||||
return []
|
||||
return list(self._run_gen(*args, **kwargs))
|
||||
|
||||
def run_gen(
|
||||
def _run_gen(
|
||||
self,
|
||||
num_processes=1,
|
||||
dry_run=None,
|
||||
dump=None,
|
||||
exporters=None,
|
||||
outdir=None,
|
||||
exporter_params={},
|
||||
@ -110,6 +143,8 @@ class Simulation:
|
||||
logger.info("Output directory: %s", outdir)
|
||||
if dry_run is None:
|
||||
dry_run = self.dry_run
|
||||
if dump is None:
|
||||
dump = self.dump
|
||||
if exporters is None:
|
||||
exporters = self.exporters
|
||||
if not exporter_params:
|
||||
@ -121,15 +156,28 @@ class Simulation:
|
||||
known_modules=[
|
||||
"soil.exporters",
|
||||
],
|
||||
dry_run=dry_run,
|
||||
dump=dump and not dry_run,
|
||||
outdir=outdir,
|
||||
**exporter_params,
|
||||
)
|
||||
|
||||
if self.source_file:
|
||||
source_file = self.source_file
|
||||
if not os.path.isabs(source_file):
|
||||
source_file = os.path.abspath(os.path.join(self.dir_path, source_file))
|
||||
serialization.add_source_file(source_file)
|
||||
try:
|
||||
|
||||
with utils.timer("simulation {}".format(self.name)):
|
||||
for exporter in exporters:
|
||||
exporter.sim_start()
|
||||
|
||||
if dry_run:
|
||||
def func(*args, **kwargs):
|
||||
return None
|
||||
else:
|
||||
func = self.run_trial
|
||||
|
||||
for env in utils.run_parallel(
|
||||
func=self.run_trial,
|
||||
iterable=range(int(self.num_trials)),
|
||||
@ -137,9 +185,8 @@ class Simulation:
|
||||
log_level=log_level,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
for exporter in exporters:
|
||||
exporter.trial_start(env)
|
||||
if env is None and dry_run:
|
||||
continue
|
||||
|
||||
for exporter in exporters:
|
||||
exporter.trial_end(env)
|
||||
@ -148,6 +195,11 @@ class Simulation:
|
||||
|
||||
for exporter in exporters:
|
||||
exporter.sim_end()
|
||||
finally:
|
||||
pass
|
||||
# TODO: reintroduce
|
||||
# if self.source_file:
|
||||
# serialization.remove_source_file(self.source_file)
|
||||
|
||||
def get_env(self, trial_id=0, model_params=None, **kwargs):
|
||||
"""Create an environment for a trial of the simulation"""
|
||||
@ -170,11 +222,12 @@ class Simulation:
|
||||
tables = self.tables.copy()
|
||||
tables.update(deserialize_reporters(params.pop("tables", {})))
|
||||
|
||||
env = serialization.deserialize(self.model_class)
|
||||
env = serialization.deserialize(self.model)
|
||||
return env(
|
||||
id=f"{self.name}_trial_{trial_id}",
|
||||
seed=f"{self.seed}_trial_{trial_id}",
|
||||
dir_path=self.dir_path,
|
||||
interval=self.interval,
|
||||
agent_reporters=agent_reporters,
|
||||
model_reporters=model_reporters,
|
||||
tables=tables,
|
||||
@ -211,6 +264,9 @@ class Simulation:
|
||||
def is_done():
|
||||
return prev() or model.schedule.time >= until
|
||||
|
||||
if not model.schedule.agents:
|
||||
raise Exception("No agents in model. This is probably a bug. Make sure that the model has agents scheduled after its initialization.")
|
||||
|
||||
if self.max_steps and self.max_steps > 0 and hasattr(model.schedule, "steps"):
|
||||
prev_steps = is_done
|
||||
|
||||
@ -222,24 +278,21 @@ class Simulation:
|
||||
dedent(
|
||||
f"""
|
||||
Model stats:
|
||||
Agents (total: { model.schedule.get_agent_count() }):
|
||||
- { (newline + ' - ').join(str(a) for a in model.schedule.agents) }
|
||||
|
||||
Agent count: { model.schedule.get_agent_count() }):
|
||||
Topology size: { len(model.G) if hasattr(model, "G") else 0 }
|
||||
"""
|
||||
)
|
||||
)
|
||||
|
||||
if self.debug:
|
||||
set_trace()
|
||||
|
||||
while not is_done():
|
||||
utils.logger.debug(
|
||||
f'Simulation time {model.schedule.time}/{until}. Next: {getattr(model.schedule, "next_time", model.schedule.time + self.interval)}'
|
||||
f'Simulation time {model.schedule.time}/{until}.'
