1
0
mirror of https://github.com/gsi-upm/soil synced 2025-10-17 08:48:30 +00:00

Compare commits

...

16 Commits

Author SHA1 Message Date
J. Fernando Sánchez
be65592055 Default parameters terroristnetwork 2023-04-14 20:25:16 +02:00
J. Fernando Sánchez
1d882dcff6 Update easy function 2023-04-14 20:21:34 +02:00
J. Fernando Sánchez
b3e77cbff5 Update python version in gitlab-ci 2023-04-14 20:07:16 +02:00
J. Fernando Sánchez
05748a3250 Update python version requirement 2023-04-14 20:03:47 +02:00
J. Fernando Sánchez
a3fc6a5efa Update README 2023-04-14 19:56:44 +02:00
J. Fernando Sánchez
4e95709188 Update README 2023-04-14 19:53:31 +02:00
J. Fernando Sánchez
feab0ba79e Large set of changes for v0.30
The examples weren't being properly tested in the last commit. When we fixed
that a lot of bugs in the new implementation of environment and agent were
found, which accounts for most of these changes.

The main difference is the mechanism to load simulations from a configuration
file. For that to work, we had to rework our module loading code in
`serialization` and add a `source_file` attribute to configurations (and
simulations, for that matter).
2023-04-14 19:41:24 +02:00
J. Fernando Sánchez
73282530fd Big refactor v0.30
All test pass, except for the TestConfig suite, which is not too critical as the
plan for this version onwards is to avoid configuration as much as possible.
2023-04-09 04:19:24 +02:00
J. Fernando Sánchez
2869b1e1e6 Clean-up
* Removed old/unnecessary models
* Added a `simulation.{iter_}from_py` method to load simulations from python
files
* Changed tests of examples to run programmatic simulations
* Fixed programmatic examples
2022-11-13 20:31:05 +01:00
J. Fernando Sánchez
d3cee18635 Add seed to cars example 2022-10-20 14:47:28 +02:00
J. Fernando Sánchez
9a7b62e88e Release 0.30.0rc3 2022-10-20 14:12:34 +02:00
J. Fernando Sánchez
c09e480d37 black formatting 2022-10-20 14:12:10 +02:00
J. Fernando Sánchez
b2d48cb4df Add test cases for 'ASK' 2022-10-20 14:10:34 +02:00
J. Fernando Sánchez
a1262edd2a Refactored time
Treating time and conditions as the same entity was getting confusing, and it
added a lot of unnecessary abstraction in a critical part (the scheduler).

The scheduling queue now has the time as a floating number (faster), the agent
id (for ties) and the condition, as well as the agent. The first three
elements (time, id, condition) can be considered as the "key" for the event.

To allow for agent execution to be "randomized" within every step, a new
parameter has been added to the scheduler, which makes it add a random number to
the key in order to change the ordering.

`EventedAgent.received` now checks the messages before returning control to the
user by default.
2022-10-20 12:15:25 +02:00
J. Fernando Sánchez
cbbaf73538 Fix bug EventedEnvironment 2022-10-20 12:07:56 +02:00
J. Fernando Sánchez
2f5e5d0a74 Black formatting 2022-10-18 17:03:40 +02:00
83 changed files with 2178 additions and 84285 deletions

View File

@@ -20,7 +20,7 @@ docker:
test:
tags:
- docker
image: python:3.7
image: python:3.8
stage: test
script:
- pip install -r requirements.txt -r test-requirements.txt
@@ -31,7 +31,7 @@ push_pypi:
- tags
tags:
- docker
image: python:3.7
image: python:3.8
stage: publish
script:
- echo $CI_COMMIT_TAG > soil/VERSION
@@ -44,7 +44,7 @@ check_pypi:
- tags
tags:
- docker
image: python:3.7
image: python:3.8
stage: check_published
script:
- pip install soil==$CI_COMMIT_TAG

View File

@@ -6,15 +6,12 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
## [0.30 UNRELEASED]
### Added
* Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>`
* Ability to run
* Ability to
* Ability to run mesa simulations
* The `soil.exporters` module to export the results of datacollectors (model.datacollector) into files at the end of trials/simulations
* A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology).
* FSM agents can now have generators as states. They work similar to normal states, with one caveat. Only `time` values can be yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. The return value *can* be a state, or a `(state, time)` tuple, just like in normal states.
### Changed
* Configuration schema is very different now. Check `soil.config` for more information. We are also using Pydantic for (de)serialization.
* There may be more than one topology/network in the simulation
* Ability
* Configuration schema is very simplified
### Removed
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.

