1
0
mirror of https://github.com/gsi-upm/soil synced 2025-01-06 23:01:27 +00:00

Compare commits

...

8 Commits

Author SHA1 Message Date
J. Fernando Sánchez
be65592055 Default parameters terroristnetwork 2023-04-14 20:25:16 +02:00
J. Fernando Sánchez
1d882dcff6 Update easy function 2023-04-14 20:21:34 +02:00
J. Fernando Sánchez
b3e77cbff5 Update python version in gitlab-ci 2023-04-14 20:07:16 +02:00
J. Fernando Sánchez
05748a3250 Update python version requirement 2023-04-14 20:03:47 +02:00
J. Fernando Sánchez
a3fc6a5efa Update README 2023-04-14 19:56:44 +02:00
J. Fernando Sánchez
4e95709188 Update README 2023-04-14 19:53:31 +02:00
J. Fernando Sánchez
feab0ba79e Large set of changes for v0.30
The examples weren't being properly tested in the last commit. When we fixed
that a lot of bugs in the new implementation of environment and agent were
found, which accounts for most of these changes.

The main difference is the mechanism to load simulations from a configuration
file. For that to work, we had to rework our module loading code in
`serialization` and add a `source_file` attribute to configurations (and
simulations, for that matter).
2023-04-14 19:41:24 +02:00
J. Fernando Sánchez
73282530fd Big refactor v0.30
All test pass, except for the TestConfig suite, which is not too critical as the
plan for this version onwards is to avoid configuration as much as possible.
2023-04-09 04:19:24 +02:00
63 changed files with 1401 additions and 83075 deletions

View File

@ -20,7 +20,7 @@ docker:
test: test:
tags: tags:
- docker - docker
image: python:3.7 image: python:3.8
stage: test stage: test
script: script:
- pip install -r requirements.txt -r test-requirements.txt - pip install -r requirements.txt -r test-requirements.txt
@ -31,7 +31,7 @@ push_pypi:
- tags - tags
tags: tags:
- docker - docker
image: python:3.7 image: python:3.8
stage: publish stage: publish
script: script:
- echo $CI_COMMIT_TAG > soil/VERSION - echo $CI_COMMIT_TAG > soil/VERSION
@ -44,7 +44,7 @@ check_pypi:
- tags - tags
tags: tags:
- docker - docker
image: python:3.7 image: python:3.8
stage: check_published stage: check_published
script: script:
- pip install soil==$CI_COMMIT_TAG - pip install soil==$CI_COMMIT_TAG

View File

@ -6,15 +6,12 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
## [0.30 UNRELEASED] ## [0.30 UNRELEASED]
### Added ### Added
* Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>` * Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>`
* Ability to run * Ability to run mesa simulations
* Ability to
* The `soil.exporters` module to export the results of datacollectors (model.datacollector) into files at the end of trials/simulations * The `soil.exporters` module to export the results of datacollectors (model.datacollector) into files at the end of trials/simulations
* A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology). * A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology).
* FSM agents can now have generators as states. They work similar to normal states, with one caveat. Only `time` values can be yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. The return value *can* be a state, or a `(state, time)` tuple, just like in normal states. * FSM agents can now have generators as states. They work similar to normal states, with one caveat. Only `time` values can be yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. The return value *can* be a state, or a `(state, time)` tuple, just like in normal states.
### Changed ### Changed
* Configuration schema is very different now. Check `soil.config` for more information. We are also using Pydantic for (de)serialization. * Configuration schema is very simplified
* There may be more than one topology/network in the simulation
* Ability
### Removed ### Removed
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases. * Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.

View File

@ -1,20 +1,20 @@
# [SOIL](https://github.com/gsi-upm/soil) # [SOIL](https://github.com/gsi-upm/soil)
Soil is an extensible and user-friendly Agent-based Social Simulator for Social Networks. Soil is an extensible and user-friendly Agent-based Social Simulator for Social Networks.
Learn how to run your own simulations with our [documentation](http://soilsim.readthedocs.io). Learn how to run your own simulations with our [documentation](http://soilsim.readthedocs.io).
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models. Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
**Note**: Mesa 0.30 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/migration_0.30.rst) > **Warning**
> Mesa 0.30 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/notes_v0.30.rst)
## SOIL vs MESA ## Features
SOIL is a batteries-included platform that builds on top of MESA and provides the following out of the box: * Integration with (social) networks (through `networkx`)
* Convenience functions and methods to easily assign agents to your model (and optionally to its network):
* Integration with (social) networks * Following a given distribution (e.g., 2 agents of type `Foo`, 10% of the network should be agents of type `Bar`)
* The ability to more easily assign agents to your model (and optionally to its network): * Based on the topology of the network
* Assigning agents to nodes, and vice versa
* Using a description (e.g., 2 agents of type `Foo`, 10% of the network should be agents of type `Bar`)
* **Several types of abstractions for agents**: * **Several types of abstractions for agents**:
* Finite state machine, where methods can be turned into a state * Finite state machine, where methods can be turned into a state
* Network agents, which have convenience methods to access the model's topology * Network agents, which have convenience methods to access the model's topology
@ -33,15 +33,18 @@ SOIL is a batteries-included platform that builds on top of MESA and provides th
* Run models in parallel * Run models in parallel
* Save results to different formats * Save results to different formats
* Simulation configuration files * Simulation configuration files
* A command line interface (`soil`), to run multiple * A command line interface (`soil`), to quickly run simulations with different parameters
* An integrated debugger (`soil --debug`) with custom functions to print agent states and break at specific states * An integrated debugger (`soil --debug`) with custom functions to print agent states and break at specific states
Nevertheless, most features in SOIL have been designed to integrate with plain Mesa.
## Mesa compatibility
SOIL has been redesigned to integrate well with [Mesa](https://github.com/projectmesa/mesa).
For instance, it should be possible to run a `mesa.Model` models using a `soil.Simulation` and the `soil` CLI, or to integrate the `soil.TimedActivation` scheduler on a `mesa.Model`. For instance, it should be possible to run a `mesa.Model` models using a `soil.Simulation` and the `soil` CLI, or to integrate the `soil.TimedActivation` scheduler on a `mesa.Model`.
Note that some combinations of `mesa` and `soil` components, while technically possible, are much less useful or even wrong. Note that some combinations of `mesa` and `soil` components, while technically possible, are much less useful or might yield surprising results.
For instance, you may add any `soil.agent` agent (except for the `soil.NetworkAgent`, as it needs a topology) on a regular `mesa.Model` with a vanilla scheduler from `mesa.time`. For instance, you may add any `soil.agent` agent on a regular `mesa.Model` with a vanilla scheduler from `mesa.time`.
But in that case the agents will not get any of the advanced event-based scheduling, and most agent behaviors that depend on that will greatly vary. But in that case the agents will not get any of the advanced event-based scheduling, and most agent behaviors that depend on that may not work.
## Changes in version 0.3 ## Changes in version 0.3

35
docs/notes_v0.30.rst Normal file
View File

@ -0,0 +1,35 @@
What are the main changes between version 0.3 and 0.2?
######################################################
Version 0.3 is a major rewrite of the Soil system, focused on simplifying the API, aligning it with Mesa, and making it easier to use.
Unfortunately, this comes at the cost of backwards compatibility.
We drew several lessons from the previous version of Soil, and tried to address them in this version.
Mainly:
- The split between simulation configuration and simulation code was overly complicated for most use cases. As a result, most users ended up reusing configuration.
- Storing **all** the simulation data in a database is costly and unnecessary for most use cases. For most use cases, only a handful of variables need to be stored. This fits nicely with Mesa's data collection system.
- The API was too complex, and it was difficult to understand how to use it.
- Most parts of the API were not aligned with Mesa, which made it difficult to use Mesa's features or to integrate Soil modules with Mesa code, especially for newcomers.
- Many parts of the API were tightly coupled, which made it difficult to find bugs, test the system and add new features.
The 0.30 rewrite should provide a middle ground between Soil's opinionated approach and Mesa's flexibility.
The new Soil is less configuration-centric.
It aims to provide more modular and convenient functions, most of which can be used in vanilla Mesa.
How are agents assigned to nodes in the network
###############################################
The constructor of the `NetworkAgent` class has two arguments: `node_id` and `topology`.
If `topology` is not provided, it will default to `self.model.topology`.
This assignment might err if the model does not have a `topology` attribute, but most Soil environments derive from `NetworkEnvironment`, so they include a topology by default.
If `node_id` is not provided, a random node will be selected from the topology, until a node with no agent is found.
Then, the `node_id` of that node is assigned to the agent.
If no node with no agent is found, a new node is automatically added to the topology.
Can Soil environments include more than one network / topology?
###############################################################
Yes, but each network has to be included manually.
Somewhere between 0.20 and 0.30 we included the ability to include multiple networks, but it was deemed too complex and was removed.

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -1,54 +0,0 @@
---
version: '2'
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_steps: 100
interval: 1
seed: "CompleteSeed!"
model_class: Environment
model_params:
am_i_complete: true
topology:
params:
generator: complete_graph
n: 12
environment:
agents:
agent_class: CounterModel
topology: true
state:
times: 1
# In this group we are not specifying any topology
fixed:
- name: 'Environment Agent 1'
agent_class: BaseAgent
group: environment
topology: false
hidden: true
state:
times: 10
- agent_class: CounterModel
id: 0
group: fixed_counters
state:
times: 1
total: 0
- agent_class: CounterModel
group: fixed_counters
id: 1
distribution:
- agent_class: CounterModel
weight: 1
group: distro_counters
state:
times: 3
- agent_class: AggregatedCounter
weight: 0.2
override:
- filter:
agent_class: AggregatedCounter
n: 2
state:
times: 5

View File

@ -1,16 +0,0 @@
---
name: custom-generator
description: Using a custom generator for the network
num_trials: 3
max_steps: 100
interval: 1
network_params:
generator: mymodule.mygenerator
# These are custom parameters
n: 10
n_edges: 5
network_agents:
- agent_class: CounterModel
weight: 1
state:
state_id: 0

View File

@ -1,6 +1,7 @@
from networkx import Graph from networkx import Graph
import random import random
import networkx as nx import networkx as nx
from soil import Simulation, Environment, CounterModel, parameters
def mygenerator(n=5, n_edges=5): def mygenerator(n=5, n_edges=5):
@ -20,3 +21,19 @@ def mygenerator(n=5, n_edges=5):
n_out = random.choice(nodes) n_out = random.choice(nodes)
G.add_edge(n_in, n_out) G.add_edge(n_in, n_out)
return G return G
class GeneratorEnv(Environment):
"""Using a custom generator for the network"""
generator: parameters.function = staticmethod(mygenerator)
def init(self):
self.create_network(generator=self.generator, n=10, n_edges=5)
self.add_agents(CounterModel)
sim = Simulation(model=GeneratorEnv, max_steps=10, interval=1)
if __name__ == '__main__':
sim.run(dump=False)

View File

@ -4,8 +4,7 @@ from soil.time import Delta
class Fibonacci(FSM): class Fibonacci(FSM):
"""Agent that only executes in t_steps that are Fibonacci numbers""" """Agent that only executes in t_steps that are Fibonacci numbers"""
prev = 1
defaults = {"prev": 1}
@default_state @default_state
@state @state
@ -25,23 +24,18 @@ class Odds(FSM):
return None, Delta(1 + self.now % 2) return None, Delta(1 + self.now % 2)
from soil import Simulation from soil import Environment, Simulation
from networkx import complete_graph
simulation = Simulation(
model_params={ class TimeoutsEnv(Environment):
'agents':[ def init(self):
{'agent_class': Fibonacci, 'node_id': 0}, self.create_network(generator=complete_graph, n=2)
{'agent_class': Odds, 'node_id': 1} self.add_agent(agent_class=Fibonacci, node_id=0)
], self.add_agent(agent_class=Odds, node_id=1)
'topology': {
'params': {
'generator': 'complete_graph', sim = Simulation(model=TimeoutsEnv, max_steps=10, interval=1)
'n': 2
}
},
},
max_time=100,
)
if __name__ == "__main__": if __name__ == "__main__":
simulation.run(dry_run=True) sim.run(dump=False)

View File

@ -2,6 +2,8 @@ This example can be run like with command-line options, like this:
```bash ```bash
python cars.py --level DEBUG -e summary --csv python cars.py --level DEBUG -e summary --csv
#or
soil cars.py -e summary
``` ```
This will set the `CSV` (save the agent and model data to a CSV) and `summary` (print the a summary of the data to stdout) exporters, and set the log level to DEBUG. This will set the `CSV` (save the agent and model data to a CSV) and `summary` (print the a summary of the data to stdout) exporters, and set the log level to DEBUG.

View File

@ -56,41 +56,25 @@ class City(EventedEnvironment):
:param int height: Height of the internal grid :param int height: Height of the internal grid
:param int width: Width of the internal grid :param int width: Width of the internal grid
""" """
n_cars = 1
n_passengers = 10
height = 100
width = 100
def init(self):
self.grid = MultiGrid(width=self.width, height=self.height, torus=False)
if not self.agents:
self.add_agents(Driver, k=self.n_cars)
self.add_agents(Passenger, k=self.n_passengers)
def __init__(
self,
*args,
n_cars=1,
n_passengers=10,
height=100,
width=100,
agents=None,
model_reporters=None,
**kwargs,
):
self.grid = MultiGrid(width=width, height=height, torus=False)
if agents is None:
agents = []
for i in range(n_cars):
agents.append({"agent_class": Driver})
for i in range(n_passengers):
agents.append({"agent_class": Passenger})
model_reporters = model_reporters or {
"earnings": "total_earnings",
"n_passengers": "number_passengers",
}
print("REPORTERS", model_reporters)
super().__init__(
*args, agents=agents, model_reporters=model_reporters, **kwargs
)
for agent in self.agents: for agent in self.agents:
self.grid.place_agent(agent, (0, 0)) self.grid.place_agent(agent, (0, 0))
self.grid.move_to_empty(agent) self.grid.move_to_empty(agent)
self.total_earnings = 0
self.add_model_reporter("total_earnings")
@property @report
def total_earnings(self):
return sum(d.earnings for d in self.agents(agent_class=Driver))
@property @property
def number_passengers(self): def number_passengers(self):
return self.count_agents(agent_class=Passenger) return self.count_agents(agent_class=Passenger)
@ -150,6 +134,7 @@ class Driver(Evented, FSM):
while self.move_towards(self.journey.destination, with_passenger=True): while self.move_towards(self.journey.destination, with_passenger=True):
yield yield
self.earnings += self.journey.tip self.earnings += self.journey.tip
self.model.total_earnings += self.journey.tip
self.check_passengers() self.check_passengers()
return self.wandering return self.wandering
@ -228,16 +213,14 @@ class Passenger(Evented, FSM):
except events.TimedOut: except events.TimedOut:
pass pass
self.info("Got home safe!") self.die("Got home safe!")
self.die()
simulation = Simulation( simulation = Simulation(name="RideHailing",
name="RideHailing", model=City,
model_class=City, seed="carsSeed",
model_params={"n_passengers": 2}, max_time=1000,
seed="carsSeed", model_params=dict(n_passengers=2))
)
if __name__ == "__main__": if __name__ == "__main__":
simulation.run() easy(simulation)

View File

@ -1,19 +0,0 @@
---
name: mesa_sim
group: tests
dir_path: "/tmp"
num_trials: 3
max_steps: 100
interval: 1
seed: '1'
model_class: social_wealth.MoneyEnv
model_params:
generator: social_wealth.graph_generator
agents:
topology: true
distribution:
- agent_class: social_wealth.SocialMoneyAgent
weight: 1
N: 10
width: 50
height: 50

View File

@ -0,0 +1,7 @@
from soil import Simulation
from social_wealth import MoneyEnv, graph_generator
sim = Simulation(name="mesa_sim", dump=False, max_steps=10, interval=2, model=MoneyEnv, model_params=dict(generator=graph_generator, N=10, width=50, height=50))
if __name__ == "__main__":
sim.run()

View File

@ -1,5 +1,5 @@
from mesa.visualization.ModularVisualization import ModularServer from mesa.visualization.ModularVisualization import ModularServer
from soil.visualization import UserSettableParameter from mesa.visualization.UserParam import Slider, Choice
from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid
from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent
import networkx as nx import networkx as nx
@ -64,8 +64,7 @@ chart = ChartModule(
) )
model_params = { model_params = {
"N": UserSettableParameter( "N": Slider(
"slider",
"N", "N",
5, 5,
1, 1,
@ -73,8 +72,7 @@ model_params = {
1, 1,
description="Choose how many agents to include in the model", description="Choose how many agents to include in the model",
), ),
"height": UserSettableParameter( "height": Slider(
"slider",
"height", "height",
5, 5,
5, 5,
@ -82,8 +80,7 @@ model_params = {
1, 1,
description="Grid height", description="Grid height",
), ),
"width": UserSettableParameter( "width": Slider(
"slider",
"width", "width",
5, 5,
5, 5,
@ -91,8 +88,7 @@ model_params = {
1, 1,
description="Grid width", description="Grid width",
), ),
"agent_class": UserSettableParameter( "agent_class": Choice(
"choice",
"Agent class", "Agent class",
value="MoneyAgent", value="MoneyAgent",
choices=["MoneyAgent", "SocialMoneyAgent"], choices=["MoneyAgent", "SocialMoneyAgent"],