|
||||
)
|
||||
model.step()
|
||||
|
||||
if (
|
||||
model.schedule.time < until
|
||||
): # Simulation ended (no more steps) before the expected time
|
||||
model.schedule.time = until
|
||||
return model
|
||||
|
||||
def to_dict(self):
|
||||
@ -250,14 +303,27 @@ Model stats:
|
||||
return yaml.dump(self.to_dict())
|
||||
|
||||
|
||||
def iter_from_file(*files, **kwargs):
|
||||
for f in files:
|
||||
try:
|
||||
yield from iter_from_py(f, **kwargs)
|
||||
except ValueError as ex:
|
||||
yield from iter_from_config(f, **kwargs)
|
||||
|
||||
|
||||
def from_file(*args, **kwargs):
|
||||
return list(iter_from_file(*args, **kwargs))
|
||||
|
||||
|
||||
def iter_from_config(*cfgs, **kwargs):
|
||||
for config in cfgs:
|
||||
configs = list(serialization.load_config(config))
|
||||
for config, path in configs:
|
||||
d = dict(config)
|
||||
d.update(kwargs)
|
||||
if "dir_path" not in d:
|
||||
d["dir_path"] = os.path.dirname(path)
|
||||
yield Simulation.from_dict(d, **kwargs)
|
||||
yield Simulation(**d)
|
||||
|
||||
|
||||
def from_config(conf_or_path):
|
||||
@ -266,26 +332,48 @@ def from_config(conf_or_path):
|
||||
raise AttributeError("Provide only one configuration")
|
||||
return lst[0]
|
||||
|
||||
def iter_from_py(pyfile, module_name='custom_simulation'):
|
||||
|
||||
def iter_from_py(pyfile, module_name='custom_simulation', **kwargs):
|
||||
"""Try to load every Simulation instance in a given Python file"""
|
||||
import importlib
|
||||
import inspect
|
||||
added = False
|
||||
sims = []
|
||||
assert not _AVOID_RUNNING
|
||||
with do_not_run():
|
||||
assert _AVOID_RUNNING
|
||||
spec = importlib.util.spec_from_file_location(module_name, pyfile)
|
||||
folder = os.path.dirname(pyfile)
|
||||
if folder not in sys.path:
|
||||
added = True
|
||||
sys.path.append(folder)
|
||||
if not spec:
|
||||
raise ValueError(f"{pyfile} does not seem to be a Python module")
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
sys.modules[module_name] = module
|
||||
spec.loader.exec_module(module)
|
||||
# import pdb;pdb.set_trace()
|
||||
for (_name, sim) in inspect.getmembers(module, lambda x: isinstance(x, Simulation)):
|
||||
yield sim
|
||||
sims.append(sim)
|
||||
for sim in _iter_queued():
|
||||
sims.append(sim)
|
||||
if not sims:
|
||||
for (_name, sim) in inspect.getmembers(module, lambda x: inspect.isclass(x) and issubclass(x, Simulation)):
|
||||
sims.append(sim(**kwargs))
|
||||
del sys.modules[module_name]
|
||||
assert not _AVOID_RUNNING
|
||||
if not sims:
|
||||
raise AttributeError(f"No valid configurations found in {pyfile}")
|
||||
if added:
|
||||
sys.path.remove(folder)
|
||||
for sim in sims:
|
||||
yield replace(sim, **kwargs)
|
||||
|
||||
|
||||
def from_py(pyfile):
|
||||
return next(iter_from_py(pyfile))
|
||||
|
||||
|
||||
|
||||
def run_from_config(*configs, **kwargs):
|
||||
for sim in iter_from_config(*configs):
|
||||
def run_from_file(*files, **kwargs):
|
||||
for sim in iter_from_file(*files):
|
||||
logger.info(f"Using config(s): {sim.name}")
|
||||
sim.run_simulation(**kwargs)
|
||||
|
@ -97,7 +97,8 @@ class TimedActivation(BaseScheduler):
|
||||
self._next = {}
|
||||
self._queue = []
|
||||
self._shuffle = shuffle
|
||||
self.step_interval = 1
|
||||
# self.step_interval = getattr(self.model, "interval", 1)
|
||||
self.step_interval = self.model.interval
|
||||
self.logger = logger.getChild(f"time_{ self.model }")
|
||||
|
||||
def add(self, agent: MesaAgent, when=None):
|
||||
@ -136,7 +137,7 @@ class TimedActivation(BaseScheduler):
|
||||
if not self.model.running or self.time == INFINITY:
|
||||
return
|
||||
|
||||
self.logger.debug("Queue length: {ql}", ql=len(self._queue))
|
||||
self.logger.debug(f"Queue length: %s", len(self._queue))
|
||||
|
||||
while self._queue:
|
||||
((when, _id, cond), agent) = self._queue[0]
|
||||
@ -156,7 +157,7 @@ class TimedActivation(BaseScheduler):
|
||||
agent._last_return = None
|
||||
agent._last_except = None
|
||||
|
||||
self.logger.debug("Stepping agent {agent}", agent=agent)
|
||||
self.logger.debug("Stepping agent %s", agent)
|
||||
self._next.pop(agent.unique_id, None)
|
||||
|
||||
try:
|
||||
|
@ -1,6 +0,0 @@
|
||||
from mesa.visualization.UserParam import UserSettableParameter
|
||||
|
||||
|
||||
class UserSettableParameter(UserSettableParameter):
|
||||
def __str__(self):
|
||||
return self.value
|
@ -1,49 +0,0 @@
|
||||
---
|
||||
version: '2'
|
||||
name: simple
|
||||
group: tests
|
||||
dir_path: "/tmp/"
|
||||
num_trials: 3
|
||||
max_time: 100
|
||||
interval: 1
|
||||
seed: "CompleteSeed!"