View File

@@ -1,12 +1,53 @@
# [SOIL](https://github.com/gsi-upm/soil)
Soil is an extensible and user-friendly Agent-based Social Simulator for Social Networks.
Learn how to run your own simulations with our [documentation](http://soilsim.readthedocs.io).
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
> **Warning**
> Mesa 0.30 introduced many fundamental changes. Check the [documention on how to update your simulations to work with newer versions](docs/notes_v0.30.rst)
# Changes in version 0.3
## Features
* Integration with (social) networks (through `networkx`)
* Convenience functions and methods to easily assign agents to your model (and optionally to its network):
* Following a given distribution (e.g., 2 agents of type `Foo`, 10% of the network should be agents of type `Bar`)
* Based on the topology of the network
* **Several types of abstractions for agents**:
* Finite state machine, where methods can be turned into a state
* Network agents, which have convenience methods to access the model's topology
* Generator-based agents, whose state is paused though a `yield` and resumed on the next step
* **Reporting and data collection**:
* Soil models include data collection and record some data by default (# of agents, state of each agent, etc.)
* All data collected are exported by default to a SQLite database and a description file
* Options to export to other formats, such as CSV, or defining your own exporters
* A summary of the data collected is shown in the command line, for easy inspection
* **An event-based scheduler**
* Agents can be explicit about when their next time/step should be, and not all agents run in every step. This avoids unnecessary computation.
* Time intervals between each step are flexible.
* There are primitives to specify when the next execution of an agent should be (or conditions)
* **Actor-inspired** message-passing
* A simulation runner (`soil.Simulation`) that can:
* Run models in parallel
* Save results to different formats
* Simulation configuration files
* A command line interface (`soil`), to quickly run simulations with different parameters
* An integrated debugger (`soil --debug`) with custom functions to print agent states and break at specific states
## Mesa compatibility
SOIL has been redesigned to integrate well with [Mesa](https://github.com/projectmesa/mesa).
For instance, it should be possible to run a `mesa.Model` models using a `soil.Simulation` and the `soil` CLI, or to integrate the `soil.TimedActivation` scheduler on a `mesa.Model`.
Note that some combinations of `mesa` and `soil` components, while technically possible, are much less useful or might yield surprising results.
For instance, you may add any `soil.agent` agent on a regular `mesa.Model` with a vanilla scheduler from `mesa.time`.
But in that case the agents will not get any of the advanced event-based scheduling, and most agent behaviors that depend on that may not work.
## Changes in version 0.3
Version 0.3 came packed with many changes to provide much better integration with MESA.
For a long time, we tried to keep soil backwards-compatible, but it turned out to be a big endeavour and the resulting code was less readable.
@@ -18,27 +59,6 @@ If you have an older Soil simulation, you have two options:
* Update the necessary configuration files and code. You may use the examples in the `examples` folder for reference, as well as the documentation.
* Keep using a previous `soil` version.
## Mesa compatibility
Soil is in the process of becoming fully compatible with MESA.
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
This is a non-exhaustive list of tasks to achieve compatibility:
- [ ] Integrate `soil.Simulation` with mesa's runners:
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
- [ ] Integrate `soil.Environment` with `mesa.Model`:
- [x] `Soil.Environment` inherits from `mesa.Model`
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
- [ ] Allow for `mesa.Model` to be used in a simulation.
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
- [x] Rename agent.id to unique_id?
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
- [ ] Provide examples
- [ ] Using mesa modules in a soil simulation
- [ ] Using soil modules in a mesa simulation
- [ ] Document the new APIs and usage
## Citation