View File

@ -53,7 +53,7 @@ class MoneyAgent(MesaAgent):
self.give_money() self.give_money()
class SocialMoneyAgent(NetworkAgent, MoneyAgent): class SocialMoneyAgent(MoneyAgent, NetworkAgent):
wealth = 1 wealth = 1
def give_money(self): def give_money(self):

View File

@ -1,133 +0,0 @@
---
default_state: {}
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_steps: 300
name: Sim_all_dumb
network_agents:
- agent_class: newsspread.DumbViewer
state:
has_tv: false
weight: 1
- agent_class: newsspread.DumbViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_steps: 300
name: Sim_half_herd
network_agents:
- agent_class: newsspread.DumbViewer
state:
has_tv: false
weight: 1
- agent_class: newsspread.DumbViewer
state:
has_tv: true
weight: 1
- agent_class: newsspread.HerdViewer
state:
has_tv: false
weight: 1
- agent_class: newsspread.HerdViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_steps: 300
name: Sim_all_herd
network_agents:
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_steps: 300
name: Sim_wise_herd
network_agents:
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_class: newsspread.WiseViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_steps: 300
name: Sim_all_wise
network_agents:
- agent_class: newsspread.WiseViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_class: newsspread.WiseViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50

View File

@ -1,87 +0,0 @@
from soil.agents import FSM, NetworkAgent, state, default_state, prob
import logging
class DumbViewer(FSM, NetworkAgent):
"""
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
"""
prob_neighbor_spread = 0.5
prob_tv_spread = 0.1
has_been_infected = False
@default_state
@state
def neutral(self):
if self["has_tv"]:
if self.prob(self.model["prob_tv_spread"]):
return self.infected
if self.has_been_infected:
return self.infected
@state
def infected(self):
for neighbor in self.get_neighbors(state_id=self.neutral.id):
if self.prob(self.model["prob_neighbor_spread"]):
neighbor.infect()
def infect(self):
"""
This is not a state. It is a function that other agents can use to try to
infect this agent. DumbViewer always gets infected, but other agents like
HerdViewer might not become infected right away
"""
self.has_been_infected = True
class HerdViewer(DumbViewer):
"""
A viewer whose probability of infection depends on the state of its neighbors.
"""
def infect(self):
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
infected = self.count_neighbors(state_id=self.infected.id)
total = self.count_neighbors()
prob_infect = self.model["prob_neighbor_spread"] * infected / total
self.debug("prob_infect", prob_infect)
if self.prob(prob_infect):
self.has_been_infected = True
class WiseViewer(HerdViewer):
"""
A viewer that can change its mind.
"""
defaults = {
"prob_neighbor_spread": 0.5,
"prob_neighbor_cure": 0.25,
"prob_tv_spread": 0.1,
}
@state
def cured(self):
prob_cure = self.model["prob_neighbor_cure"]
for neighbor in self.get_neighbors(state_id=self.infected.id):
if self.prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
self.debug("Viewer {} cannot be cured".format(neighbor.id))
def cure(self):
self.has_been_cured = True
@state
def infected(self):
if self.has_been_cured:
return self.cured
cured = max(self.count_neighbors(self.cured.id), 1.0)
infected = max(self.count_neighbors(self.infected.id), 1.0)
prob_cure = self.model["prob_neighbor_cure"] * (cured / infected)
if self.prob(prob_cure):
return self.cured

View File

@ -0,0 +1,134 @@
from soil.agents import FSM, NetworkAgent, state, default_state, prob
from soil.parameters import *
import logging
from soil.environment import Environment
class DumbViewer(FSM, NetworkAgent):
"""
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
"""
has_been_infected: bool = False
has_tv: bool = False
@default_state
@state
def neutral(self):
if self.has_tv:
if self.prob(self.get("prob_tv_spread")):
return self.infected
if self.has_been_infected:
return self.infected
@state
def infected(self):
for neighbor in self.get_neighbors(state_id=self.neutral.id):
if self.prob(self.get("prob_neighbor_spread")):
neighbor.infect()
def infect(self):
"""
This is not a state. It is a function that other agents can use to try to
infect this agent. DumbViewer always gets infected, but other agents like
HerdViewer might not become infected right away
"""
self.has_been_infected = True
class HerdViewer(DumbViewer):
"""
A viewer whose probability of infection depends on the state of its neighbors.
"""
def infect(self):
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
infected = self.count_neighbors(state_id=self.infected.id)
total = self.count_neighbors()
prob_infect = self.get("prob_neighbor_spread") * infected / total
self.debug("prob_infect", prob_infect)
if self.prob(prob_infect):
self.has_been_infected = True
class WiseViewer(HerdViewer):
"""
A viewer that can change its mind.
"""
@state
def cured(self):
prob_cure = self.get("prob_neighbor_cure")
for neighbor in self.get_neighbors(state_id=self.infected.id):
if self.prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
self.debug("Viewer {} cannot be cured".format(neighbor.id))
def cure(self):
self.has_been_cured = True
@state
def infected(self):
if self.has_been_cured:
return self.cured
cured = max(self.count_neighbors(self.cured.id), 1.0)
infected = max(self.count_neighbors(self.infected.id), 1.0)
prob_cure = self.get("prob_neighbor_cure") * (cured / infected)
if self.prob(prob_cure):
return self.cured
class NewsSpread(Environment):
ratio_dumb: probability = 1,
ratio_herd: probability = 0,
ratio_wise: probability = 0,
prob_tv_spread: probability = 0.1,
prob_neighbor_spread: probability = 0.1,
prob_neighbor_cure: probability = 0.05,
def init(self):
self.populate_network([DumbViewer, HerdViewer, WiseViewer],
[self.ratio_dumb, self.ratio_herd, self.ratio_wise])
from itertools import product
from soil import Simulation
# We want to investigate the effect of different agent distributions on the spread of news.
# To do that, we will run different simulations, with a varying ratio of DumbViewers, HerdViewers, and WiseViewers
# Because the effect of these agents might also depend on the network structure, we will run our simulations on two different networks:
# one with a small-world structure and one with a connected structure.
counter = 0
for [r1, r2] in product([0, 0.5, 1.0], repeat=2):
for (generator, netparams) in {
"barabasi_albert_graph": {"m": 5},
"erdos_renyi_graph": {"p": 0.1},
}.items():
print(r1, r2, 1-r1-r2, generator)
# Create new simulation
netparams["n"] = 500
Simulation(
name='newspread_sim',
model=NewsSpread,
model_params=dict(
ratio_dumb=r1,
ratio_herd=r2,
ratio_wise=1-r1-r2,
network_generator=generator,
network_params=netparams,
prob_neighbor_spread=0,
),
num_trials=5,
max_steps=300,
dump=False,
).run()
counter += 1
# Run all the necessary instances
print(f"A total of {counter} simulations were run.")

View File

@ -1,7 +1,7 @@
""" """
Example of a fully programmatic simulation, without definition files. Example of a fully programmatic simulation, without definition files.
""" """
from soil import Simulation, agents from soil import Simulation, Environment, agents
from networkx import Graph from networkx import Graph
import logging import logging
@ -14,7 +14,7 @@ def mygenerator():
return G return G
class MyAgent(agents.FSM): class MyAgent(agents.NetworkAgent, agents.FSM):
times_run = 0 times_run = 0
@agents.default_state @agents.default_state
@agents.state @agents.state
@ -25,26 +25,22 @@ class MyAgent(agents.FSM):
self.info("This runs 2/10 times on average") self.info("This runs 2/10 times on average")
class ProgrammaticEnv(Environment):
def init(self):
self.create_network(generator=mygenerator)
assert len(self.G)
self.populate_network(agent_class=MyAgent)
self.add_agent_reporter('times_run')
simulation = Simulation( simulation = Simulation(
name="Programmatic", name="Programmatic",
model_params={ model=ProgrammaticEnv,
'topology': {
'params': {
'generator': mygenerator
},
},
'agents': {
'distribution': [{
'agent_class': MyAgent,
'topology': True,
}]
}
},
seed='Program', seed='Program',
agent_reporters={'times_run': 'times_run'},
num_trials=1, num_trials=1,
max_time=100, max_time=100,
dry_run=True, dump=False,
) )
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -1,26 +0,0 @@
---
name: pubcrawl
num_trials: 3
max_steps: 10
dump: false
network_params:
# Generate 100 empty nodes. They will be assigned a network agent
generator: empty_graph
n: 30
network_agents:
- agent_class: pubcrawl.Patron
description: Extroverted patron
state:
openness: 1.0
weight: 9
- agent_class: pubcrawl.Patron
description: Introverted patron
state:
openness: 0.1
weight: 1
environment_agents:
- agent_class: pubcrawl.Police
environment_class: pubcrawl.CityPubs
environment_params:
altercations: 0
number_of_pubs: 3

View File

@ -1,6 +1,7 @@
from soil.agents import FSM, NetworkAgent, state, default_state from soil.agents import FSM, NetworkAgent, state, default_state
from soil import Environment from soil import Environment, Simulation, parameters
from itertools import islice from itertools import islice
import networkx as nx
import logging import logging
@ -8,19 +9,24 @@ class CityPubs(Environment):
"""Environment with Pubs""" """Environment with Pubs"""
level = logging.INFO level = logging.INFO
number_of_pubs: parameters.Integer = 3
def __init__(self, *args, number_of_pubs=3, pub_capacity=10, **kwargs): ratio_extroverted: parameters.probability = 0.1
super(CityPubs, self).__init__(*args, **kwargs) pub_capacity: parameters.Integer = 10
pubs = {}
for i in range(number_of_pubs): def init(self):
self.pubs = {}
for i in range(self.number_of_pubs):
newpub = { newpub = {
"name": "The awesome pub #{}".format(i), "name": "The awesome pub #{}".format(i),
"open": True, "open": True,
"capacity": pub_capacity, "capacity": self.pub_capacity,
"occupancy": 0, "occupancy": 0,
} }
pubs[newpub["name"]] = newpub self.pubs[newpub["name"]] = newpub
self["pubs"] = pubs self.add_agent(agent_class=Police)
self.populate_network([Patron.w(openness=0.1), Patron.w(openness=1)],
[self.ratio_extroverted, 1-self.ratio_extroverted])
assert all(["agent" in node and isinstance(node["agent"], Patron) for (_, node) in self.G.nodes(data=True)])
def enter(self, pub_id, *nodes): def enter(self, pub_id, *nodes):
"""Agents will try to enter. The pub checks if it is possible""" """Agents will try to enter. The pub checks if it is possible"""
@ -146,10 +152,10 @@ class Patron(FSM, NetworkAgent):
continue continue
if friend.befriend(self): if friend.befriend(self):
self.befriend(friend, force=True) self.befriend(friend, force=True)
self.debug("Hooray! new friend: {}".format(friend.id)) self.debug("Hooray! new friend: {}".format(friend.unique_id))
befriended = True befriended = True
else: else:
self.debug("{} does not want to be friends".format(friend.id)) self.debug("{} does not want to be friends".format(friend.unique_id))
return befriended return befriended
@ -163,13 +169,27 @@ class Police(FSM):
def patrol(self): def patrol(self):
drunksters = list(self.get_agents(drunk=True, state_id=Patron.drunk_in_pub.id)) drunksters = list(self.get_agents(drunk=True, state_id=Patron.drunk_in_pub.id))
for drunk in drunksters: for drunk in drunksters:
self.info("Kicking out the trash: {}".format(drunk.id)) self.info("Kicking out the trash: {}".format(drunk.unique_id))
drunk.kick_out() drunk.kick_out()
else: else:
self.info("No trash to take out. Too bad.") self.info("No trash to take out. Too bad.")
if __name__ == "__main__": sim = Simulation(
from soil import run_from_config model=CityPubs,
name="pubcrawl",
num_trials=3,
max_steps=10,
dump=False,
model_params=dict(
network_generator=nx.empty_graph,
network_params={"n": 30},
model=CityPubs,
altercations=0,
number_of_pubs=3,
)
)
run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)
if __name__ == "__main__":
sim.run(parallel=False)

View File

@ -1,42 +0,0 @@
---
version: '2'
name: rabbits_basic
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: true
distribution:
- agent_class: rabbit_agents.Male
weight: 1
- agent_class: rabbit_agents.Female
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: false
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topology:
fixed:
directed: true
links: []
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@ -1,42 +0,0 @@
---
version: '2'
name: rabbits_improved
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: true
distribution:
- agent_class: rabbit_agents.Male
weight: 1
- agent_class: rabbit_agents.Female
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: false
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topology:
fixed:
directed: true
links: []
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@ -1,23 +1,20 @@
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, Simulation
from soil.time import Delta from soil.time import Delta
from enum import Enum from enum import Enum
from collections import Counter from collections import Counter
import logging import logging
import math import math
from rabbits_basic_sim import RabbitEnv
class RabbitEnv(Environment):
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
@property class RabbitsImprovedEnv(RabbitEnv):
def num_males(self): def init(self):
return self.count_agents(agent_class=Male) """Initialize the environment with the new versions of the agents"""
a1 = self.add_node(Male)
@property a2 = self.add_node(Female)
def num_females(self): a1.add_edge(a2)
return self.count_agents(agent_class=Female) self.add_agent(RandomAccident)
class Rabbit(FSM, NetworkAgent): class Rabbit(FSM, NetworkAgent):
@ -150,8 +147,7 @@ class RandomAccident(BaseAgent):
self.debug("Rabbits alive: {}".format(rabbits_alive)) self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__": sim = Simulation(model=RabbitsImprovedEnv, max_time=100, seed="MySeed", num_trials=1)
from soil import easy
with easy("rabbits.yml") as sim: if __name__ == "__main__":
sim.run() sim.run()

View File

@ -1,20 +1,29 @@
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, Simulation, report, parameters as params
from collections import Counter from collections import Counter
import logging import logging
import math import math
class RabbitEnv(Environment): class RabbitEnv(Environment):
prob_death = 1e-100 prob_death: params.probability = 1e-100
def init(self):
a1 = self.add_node(Male)
a2 = self.add_node(Female)
a1.add_edge(a2)
self.add_agent(RandomAccident)
@report
@property @property
def num_rabbits(self): def num_rabbits(self):
return self.count_agents(agent_class=Rabbit) return self.count_agents(agent_class=Rabbit)
@report
@property @property
def num_males(self): def num_males(self):
return self.count_agents(agent_class=Male) return self.count_agents(agent_class=Male)
@report
@property @property
def num_females(self): def num_females(self):
return self.count_agents(agent_class=Female) return self.count_agents(agent_class=Female)
@ -145,8 +154,8 @@ class RandomAccident(BaseAgent):
self.debug("Rabbits alive: {}".format(rabbits_alive)) self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__":
from soil import easy
with easy("rabbits.yml") as sim: sim = Simulation(model=RabbitEnv, max_time=100, seed="MySeed", num_trials=1)
sim.run()
if __name__ == "__main__":
sim.run()

View File

@ -2,7 +2,7 @@
Example of setting a Example of setting a
Example of a fully programmatic simulation, without definition files. Example of a fully programmatic simulation, without definition files.
""" """
from soil import Simulation, agents from soil import Simulation, agents, Environment
from soil.time import Delta from soil.time import Delta
@ -29,14 +29,18 @@ class MyAgent(agents.FSM):
return None, Delta(self.random.expovariate(1 / 16)) return None, Delta(self.random.expovariate(1 / 16))
class RandomEnv(Environment):
def init(self):
self.add_agent(agent_class=MyAgent)
s = Simulation( s = Simulation(
name="Programmatic", name="Programmatic",
model_params={ model=RandomEnv,
'agents': [{'agent_class': MyAgent}],
},
num_trials=1, num_trials=1,
max_time=100, max_time=100,
dry_run=True, dump=False,
) )

View File

@ -1,30 +0,0 @@
---
sampler:
method: "SALib.sample.morris.sample"
N: 10
template:
group: simple
num_trials: 1
interval: 1
max_steps: 2
seed: "CompleteSeed!"
dump: false
model_params:
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_class: CounterModel
weight: "{{ x1 }}"
state:
state_id: 0
- agent_class: AggregatedCounter
weight: "{{ 1 - x1 }}"
name: "{{ x3 }}"
skip_test: true
vars:
bounds:
x1: [0, 1]
x2: [1, 2]
fixed:
x3: ["a", "b", "c"]

View File

@ -1,62 +0,0 @@
name: TerroristNetworkModel_sim
max_steps: 150
num_trials: 1
model_params:
network_params:
generator: random_geometric_graph
radius: 0.2
# generator: geographical_threshold_graph
# theta: 20
n: 100
network_agents:
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.8
state:
id: civilian # Civilians
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.1
state:
id: leader # Leaders
- agent_class: TerroristNetworkModel.TrainingAreaModel
weight: 0.05
state:
id: terrorist # Terrorism
- agent_class: TerroristNetworkModel.HavenModel
weight: 0.05
state:
id: civilian # Civilian
# TerroristSpreadModel
information_spread_intensity: 0.7
terrorist_additional_influence: 0.035
max_vulnerability: 0.7
prob_interaction: 0.5
# TrainingAreaModel and HavenModel
training_influence: 0.20
haven_influence: 0.20
# TerroristNetworkModel
vision_range: 0.30
sphere_influence: 2
weight_social_distance: 0.035
weight_link_distance: 0.035
visualization_params:
# Icons downloaded from https://www.iconfinder.com/
shape_property: agent
shapes:
TrainingAreaModel: target
HavenModel: home
TerroristNetworkModel: person
colors:
- attr_id: civilian
color: '#40de40'
- attr_id: terrorist
color: red
- attr_id: leader
color: '#c16a6a'
background_image: 'map_4800x2860.jpg'
background_opacity: '0.9'
background_filter_color: 'blue'
skip_test: true # This simulation takes too long for automated tests.