|
||||
model_class: Environment
|
||||
model_params:
|
||||
topology:
|
||||
params:
|
||||
generator: complete_graph
|
||||
n: 4
|
||||
agents:
|
||||
agent_class: CounterModel
|
||||
state:
|
||||
group: network
|
||||
times: 1
|
||||
topology: true
|
||||
distribution:
|
||||
- agent_class: CounterModel
|
||||
weight: 0.25
|
||||
state:
|
||||
state_id: 0
|
||||
times: 1
|
||||
- agent_class: AggregatedCounter
|
||||
weight: 0.5
|
||||
state:
|
||||
times: 2
|
||||
override:
|
||||
- filter:
|
||||
node_id: 1
|
||||
state:
|
||||
name: 'Node 1'
|
||||
- filter:
|
||||
node_id: 2
|
||||
state:
|
||||
name: 'Node 2'
|
||||
fixed:
|
||||
- agent_class: BaseAgent
|
||||
hidden: true
|
||||
topology: false
|
||||
state:
|
||||
name: 'Environment Agent 1'
|
||||
times: 10
|
||||
group: environment
|
||||
am_i_complete: true
|
@ -1,37 +0,0 @@
|
||||
---
|
||||
name: simple
|
||||
group: tests
|
||||
dir_path: "/tmp/"
|
||||
num_trials: 3
|
||||
max_time: 100
|
||||
interval: 1
|
||||
seed: "CompleteSeed!"
|
||||
network_params:
|
||||
generator: complete_graph
|
||||
n: 4
|
||||
network_agents:
|
||||
- agent_class: CounterModel
|
||||
weight: 0.25
|
||||
state:
|
||||
state_id: 0
|
||||
times: 1
|
||||
- agent_class: AggregatedCounter
|
||||
weight: 0.5
|
||||
state:
|
||||
times: 2
|
||||
environment_agents:
|
||||
- agent_id: 'Environment Agent 1'
|
||||
agent_class: BaseAgent
|
||||
state:
|
||||
times: 10
|
||||
environment_class: Environment
|
||||
environment_params:
|
||||
am_i_complete: true
|
||||
agent_class: CounterModel
|
||||
default_state:
|
||||
times: 1
|
||||
states:
|
||||
1:
|
||||
name: 'Node 1'
|
||||
2:
|
||||
name: 'Node 2'
|
@ -22,7 +22,9 @@ class TestAgents(TestCase):
|
||||
def test_die_raises_exception(self):
|
||||
"""A dead agent should raise an exception if it is stepped after death"""
|
||||
d = Dead(unique_id=0, model=environment.Environment())
|
||||
assert d.alive
|
||||
d.step()
|
||||
assert not d.alive
|
||||
with pytest.raises(stime.DeadAgent):
|
||||
d.step()
|
||||
|
||||
@ -106,7 +108,7 @@ class TestAgents(TestCase):
|
||||
"""
|
||||
|
||||
# There are two agents, they try to send pings
|
||||
# This is arguably a very contrived example. In practice, the or
|
||||
# This is arguably a very contrived example.
|
||||
# There should be a delay of one step between agent 0 and 1
|
||||
# On the first step:
|
||||
# Agent 0 sends a PING, but blocks before a PONG
|
||||
@ -161,3 +163,15 @@ class TestAgents(TestCase):
|
||||
assert sum(pings) == sum(range(time)) * 2
|
||||
# It is the same as pings, without the leading 0
|
||||
assert sum(pongs) == sum(range(time)) * 2
|
||||
|
||||
def test_agent_filter(self):
|
||||
e = environment.Environment()
|
||||
e.add_agent(agent_class=agents.BaseAgent)
|
||||
e.add_agent(agent_class=agents.Evented)
|
||||
base = list(e.agents(agent_class=agents.BaseAgent))
|
||||
assert len(base) == 2
|
||||
ev = list(e.agents(agent_class=agents.Evented))
|
||||
assert len(ev) == 1
|
||||
assert ev[0].unique_id == 1
|
||||
null = list(e.agents(unique_ids=[0, 1], agent_class=agents.NetworkAgent))
|
||||
assert not null
|
@ -1,4 +1,4 @@
|
||||
from unittest import TestCase
|
||||
from unittest import TestCase, skip
|
||||
import os
|
||||
import yaml
|
||||
import copy
|
||||
@ -23,85 +23,18 @@ def isequal(a, b):
|
||||
assert a == b
|
||||
|
||||
|
||||
# @skip("new versions of soil do not rely on configuration files")
|
||||
class TestConfig(TestCase):
|
||||
def test_conversion(self):
|
||||
expected = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
|
||||
old = serialization.load_file(join(ROOT, "old_complete.yml"))[0]
|
||||
converted_defaults = config.convert_old(old, strict=False)
|
||||
converted = converted_defaults.dict(exclude_unset=True)
|
||||
|
||||
isequal(converted, expected)
|
||||
|
||||
def test_configuration_changes(self):
|
||||
"""
|
||||
The configuration should not change after running
|
||||
the simulation.