View File

@@ -1,262 +0,0 @@
Configuring a simulation
------------------------
There are two ways to configure a simulation: programmatically and with a configuration file.
In both cases, the parameters used are the same.
The advantage of a configuration file is that it is a clean declarative description, and it makes it easier to reproduce.
Simulation configuration files can be formatted in ``json`` or ``yaml`` and they define all the parameters of a simulation.
Here's an example (``example.yml``).
.. literalinclude:: example.yml
:language: yaml
This example configuration will run three trials (``num_trials``) of a simulation containing a randomly generated network (``network_params``).
The 100 nodes in the network will be SISaModel agents (``network_agents.agent_class``), which is an agent behavior that is included in Soil.
10% of the agents (``weight=1``) will start in the content state, 10% in the discontent state, and the remaining 80% (``weight=8``) in the neutral state.
All agents will have access to the environment (``environment_params``), which only contains one variable, ``prob_infected``.
The state of the agents will be updated every 2 seconds (``interval``).
Now run the simulation with the command line tool:
.. code:: bash
soil example.yml
Once the simulation finishes, its results will be stored in a folder named ``MyExampleSimulation``.
Three types of objects are saved by default: a pickle of the simulation; a ``YAML`` representation of the simulation (which can be used to re-launch it); and for every trial, a ``sqlite`` file with the content of the state of every network node and the environment parameters at every step of the simulation.
.. code::
soil_output
└── MyExampleSimulation
├── MyExampleSimulation.dumped.yml
├── MyExampleSimulation.simulation.pickle
├── MyExampleSimulation_trial_0.db.sqlite
├── MyExampleSimulation_trial_1.db.sqlite
└── MyExampleSimulation_trial_2.db.sqlite
You may also ask soil to export the states in a ``csv`` file, and the network in gephi format (``gexf``).
Network
=======
The network topology for the simulation can be loaded from an existing network file or generated with one of the random network generation methods from networkx.
Loading a network
#################
To load an existing network, specify its path in the configuration:
.. code:: yaml
---
network_params:
path: /tmp/mynetwork.gexf
Soil will try to guess what networkx method to use to read the file based on its extension.
However, we only test using ``gexf`` files.
For simple networks, you may also include them in the configuration itself using , using the ``topology`` parameter like so:
.. code:: yaml
---
topology:
nodes:
- id: First
- id: Second
links:
- source: First
target: Second
Generating a random network
###########################
To generate a random network using one of networkx's built-in methods, specify the `graph generation algorithm <https://networkx.github.io/documentation/development/reference/generators.html>`_ and other parameters.
For example, the following configuration is equivalent to :code:`nx.complete_graph(n=100)`:
.. code:: yaml
network_params:
generator: complete_graph
n: 100
Environment
============
The environment is the place where the shared state of the simulation is stored.
That means both global parameters, such as the probability of disease outbreak.
But it also means other data, such as a map, or a network topology that connects multiple agents.
As a result, it is also typical to add custom functions in an environment that help agents interact with each other and with the state of the simulation.
Last but not least, an environment controls when and how its agents will be executed.
By default, soil environments incorporate a ``soil.time.TimedActivation`` model for agent execution (more on this on the following section).
Soil environments are very similar, and often interchangeable with, mesa models (``mesa.Model``).
A configuration may specify the initial value of the environment parameters:
.. code:: yaml
environment_params:
daily_probability_of_earthquake: 0.001
number_of_earthquakes: 0
All agents have access to the environment (and its parameters).
In some scenarios, it is useful to have a custom environment, to provide additional methods or to control the way agents update environment state.
For example, if our agents play the lottery, the environment could provide a method to decide whether the agent wins, instead of leaving it to the agent.
Agents
======
Agents are a way of modelling behavior.
Agents can be characterized with two variables: agent type (``agent_class``) and state.
The agent type is a ``soil.Agent`` class, which contains the code that encapsulates the behavior of the agent.
The state is a set of variables, which may change during the simulation, and that the code may use to control the behavior.