View File

@ -1,8 +1,47 @@
import networkx as nx import networkx as nx
from soil.agents import Geo, NetworkAgent, FSM, state, default_state from soil.agents import Geo, NetworkAgent, FSM, custom, state, default_state
from soil import Environment from soil import Environment, Simulation
from soil.parameters import *
class TerroristEnvironment(Environment):
n: Integer = 100
radius: Float = 0.2
information_spread_intensity: probability = 0.7
terrorist_additional_influence: probability = 0.03
terrorist_additional_influence: probability = 0.035
max_vulnerability: probability = 0.7
prob_interaction: probability = 0.5
# TrainingAreaModel and HavenModel
training_influence: probability = 0.20
haven_influence: probability = 0.20
# TerroristNetworkModel
vision_range: Float = 0.30
sphere_influence: Integer = 2
weight_social_distance: Float = 0.035
weight_link_distance: Float = 0.035
ratio_civil: probability = 0.8
ratio_leader: probability = 0.1
ratio_training: probability = 0.05
ratio_haven: probability = 0.05
def init(self):
self.create_network(generator=self.generator, n=self.n, radius=self.radius)
self.populate_network([
TerroristNetworkModel.w(state_id='civilian'),
TerroristNetworkModel.w(state_id='leader'),
TrainingAreaModel,
HavenModel
], [self.ratio_civil, self.ratio_leader, self.ratio_training, self.ratio_haven])
@staticmethod
def generator(*args, **kwargs):
return nx.random_geometric_graph(*args, **kwargs)
class TerroristSpreadModel(FSM, Geo): class TerroristSpreadModel(FSM, Geo):
""" """
Settings: Settings:
@ -13,47 +52,35 @@ class TerroristSpreadModel(FSM, Geo):
min_vulnerability (optional else zero) min_vulnerability (optional else zero)
max_vulnerability max_vulnerability
prob_interaction
""" """
def __init__(self, model=None, unique_id=0, state=()): information_spread_intensity = 0.1
super().__init__(model=model, unique_id=unique_id, state=state) terrorist_additional_influence = 0.1
min_vulnerability = 0
max_vulnerability = 1
self.information_spread_intensity = model.environment_params[ def init(self):
"information_spread_intensity" if self.state_id == self.civilian.id: # Civilian
] self.mean_belief = self.model.random.uniform(0.00, 0.5)
self.terrorist_additional_influence = model.environment_params[ elif self.state_id == self.terrorist.id: # Terrorist
"terrorist_additional_influence"
]
self.prob_interaction = model.environment_params["prob_interaction"]
if self["id"] == self.civilian.id: # Civilian
self.mean_belief = self.random.uniform(0.00, 0.5)
elif self["id"] == self.terrorist.id: # Terrorist
self.mean_belief = self.random.uniform(0.8, 1.00) self.mean_belief = self.random.uniform(0.8, 1.00)
elif self["id"] == self.leader.id: # Leader elif self.state_id == self.leader.id: # Leader
self.mean_belief = 1.00 self.mean_belief = 1.00
else: else:
raise Exception("Invalid state id: {}".format(self["id"])) raise Exception("Invalid state id: {}".format(self["id"]))
if "min_vulnerability" in model.environment_params: self.vulnerability = self.random.uniform(
self.vulnerability = self.random.uniform( self.get("min_vulnerability", 0), self.get("max_vulnerability", 1)
model.environment_params["min_vulnerability"], )
model.environment_params["max_vulnerability"],
)
else:
self.vulnerability = self.random.uniform(
0, model.environment_params["max_vulnerability"]
)
@default_state
@state @state
def civilian(self): def civilian(self):
neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel)) neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel))
if len(neighbours) > 0: if len(neighbours) > 0:
# Only interact with some of the neighbors # Only interact with some of the neighbors
interactions = list( interactions = list(
n for n in neighbours if self.random.random() <= self.prob_interaction n for n in neighbours if self.random.random() <= self.model.prob_interaction
) )
influence = sum(self.degree(i) for i in interactions) influence = sum(self.degree(i) for i in interactions)
mean_belief = sum( mean_belief = sum(
@ -99,7 +126,7 @@ class TerroristSpreadModel(FSM, Geo):
) )
# Check if there are any leaders in the group # Check if there are any leaders in the group
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours)) leaders = list(filter(lambda x: x.state_id == self.leader.id, neighbours))
if not leaders: if not leaders:
# Check if this is the potential leader # Check if this is the potential leader
# Stop once it's found. Otherwise, set self as leader # Stop once it's found. Otherwise, set self as leader
@ -110,12 +137,11 @@ class TerroristSpreadModel(FSM, Geo):
def ego_search(self, steps=1, center=False, agent=None, **kwargs): def ego_search(self, steps=1, center=False, agent=None, **kwargs):
"""Get a list of nodes in the ego network of *node* of radius *steps*""" """Get a list of nodes in the ego network of *node* of radius *steps*"""
node = agent.node node = agent.node_id
G = self.subgraph(**kwargs) G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes() return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, agent, force=False): def degree(self, agent, force=False):
node = agent.node
if ( if (
force force
or (not hasattr(self.model, "_degree")) or (not hasattr(self.model, "_degree"))
@ -123,10 +149,9 @@ class TerroristSpreadModel(FSM, Geo):
): ):
self.model._degree = nx.degree_centrality(self.G) self.model._degree = nx.degree_centrality(self.G)
self.model._last_step = self.now self.model._last_step = self.now
return self.model._degree[node] return self.model._degree[agent.node_id]
def betweenness(self, agent, force=False): def betweenness(self, agent, force=False):
node = agent.node
if ( if (
force force
or (not hasattr(self.model, "_betweenness")) or (not hasattr(self.model, "_betweenness"))
@ -134,7 +159,7 @@ class TerroristSpreadModel(FSM, Geo):
): ):
self.model._betweenness = nx.betweenness_centrality(self.G) self.model._betweenness = nx.betweenness_centrality(self.G)
self.model._last_step = self.now self.model._last_step = self.now
return self.model._betweenness[node] return self.model._betweenness[agent.node_id]
class TrainingAreaModel(FSM, Geo): class TrainingAreaModel(FSM, Geo):
@ -147,13 +172,12 @@ class TrainingAreaModel(FSM, Geo):
Requires TerroristSpreadModel. Requires TerroristSpreadModel.
""" """
def __init__(self, model=None, unique_id=0, state=()): training_influence = 0.1
super().__init__(model=model, unique_id=unique_id, state=state) min_vulnerability = 0
self.training_influence = model.environment_params["training_influence"]
if "min_vulnerability" in model.environment_params: def init(self):
self.min_vulnerability = model.environment_params["min_vulnerability"] self.mean_believe = 1
else: self.vulnerability = 0
self.min_vulnerability = 0
@default_state @default_state
@state @state
@ -177,18 +201,19 @@ class HavenModel(FSM, Geo):
Requires TerroristSpreadModel. Requires TerroristSpreadModel.
""" """
def __init__(self, model=None, unique_id=0, state=()): min_vulnerability = 0
super().__init__(model=model, unique_id=unique_id, state=state) haven_influence = 0.1
self.haven_influence = model.environment_params["haven_influence"] max_vulnerability = 0.5
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"] def init(self):
else: self.mean_believe = 0
self.min_vulnerability = 0 self.vulnerability = 0
self.max_vulnerability = model.environment_params["max_vulnerability"]
def get_occupants(self, **kwargs): def get_occupants(self, **kwargs):
return self.get_neighbors(agent_class=TerroristSpreadModel, **kwargs) return self.get_neighbors(agent_class=TerroristSpreadModel,
**kwargs)
@default_state
@state @state
def civilian(self): def civilian(self):
civilians = self.get_occupants(state_id=self.civilian.id) civilians = self.get_occupants(state_id=self.civilian.id)
@ -224,13 +249,10 @@ class TerroristNetworkModel(TerroristSpreadModel):
weight_link_distance weight_link_distance
""" """
def __init__(self, model=None, unique_id=0, state=()): sphere_influence: float = 1
super().__init__(model=model, unique_id=unique_id, state=state) vision_range: float = 1
weight_social_distance: float = 0.5
self.vision_range = model.environment_params["vision_range"] weight_link_distance: float = 0.2
self.sphere_influence = model.environment_params["sphere_influence"]
self.weight_social_distance = model.environment_params["weight_social_distance"]
self.weight_link_distance = model.environment_params["weight_link_distance"]
@state @state
def terrorist(self): def terrorist(self):
@ -287,3 +309,32 @@ class TerroristNetworkModel(TerroristSpreadModel):
return nx.shortest_path_length(self.G, self.id, target) return nx.shortest_path_length(self.G, self.id, target)
except nx.NetworkXNoPath: except nx.NetworkXNoPath:
return float("inf") return float("inf")
sim = Simulation(
model=TerroristEnvironment,
num_trials=1,
name="TerroristNetworkModel_sim",
max_steps=150,
skip_test=False,
dump=False,
)
# TODO: integrate visualization
# visualization_params:
# # Icons downloaded from https://www.iconfinder.com/
# shape_property: agent
# shapes:
# TrainingAreaModel: target
# HavenModel: home
# TerroristNetworkModel: person
# colors:
# - attr_id: civilian
# color: '#40de40'
# - attr_id: terrorist
# color: red
# - attr_id: leader
# color: '#c16a6a'
# background_image: 'map_4800x2860.jpg'
# background_opacity: '0.9'
# background_filter_color: 'blue'

View File

@ -1,15 +0,0 @@
---
name: torvalds_example
max_steps: 10
interval: 2
model_params:
agent_class: CounterModel
default_state:
skill_level: 'beginner'
network_params:
path: 'torvalds.edgelist'
states:
Torvalds:
skill_level: 'God'
balkian:
skill_level: 'developer'

25
examples/torvalds_sim.py Normal file
View File

@ -0,0 +1,25 @@
from soil import Environment, Simulation, CounterModel, report
# Get directory path for current file
import os, sys, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
class TorvaldsEnv(Environment):
def init(self):
self.create_network(path=os.path.join(currentdir, 'torvalds.edgelist'))
self.populate_network(CounterModel, skill_level='beginner')
self.agent(node_id="Torvalds").skill_level = 'God'
self.agent(node_id="balkian").skill_level = 'developer'
self.add_agent_reporter("times")
@report
def god_developers(self):
return self.count_agents(skill_level='God')
sim = Simulation(name='torvalds_example',
max_steps=10,
interval=2,
model=TorvaldsEnv)

File diff suppressed because one or more lines are too long

View File

@ -5,6 +5,8 @@ pyyaml>=5.1
pandas>=1 pandas>=1
SALib>=1.3 SALib>=1.3
Jinja2 Jinja2
Mesa>=1.1 Mesa>=1.2
pydantic>=1.9 pydantic>=1.9
sqlalchemy>=1.4 sqlalchemy>=1.4
typing-extensions>=4.4
annotated-types>=0.4

View File

@ -44,13 +44,18 @@ setup(
'Operating System :: MacOS :: MacOS X', 'Operating System :: MacOS :: MacOS X',
'Operating System :: Microsoft :: Windows', 'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX', 'Operating System :: POSIX',
'Programming Language :: Python :: 3'], "Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
],
install_requires=install_reqs, install_requires=install_reqs,
extras_require=extras_require, extras_require=extras_require,
tests_require=test_reqs, tests_require=test_reqs,
setup_requires=['pytest-runner', ], setup_requires=['pytest-runner', ],
pytest_plugins = ['pytest_profiling'], pytest_plugins = ['pytest_profiling'],
include_package_data=True, include_package_data=True,
python_requires=">=3.8",
entry_points={ entry_points={
'console_scripts': 'console_scripts':
['soil = soil.__main__:main', ['soil = soil.__main__:main',

View File

@ -24,15 +24,15 @@ from .datacollection import SoilCollector
from . import serialization from . import serialization
from .utils import logger from .utils import logger
from .time import * from .time import *
from .decorators import *
def main( def main(
cfg="simulation.yml", cfg="simulation.yml",
exporters=None, exporters=None,
parallel=None, num_processes=1,
output="soil_output", output="soil_output",
*, *,
do_run=False,
debug=False, debug=False,
pdb=False, pdb=False,
**kwargs, **kwargs,
@ -68,6 +68,11 @@ def main(
"--dry-run", "--dry-run",
"--dry", "--dry",
action="store_true", action="store_true",
help="Do not run the simulation",
)
parser.add_argument(
"--no-dump",
action="store_true",
help="Do not store the results of the simulation to disk, show in terminal instead.", help="Do not store the results of the simulation to disk, show in terminal instead.",
) )
parser.add_argument( parser.add_argument(
@ -97,12 +102,11 @@ def main(
default=output or "soil_output", default=output or "soil_output",
help="folder to write results to. It defaults to the current directory.", help="folder to write results to. It defaults to the current directory.",
) )
if parallel is None: parser.add_argument(
parser.add_argument( "--num-processes",
"--synchronous", default=num_processes,
action="store_true", help="Number of processes to use for parallel execution. Defaults to 1.",
help="Run trials serially and synchronously instead of in parallel. Defaults to false.", )
)
parser.add_argument( parser.add_argument(
"-e", "-e",
@ -111,6 +115,17 @@ def main(
default=[], default=[],
help="Export environment and/or simulations using this exporter", help="Export environment and/or simulations using this exporter",
) )
parser.add_argument(
"--until",
default="",
help="Set maximum time for the simulation to run. ",
)
parser.add_argument(
"--seed",
default=None,
help="Manually set a seed for the simulation.",
)
parser.add_argument( parser.add_argument(
"--only-convert", "--only-convert",
@ -137,9 +152,6 @@ def main(
if args.version: if args.version:
return return
if parallel is None:
parallel = not args.synchronous
exporters = exporters or [ exporters = exporters or [
"default", "default",
] ]
@ -167,42 +179,46 @@ def main(
res = [] res = []
try: try:
exp_params = {} exp_params = {}
opts = dict(
dry_run=args.dry_run,
dump=not args.no_dump,
debug=debug,
exporters=exporters,
num_processes=args.num_processes,
outdir=output,
exporter_params=exp_params,
**kwargs)
if args.seed is not None:
opts["seed"] = args.seed
if sim: if sim:
logger.info("Loading simulation instance") logger.info("Loading simulation instance")
sim.dry_run = args.dry_run for (k, v) in opts.items():
sim.exporters = exporters setattr(sim, k, v)
sim.parallel = parallel sims = [sim]
sim.outdir = output
sims = [
sim,
]
else: else:
logger.info("Loading config file: {}".format(args.file)) logger.info("Loading config file: {}".format(args.file))
if not os.path.exists(args.file): if not os.path.exists(args.file):
logger.error("Please, input a valid file") logger.error("Please, input a valid file")
return return
assert opts["debug"] == debug
sims = list( sims = list(
simulation.iter_from_config( simulation.iter_from_file(
args.file, args.file,
dry_run=args.dry_run, **opts,
exporters=exporters,
parallel=parallel,
outdir=output,
exporter_params=exp_params,
**kwargs,
) )
) )
for sim in sims: for sim in sims:
assert sim.debug == debug
if args.set: if args.set:
for s in args.set: for s in args.set:
k, v = s.split("=", 1)[:2] k, v = s.split("=", 1)[:2]
v = eval(v) v = eval(v)
tail, *head = k.rsplit(".", 1)[::-1] tail, *head = k.rsplit(".", 1)[::-1]
target = sim target = sim.model_params
if head: if head:
for part in head[0].split("."): for part in head[0].split("."):
try: try:
@ -217,11 +233,7 @@ def main(
if args.only_convert: if args.only_convert:
print(sim.to_yaml()) print(sim.to_yaml())
continue continue
if do_run: res.append(sim.run(until=args.until))
res.append(sim.run())
else:
print("not running")
res.append(sim)
except Exception as ex: except Exception as ex:
if args.pdb: if args.pdb:
@ -242,7 +254,7 @@ def main(
@contextmanager @contextmanager
def easy(cfg, pdb=False, debug=False, **kwargs): def easy(cfg, pdb=False, debug=False, **kwargs):
try: try:
yield main(cfg, debug=debug, pdb=pdb, **kwargs)[0] return main(cfg, debug=debug, pdb=pdb, **kwargs)[0]
except Exception as e: except Exception as e:
if os.environ.get("SOIL_POSTMORTEM"): if os.environ.get("SOIL_POSTMORTEM"):
from .debugging import post_mortem from .debugging import post_mortem
@ -253,4 +265,4 @@ def easy(cfg, pdb=False, debug=False, **kwargs):
if __name__ == "__main__": if __name__ == "__main__":
main(do_run=True) main()