|
||||
"""
|
||||
config = serialization.load_file(join(EXAMPLES, "complete.yml"))[0]
|
||||
s = simulation.from_config(config)
|
||||
init_config = copy.copy(s.to_dict())
|
||||
|
||||
s.run_simulation(dry_run=True)
|
||||
nconfig = s.to_dict()
|
||||
# del nconfig['to
|
||||
isequal(init_config, nconfig)
|
||||
|
||||
def test_topology_config(self):
|
||||
netconfig = config.NetConfig(**{"path": join(ROOT, "test.gexf")})
|
||||
net = network.from_config(netconfig, dir_path=ROOT)
|
||||
assert len(net.nodes) == 2
|
||||
assert len(net.edges) == 1
|
||||
|
||||
def test_env_from_config(self):
|
||||
"""
|
||||
Simple configuration that tests that the graph is loaded, and that
|
||||
network agents are initialized properly.
|
||||
"""
|
||||
cfg = {
|
||||
"name": "CounterAgent",
|
||||
"network_params": {"path": join(ROOT, "test.gexf")},
|
||||
"agent_class": "CounterModel",
|
||||
# 'states': [{'times': 10}, {'times': 20}],
|
||||
"max_time": 2,
|
||||
"dry_run": True,
|
||||
"num_trials": 1,
|
||||
"environment_params": {},
|
||||
}
|
||||
conf = config.convert_old(cfg)
|
||||
s = simulation.from_config(conf)
|
||||
|
||||
env = s.get_env()
|
||||
assert len(env.G.nodes) == 2
|
||||
assert len(env.G.edges) == 1
|
||||
assert len(env.agents) == 2
|
||||
assert env.agents[0].G == env.G
|
||||
|
||||
def test_agents_from_config(self):
|
||||
"""We test that the known complete configuration produces
|
||||
the right agents in the right groups"""
|
||||
cfg = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
|
||||
s = simulation.from_config(cfg)
|
||||
env = s.get_env()
|
||||
assert len(env.G.nodes) == 4
|
||||
assert len(env.agents(group="network")) == 4
|
||||
assert len(env.agents(group="environment")) == 1
|
||||
|
||||
def test_yaml(self):
|
||||
"""
|
||||
The YAML version of a newly created configuration should be equivalent
|
||||
to the configuration file used.
|
||||
Values not present in the original config file should have reasonable
|
||||
defaults.
|
||||
"""
|
||||
with utils.timer("loading"):
|
||||
config = serialization.load_file(join(EXAMPLES, "complete.yml"))[0]
|
||||
s = simulation.from_config(config)
|
||||
with utils.timer("serializing"):
|
||||
serial = s.to_yaml()
|
||||
with utils.timer("recovering"):
|
||||
recovered = yaml.load(serial, Loader=yaml.FullLoader)
|
||||
for (k, v) in config.items():
|
||||
assert recovered[k] == v
|
||||
def test_torvalds_config(self):
|
||||
sim = simulation.from_config(os.path.join(ROOT, "test_config.yml"))
|
||||
assert sim.interval == 2
|
||||
envs = sim.run()
|
||||
assert len(envs) == 1
|
||||
env = envs[0]
|
||||
assert env.interval == 2
|
||||
assert env.count_agents() == 3
|
||||
assert env.now == 20
|
||||
|
||||
|
||||
def make_example_test(path, cfg):
|
||||
@ -115,7 +48,7 @@ def make_example_test(path, cfg):
|
||||
s.num_trials = 1
|
||||
if cfg.skip_test and not FORCE_TESTS:
|
||||
self.skipTest('Example ignored.')
|
||||
envs = s.run_simulation(dry_run=True)
|
||||
envs = s.run_simulation(dump=False)
|
||||
assert envs
|
||||
for env in envs:
|
||||
assert env
|
||||
|
5
tests/test_config.yml
Normal file
5
tests/test_config.yml
Normal file
@ -0,0 +1,5 @@
|
||||
---
|
||||
source_file: "../examples/torvalds_sim.py"
|
||||
model: "TorvaldsEnv"
|
||||
max_steps: 10
|
||||
interval: 2
|
@ -1,9 +1,12 @@
|
||||
from unittest import TestCase
|
||||
from unittest.case import SkipTest
|
||||
|
||||
import os
|
||||
from os.path import join
|
||||
from glob import glob
|
||||
|
||||
from soil import simulation, config
|
||||
|
||||
from soil import simulation
|
||||
|
||||
ROOT = os.path.abspath(os.path.dirname(__file__))
|
||||
EXAMPLES = join(ROOT, "..", "examples")
|
||||
@ -12,21 +15,28 @@ FORCE_TESTS = os.environ.get("FORCE_TESTS", "")
|
||||
|
||||
|
||||
class TestExamples(TestCase):
|
||||
"""Empty class that will be populated with auto-discovery tests for every example"""
|
||||
pass
|
||||
|
||||
|
||||
def get_test_for_sim(sim, path):
|
||||
def get_test_for_sims(sims, path):
|
||||
root = os.getcwd()
|
||||
|
||||
def wrapped(self):
|
||||
run = False
|
||||
for sim in sims:
|
||||
if sim.skip_test and not FORCE_TESTS:
|
||||
continue
|
||||
run = True
|
||||
iterations = sim.max_steps * sim.num_trials
|
||||
if iterations < 0 or iterations > 1000:
|
||||
sim.max_steps = 100
|
||||
sim.num_trials = 1
|
||||
|
||||
def wrapped(self):
|
||||
envs = sim.run_simulation(dry_run=True)
|
||||
envs = sim.run_simulation(dump=False)
|
||||
assert envs
|
||||
for env in envs:
|
||||
assert env
|
||||
assert env.now > 0
|
||||
try:
|
||||
n = sim.model_params["network_params"]["n"]
|
||||
assert len(list(env.network_agents)) == n
|
||||
@ -34,25 +44,29 @@ def get_test_for_sim(sim, path):
|
||||
pass
|
||||
assert env.schedule.steps > 0 # It has run
|
||||
assert env.schedule.steps <= sim.max_steps # But not further than allowed
|
||||
if not run:
|
||||
raise SkipTest("Example ignored because all simulations are set up to be skipped.")