View File

@ -2,8 +2,8 @@ from . import main as init_main
def main(): def main():
init_main(do_run=True) init_main()
if __name__ == "__main__": if __name__ == "__main__":
init_main(do_run=True) init_main()

View File

@ -1,6 +1,12 @@
from . import NetworkAgent from . import BaseAgent, NetworkAgent
class Ticker(BaseAgent):
times = 0
def step(self):
self.times += 1
class CounterModel(NetworkAgent): class CounterModel(NetworkAgent):
""" """
Dummy behaviour. It counts the number of nodes in the network and neighbors Dummy behaviour. It counts the number of nodes in the network and neighbors

View File

@ -11,13 +11,15 @@ import inspect
import types import types
import textwrap import textwrap
import networkx as nx import networkx as nx
import warnings
import sys
from typing import Any from typing import Any
from mesa import Agent as MesaAgent from mesa import Agent as MesaAgent, Model
from typing import Dict, List from typing import Dict, List
from .. import serialization, utils, time, config from .. import serialization, network, utils, time, config
IGNORED_FIELDS = ("model", "logger") IGNORED_FIELDS = ("model", "logger")
@ -90,7 +92,7 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
Any attribute that is not preceded by an underscore (`_`) will also be added to its state. Any attribute that is not preceded by an underscore (`_`) will also be added to its state.
""" """
def __init__(self, unique_id, model, name=None, interval=None, **kwargs): def __init__(self, unique_id, model, name=None, init=True, interval=None, **kwargs):
assert isinstance(unique_id, int) assert isinstance(unique_id, int)
super().__init__(unique_id=unique_id, model=model) super().__init__(unique_id=unique_id, model=model)
@ -116,6 +118,11 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
for (k, v) in kwargs.items(): for (k, v) in kwargs.items():
setattr(self, k, v) setattr(self, k, v)
if init:
self.init()
def init(self):
pass
def __hash__(self): def __hash__(self):
return hash(self.unique_id) return hash(self.unique_id)
@ -123,9 +130,16 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
def prob(self, probability): def prob(self, probability):
return prob(probability, self.model.random) return prob(probability, self.model.random)
@classmethod
def w(cls, **kwargs):
return custom(cls, **kwargs)
# TODO: refactor to clean up mesa compatibility # TODO: refactor to clean up mesa compatibility
@property @property
def id(self): def id(self):
msg = "This attribute is deprecated. Use `unique_id` instead"
warnings.warn(msg, DeprecationWarning)
print(msg, file=sys.stderr)
return self.unique_id return self.unique_id
@classmethod @classmethod
@ -175,7 +189,11 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
return it return it
def get(self, key, default=None): def get(self, key, default=None):
return self[key] if key in self else default if key in self:
return self[key]
elif key in self.model:
return self.model[key]
return default
@property @property
def now(self): def now(self):
@ -185,8 +203,10 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
# No environment # No environment
return None return None
def die(self): def die(self, msg=None):
self.info(f"agent dying") if msg:
self.info("Agent dying:", msg)
self.debug(f"agent dying")
self.alive = False self.alive = False
try: try:
self.model.schedule.remove(self) self.model.schedule.remove(self)
@ -195,15 +215,16 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
return time.NEVER return time.NEVER
def step(self): def step(self):
raise NotImplementedError("Agent must implement step method")
def _check_alive(self):
if not self.alive: if not self.alive:
raise time.DeadAgent(self.unique_id) raise time.DeadAgent(self.unique_id)
super().step()
return time.Delta(self.interval) def log(self, *message, level=logging.INFO, **kwargs):
def log(self, message, *args, level=logging.INFO, **kwargs):
if not self.logger.isEnabledFor(level): if not self.logger.isEnabledFor(level):
return return
message = message + " ".join(str(i) for i in args) message = " ".join(str(i) for i in message)
message = "[@{:>4}]\t{:>10}: {}".format(self.now, repr(self), message) message = "[@{:>4}]\t{:>10}: {}".format(self.now, repr(self), message)
for k, v in kwargs: for k, v in kwargs:
message += " {k}={v} ".format(k, v) message += " {k}={v} ".format(k, v)
@ -376,7 +397,7 @@ class AgentView(Mapping, Set):
def filter_agents( def filter_agents(
agents, agents: dict,
*id_args, *id_args,
unique_id=None, unique_id=None,
state_id=None, state_id=None,
@ -621,12 +642,16 @@ def _from_distro(
from .network_agents import * from .network_agents import *
from .fsm import * from .fsm import *
from .evented import * from .evented import *
from typing import Optional
class Agent(NetworkAgent, FSM, EventedAgent): class Agent(NetworkAgent, FSM, EventedAgent):
"""Default agent class, has both network and event capabilities""" """Default agent class, has both network and event capabilities"""
from ..environment import NetworkEnvironment
from .BassModel import * from .BassModel import *
from .IndependentCascadeModel import * from .IndependentCascadeModel import *
from .SISaModel import * from .SISaModel import *
@ -640,3 +665,8 @@ except ImportError:
import sys import sys
print("Could not load the Geo Agent, scipy is not installed", file=sys.stderr) print("Could not load the Geo Agent, scipy is not installed", file=sys.stderr)
def custom(cls, **kwargs):
"""Create a new class from a template class and keyword arguments"""
return type(cls.__name__, (cls,), kwargs)

View File

@ -1,4 +1,5 @@
from . import MetaAgent, BaseAgent from . import MetaAgent, BaseAgent
from ..time import Delta
from functools import partial, wraps from functools import partial, wraps
import inspect import inspect
@ -85,8 +86,8 @@ class MetaFSM(MetaAgent):
class FSM(BaseAgent, metaclass=MetaFSM): class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, **kwargs): def __init__(self, init=True, **kwargs):
super(FSM, self).__init__(**kwargs) super().__init__(**kwargs, init=False)
if not hasattr(self, "state_id"): if not hasattr(self, "state_id"):
if not self._default_state: if not self._default_state:
raise ValueError( raise ValueError(
@ -95,12 +96,15 @@ class FSM(BaseAgent, metaclass=MetaFSM):
self.state_id = self._default_state.id self.state_id = self._default_state.id
self._coroutine = None self._coroutine = None
self.default_interval = Delta(self.model.interval)
self._set_state(self.state_id) self._set_state(self.state_id)
if init:
self.init()
def step(self): def step(self):
self.debug(f"Agent {self.unique_id} @ state {self.state_id}") self.debug(f"Agent {self.unique_id} @ state {self.state_id}")
default_interval = super().step()
self._check_alive()
next_state = self._states[self.state_id](self) next_state = self._states[self.state_id](self)
when = None when = None
@ -120,7 +124,7 @@ class FSM(BaseAgent, metaclass=MetaFSM):
if next_state is not None: if next_state is not None:
self._set_state(next_state) self._set_state(next_state)
return when or default_interval return when or self.default_interval
def _set_state(self, state, when=None): def _set_state(self, state, when=None):
if hasattr(state, "id"): if hasattr(state, "id"):
@ -132,8 +136,8 @@ class FSM(BaseAgent, metaclass=MetaFSM):
self.model.schedule.add(self, when=when) self.model.schedule.add(self, when=when)
return state return state
def die(self): def die(self, *args, **kwargs):
return self.dead, super().die() return self.dead, super().die(*args, **kwargs)
@state @state
def dead(self): def dead(self):

View File

@ -2,23 +2,37 @@ from . import BaseAgent
class NetworkAgent(BaseAgent): class NetworkAgent(BaseAgent):
def __init__(self, *args, topology, node_id, **kwargs): def __init__(self, *args, topology=None, init=True, node_id=None, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, init=False, **kwargs)
assert topology is not None self.G = topology or self.model.G
assert node_id is not None
self.G = topology
assert self.G assert self.G
if node_id is None:
nodes = self.random.choices(list(self.G.nodes), k=len(self.G))
for n_id in nodes:
if "agent" not in self.G.nodes[n_id] or self.G.nodes[n_id]["agent"] is None:
node_id = n_id
break
else:
node_id = len(self.G)
self.info(f"All nodes ({len(self.G)}) have an agent assigned, adding a new node to the graph for agent {self.unique_id}")
self.G.add_node(node_id)
assert node_id is not None
self.G.nodes[node_id]["agent"] = self
self.node_id = node_id self.node_id = node_id
if init:
self.init()
def count_neighbors(self, state_id=None, **kwargs): def count_neighbors(self, state_id=None, **kwargs):
return len(self.get_neighbors(state_id=state_id, **kwargs)) return len(self.get_neighbors(state_id=state_id, **kwargs))
if init:
self.init()
def iter_neighbors(self, **kwargs): def iter_neighbors(self, **kwargs):
return self.iter_agents(limit_neighbors=True, **kwargs) return self.iter_agents(limit_neighbors=True, **kwargs)
def get_neighbors(self, **kwargs): def get_neighbors(self, **kwargs):
return list(self.iter_neighbors()) return list(self.iter_neighbors(**kwargs))
@property @property
def node(self): def node(self):
@ -38,8 +52,9 @@ class NetworkAgent(BaseAgent):
if limit_neighbors: if limit_neighbors:
neighbor_ids = set() neighbor_ids = set()
for node_id in self.G.neighbors(self.node_id): for node_id in self.G.neighbors(self.node_id):
if self.G.nodes[node_id].get("agent") is not None: agent = self.G.nodes[node_id].get("agent")
neighbor_ids.add(node_id) if agent is not None:
neighbor_ids.add(agent.unique_id)
if unique_ids: if unique_ids:
unique_ids = unique_ids & neighbor_ids unique_ids = unique_ids & neighbor_ids
else: else:

View File

@ -1,267 +1,2 @@
from __future__ import annotations def load_config(cfg):
return cfg
from enum import Enum
from pydantic import BaseModel, ValidationError, validator, root_validator
import yaml
import os
import sys
from typing import Any, Callable, Dict, List, Optional, Union, Type
from pydantic import BaseModel, Extra
from . import environment, utils
import networkx as nx
# Could use TypeAlias in python >= 3.10
nodeId = int
class Node(BaseModel):
id: nodeId
state: Optional[Dict[str, Any]] = {}
class Edge(BaseModel):
source: nodeId
target: nodeId
value: Optional[float] = 1
class Topology(BaseModel):
nodes: List[Node]
directed: bool
links: List[Edge]
class NetConfig(BaseModel):
params: Optional[Dict[str, Any]]
fixed: Optional[Union[Topology, nx.Graph]]
path: Optional[str]
class Config:
arbitrary_types_allowed = True
@staticmethod
def default():
return NetConfig(topology=None, params=None)
@root_validator
def validate_all(cls, values):
if "params" not in values and "topology" not in values:
raise ValueError(
"You must specify either a topology or the parameters to generate a graph"
)
return values
class EnvConfig(BaseModel):
@staticmethod
def default():
return EnvConfig()
class SingleAgentConfig(BaseModel):
agent_class: Optional[Union[Type, str]] = None
unique_id: Optional[int] = None
topology: Optional[bool] = False
node_id: Optional[Union[int, str]] = None
state: Optional[Dict[str, Any]] = {}
class FixedAgentConfig(SingleAgentConfig):
n: Optional[int] = 1
hidden: Optional[bool] = False # Do not count this agent towards total agent count
@root_validator
def validate_all(cls, values):
if values.get("unique_id", None) is not None and values.get("n", 1) > 1:
raise ValueError(
f"An unique_id can only be provided when there is only one agent ({values.get('n')} given)"
)
return values
class OverrideAgentConfig(FixedAgentConfig):
filter: Optional[Dict[str, Any]] = None
class Strategy(Enum):
topology = "topology"
total = "total"
class AgentDistro(SingleAgentConfig):
weight: Optional[float] = 1
strategy: Strategy = Strategy.topology
class AgentConfig(SingleAgentConfig):
n: Optional[int] = None
distribution: Optional[List[AgentDistro]] = None
fixed: Optional[List[FixedAgentConfig]] = None
override: Optional[List[OverrideAgentConfig]] = None
@staticmethod
def default():
return AgentConfig()
@root_validator
def validate_all(cls, values):
if "distribution" in values and (
"n" not in values and "topology" not in values
):
raise ValueError(
"You need to provide the number of agents or a topology to extract the value from."
)
return values
class Config(BaseModel, extra=Extra.allow):
version: Optional[str] = "1"
name: str = "Unnamed Simulation"
description: Optional[str] = None
group: str = None
dir_path: Optional[str] = None
num_trials: int = 1
max_time: float = 100
max_steps: int = -1
num_processes: int = 1
interval: float = 1
seed: str = ""
dry_run: bool = False
skip_test: bool = False
model_class: Union[Type, str] = environment.Environment
model_params: Optional[Dict[str, Any]] = {}
visualization_params: Optional[Dict[str, Any]] = {}
@classmethod
def from_raw(cls, cfg):
if isinstance(cfg, Config):
return cfg
if cfg.get("version", "1") == "1" and any(
k in cfg for k in ["agents", "agent_class", "topology", "environment_class"]
):
return convert_old(cfg)
return Config(**cfg)
def convert_old(old, strict=True):
"""
Try to convert old style configs into the new format.
This is still a work in progress and might not work in many cases.
"""
utils.logger.warning(
"The old configuration format is deprecated. The converted file MAY NOT yield the right results"
)
new = old.copy()
network = {}
if "topology" in old:
del new["topology"]
network["topology"] = old["topology"]
if "network_params" in old and old["network_params"]:
del new["network_params"]
for (k, v) in old["network_params"].items():
if k == "path":
network["path"] = v
else:
network.setdefault("params", {})[k] = v
topology = None
if network:
topology = network
agents = {"fixed": [], "distribution": []}
def updated_agent(agent):
"""Convert an agent definition"""
newagent = dict(agent)
return newagent
by_weight = []
fixed = []
override = []
if "environment_agents" in new:
for agent in new["environment_agents"]:
agent.setdefault("state", {})["group"] = "environment"
if "agent_id" in agent:
agent["state"]["name"] = agent["agent_id"]
del agent["agent_id"]
agent["hidden"] = True
agent["topology"] = False
fixed.append(updated_agent(agent))
del new["environment_agents"]
if "agent_class" in old:
del new["agent_class"]
agents["agent_class"] = old["agent_class"]
if "default_state" in old:
del new["default_state"]
agents["state"] = old["default_state"]
if "network_agents" in old:
agents["topology"] = True
agents.setdefault("state", {})["group"] = "network"
for agent in new["network_agents"]:
agent = updated_agent(agent)
if "agent_id" in agent:
agent["state"]["name"] = agent["agent_id"]
del agent["agent_id"]
fixed.append(agent)
else:
by_weight.append(agent)
del new["network_agents"]
if "agent_class" in old and (not fixed and not by_weight):
agents["topology"] = True
by_weight = [{"agent_class": old["agent_class"], "weight": 1}]
# TODO: translate states properly
if "states" in old:
del new["states"]
states = old["states"]
if isinstance(states, dict):
states = states.items()
else:
states = enumerate(states)
for (k, v) in states:
override.append({"filter": {"node_id": k}, "state": v})
agents["override"] = override
agents["fixed"] = fixed
agents["distribution"] = by_weight
model_params = {}
if "environment_params" in new:
del new["environment_params"]
model_params = dict(old["environment_params"])
if "environment_class" in old:
del new["environment_class"]
new["model_class"] = old["environment_class"]
if "dump" in old:
del new["dump"]
new["dry_run"] = not old["dump"]
model_params["topology"] = topology
model_params["agents"] = agents
return Config(version="2", model_params=model_params, **new)

View File

@ -9,7 +9,7 @@ class SoilCollector(MDC):
if 'agent_count' not in model_reporters: if 'agent_count' not in model_reporters:
model_reporters['agent_count'] = lambda m: m.schedule.get_agent_count() model_reporters['agent_count'] = lambda m: m.schedule.get_agent_count()
if 'state_id' not in agent_reporters: if 'state_id' not in agent_reporters:
agent_reporters['agent_id'] = lambda agent: agent.get('state_id', None) agent_reporters['agent_id'] = lambda agent: getattr(agent, 'state_id', None)
super().__init__(model_reporters=model_reporters, super().__init__(model_reporters=model_reporters,
agent_reporters=agent_reporters, agent_reporters=agent_reporters,

View File

@ -8,6 +8,7 @@ from textwrap import indent
from functools import wraps from functools import wraps
from .agents import FSM, MetaFSM from .agents import FSM, MetaFSM
from mesa import Model, Agent
def wrapcmd(func): def wrapcmd(func):
@ -15,14 +16,22 @@ def wrapcmd(func):
def wrapper(self, arg: str, temporary=False): def wrapper(self, arg: str, temporary=False):
sys.settrace(self.trace_dispatch) sys.settrace(self.trace_dispatch)
lastself = self
known = globals() known = globals()
known.update(self.curframe.f_globals) known.update(self.curframe.f_globals)
known.update(self.curframe.f_locals) known.update(self.curframe.f_locals)
known["agent"] = known.get("self", None)
known["model"] = known.get("self", {}).get("model")
known["attrs"] = arg.strip().split() known["attrs"] = arg.strip().split()
exec(func.__code__, known, known) this = known.get("self", None)
if isinstance(this, Model):
known["model"] = this
elif isinstance(this, Agent):
known["agent"] = this
known["model"] = this.model
known["self"] = lastself
return exec(func.__code__, known, known)
return wrapper return wrapper
@ -57,6 +66,7 @@ class Debug(pdb.Pdb):
do_sl = do_soil_list do_sl = do_soil_list
def do_continue_state(self, arg): def do_continue_state(self, arg):
"""Continue until next time this state is reached"""
self.do_break_state(arg, temporary=True) self.do_break_state(arg, temporary=True)
return self.do_continue("") return self.do_continue("")
@ -80,6 +90,49 @@ class Debug(pdb.Pdb):
do_aa = do_soil_agent do_aa = do_soil_agent
def do_break_step(self, arg: str):
"""
Break before the next step.
"""
try:
known = globals()
known.update(self.curframe.f_globals)
known.update(self.curframe.f_locals)
func = getattr(known["model"], "step")
except AttributeError as ex:
self.error(f"The model does not have a step function: {ex}")
return
if hasattr(func, "__func__"):
func = func.__func__
code = func.__code__
# use co_name to identify the bkpt (function names
# could be aliased, but co_name is invariant)
funcname = code.co_name
lineno = code.co_firstlineno
filename = code.co_filename
# Check for reasonable breakpoint
line = self.checkline(filename, lineno)
if not line:
raise ValueError("no line found")
# now set the break point
existing = self.get_breaks(filename, line)
if existing:
self.message("Breakpoint already exists at %s:%d" % (filename, line))
return
cond = f"self.schedule.steps > {model.schedule.steps}"
err = self.set_break(filename, line, True, cond, funcname)
if err:
self.error(err)
else:
bp = self.get_breaks(filename, line)[-1]
self.message("Breakpoint %d at %s:%d" % (bp.number, bp.file, bp.line))
return self.do_continue("")
do_bstep = do_break_step
def do_break_state(self, arg: str, instances=None, temporary=False): def do_break_state(self, arg: str, instances=None, temporary=False):
""" """
Break before a specified state is stepped into. Break before a specified state is stepped into.

6
soil/decorators.py Normal file
View File

@ -0,0 +1,6 @@
def report(f: property):
if isinstance(f, property):
setattr(f.fget, "add_to_report", True)
else:
setattr(f, "add_to_report", True)
return f

View File

@ -6,20 +6,21 @@ import math
import logging import logging
import inspect import inspect
from typing import Any, Dict, Optional, Union, List from typing import Any, Callable, Dict, Optional, Union, List, Type
from collections import namedtuple from collections import namedtuple
from time import time as current_time from time import time as current_time
from copy import deepcopy from copy import deepcopy
from networkx.readwrite import json_graph
import networkx as nx import networkx as nx
from mesa import Model from mesa import Model, Agent
from . import agents as agentmod, config, datacollection, serialization, utils, time, network, events from . import agents as agentmod, datacollection, serialization, utils, time, network, events
# TODO: maybe add metaclass to read attributes of a model
class BaseEnvironment(Model): class BaseEnvironment(Model):
""" """
The environment is key in a simulation. It controls how agents interact, The environment is key in a simulation. It controls how agents interact,
@ -33,105 +34,83 @@ class BaseEnvironment(Model):
:meth:`soil.environment.Environment.get` method. :meth:`soil.environment.Environment.get` method.
""" """
def __init__( def __new__(cls,
self, *args: Any,
id="unnamed_env", seed="default",
seed="default", dir_path=None,
schedule_class=time.TimedActivation, collector_class: type = datacollection.SoilCollector,
dir_path=None, agent_reporters: Optional[Any] = None,
interval=1, model_reporters: Optional[Any] = None,
agent_class=None, tables: Optional[Any] = None,
agents: List[tuple[type, Dict[str, Any]]] = {}, **kwargs: Any) -> Any:
collector_class: type = datacollection.SoilCollector, """Create a new model with a default seed value"""
agent_reporters: Optional[Any] = None, self = super().__new__(cls, *args, seed=seed, **kwargs)
model_reporters: Optional[Any] = None,
tables: Optional[Any] = None,
**env_params,
):
super().__init__(seed=seed)
self.current_id = -1
self.id = id
self.dir_path = dir_path or os.getcwd() self.dir_path = dir_path or os.getcwd()
if schedule_class is None:
schedule_class = time.TimedActivation
else:
schedule_class = serialization.deserialize(schedule_class)
self.schedule = schedule_class(self)
self.agent_class = agent_class or agentmod.BaseAgent
self.interval = interval
self.init_agents(agents)
self.logger = utils.logger.getChild(self.id)
collector_class = serialization.deserialize(collector_class) collector_class = serialization.deserialize(collector_class)
self.datacollector = collector_class( self.datacollector = collector_class(
model_reporters=model_reporters, model_reporters=model_reporters,
agent_reporters=agent_reporters, agent_reporters=agent_reporters,
tables=tables, tables=tables,
) )
for k in dir(cls):
v = getattr(cls, k)
if isinstance(v, property):
v = v.fget
if getattr(v, "add_to_report", False):
self.add_model_reporter(k, v)
return self
def __init__(
self,
*,
id="unnamed_env",
seed="default",
dir_path=None,
schedule_class=time.TimedActivation,
interval=1,
agents: Optional[Dict] = None,
collector_class: type = datacollection.SoilCollector,
agent_reporters: Optional[Any] = None,
model_reporters: Optional[Any] = None,
tables: Optional[Any] = None,
init: bool = True,
**env_params,
):
super().__init__()
self.current_id = -1
self.id = id
if schedule_class is None:
schedule_class = time.TimedActivation
else:
schedule_class = serialization.deserialize(schedule_class)
self.interval = interval
self.schedule = schedule_class(self)
self.logger = utils.logger.getChild(self.id)
for (k, v) in env_params.items(): for (k, v) in env_params.items():
self[k] = v self[k] = v
def _agent_from_dict(self, agent): if agents:
""" self.add_agents(**agents)
Translate an agent dictionary into an agent if init:
""" self.init()
agent = dict(**agent)
cls = agent.pop("agent_class", None) or self.agent_class
unique_id = agent.pop("unique_id", None)
if unique_id is None:
unique_id = self.next_id()
return serialization.deserialize(cls)(unique_id=unique_id, model=self, **agent) def init(self):
pass
def init_agents(self, agents: Union[config.AgentConfig, List[Dict[str, Any]]] = {}):
"""
Initialize the agents in the model from either a `soil.config.AgentConfig` or a list of
dictionaries that each describes an agent.
If given a list of dictionaries, an agent will be created for each dictionary. The agent
class can be specified through the `agent_class` key. The rest of the items will be used
as parameters to the agent.
"""
if not agents:
return
lst = agents
override = []
if not isinstance(lst, list):
if not isinstance(agents, config.AgentConfig):
lst = config.AgentConfig(**agents)
if lst.override:
override = lst.override
lst = self._agent_dict_from_config(lst)
# TODO: check override is working again. It cannot (easily) be part of agents.from_config anymore,
# because it needs attribute such as unique_id, which are only present after init
new_agents = [self._agent_from_dict(agent) for agent in lst]
for a in new_agents:
self.schedule.add(a)
for rule in override:
for agent in agentmod.filter_agents(self.schedule._agents, **rule.filter):
for attr, value in rule.state.items():
setattr(agent, attr, value)
def _agent_dict_from_config(self, cfg):
return agentmod.from_config(cfg, random=self.random)
@property @property
def agents(self): def agents(self):
return agentmod.AgentView(self.schedule._agents) return agentmod.AgentView(self.schedule._agents)
def find_one(self, *args, **kwargs): def agent(self, *args, **kwargs):
return agentmod.AgentView(self.schedule._agents).one(*args, **kwargs) return agentmod.AgentView(self.schedule._agents).one(*args, **kwargs)
def count_agents(self, *args, **kwargs): def count_agents(self, *args, **kwargs):
@ -144,17 +123,34 @@ class BaseEnvironment(Model):
raise Exception( raise Exception(
"The environment has not been scheduled, so it has no sense of time" "The environment has not been scheduled, so it has no sense of time"
) )
def init_agents(self):
pass
def add_agent(self, unique_id=None, **kwargs): def add_agent(self, agent_class, unique_id=None, **agent):
if unique_id is None: if unique_id is None:
unique_id = self.next_id() unique_id = self.next_id()
kwargs["unique_id"] = unique_id agent["unique_id"] = unique_id
a = self._agent_from_dict(kwargs)
agent = dict(**agent)
unique_id = agent.pop("unique_id", None)
if unique_id is None:
unique_id = self.next_id()
a = serialization.deserialize(agent_class)(unique_id=unique_id, model=self, **agent)
self.schedule.add(a) self.schedule.add(a)
return a return a
def add_agents(self, agent_classes: List[type], k, weights: Optional[List[float]] = None, **kwargs):
if isinstance(agent_classes, type):
agent_classes = [agent_classes]
if weights is None:
weights = [1] * len(agent_classes)
for cls in self.random.choices(agent_classes, weights=weights, k=k):
self.add_agent(agent_class=cls, **kwargs)
def log(self, message, *args, level=logging.INFO, **kwargs): def log(self, message, *args, level=logging.INFO, **kwargs):
if not self.logger.isEnabledFor(level): if not self.logger.isEnabledFor(level):
return return
@ -172,12 +168,27 @@ class BaseEnvironment(Model):
Advance one step in the simulation, and update the data collection and scheduler appropriately Advance one step in the simulation, and update the data collection and scheduler appropriately
""" """
super().step() super().step()
# self.logger.info(
# "--- Step: {:^5} - Time: {now:^5} ---", steps=self.schedule.steps, now=self.now
# )
self.schedule.step() self.schedule.step()
self.datacollector.collect(self) self.datacollector.collect(self)
msg = "Model data:\n"
max_width = max(len(k) for k in self.datacollector.model_vars.keys())
for (k, v) in self.datacollector.model_vars.items():
msg += f"\t{k:<{max_width}}: {v[-1]:>6}\n"
self.logger.info(f"--- Steps: {self.schedule.steps:^5} - Time: {self.now:^5} --- " + msg)
def add_model_reporter(self, name, func=None):
if not func:
func = lambda env: getattr(env, name)
self.datacollector._new_model_reporter(name, func)
def add_agent_reporter(self, name, agent_type=None):
if agent_type:
reporter = lambda a: getattr(a, name) if isinstance(a, agent_type) else None
else:
reporter = name
self.datacollector._new_agent_reporter(name, reporter)
def __getitem__(self, key): def __getitem__(self, key):
try: try:
return getattr(self, key) return getattr(self, key)
@ -214,67 +225,71 @@ class NetworkEnvironment(BaseEnvironment):
and methods to associate agents to nodes and vice versa. and methods to associate agents to nodes and vice versa.
""" """
def __init__( def __init__(self,
self, *args, topology: Union[config.NetConfig, nx.Graph] = None, **kwargs *args,
): topology: Optional[Union[nx.Graph, str]] = None,
agents = kwargs.pop("agents", None) agent_class: Optional[Type[agentmod.Agent]] = None,
super().__init__(*args, agents=None, **kwargs) network_generator: Optional[Callable] = None,
network_params: Optional[Dict] = {},
init=True,
**kwargs):
self.topology = topology
self.network_generator = network_generator
self.network_params = network_params
if topology or network_params or network_generator:
self.create_network(topology, generator=network_generator, **network_params)
else:
self.G = nx.Graph()
super().__init__(*args, **kwargs, init=False)
if topology is None: self.agent_class = agent_class
topology = nx.Graph() if agent_class:
elif not isinstance(topology, nx.Graph): self.agent_class = serialization.deserialize(agent_class)
topology = network.from_config(topology, dir_path=self.dir_path) if self.agent_class:
self.populate_network(self.agent_class)
self._check_agent_nodes()
if init:
self.init()
def add_agent(self, agent_class, *args, node_id=None, topology=None, **kwargs):
if node_id is None and topology is None:
return super().add_agent(agent_class, *args, **kwargs)
try:
a = super().add_agent(agent_class, *args, node_id=node_id, **kwargs)
except TypeError:
self.logger.warning(f"Agent constructor for {agent_class} does not have a node_id attribute. Might be a bug.")
a = super().add_agent(agent_class, *args, **kwargs)
self.G.nodes[node_id]["agent"] = a
return a
def add_agents(self, *args, k=None, **kwargs):
if not k and not self.G:
raise ValueError("Cannot add agents to an empty network")
super().add_agents(*args, k=k or len(self.G), **kwargs)
def create_network(self, topology=None, generator=None, path=None, **network_params):
if topology is not None:
topology = network.from_topology(topology, dir_path=self.dir_path)
elif path is not None:
topology = network.from_topology(path, dir_path=self.dir_path)
elif generator is not None:
topology = network.from_params(generator=generator, dir_path=self.dir_path, **network_params)
else:
raise ValueError("topology must be a networkx.Graph or a string, or network_generator must be provided")
self.G = topology self.G = topology
self.init_agents(agents)
def init_agents(self, *args, **kwargs): def init_agents(self, *args, **kwargs):
"""Initialize the agents from a""" """Initialize the agents from a"""
super().init_agents(*args, **kwargs) super().init_agents(*args, **kwargs)
for agent in self.schedule._agents.values():
self._init_node(agent)
def _init_node(self, agent):
"""
Make sure the node for a given agent has the proper attributes.
"""
if hasattr(agent, "node_id"):
self.G.nodes[agent.node_id]["agent"] = agent
def _agent_dict_from_config(self, cfg):
return agentmod.from_config(cfg, topology=self.G, random=self.random)
def _agent_from_dict(self, agent, unique_id=None):
agent = dict(agent)
if not agent.get("topology", False):
return super()._agent_from_dict(agent)
if unique_id is None:
unique_id = self.next_id()
node_id = agent.get("node_id", None)
if node_id is None:
node_id = network.find_unassigned(self.G, random=self.random)
self.G.nodes[node_id]["agent"] = None
agent["node_id"] = node_id
agent["unique_id"] = unique_id
agent["topology"] = self.G
node_attrs = self.G.nodes[node_id]
node_attrs.pop('agent', None)
node_attrs.update(agent)
agent = node_attrs
a = super()._agent_from_dict(agent)
self._init_node(a)
return a
@property @property
def network_agents(self): def network_agents(self):
for a in self.schedule._agents.values(): """Return agents still alive and assigned to a node in the network."""
if isinstance(a, agentmod.NetworkAgent): for (id, data) in self.G.nodes(data=True):
yield a if "agent" in data:
agent = data["agent"]
if getattr(agent, "alive", True):
yield agent
def add_node(self, agent_class, unique_id=None, node_id=None, **kwargs): def add_node(self, agent_class, unique_id=None, node_id=None, **kwargs):
if unique_id is None: if unique_id is None:
@ -290,7 +305,6 @@ class NetworkEnvironment(BaseEnvironment):
self.G.add_node(node_id) self.G.add_node(node_id)
assert "agent" not in self.G.nodes[node_id] assert "agent" not in self.G.nodes[node_id]
self.G.nodes[node_id]["agent"] = None # Reserve
a = self.add_agent( a = self.add_agent(
unique_id=unique_id, unique_id=unique_id,
@ -302,24 +316,56 @@ class NetworkEnvironment(BaseEnvironment):
a["visible"] = True a["visible"] = True
return a return a
def add_agent(self, *args, **kwargs): def _check_agent_nodes(self):
a = super().add_agent(*args, **kwargs) """
if hasattr(a, "node_id"): Detect nodes that have agents assigned to them.
assert self.G.nodes[a.node_id]["agent"] == a """
return a for (id, data) in self.G.nodes(data=True):
if "agent_id" in data:
agent = self.agents(data["agent_id"])
self.G.nodes[id]["agent"] = agent
assert not getattr(agent, "node_id", None) or agent.node_id == id
agent.node_id = id
for agent in self.agents():
if hasattr(agent, "node_id"):
node_id = agent["node_id"]
if node_id not in self.G.nodes:
raise ValueError(f"Agent {agent} is assigned to node {agent.node_id} which is not in the network")
node = self.G.nodes[node_id]
if node.get("agent") is not None and node["agent"] != agent:
raise ValueError(f"Node {node_id} already has a different agent assigned to it")
self.G.nodes[node_id]["agent"] = agent
def add_agents(self, agent_classes: List[type], k=None, weights: Optional[List[float]] = None, **kwargs):
if k is None:
k = len(self.G)
if not k:
raise ValueError("Cannot add agents to an empty network")
super().add_agents(agent_classes, k=k, weights=weights, **kwargs)
def agent_for_node_id(self, node_id): def agent_for_node_id(self, node_id):
return self.G.nodes[node_id].get("agent") return self.G.nodes[node_id].get("agent")
def populate_network(self, agent_class, weights=None, **agent_params): def populate_network(self, agent_class: List[Model], weights: List[float] = None, **agent_params):
if not hasattr(agent_class, "len"): if isinstance(agent_class, type):
agent_class = [agent_class] agent_class = [agent_class]
weights = None else:
for (node_id, node) in self.G.nodes(data=True): agent_class = list(agent_class)
if not weights:
weights = [1] * len(agent_class)
assert len(self.G)
classes = self.random.choices(agent_class, weights, k=len(self.G))
toadd = []
for (cls, (node_id, node)) in zip(classes, self.G.nodes(data=True)):
if "agent" in node: if "agent" in node:
continue continue
a_class = self.random.choices(agent_class, weights)[0] node["agent"] = None # Reserve
self.add_agent(node_id=node_id, topology=self.G, agent_class=a_class, **agent_params) toadd.append(dict(node_id=node_id, topology=self.G, agent_class=cls, **agent_params))
for d in toadd:
a = self.add_agent(**d)
self.G.nodes[d["node_id"]]["agent"] = a
assert all("agent" in node for (_, node) in self.G.nodes(data=True))
assert len(list(self.network_agents))
class EventedEnvironment(BaseEnvironment): class EventedEnvironment(BaseEnvironment):