|
||||
|
||||
return wrapped
|
||||
|
||||
|
||||
def add_example_tests():
|
||||
sim_paths = []
|
||||
sim_paths = {}
|
||||
for path in glob(join(EXAMPLES, '**', '*.yml')):
|
||||
if "soil_output" in path:
|
||||
continue
|
||||
if path not in sim_paths:
|
||||
sim_paths[path] = []
|
||||
for sim in simulation.iter_from_config(path):
|
||||
sim_paths.append((sim, path))
|
||||
for path in glob(join(EXAMPLES, '**', '*.py')):
|
||||
sim_paths[path].append(sim)
|
||||
for path in glob(join(EXAMPLES, '**', '*_sim.py')):
|
||||
if path not in sim_paths:
|
||||
sim_paths[path] = []
|
||||
for sim in simulation.iter_from_py(path):
|
||||
sim_paths.append((sim, path))
|
||||
sim_paths[path].append(sim)
|
||||
|
||||
for (sim, path) in sim_paths:
|
||||
if sim.skip_test and not FORCE_TESTS:
|
||||
continue
|
||||
test_case = get_test_for_sim(sim, path)
|
||||
for (path, sims) in sim_paths.items():
|
||||
test_case = get_test_for_sims(sims, path)
|
||||
fname = os.path.basename(path)
|
||||
test_case.__name__ = "test_example_file_%s" % fname
|
||||
test_case.__doc__ = "%s should be a valid configuration" % fname
|
||||
|
@ -6,9 +6,12 @@ import sqlite3
|
||||
|
||||
from unittest import TestCase
|
||||
from soil import exporters
|
||||
from soil import environment
|
||||
from soil import simulation
|
||||
from soil import agents
|
||||
|
||||
from mesa import Agent as MesaAgent
|
||||
|
||||
|
||||
class Dummy(exporters.Exporter):
|
||||
started = False
|
||||
@ -38,17 +41,17 @@ class Exporters(TestCase):
|
||||
def test_basic(self):
|
||||
# We need to add at least one agent to make sure the scheduler
|
||||
# ticks every step
|
||||
class SimpleEnv(environment.Environment):
|
||||
def init(self):
|
||||
self.add_agent(agent_class=MesaAgent)
|
||||
|
||||
|
||||
num_trials = 5
|
||||
max_time = 2
|
||||
config = {
|
||||
"name": "exporter_sim",
|
||||
"model_params": {"agents": [{"agent_class": agents.BaseAgent}]},
|
||||
"max_time": max_time,
|
||||
"num_trials": num_trials,
|
||||
}
|
||||
s = simulation.from_config(config)
|
||||
s = simulation.Simulation(num_trials=num_trials, max_time=max_time, name="exporter_sim",
|
||||
dump=False, model=SimpleEnv)
|
||||
|
||||
for env in s.run_simulation(exporters=[Dummy], dry_run=True):
|
||||
for env in s.run_simulation(exporters=[Dummy], dump=False):
|
||||
assert len(env.agents) == 1
|
||||
|
||||
assert Dummy.started
|
||||
@ -60,16 +63,20 @@ class Exporters(TestCase):
|
||||
assert Dummy.total_time == max_time * num_trials
|
||||
|
||||
def test_writing(self):
|
||||
"""Try to write CSV, sqlite and YAML (without dry_run)"""
|
||||
"""Try to write CSV, sqlite and YAML (without no_dump)"""
|
||||
n_trials = 5
|
||||
n_nodes = 4
|
||||
max_time = 2
|
||||
config = {
|
||||
"name": "exporter_sim",
|
||||
"network_params": {"generator": "complete_graph", "n": 4},
|
||||
"model_params": {
|
||||
"network_generator": "complete_graph",
|
||||
"network_params": {"n": n_nodes},
|
||||
"agent_class": "CounterModel",
|
||||
"max_time": 2,
|
||||
},
|
||||
"max_time": max_time,
|
||||
"num_trials": n_trials,
|
||||
"dry_run": False,
|
||||
"environment_params": {},
|
||||
"dump": True,
|
||||
}
|
||||
output = io.StringIO()
|
||||
s = simulation.from_config(config)
|
||||
@ -85,7 +92,7 @@ class Exporters(TestCase):
|
||||
"constant": lambda x: 1,
|
||||
},
|
||||
},
|
||||
dry_run=False,
|
||||
dump=True,
|
||||
outdir=tmpdir,
|
||||
exporter_params={"copy_to": output},
|
||||
)
|
||||
@ -98,12 +105,13 @@ class Exporters(TestCase):
|
||||
|
||||
try:
|
||||
for e in envs:
|
||||
db = sqlite3.connect(os.path.join(simdir, f"{s.name}.sqlite"))
|
||||
dbpath = os.path.join(simdir, f"{s.name}.sqlite")
|
||||
db = sqlite3.connect(dbpath)
|
||||
cur = db.cursor()
|
||||
agent_entries = cur.execute("SELECT * from agents").fetchall()
|
||||
env_entries = cur.execute("SELECT * from env").fetchall()
|
||||
assert len(agent_entries) > 0
|
||||
assert len(env_entries) > 0
|
||||
agent_entries = cur.execute("SELECT times FROM agents WHERE times > 0").fetchall()
|
||||
env_entries = cur.execute("SELECT constant from env WHERE constant == 1").fetchall()
|
||||
assert len(agent_entries) == n_nodes * n_trials * max_time
|
||||
assert len(env_entries) == n_trials * max_time
|
||||
|
||||
with open(os.path.join(simdir, "{}.env.csv".format(e.id))) as f:
|
||||
result = f.read()
|
||||
|
@ -6,9 +6,11 @@ import networkx as nx
|
||||
from functools import partial
|
||||
|
||||
from os.path import join
|
||||
from soil import simulation, Environment, agents, network, serialization, utils, config
|
||||
from soil import simulation, Environment, agents, network, serialization, utils, config, from_file
|
||||
from soil.time import Delta
|
||||
|
||||
from mesa import Agent as MesaAgent
|
||||
|
||||
ROOT = os.path.abspath(os.path.dirname(__file__))
|
||||
EXAMPLES = join(ROOT, "..", "examples")
|
||||
|
||||
@ -29,12 +31,13 @@ class TestMain(TestCase):
|
||||
"""A simulation with a base behaviour should do nothing"""
|
||||
config = {
|
||||
"model_params": {
|
||||
"network_params": {"path": join(ROOT, "test.gexf")},
|
||||
"agent_class": "BaseAgent",
|
||||
}
|
||||
"topology": join(ROOT, "test.gexf"),
|
||||
"agent_class": MesaAgent,
|
||||
},
|
||||
"max_time": 1
|
||||
}
|
||||
s = simulation.from_config(config)
|
||||
s.run_simulation(dry_run=True)
|
||||
s.run_simulation(dump=False)
|
||||
|
||||
def test_network_agent(self):
|
||||
"""
|
||||
@ -62,46 +65,21 @@ class TestMain(TestCase):
|
||||
"""
|
||||
The initial states should be applied to the agent and the
|
||||
agent should be able to update its state."""
|
||||
config = {
|
||||
"version": "2",
|
||||
"name": "CounterAgent",
|
||||
"dry_run": True,
|
||||
"num_trials": 1,
|
||||
"max_time": 2,
|
||||
"model_params": {
|
||||
"topology": {"path": join(ROOT, "test.gexf")},
|
||||
"agents": {
|
||||
"agent_class": "CounterModel",
|
||||
"topology": True,
|
||||
"fixed": [{"state": {"times": 10}}, {"state": {"times": 20}}],
|
||||
},
|
||||
},
|
||||
}
|
||||
s = simulation.from_config(config)
|
||||
env = s.get_env()
|
||||
assert isinstance(env.agents[0], agents.CounterModel)
|
||||
assert env.agents[0].G == env.G
|
||||
assert env.agents[0]["times"] == 10
|
||||
env = Environment()
|
||||
env.add_agent(agents.Ticker, times=10)
|
||||
env.add_agent(agents.Ticker, times=20)
|
||||
|
||||
assert isinstance(env.agents[0], agents.Ticker)
|
||||
assert env.agents[0]["times"] == 10
|
||||
assert env.agents[1]["times"] == 20
|
||||
env.step()
|
||||
assert env.agents[0]["times"] == 11
|
||||
assert env.agents[1]["times"] == 21
|
||||
|
||||
def test_init_and_count_agents(self):
|
||||
"""Agents should be properly initialized and counting should filter them properly"""
|
||||
# TODO: separate this test into two or more test cases
|
||||
config = {
|
||||
"max_time": 10,
|
||||
"model_params": {
|
||||
"agents": [
|
||||
{"agent_class": CustomAgent, "weight": 1, "topology": True},
|
||||
{"agent_class": CustomAgent, "weight": 3, "topology": True},
|
||||
],
|
||||
"topology": {"path": join(ROOT, "test.gexf")},
|
||||
},
|
||||
}
|
||||
s = simulation.from_config(config)
|
||||
env = s.run_simulation(dry_run=True)[0]
|
||||
env = Environment(topology=join(ROOT, "test.gexf"))
|
||||
env.populate_network([CustomAgent.w(weight=1), CustomAgent.w(weight=3)])
|
||||
assert env.agents[0].weight == 1
|
||||
assert env.count_agents() == 2
|
||||
assert env.count_agents(weight=1) == 1
|
||||
@ -110,26 +88,28 @@ class TestMain(TestCase):
|
||||
|
||||
def test_torvalds_example(self):
|
||||
"""A complete example from a documentation should work."""