View File

@ -38,7 +38,7 @@ class DryRunner(BytesIO):
except UnicodeDecodeError: except UnicodeDecodeError:
pass pass
logger.info( logger.info(
"**Not** written to {} (dry run mode):\n\n{}\n\n".format( "**Not** written to {} (no_dump mode):\n\n{}\n\n".format(
self.__fname, content self.__fname, content
) )
) )
@ -51,12 +51,12 @@ class Exporter:
if you don't plan to implement all the methods. if you don't plan to implement all the methods.
""" """
def __init__(self, simulation, outdir=None, dry_run=None, copy_to=None): def __init__(self, simulation, outdir=None, dump=True, copy_to=None):
self.simulation = simulation self.simulation = simulation
outdir = outdir or os.path.join(os.getcwd(), "soil_output") outdir = outdir or os.path.join(os.getcwd(), "soil_output")
self.outdir = os.path.join(outdir, simulation.group or "", simulation.name) self.outdir = os.path.join(outdir, simulation.group or "", simulation.name)
self.dry_run = dry_run self.dump = dump
if copy_to is None and dry_run: if copy_to is None and not dump:
copy_to = sys.stdout copy_to = sys.stdout
self.copy_to = copy_to self.copy_to = copy_to
@ -77,7 +77,7 @@ class Exporter:
pass pass
def output(self, f, mode="w", **kwargs): def output(self, f, mode="w", **kwargs):
if self.dry_run: if not self.dump:
f = DryRunner(f, copy_to=self.copy_to) f = DryRunner(f, copy_to=self.copy_to)
else: else:
try: try:
@ -108,16 +108,16 @@ class SQLite(Exporter):
"""Writes sqlite results""" """Writes sqlite results"""
def sim_start(self): def sim_start(self):
if self.dry_run: if not self.dump:
logger.info("NOT dumping results") logger.debug("NOT dumping results")
return return
self.dbpath = os.path.join(self.outdir, f"{self.simulation.name}.sqlite") self.dbpath = os.path.join(self.outdir, f"{self.simulation.name}.sqlite")
logger.info("Dumping results to %s", self.dbpath) logger.info("Dumping results to %s", self.dbpath)
try_backup(self.dbpath, remove=True) try_backup(self.dbpath, remove=True)
def trial_end(self, env): def trial_end(self, env):
if self.dry_run: if not self.dump:
logger.info("Running in DRY_RUN mode, the database will NOT be created") logger.info("Running in NO DUMP mode, the database will NOT be created")
return return
with timer( with timer(
@ -147,8 +147,8 @@ class csv(Exporter):
# TODO: reimplement GEXF exporting without history # TODO: reimplement GEXF exporting without history
class gexf(Exporter): class gexf(Exporter):
def trial_end(self, env): def trial_end(self, env):
if self.dry_run: if not self.dump:
logger.info("Not dumping GEXF in dry_run mode") logger.info("Not dumping GEXF (NO_DUMP mode)")
return return
with timer( with timer(
@ -224,8 +224,8 @@ class YAML(Exporter):
"""Writes the configuration of the simulation to a YAML file""" """Writes the configuration of the simulation to a YAML file"""
def sim_start(self): def sim_start(self):
if self.dry_run: if not self.dump:
logger.info("NOT dumping results") logger.debug("NOT dumping results")
return return
with self.output(self.simulation.name + ".dumped.yml") as f: with self.output(self.simulation.name + ".dumped.yml") as f:
logger.info(f"Dumping simulation configuration to {self.outdir}") logger.info(f"Dumping simulation configuration to {self.outdir}")
@ -235,7 +235,7 @@ class default(Exporter):
"""Default exporter. Writes sqlite results, as well as the simulation YAML""" """Default exporter. Writes sqlite results, as well as the simulation YAML"""
def __init__(self, *args, exporter_cls=[], **kwargs): def __init__(self, *args, exporter_cls=[], **kwargs):
exporter_cls = exporter_cls or [YAML, SQLite, summary] exporter_cls = exporter_cls or [YAML, SQLite]
self.inner = [cls(*args, **kwargs) for cls in exporter_cls] self.inner = [cls(*args, **kwargs) for cls in exporter_cls]
def sim_start(self): def sim_start(self):

View File

@ -10,47 +10,47 @@ import networkx as nx
from . import config, serialization, basestring from . import config, serialization, basestring
def from_config(cfg: config.NetConfig, dir_path: str = None): def from_topology(topology, dir_path: str = None):
if not isinstance(cfg, config.NetConfig): if topology is None:
cfg = config.NetConfig(**cfg) return nx.Graph()
if isinstance(topology, nx.Graph):
return topology
if cfg.path: # If it's a dict, assume it's a node-link graph
path = cfg.path if isinstance(topology, dict):
if dir_path and not os.path.isabs(path):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
kwargs = {}
if extension == "gexf":
kwargs["version"] = "1.2draft"
kwargs["node_type"] = int
try: try:
method = getattr(nx.readwrite, "read_" + extension) return nx.json_graph.node_link_graph(topology)
except AttributeError: except Exception as ex:
raise AttributeError("Unknown format") raise ValueError("Unknown topology format")
return method(path, **kwargs)
# Otherwise, treat like a path
path = topology
if dir_path and not os.path.isabs(path):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
kwargs = {}
if extension == "gexf":
kwargs["version"] = "1.2draft"
kwargs["node_type"] = int
try:
method = getattr(nx.readwrite, "read_" + extension)
except AttributeError:
raise AttributeError("Unknown format")
return method(path, **kwargs)
if cfg.params:
net_args = dict(cfg.params)
net_gen = net_args.pop("generator")
if dir_path not in sys.path: def from_params(generator, dir_path: str = None, **params):
sys.path.append(dir_path)
method = serialization.deserializer( if dir_path not in sys.path:
net_gen, sys.path.append(dir_path)
known_modules=[
"networkx.generators",
],
)
return method(**net_args)
if isinstance(cfg.fixed, config.Topology): method = serialization.deserializer(
cfg = cfg.fixed.dict() generator,
known_modules=[
if isinstance(cfg, str) or isinstance(cfg, dict): "networkx.generators",
return nx.json_graph.node_link_graph(cfg) ],
)
return nx.Graph() return method(**params)
def find_unassigned(G, shuffle=False, random=random): def find_unassigned(G, shuffle=False, random=random):

32
soil/parameters.py Normal file
View File

@ -0,0 +1,32 @@
from __future__ import annotations
from typing_extensions import Annotated
import annotated_types
from typing import *
from dataclasses import dataclass
class Parameter:
pass
def floatrange(
*,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
multiple_of: Optional[float] = None,
) -> type[float]:
return Annotated[
float,
annotated_types.Interval(gt=gt, ge=ge, lt=lt, le=le),
annotated_types.MultipleOf(multiple_of) if multiple_of is not None else None,
]
function = Annotated[Callable, Parameter]
Integer = Annotated[int, Parameter]
Float = Annotated[float, Parameter]
probability = floatrange(ge=0, le=1)

View File

@ -4,14 +4,15 @@ import ast
import sys import sys
import re import re
import importlib import importlib
import importlib.machinery, importlib.util
from glob import glob from glob import glob
from itertools import product, chain from itertools import product, chain
from .config import Config
import yaml import yaml
import networkx as nx import networkx as nx
from . import config
from jinja2 import Template from jinja2 import Template
@ -90,24 +91,56 @@ def load_files(*patterns, **kwargs):
for i in glob(pattern, **kwargs, recursive=True): for i in glob(pattern, **kwargs, recursive=True):
for cfg in load_file(i): for cfg in load_file(i):
path = os.path.abspath(i) path = os.path.abspath(i)
yield Config.from_raw(cfg), path yield cfg, path
def load_config(cfg): def load_config(cfg):
if isinstance(cfg, Config): if isinstance(cfg, dict):
yield cfg, os.getcwd() yield config.load_config(cfg), os.getcwd()
elif isinstance(cfg, dict):
yield Config.from_raw(cfg), os.getcwd()
else: else:
yield from load_files(cfg) yield from load_files(cfg)
builtins = importlib.import_module("builtins") builtins = importlib.import_module("builtins")
KNOWN_MODULES = [ KNOWN_MODULES = {
"soil", 'soil': None,
]
}
MODULE_FILES = {}
def add_source_file(file):
"""Add a file to the list of known modules"""
file = os.path.abspath(file)
if file in MODULE_FILES:
logger.warning(f"File {file} already added as module {MODULE_FILES[file]}. Reloading")
remove_source_file(file)
modname = f"imported_module_{len(MODULE_FILES)}"
loader = importlib.machinery.SourceFileLoader(modname, file)
spec = importlib.util.spec_from_loader(loader.name, loader)
my_module = importlib.util.module_from_spec(spec)
loader.exec_module(my_module)
MODULE_FILES[file] = modname
KNOWN_MODULES[modname] = my_module
def remove_source_file(file):
"""Remove a file from the list of known modules"""
file = os.path.abspath(file)
modname = None
try:
modname = MODULE_FILES.pop(file)
KNOWN_MODULES.pop(modname)
except KeyError as ex:
raise ValueError(f"File {file} had not been added as a module: {ex}")
def get_module(modname):
"""Get a module from the list of known modules"""
if modname not in KNOWN_MODULES or KNOWN_MODULES[modname] is None:
module = importlib.import_module(modname)
KNOWN_MODULES[modname] = module
return KNOWN_MODULES[modname]
def name(value, known_modules=KNOWN_MODULES): def name(value, known_modules=KNOWN_MODULES):
"""Return a name that can be imported, to serialize/deserialize an object""" """Return a name that can be imported, to serialize/deserialize an object"""
@ -124,9 +157,7 @@ def name(value, known_modules=KNOWN_MODULES):
if known_modules and modname in known_modules: if known_modules and modname in known_modules:
return tname return tname
for kmod in known_modules: for kmod in known_modules:
if not kmod: module = get_module(kmod)
continue
module = importlib.import_module(kmod)
if hasattr(module, tname): if hasattr(module, tname):
return tname return tname
return "{}.{}".format(modname, tname) return "{}.{}".format(modname, tname)
@ -177,7 +208,7 @@ def deserializer(type_, known_modules=KNOWN_MODULES):
match = IS_CLASS.match(type_) match = IS_CLASS.match(type_)
if match: if match:
modname, tname = match.group(1).rsplit(".", 1) modname, tname = match.group(1).rsplit(".", 1)
module = importlib.import_module(modname) module = get_module(modname)
cls = getattr(module, tname) cls = getattr(module, tname)
return getattr(cls, "deserialize", cls) return getattr(cls, "deserialize", cls)
@ -195,7 +226,7 @@ def deserializer(type_, known_modules=KNOWN_MODULES):
errors = [] errors = []
for modname, tname in options: for modname, tname in options:
try: try:
module = importlib.import_module(modname) module = get_module(modname)
cls = getattr(module, tname) cls = getattr(module, tname)
return getattr(cls, "deserialize", cls) return getattr(cls, "deserialize", cls)
except (ImportError, AttributeError) as ex: except (ImportError, AttributeError) as ex:

View File

@ -10,37 +10,74 @@ import networkx as nx
from textwrap import dedent from textwrap import dedent
from dataclasses import dataclass, field, asdict from dataclasses import dataclass, field, asdict, replace
from typing import Any, Dict, Union, Optional, List from typing import Any, Dict, Union, Optional, List
from networkx.readwrite import json_graph from networkx.readwrite import json_graph
from functools import partial from functools import partial
from contextlib import contextmanager
import pickle import pickle
from . import serialization, exporters, utils, basestring, agents from . import serialization, exporters, utils, basestring, agents
from .environment import Environment from .environment import Environment
from .utils import logger, run_and_return_exceptions from .utils import logger, run_and_return_exceptions
from .config import Config, convert_old from .debugging import set_trace
_AVOID_RUNNING = False
_QUEUED = []
@contextmanager
def do_not_run():
global _AVOID_RUNNING
_AVOID_RUNNING = True
try:
logger.debug("NOT RUNNING")
yield
finally:
logger.debug("RUNNING AGAIN")
_AVOID_RUNNING = False
def _iter_queued():
while _QUEUED:
(cls, args, kwargs) = _QUEUED.pop(0)
yield replace(cls, **kwargs)
# TODO: change documentation for simulation # TODO: change documentation for simulation
@dataclass @dataclass
class Simulation: class Simulation:
""" """
Parameters A simulation is a collection of agents and a model. It is responsible for running the model and agents, and collecting data from them.
---------
config (optional): :class:`config.Config`
name of the Simulation
kwargs: parameters to use to initialize a new configuration, if one not been provided. Args:
version: The version of the simulation. This is used to determine how to load the simulation.
name: The name of the simulation.
description: A description of the simulation.
group: The group that the simulation belongs to.
model: The model to use for the simulation. This can be a string or a class.
model_params: The parameters to pass to the model.
seed: The seed to use for the simulation.
dir_path: The directory path to use for the simulation.
max_time: The maximum time to run the simulation.
max_steps: The maximum number of steps to run the simulation.
interval: The interval to use for the simulation.
num_trials: The number of trials (times) to run the simulation.
num_processes: The number of processes to use for the simulation. If greater than one, simulations will be performed in parallel. This may make debugging and error handling difficult.
tables: The tables to use in the simulation datacollector
agent_reporters: The agent reporters to use in the datacollector
model_reporters: The model reporters to use in the datacollector
dry_run: Whether or not to run the simulation. If True, the simulation will not be run.
source_file: Python file to use to find additional classes.
""" """
version: str = "2" version: str = "2"
name: str = "Unnamed simulation" source_file: Optional[str] = None
name: Optional[str] = None
description: Optional[str] = "" description: Optional[str] = ""
group: str = None group: str = None
model_class: Union[str, type] = "soil.Environment" model: Union[str, type] = "soil.Environment"
model_params: dict = field(default_factory=dict) model_params: dict = field(default_factory=dict)
seed: str = field(default_factory=lambda: current_time()) seed: str = field(default_factory=lambda: current_time())
dir_path: str = field(default_factory=lambda: os.getcwd()) dir_path: str = field(default_factory=lambda: os.getcwd())
@ -49,7 +86,6 @@ class Simulation:
interval: int = 1 interval: int = 1
num_trials: int = 1 num_trials: int = 1
num_processes: Optional[int] = 1 num_processes: Optional[int] = 1
parallel: Optional[bool] = False
exporters: Optional[List[str]] = field(default_factory=lambda: [exporters.default]) exporters: Optional[List[str]] = field(default_factory=lambda: [exporters.default])
model_reporters: Optional[Dict[str, Any]] = field(default_factory=dict) model_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
agent_reporters: Optional[Dict[str, Any]] = field(default_factory=dict) agent_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
@ -57,24 +93,17 @@ class Simulation:
outdir: Optional[str] = None outdir: Optional[str] = None
exporter_params: Optional[Dict[str, Any]] = field(default_factory=dict) exporter_params: Optional[Dict[str, Any]] = field(default_factory=dict)
dry_run: bool = False dry_run: bool = False
dump: bool = False
extra: Dict[str, Any] = field(default_factory=dict) extra: Dict[str, Any] = field(default_factory=dict)
skip_test: Optional[bool] = False skip_test: Optional[bool] = False
debug: Optional[bool] = False
@classmethod def __post_init__(self):
def from_dict(cls, env, **kwargs): if self.name is None:
if isinstance(self.model, str):
ignored = { self.name = self.model
k: v for k, v in env.items() if k not in inspect.signature(cls).parameters else:
} self.name = self.model.__class__.__name__
d = {k: v for k, v in env.items() if k not in ignored}
if ignored:
d.setdefault("extra", {}).update(ignored)
if ignored:
logger.warning(f'Ignoring these parameters (added to "extra"): { ignored }')
d.update(kwargs)
return cls(**d)
def run_simulation(self, *args, **kwargs): def run_simulation(self, *args, **kwargs):
return self.run(*args, **kwargs) return self.run(*args, **kwargs)
@ -90,12 +119,16 @@ class Simulation:
) )
+ self.to_yaml() + self.to_yaml()
) )
return list(self.run_gen(*args, **kwargs)) if _AVOID_RUNNING:
_QUEUED.append((self, args, kwargs))
return []
return list(self._run_gen(*args, **kwargs))
def run_gen( def _run_gen(
self, self,
num_processes=1, num_processes=1,
dry_run=None, dry_run=None,
dump=None,
exporters=None, exporters=None,
outdir=None, outdir=None,
exporter_params={}, exporter_params={},
@ -110,6 +143,8 @@ class Simulation:
logger.info("Output directory: %s", outdir) logger.info("Output directory: %s", outdir)
if dry_run is None: if dry_run is None:
dry_run = self.dry_run dry_run = self.dry_run
if dump is None:
dump = self.dump
if exporters is None: if exporters is None:
exporters = self.exporters exporters = self.exporters
if not exporter_params: if not exporter_params:
@ -121,33 +156,50 @@ class Simulation:
known_modules=[ known_modules=[
"soil.exporters", "soil.exporters",
], ],
dry_run=dry_run, dump=dump and not dry_run,
outdir=outdir, outdir=outdir,
**exporter_params, **exporter_params,
) )
with utils.timer("simulation {}".format(self.name)): if self.source_file:
for exporter in exporters: source_file = self.source_file
exporter.sim_start() if not os.path.isabs(source_file):
source_file = os.path.abspath(os.path.join(self.dir_path, source_file))
serialization.add_source_file(source_file)
try:
for env in utils.run_parallel( with utils.timer("simulation {}".format(self.name)):
func=self.run_trial, for exporter in exporters:
iterable=range(int(self.num_trials)), exporter.sim_start()
num_processes=num_processes,
log_level=log_level, if dry_run:
**kwargs, def func(*args, **kwargs):
): return None
else:
func = self.run_trial
for env in utils.run_parallel(
func=self.run_trial,
iterable=range(int(self.num_trials)),
num_processes=num_processes,
log_level=log_level,
**kwargs,
):
if env is None and dry_run:
continue
for exporter in exporters:
exporter.trial_end(env)
yield env
for exporter in exporters: for exporter in exporters:
exporter.trial_start(env) exporter.sim_end()
finally:
for exporter in exporters: pass
exporter.trial_end(env) # TODO: reintroduce
# if self.source_file:
yield env # serialization.remove_source_file(self.source_file)
for exporter in exporters:
exporter.sim_end()
def get_env(self, trial_id=0, model_params=None, **kwargs): def get_env(self, trial_id=0, model_params=None, **kwargs):
"""Create an environment for a trial of the simulation""" """Create an environment for a trial of the simulation"""
@ -170,11 +222,12 @@ class Simulation:
tables = self.tables.copy() tables = self.tables.copy()
tables.update(deserialize_reporters(params.pop("tables", {}))) tables.update(deserialize_reporters(params.pop("tables", {})))
env = serialization.deserialize(self.model_class) env = serialization.deserialize(self.model)
return env( return env(
id=f"{self.name}_trial_{trial_id}", id=f"{self.name}_trial_{trial_id}",
seed=f"{self.seed}_trial_{trial_id}", seed=f"{self.seed}_trial_{trial_id}",
dir_path=self.dir_path, dir_path=self.dir_path,
interval=self.interval,
agent_reporters=agent_reporters, agent_reporters=agent_reporters,
model_reporters=model_reporters, model_reporters=model_reporters,
tables=tables, tables=tables,
@ -210,6 +263,9 @@ class Simulation:
def is_done(): def is_done():
return prev() or model.schedule.time >= until return prev() or model.schedule.time >= until
if not model.schedule.agents:
raise Exception("No agents in model. This is probably a bug. Make sure that the model has agents scheduled after its initialization.")
if self.max_steps and self.max_steps > 0 and hasattr(model.schedule, "steps"): if self.max_steps and self.max_steps > 0 and hasattr(model.schedule, "steps"):
prev_steps = is_done prev_steps = is_done
@ -222,24 +278,21 @@ class Simulation:
dedent( dedent(
f""" f"""
Model stats: Model stats:
Agents (total: { model.schedule.get_agent_count() }): Agent count: { model.schedule.get_agent_count() }):
- { (newline + ' - ').join(str(a) for a in model.schedule.agents) }
Topology size: { len(model.G) if hasattr(model, "G") else 0 } Topology size: { len(model.G) if hasattr(model, "G") else 0 }
""" """
) )
) )
if self.debug:
set_trace()
while not is_done(): while not is_done():
utils.logger.debug( utils.logger.debug(
f'Simulation time {model.schedule.time}/{until}. Next: {getattr(model.schedule, "next_time", model.schedule.time + self.interval)}' f'Simulation time {model.schedule.time}/{until}.'
) )
model.step() model.step()
if (
model.schedule.time < until
): # Simulation ended (no more steps) before the expected time
model.schedule.time = until
return model return model
def to_dict(self): def to_dict(self):
@ -250,14 +303,27 @@ Model stats:
return yaml.dump(self.to_dict()) return yaml.dump(self.to_dict())
def iter_from_file(*files, **kwargs):
for f in files:
try:
yield from iter_from_py(f, **kwargs)
except ValueError as ex:
yield from iter_from_config(f, **kwargs)
def from_file(*args, **kwargs):
return list(iter_from_file(*args, **kwargs))
def iter_from_config(*cfgs, **kwargs): def iter_from_config(*cfgs, **kwargs):
for config in cfgs: for config in cfgs:
configs = list(serialization.load_config(config)) configs = list(serialization.load_config(config))
for config, path in configs: for config, path in configs:
d = dict(config) d = dict(config)
d.update(kwargs)
if "dir_path" not in d: if "dir_path" not in d:
d["dir_path"] = os.path.dirname(path) d["dir_path"] = os.path.dirname(path)
yield Simulation.from_dict(d, **kwargs) yield Simulation(**d)
def from_config(conf_or_path): def from_config(conf_or_path):
@ -266,26 +332,48 @@ def from_config(conf_or_path):
raise AttributeError("Provide only one configuration") raise AttributeError("Provide only one configuration")
return lst[0] return lst[0]
def iter_from_py(pyfile, module_name='custom_simulation'):
def iter_from_py(pyfile, module_name='custom_simulation', **kwargs):
"""Try to load every Simulation instance in a given Python file""" """Try to load every Simulation instance in a given Python file"""
import importlib import importlib
import inspect import inspect
spec = importlib.util.spec_from_file_location(module_name, pyfile) added = False
module = importlib.util.module_from_spec(spec) sims = []
sys.modules[module_name] = module assert not _AVOID_RUNNING
spec.loader.exec_module(module) with do_not_run():
# import pdb;pdb.set_trace() assert _AVOID_RUNNING
for (_name, sim) in inspect.getmembers(module, lambda x: isinstance(x, Simulation)): spec = importlib.util.spec_from_file_location(module_name, pyfile)
yield sim folder = os.path.dirname(pyfile)
del sys.modules[module_name] if folder not in sys.path:
added = True
sys.path.append(folder)
if not spec:
raise ValueError(f"{pyfile} does not seem to be a Python module")
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
for (_name, sim) in inspect.getmembers(module, lambda x: isinstance(x, Simulation)):
sims.append(sim)
for sim in _iter_queued():
sims.append(sim)
if not sims:
for (_name, sim) in inspect.getmembers(module, lambda x: inspect.isclass(x) and issubclass(x, Simulation)):
sims.append(sim(**kwargs))
del sys.modules[module_name]
assert not _AVOID_RUNNING
if not sims:
raise AttributeError(f"No valid configurations found in {pyfile}")
if added:
sys.path.remove(folder)
for sim in sims:
yield replace(sim, **kwargs)
def from_py(pyfile): def from_py(pyfile):
return next(iter_from_py(pyfile)) return next(iter_from_py(pyfile))
def run_from_file(*files, **kwargs):
def run_from_config(*configs, **kwargs): for sim in iter_from_file(*files):
for sim in iter_from_config(*configs):
logger.info(f"Using config(s): {sim.name}") logger.info(f"Using config(s): {sim.name}")
sim.run_simulation(**kwargs) sim.run_simulation(**kwargs)

View File

@ -97,7 +97,8 @@ class TimedActivation(BaseScheduler):
self._next = {} self._next = {}
self._queue = [] self._queue = []
self._shuffle = shuffle self._shuffle = shuffle
self.step_interval = 1 # self.step_interval = getattr(self.model, "interval", 1)
self.step_interval = self.model.interval
self.logger = logger.getChild(f"time_{ self.model }") self.logger = logger.getChild(f"time_{ self.model }")
def add(self, agent: MesaAgent, when=None): def add(self, agent: MesaAgent, when=None):
@ -136,7 +137,7 @@ class TimedActivation(BaseScheduler):
if not self.model.running or self.time == INFINITY: if not self.model.running or self.time == INFINITY:
return return
self.logger.debug("Queue length: {ql}", ql=len(self._queue)) self.logger.debug(f"Queue length: %s", len(self._queue))
while self._queue: while self._queue:
((when, _id, cond), agent) = self._queue[0] ((when, _id, cond), agent) = self._queue[0]
@ -156,7 +157,7 @@ class TimedActivation(BaseScheduler):
agent._last_return = None agent._last_return = None
agent._last_except = None agent._last_except = None
self.logger.debug("Stepping agent {agent}", agent=agent) self.logger.debug("Stepping agent %s", agent)
self._next.pop(agent.unique_id, None) self._next.pop(agent.unique_id, None)
try: try:

View File

@ -1,6 +0,0 @@
from mesa.visualization.UserParam import UserSettableParameter
class UserSettableParameter(UserSettableParameter):
def __str__(self):
return self.value

View File

@ -1,49 +0,0 @@
---
version: '2'
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
model_class: Environment
model_params:
topology:
params:
generator: complete_graph
n: 4
agents:
agent_class: CounterModel
state:
group: network
times: 1
topology: true
distribution:
- agent_class: CounterModel
weight: 0.25
state:
state_id: 0
times: 1
- agent_class: AggregatedCounter
weight: 0.5
state:
times: 2
override:
- filter:
node_id: 1
state:
name: 'Node 1'
- filter:
node_id: 2
state:
name: 'Node 2'
fixed:
- agent_class: BaseAgent
hidden: true
topology: false
state:
name: 'Environment Agent 1'
times: 10
group: environment
am_i_complete: true

View File

@ -1,37 +0,0 @@
---
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
network_params:
generator: complete_graph
n: 4
network_agents:
- agent_class: CounterModel
weight: 0.25
state:
state_id: 0
times: 1
- agent_class: AggregatedCounter
weight: 0.5
state:
times: 2
environment_agents:
- agent_id: 'Environment Agent 1'
agent_class: BaseAgent
state:
times: 10
environment_class: Environment
environment_params:
am_i_complete: true
agent_class: CounterModel
default_state:
times: 1
states:
1:
name: 'Node 1'
2:
name: 'Node 2'

View File

@ -22,7 +22,9 @@ class TestAgents(TestCase):
def test_die_raises_exception(self): def test_die_raises_exception(self):
"""A dead agent should raise an exception if it is stepped after death""" """A dead agent should raise an exception if it is stepped after death"""
d = Dead(unique_id=0, model=environment.Environment()) d = Dead(unique_id=0, model=environment.Environment())
assert d.alive
d.step() d.step()
assert not d.alive
with pytest.raises(stime.DeadAgent): with pytest.raises(stime.DeadAgent):
d.step() d.step()
@ -106,7 +108,7 @@ class TestAgents(TestCase):
""" """
# There are two agents, they try to send pings # There are two agents, they try to send pings
# This is arguably a very contrived example. In practice, the or # This is arguably a very contrived example.
# There should be a delay of one step between agent 0 and 1 # There should be a delay of one step between agent 0 and 1
# On the first step: # On the first step:
# Agent 0 sends a PING, but blocks before a PONG # Agent 0 sends a PING, but blocks before a PONG
@ -161,3 +163,15 @@ class TestAgents(TestCase):
assert sum(pings) == sum(range(time)) * 2 assert sum(pings) == sum(range(time)) * 2
# It is the same as pings, without the leading 0 # It is the same as pings, without the leading 0
assert sum(pongs) == sum(range(time)) * 2 assert sum(pongs) == sum(range(time)) * 2
def test_agent_filter(self):
e = environment.Environment()
e.add_agent(agent_class=agents.BaseAgent)
e.add_agent(agent_class=agents.Evented)
base = list(e.agents(agent_class=agents.BaseAgent))
assert len(base) == 2
ev = list(e.agents(agent_class=agents.Evented))
assert len(ev) == 1
assert ev[0].unique_id == 1
null = list(e.agents(unique_ids=[0, 1], agent_class=agents.NetworkAgent))
assert not null

View File

@ -1,4 +1,4 @@
from unittest import TestCase from unittest import TestCase, skip
import os import os
import yaml import yaml
import copy import copy
@ -23,85 +23,18 @@ def isequal(a, b):
assert a == b assert a == b
# @skip("new versions of soil do not rely on configuration files")
class TestConfig(TestCase): class TestConfig(TestCase):
def test_conversion(self):
expected = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
old = serialization.load_file(join(ROOT, "old_complete.yml"))[0]
converted_defaults = config.convert_old(old, strict=False)
converted = converted_defaults.dict(exclude_unset=True)
isequal(converted, expected) def test_torvalds_config(self):
sim = simulation.from_config(os.path.join(ROOT, "test_config.yml"))
def test_configuration_changes(self): assert sim.interval == 2
""" envs = sim.run()
The configuration should not change after running assert len(envs) == 1
the simulation. env = envs[0]
""" assert env.interval == 2
config = serialization.load_file(join(EXAMPLES, "complete.yml"))[0] assert env.count_agents() == 3
s = simulation.from_config(config) assert env.now == 20
init_config = copy.copy(s.to_dict())
s.run_simulation(dry_run=True)
nconfig = s.to_dict()
# del nconfig['to
isequal(init_config, nconfig)
def test_topology_config(self):
netconfig = config.NetConfig(**{"path": join(ROOT, "test.gexf")})
net = network.from_config(netconfig, dir_path=ROOT)
assert len(net.nodes) == 2
assert len(net.edges) == 1
def test_env_from_config(self):
"""
Simple configuration that tests that the graph is loaded, and that
network agents are initialized properly.
"""
cfg = {
"name": "CounterAgent",
"network_params": {"path": join(ROOT, "test.gexf")},
"agent_class": "CounterModel",
# 'states': [{'times': 10}, {'times': 20}],
"max_time": 2,
"dry_run": True,
"num_trials": 1,
"environment_params": {},
}
conf = config.convert_old(cfg)
s = simulation.from_config(conf)
env = s.get_env()
assert len(env.G.nodes) == 2
assert len(env.G.edges) == 1
assert len(env.agents) == 2
assert env.agents[0].G == env.G
def test_agents_from_config(self):
"""We test that the known complete configuration produces
the right agents in the right groups"""
cfg = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
s = simulation.from_config(cfg)
env = s.get_env()
assert len(env.G.nodes) == 4
assert len(env.agents(group="network")) == 4
assert len(env.agents(group="environment")) == 1
def test_yaml(self):
"""
The YAML version of a newly created configuration should be equivalent
to the configuration file used.
Values not present in the original config file should have reasonable
defaults.
"""
with utils.timer("loading"):
config = serialization.load_file(join(EXAMPLES, "complete.yml"))[0]
s = simulation.from_config(config)
with utils.timer("serializing"):
serial = s.to_yaml()
with utils.timer("recovering"):
recovered = yaml.load(serial, Loader=yaml.FullLoader)
for (k, v) in config.items():
assert recovered[k] == v
def make_example_test(path, cfg): def make_example_test(path, cfg):
@ -115,7 +48,7 @@ def make_example_test(path, cfg):
s.num_trials = 1 s.num_trials = 1
if cfg.skip_test and not FORCE_TESTS: if cfg.skip_test and not FORCE_TESTS:
self.skipTest('Example ignored.') self.skipTest('Example ignored.')
envs = s.run_simulation(dry_run=True) envs = s.run_simulation(dump=False)
assert envs assert envs
for env in envs: for env in envs:
assert env assert env

5
tests/test_config.yml Normal file
View File

@ -0,0 +1,5 @@
---
source_file: "../examples/torvalds_sim.py"
model: "TorvaldsEnv"
max_steps: 10
interval: 2