|
||||
config = serialization.load_file(join(EXAMPLES, "torvalds.yml"))[0]
|
||||
config["model_params"]["network_params"]["path"] = join(
|
||||
EXAMPLES, config["model_params"]["network_params"]["path"]
|
||||
)
|
||||
s = simulation.from_config(config)
|
||||
env = s.run_simulation(dry_run=True)[0]
|
||||
owd = os.getcwd()
|
||||
pyfile = join(EXAMPLES, "torvalds_sim.py")
|
||||
try:
|
||||
os.chdir(os.path.dirname(pyfile))
|
||||
s = simulation.from_py(pyfile)
|
||||
env = s.run_simulation(dump=False)[0]
|
||||
for a in env.network_agents:
|
||||
skill_level = a.state["skill_level"]
|
||||
if a.id == "Torvalds":
|
||||
skill_level = a["skill_level"]
|
||||
if a.node_id == "Torvalds":
|
||||
assert skill_level == "God"
|
||||
assert a.state["total"] == 3
|
||||
assert a.state["neighbors"] == 2
|
||||
elif a.id == "balkian":
|
||||
assert a["total"] == 3
|
||||
assert a["neighbors"] == 2
|
||||
elif a.node_id == "balkian":
|
||||
assert skill_level == "developer"
|
||||
assert a.state["total"] == 3
|
||||
assert a.state["neighbors"] == 1
|
||||
assert a["total"] == 3
|
||||
assert a["neighbors"] == 1
|
||||
else:
|
||||
assert skill_level == "beginner"
|
||||
assert a.state["total"] == 3
|
||||
assert a.state["neighbors"] == 1
|
||||
assert a["total"] == 3
|
||||
assert a["neighbors"] == 1
|
||||
finally:
|
||||
os.chdir(owd)
|
||||
|
||||
def test_serialize_class(self):
|
||||
ser, name = serialization.serialize(agents.BaseAgent, known_modules=[])
|
||||
@ -166,11 +146,6 @@ class TestMain(TestCase):
|
||||
assert ser == "BaseAgent"
|
||||
pickle.dumps(ser)
|
||||
|
||||
def test_templates(self):
|
||||
"""Loading a template should result in several configs"""
|
||||
configs = serialization.load_file(join(EXAMPLES, "template.yml"))
|
||||
assert len(configs) > 0
|
||||
|
||||
def test_until(self):
|
||||
n_runs = 0
|
||||
|
||||
@ -178,16 +153,15 @@ class TestMain(TestCase):
|
||||
def step(self):
|
||||
nonlocal n_runs
|
||||
n_runs += 1
|
||||
return super().step()
|
||||
|
||||
n_trials = 50
|
||||
max_time = 2
|
||||
s = simulation.Simulation(
|
||||
model_params={"agents": [{"agent_class": CheckRun}]},
|
||||
model_params=dict(agents=dict(agent_classes=[CheckRun], k=1)),
|
||||
num_trials=n_trials,
|
||||
max_time=max_time,
|
||||
)
|
||||
runs = list(s.run_simulation(dry_run=True))
|
||||
runs = list(s.run_simulation(dump=False))
|
||||
over = list(x.now for x in runs if x.now > 2)
|
||||
assert len(runs) == n_trials
|
||||
assert len(over) == 0
|
||||
@ -230,3 +204,21 @@ class TestMain(TestCase):
|
||||
assert when == 2
|
||||
when = a.step()
|
||||
assert when == Delta(a.interval)
|
||||
|
||||
def test_load_sim(self):
|
||||
"""Make sure at least one of the examples can be loaded"""
|
||||
sims = from_file(os.path.join(EXAMPLES, "newsspread", "newsspread_sim.py"))
|
||||
assert len(sims) == 3*3*2
|
||||
for sim in sims:
|
||||
assert sim
|
||||
assert sim.name == "newspread_sim"
|
||||
assert sim.num_trials == 5
|
||||
assert sim.max_steps == 300
|
||||
assert not sim.dump
|
||||
assert sim.model_params
|
||||
assert "ratio_dumb" in sim.model_params
|
||||
assert "ratio_herd" in sim.model_params
|
||||
assert "ratio_wise" in sim.model_params
|
||||
assert "network_generator" in sim.model_params
|
||||
assert "network_params" in sim.model_params
|
||||
assert "prob_neighbor_spread" in sim.model_params
|
@ -19,13 +19,11 @@ class TestNetwork(TestCase):
|
||||
Load a graph from file if the extension is known.
|
||||
Raise an exception otherwise.
|
||||
"""
|
||||
config = {"network_params": {"path": join(ROOT, "test.gexf")}}
|
||||
G = network.from_config(config["network_params"])
|
||||
G = network.from_topology(join(ROOT, "test.gexf"))
|
||||
assert G
|
||||
assert len(G) == 2
|
||||
with self.assertRaises(AttributeError):
|
||||
config = {"network_params": {"path": join(ROOT, "unknown.extension")}}
|
||||
G = network.from_config(config["network_params"])
|
||||
G = network.from_topology(join(ROOT, "unknown.extension"))
|
||||
print(G)
|
||||
|
||||
def test_generate_barabasi(self):
|
||||
@ -33,12 +31,12 @@ class TestNetwork(TestCase):
|
||||
If no path is given, a generator and network parameters
|
||||
should be used to generate a network
|
||||
"""
|
||||
cfg = {"params": {"generator": "barabasi_albert_graph"}}
|
||||
cfg = {"generator": "barabasi_albert_graph"}
|
||||
with self.assertRaises(Exception):
|
||||
G = network.from_config(cfg)
|
||||
cfg["params"]["n"] = 100
|
||||
cfg["params"]["m"] = 10
|
||||
G = network.from_config(cfg)
|
||||
G = network.from_params(**cfg)
|
||||
cfg["n"] = 100
|
||||
cfg["m"] = 10
|
||||
G = network.from_params(**cfg)
|
||||
assert len(G) == 100
|
||||
|
||||
def test_save_geometric(self):
|
||||
@ -54,18 +52,8 @@ class TestNetwork(TestCase):
|
||||
|
||||
def test_networkenvironment_creation(self):
|
||||
"""Networkenvironment should accept netconfig as parameters"""
|
||||
model_params = {
|
||||
"topology": {"path": join(ROOT, "test.gexf")},
|
||||
"agents": {
|
||||
"topology": True,
|
||||
"distribution": [
|
||||
{
|
||||
"agent_class": CustomAgent,
|
||||
}
|
||||
],
|
||||
},
|
||||
}
|
||||
env = environment.Environment(**model_params)
|
||||
env = environment.Environment(topology=join(ROOT, "test.gexf"))
|
||||
env.populate_network(CustomAgent)
|
||||
assert env.G
|
||||
env.step()
|
||||
assert len(env.G) == 2
|
||||
@ -76,18 +64,9 @@ class TestNetwork(TestCase):
|
||||
|
||||
def test_custom_agent_neighbors(self):
|
||||
"""Allow for search of neighbors with a certain state_id"""
|
||||
config = {
|
||||
"model_params": {
|
||||
"topology": {"path": join(ROOT, "test.gexf")},
|
||||
"agents": {
|
||||
"topology": True,
|
||||
"distribution": [{"weight": 1, "agent_class": CustomAgent}],
|
||||
},
|
||||
},
|
||||
"max_time": 10,
|
||||
}
|
||||
s = simulation.from_config(config)
|
||||
env = s.run_simulation(dry_run=True)[0]
|
||||
env = environment.Environment()
|
||||
env.create_network(join(ROOT, "test.gexf"))
|
||||
env.populate_network(CustomAgent)
|
||||
assert env.agents[1].count_agents(state_id="normal") == 2
|
||||
assert env.agents[1].count_agents(state_id="normal", limit_neighbors=True) == 1
|
||||
assert env.agents[0].count_neighbors() == 1
|
||||
@ -97,13 +76,11 @@ class TestNetwork(TestCase):
|
||||
G = nx.Graph()
|
||||
G.add_node(3)
|
||||
G.add_edge(1, 2)
|
||||
distro = agents.calculate_distribution(agent_class=agents.NetworkAgent)
|
||||
aconfig = config.AgentConfig(distribution=distro, topology=True)
|
||||
env = environment.Environment(name="Test", topology=G, agents=aconfig)
|
||||
lst = list(env.network_agents)
|
||||
env = environment.Environment(name="Test", topology=G)
|
||||
env.populate_network(agents.NetworkAgent)
|
||||
|
||||
a2 = env.find_one(node_id=2)
|
||||
a3 = env.find_one(node_id=3)
|
||||
a2 = env.agent(node_id=2)
|
||||
a3 = env.agent(node_id=3)
|
||||
assert len(a2.subgraph(limit_neighbors=True)) == 2
|
||||
assert len(a3.subgraph(limit_neighbors=True)) == 1
|
||||
assert len(a3.subgraph(limit_neighbors=True, center=False)) == 0
|
||||
|
@ -46,7 +46,8 @@ class TestMain(TestCase):
|
||||
break
|
||||
done.append(self.now)
|
||||
|
||||
env = environment.Environment(agents=[{"agent_class": CondAgent}])
|
||||
env = environment.Environment()
|
||||
env.add_agent(CondAgent)
|
||||
|
||||
while env.schedule.time < 11:
|
||||
times.append(env.now)
|
||||
|
Loading…
Reference in New Issue
Block a user