View File

@ -1,9 +1,12 @@
from unittest import TestCase from unittest import TestCase
from unittest.case import SkipTest
import os import os
from os.path import join from os.path import join
from glob import glob from glob import glob
from soil import simulation, config
from soil import simulation
ROOT = os.path.abspath(os.path.dirname(__file__)) ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, "..", "examples") EXAMPLES = join(ROOT, "..", "examples")
@ -12,47 +15,58 @@ FORCE_TESTS = os.environ.get("FORCE_TESTS", "")
class TestExamples(TestCase): class TestExamples(TestCase):
"""Empty class that will be populated with auto-discovery tests for every example"""
pass pass
def get_test_for_sim(sim, path): def get_test_for_sims(sims, path):
root = os.getcwd() root = os.getcwd()
iterations = sim.max_steps * sim.num_trials
if iterations < 0 or iterations > 1000:
sim.max_steps = 100
sim.num_trials = 1
def wrapped(self): def wrapped(self):
envs = sim.run_simulation(dry_run=True) run = False
assert envs for sim in sims:
for env in envs: if sim.skip_test and not FORCE_TESTS:
assert env continue
try: run = True
n = sim.model_params["network_params"]["n"] iterations = sim.max_steps * sim.num_trials
assert len(list(env.network_agents)) == n if iterations < 0 or iterations > 1000:
except KeyError: sim.max_steps = 100
pass sim.num_trials = 1
assert env.schedule.steps > 0 # It has run envs = sim.run_simulation(dump=False)
assert env.schedule.steps <= sim.max_steps # But not further than allowed assert envs
for env in envs:
assert env
assert env.now > 0
try:
n = sim.model_params["network_params"]["n"]
assert len(list(env.network_agents)) == n
except KeyError:
pass
assert env.schedule.steps > 0 # It has run
assert env.schedule.steps <= sim.max_steps # But not further than allowed
if not run:
raise SkipTest("Example ignored because all simulations are set up to be skipped.")
return wrapped return wrapped
def add_example_tests(): def add_example_tests():
sim_paths = [] sim_paths = {}
for path in glob(join(EXAMPLES, '**', '*.yml')): for path in glob(join(EXAMPLES, '**', '*.yml')):
if "soil_output" in path: if "soil_output" in path:
continue continue
if path not in sim_paths:
sim_paths[path] = []
for sim in simulation.iter_from_config(path): for sim in simulation.iter_from_config(path):
sim_paths.append((sim, path)) sim_paths[path].append(sim)
for path in glob(join(EXAMPLES, '**', '*.py')): for path in glob(join(EXAMPLES, '**', '*_sim.py')):
if path not in sim_paths:
sim_paths[path] = []
for sim in simulation.iter_from_py(path): for sim in simulation.iter_from_py(path):
sim_paths.append((sim, path)) sim_paths[path].append(sim)
for (sim, path) in sim_paths: for (path, sims) in sim_paths.items():
if sim.skip_test and not FORCE_TESTS: test_case = get_test_for_sims(sims, path)
continue
test_case = get_test_for_sim(sim, path)
fname = os.path.basename(path) fname = os.path.basename(path)
test_case.__name__ = "test_example_file_%s" % fname test_case.__name__ = "test_example_file_%s" % fname
test_case.__doc__ = "%s should be a valid configuration" % fname test_case.__doc__ = "%s should be a valid configuration" % fname

View File

@ -6,9 +6,12 @@ import sqlite3
from unittest import TestCase from unittest import TestCase
from soil import exporters from soil import exporters
from soil import environment
from soil import simulation from soil import simulation
from soil import agents from soil import agents
from mesa import Agent as MesaAgent
class Dummy(exporters.Exporter): class Dummy(exporters.Exporter):
started = False started = False
@ -38,17 +41,17 @@ class Exporters(TestCase):
def test_basic(self): def test_basic(self):
# We need to add at least one agent to make sure the scheduler # We need to add at least one agent to make sure the scheduler
# ticks every step # ticks every step
class SimpleEnv(environment.Environment):
def init(self):
self.add_agent(agent_class=MesaAgent)
num_trials = 5 num_trials = 5
max_time = 2 max_time = 2
config = { s = simulation.Simulation(num_trials=num_trials, max_time=max_time, name="exporter_sim",
"name": "exporter_sim", dump=False, model=SimpleEnv)
"model_params": {"agents": [{"agent_class": agents.BaseAgent}]},
"max_time": max_time,
"num_trials": num_trials,
}
s = simulation.from_config(config)
for env in s.run_simulation(exporters=[Dummy], dry_run=True): for env in s.run_simulation(exporters=[Dummy], dump=False):
assert len(env.agents) == 1 assert len(env.agents) == 1
assert Dummy.started assert Dummy.started
@ -60,16 +63,20 @@ class Exporters(TestCase):
assert Dummy.total_time == max_time * num_trials assert Dummy.total_time == max_time * num_trials
def test_writing(self): def test_writing(self):
"""Try to write CSV, sqlite and YAML (without dry_run)""" """Try to write CSV, sqlite and YAML (without no_dump)"""
n_trials = 5 n_trials = 5
n_nodes = 4
max_time = 2
config = { config = {
"name": "exporter_sim", "name": "exporter_sim",
"network_params": {"generator": "complete_graph", "n": 4}, "model_params": {
"agent_class": "CounterModel", "network_generator": "complete_graph",
"max_time": 2, "network_params": {"n": n_nodes},
"agent_class": "CounterModel",
},
"max_time": max_time,
"num_trials": n_trials, "num_trials": n_trials,
"dry_run": False, "dump": True,
"environment_params": {},
} }
output = io.StringIO() output = io.StringIO()
s = simulation.from_config(config) s = simulation.from_config(config)
@ -85,7 +92,7 @@ class Exporters(TestCase):
"constant": lambda x: 1, "constant": lambda x: 1,
}, },
}, },
dry_run=False, dump=True,
outdir=tmpdir, outdir=tmpdir,
exporter_params={"copy_to": output}, exporter_params={"copy_to": output},
) )
@ -98,12 +105,13 @@ class Exporters(TestCase):
try: try:
for e in envs: for e in envs:
db = sqlite3.connect(os.path.join(simdir, f"{s.name}.sqlite")) dbpath = os.path.join(simdir, f"{s.name}.sqlite")
db = sqlite3.connect(dbpath)
cur = db.cursor() cur = db.cursor()
agent_entries = cur.execute("SELECT * from agents").fetchall() agent_entries = cur.execute("SELECT times FROM agents WHERE times > 0").fetchall()
env_entries = cur.execute("SELECT * from env").fetchall() env_entries = cur.execute("SELECT constant from env WHERE constant == 1").fetchall()
assert len(agent_entries) > 0 assert len(agent_entries) == n_nodes * n_trials * max_time
assert len(env_entries) > 0 assert len(env_entries) == n_trials * max_time
with open(os.path.join(simdir, "{}.env.csv".format(e.id))) as f: with open(os.path.join(simdir, "{}.env.csv".format(e.id))) as f:
result = f.read() result = f.read()

View File

@ -6,9 +6,11 @@ import networkx as nx
from functools import partial from functools import partial
from os.path import join from os.path import join
from soil import simulation, Environment, agents, network, serialization, utils, config from soil import simulation, Environment, agents, network, serialization, utils, config, from_file
from soil.time import Delta from soil.time import Delta
from mesa import Agent as MesaAgent
ROOT = os.path.abspath(os.path.dirname(__file__)) ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, "..", "examples") EXAMPLES = join(ROOT, "..", "examples")
@ -29,12 +31,13 @@ class TestMain(TestCase):
"""A simulation with a base behaviour should do nothing""" """A simulation with a base behaviour should do nothing"""
config = { config = {
"model_params": { "model_params": {
"network_params": {"path": join(ROOT, "test.gexf")}, "topology": join(ROOT, "test.gexf"),
"agent_class": "BaseAgent", "agent_class": MesaAgent,
} },
"max_time": 1
} }
s = simulation.from_config(config) s = simulation.from_config(config)
s.run_simulation(dry_run=True) s.run_simulation(dump=False)
def test_network_agent(self): def test_network_agent(self):
""" """
@ -62,46 +65,21 @@ class TestMain(TestCase):
""" """
The initial states should be applied to the agent and the The initial states should be applied to the agent and the
agent should be able to update its state.""" agent should be able to update its state."""
config = { env = Environment()
"version": "2", env.add_agent(agents.Ticker, times=10)
"name": "CounterAgent", env.add_agent(agents.Ticker, times=20)
"dry_run": True,
"num_trials": 1, assert isinstance(env.agents[0], agents.Ticker)
"max_time": 2,
"model_params": {
"topology": {"path": join(ROOT, "test.gexf")},
"agents": {
"agent_class": "CounterModel",
"topology": True,
"fixed": [{"state": {"times": 10}}, {"state": {"times": 20}}],
},
},
}
s = simulation.from_config(config)
env = s.get_env()
assert isinstance(env.agents[0], agents.CounterModel)
assert env.agents[0].G == env.G
assert env.agents[0]["times"] == 10
assert env.agents[0]["times"] == 10 assert env.agents[0]["times"] == 10
assert env.agents[1]["times"] == 20
env.step() env.step()
assert env.agents[0]["times"] == 11 assert env.agents[0]["times"] == 11
assert env.agents[1]["times"] == 21 assert env.agents[1]["times"] == 21
def test_init_and_count_agents(self): def test_init_and_count_agents(self):
"""Agents should be properly initialized and counting should filter them properly""" """Agents should be properly initialized and counting should filter them properly"""
# TODO: separate this test into two or more test cases env = Environment(topology=join(ROOT, "test.gexf"))
config = { env.populate_network([CustomAgent.w(weight=1), CustomAgent.w(weight=3)])
"max_time": 10,
"model_params": {
"agents": [
{"agent_class": CustomAgent, "weight": 1, "topology": True},
{"agent_class": CustomAgent, "weight": 3, "topology": True},
],
"topology": {"path": join(ROOT, "test.gexf")},
},
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
assert env.agents[0].weight == 1 assert env.agents[0].weight == 1
assert env.count_agents() == 2 assert env.count_agents() == 2
assert env.count_agents(weight=1) == 1 assert env.count_agents(weight=1) == 1
@ -110,26 +88,28 @@ class TestMain(TestCase):
def test_torvalds_example(self): def test_torvalds_example(self):
"""A complete example from a documentation should work.""" """A complete example from a documentation should work."""
config = serialization.load_file(join(EXAMPLES, "torvalds.yml"))[0] owd = os.getcwd()
config["model_params"]["network_params"]["path"] = join( pyfile = join(EXAMPLES, "torvalds_sim.py")
EXAMPLES, config["model_params"]["network_params"]["path"] try:
) os.chdir(os.path.dirname(pyfile))
s = simulation.from_config(config) s = simulation.from_py(pyfile)
env = s.run_simulation(dry_run=True)[0] env = s.run_simulation(dump=False)[0]
for a in env.network_agents: for a in env.network_agents:
skill_level = a.state["skill_level"] skill_level = a["skill_level"]
if a.id == "Torvalds": if a.node_id == "Torvalds":
assert skill_level == "God" assert skill_level == "God"
assert a.state["total"] == 3 assert a["total"] == 3
assert a.state["neighbors"] == 2 assert a["neighbors"] == 2
elif a.id == "balkian": elif a.node_id == "balkian":
assert skill_level == "developer" assert skill_level == "developer"
assert a.state["total"] == 3 assert a["total"] == 3
assert a.state["neighbors"] == 1 assert a["neighbors"] == 1
else: else:
assert skill_level == "beginner" assert skill_level == "beginner"
assert a.state["total"] == 3 assert a["total"] == 3
assert a.state["neighbors"] == 1 assert a["neighbors"] == 1
finally:
os.chdir(owd)
def test_serialize_class(self): def test_serialize_class(self):
ser, name = serialization.serialize(agents.BaseAgent, known_modules=[]) ser, name = serialization.serialize(agents.BaseAgent, known_modules=[])
@ -166,11 +146,6 @@ class TestMain(TestCase):
assert ser == "BaseAgent" assert ser == "BaseAgent"
pickle.dumps(ser) pickle.dumps(ser)
def test_templates(self):
"""Loading a template should result in several configs"""
configs = serialization.load_file(join(EXAMPLES, "template.yml"))
assert len(configs) > 0
def test_until(self): def test_until(self):
n_runs = 0 n_runs = 0
@ -178,16 +153,15 @@ class TestMain(TestCase):
def step(self): def step(self):
nonlocal n_runs nonlocal n_runs
n_runs += 1 n_runs += 1
return super().step()
n_trials = 50 n_trials = 50
max_time = 2 max_time = 2
s = simulation.Simulation( s = simulation.Simulation(
model_params={"agents": [{"agent_class": CheckRun}]}, model_params=dict(agents=dict(agent_classes=[CheckRun], k=1)),
num_trials=n_trials, num_trials=n_trials,
max_time=max_time, max_time=max_time,
) )
runs = list(s.run_simulation(dry_run=True)) runs = list(s.run_simulation(dump=False))
over = list(x.now for x in runs if x.now > 2) over = list(x.now for x in runs if x.now > 2)
assert len(runs) == n_trials assert len(runs) == n_trials
assert len(over) == 0 assert len(over) == 0
@ -230,3 +204,21 @@ class TestMain(TestCase):
assert when == 2 assert when == 2
when = a.step() when = a.step()
assert when == Delta(a.interval) assert when == Delta(a.interval)
def test_load_sim(self):
"""Make sure at least one of the examples can be loaded"""
sims = from_file(os.path.join(EXAMPLES, "newsspread", "newsspread_sim.py"))
assert len(sims) == 3*3*2
for sim in sims:
assert sim
assert sim.name == "newspread_sim"
assert sim.num_trials == 5
assert sim.max_steps == 300
assert not sim.dump
assert sim.model_params
assert "ratio_dumb" in sim.model_params
assert "ratio_herd" in sim.model_params
assert "ratio_wise" in sim.model_params
assert "network_generator" in sim.model_params
assert "network_params" in sim.model_params
assert "prob_neighbor_spread" in sim.model_params

View File

@ -19,13 +19,11 @@ class TestNetwork(TestCase):
Load a graph from file if the extension is known. Load a graph from file if the extension is known.
Raise an exception otherwise. Raise an exception otherwise.
""" """
config = {"network_params": {"path": join(ROOT, "test.gexf")}} G = network.from_topology(join(ROOT, "test.gexf"))
G = network.from_config(config["network_params"])
assert G assert G
assert len(G) == 2 assert len(G) == 2
with self.assertRaises(AttributeError): with self.assertRaises(AttributeError):
config = {"network_params": {"path": join(ROOT, "unknown.extension")}} G = network.from_topology(join(ROOT, "unknown.extension"))
G = network.from_config(config["network_params"])
print(G) print(G)
def test_generate_barabasi(self): def test_generate_barabasi(self):
@ -33,12 +31,12 @@ class TestNetwork(TestCase):
If no path is given, a generator and network parameters If no path is given, a generator and network parameters
should be used to generate a network should be used to generate a network
""" """
cfg = {"params": {"generator": "barabasi_albert_graph"}} cfg = {"generator": "barabasi_albert_graph"}
with self.assertRaises(Exception): with self.assertRaises(Exception):
G = network.from_config(cfg) G = network.from_params(**cfg)
cfg["params"]["n"] = 100 cfg["n"] = 100
cfg["params"]["m"] = 10 cfg["m"] = 10
G = network.from_config(cfg) G = network.from_params(**cfg)
assert len(G) == 100 assert len(G) == 100
def test_save_geometric(self): def test_save_geometric(self):
@ -54,18 +52,8 @@ class TestNetwork(TestCase):
def test_networkenvironment_creation(self): def test_networkenvironment_creation(self):
"""Networkenvironment should accept netconfig as parameters""" """Networkenvironment should accept netconfig as parameters"""
model_params = { env = environment.Environment(topology=join(ROOT, "test.gexf"))
"topology": {"path": join(ROOT, "test.gexf")}, env.populate_network(CustomAgent)
"agents": {
"topology": True,
"distribution": [
{
"agent_class": CustomAgent,
}
],
},
}
env = environment.Environment(**model_params)
assert env.G assert env.G
env.step() env.step()
assert len(env.G) == 2 assert len(env.G) == 2
@ -76,18 +64,9 @@ class TestNetwork(TestCase):
def test_custom_agent_neighbors(self): def test_custom_agent_neighbors(self):
"""Allow for search of neighbors with a certain state_id""" """Allow for search of neighbors with a certain state_id"""
config = { env = environment.Environment()
"model_params": { env.create_network(join(ROOT, "test.gexf"))
"topology": {"path": join(ROOT, "test.gexf")}, env.populate_network(CustomAgent)
"agents": {
"topology": True,
"distribution": [{"weight": 1, "agent_class": CustomAgent}],
},
},
"max_time": 10,
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
assert env.agents[1].count_agents(state_id="normal") == 2 assert env.agents[1].count_agents(state_id="normal") == 2
assert env.agents[1].count_agents(state_id="normal", limit_neighbors=True) == 1 assert env.agents[1].count_agents(state_id="normal", limit_neighbors=True) == 1
assert env.agents[0].count_neighbors() == 1 assert env.agents[0].count_neighbors() == 1
@ -97,13 +76,11 @@ class TestNetwork(TestCase):
G = nx.Graph() G = nx.Graph()
G.add_node(3) G.add_node(3)
G.add_edge(1, 2) G.add_edge(1, 2)
distro = agents.calculate_distribution(agent_class=agents.NetworkAgent) env = environment.Environment(name="Test", topology=G)
aconfig = config.AgentConfig(distribution=distro, topology=True) env.populate_network(agents.NetworkAgent)
env = environment.Environment(name="Test", topology=G, agents=aconfig)
lst = list(env.network_agents)
a2 = env.find_one(node_id=2) a2 = env.agent(node_id=2)
a3 = env.find_one(node_id=3) a3 = env.agent(node_id=3)
assert len(a2.subgraph(limit_neighbors=True)) == 2 assert len(a2.subgraph(limit_neighbors=True)) == 2
assert len(a3.subgraph(limit_neighbors=True)) == 1 assert len(a3.subgraph(limit_neighbors=True)) == 1
assert len(a3.subgraph(limit_neighbors=True, center=False)) == 0 assert len(a3.subgraph(limit_neighbors=True, center=False)) == 0

View File

@ -46,7 +46,8 @@ class TestMain(TestCase):
break break
done.append(self.now) done.append(self.now)
env = environment.Environment(agents=[{"agent_class": CondAgent}]) env = environment.Environment()
env.add_agent(CondAgent)
while env.schedule.time < 11: while env.schedule.time < 11:
times.append(env.now) times.append(env.now)