All agents provide a ``step`` method either explicitly or implicitly (by inheriting it from a superclass), which controls how the agent will behave in each step of the simulation.
When and how agent steps are executed in a simulation depends entirely on the ``environment``.
Most environments will internally use a scheduler (``mesa.time.BaseScheduler``), which controls the activation of agents.
In soil, we generally used the ``soil.time.TimedActivation`` scheduler, which allows agents to specify when their next activation will happen, defaulting to a
When an agent's step is executed (generally, every ``interval`` seconds), the agent has access to its state and the environment.
Through the environment, it can access the network topology and the state of other agents.
There are two types of agents according to how they are added to the simulation: network agents and environment agent.
Network Agents
##############
Network agents are attached to a node in the topology.
The configuration file allows you to specify how agents will be mapped to topology nodes.
The simplest way is to specify a single type of agent.
Hence, every node in the network will be associated to an agent of that type.
.. code:: yaml
agent_class: SISaModel
It is also possible to add more than one type of agent to the simulation.
To control the ratio of each type (using the ``weight`` property).
For instance, with following configuration, it is five times more likely for a node to be assigned a CounterModel type than a SISaModel type.
.. code:: yaml
network_agents:
- agent_class: SISaModel
weight: 1
- agent_class: CounterModel
weight: 5
The third option is to specify the type of agent on the node itself, e.g.:
.. code:: yaml
topology:
nodes:
- id: first
agent_class: BaseAgent
states:
first:
agent_class: SISaModel
This would also work with a randomly generated network:
.. code:: yaml
network:
generator: complete
n: 5
agent_class: BaseAgent
states:
- agent_class: SISaModel
In addition to agent type, you may add a custom initial state to the distribution.
This is very useful to add the same agent type with different states.
e.g., to populate the network with SISaModel, roughly 10% of them with a discontent state:
.. code:: yaml
network_agents:
- agent_class: SISaModel
weight: 9
state:
id: neutral
- agent_class: SISaModel
weight: 1
state:
id: discontent
Lastly, the configuration may include initial state for one or more nodes.
For instance, to add a state for the two nodes in this configuration:
.. code:: yaml
agent_class: SISaModel
network:
generator: complete_graph
n: 2
states:
- id: content
- id: discontent
Or to add state only to specific nodes (by ``id``).
For example, to apply special skills to Linux Torvalds in a simulation:
.. literalinclude:: ../examples/torvalds.yml
:language: yaml
Environment Agents
##################
In addition to network agents, more agents can be added to the simulation.
These agents are programmed in much the same way as network agents, the only difference is that they will not be assigned to network nodes.
.. code::
environment_agents:
- agent_class: MyAgent
state:
mood: happy
- agent_class: DummyAgent
You may use environment agents to model events that a normal agent cannot control, such as natural disasters or chance.
They are also useful to add behavior that has little to do with the network and the interactions within that network.
Templating
==========
Sometimes, it is useful to parameterize a simulation and run it over a range of values in order to compare each run and measure the effect of those parameters in the simulation.
For instance, you may want to run a simulation with different agent distributions.
This can be done in Soil using **templates**.
A template is a configuration where some of the values are specified with a variable.
e.g., ``weight: "{{ var1 }}"`` instead of ``weight: 1``.
There are two types of variables, depending on how their values are decided:
* Fixed. A list of values is provided, and a new simulation is run for each possible value. If more than a variable is given, a new simulation will be run per combination of values.
* Bounded/Sampled. The bounds of the variable are provided, along with a sampler method, which will be used to compute all the configuration combinations.
When fixed and bounded variables are mixed, Soil generates a new configuration per combination of fixed values and bounded values.
Here is an example with a single fixed variable and two bounded variable:
.. literalinclude:: ../examples/template.yml
:language: yaml

View File

@@ -3,24 +3,29 @@ name: MyExampleSimulation
max_time: 50
num_trials: 3
interval: 2
network_params:
model_params:
topology:
params:
generator: barabasi_albert_graph
n: 100
m: 2
network_agents:
agents:
distribution:
- agent_class: SISaModel
weight: 1
topology: True
ratio: 0.1
state:
id: content
state_id: content
- agent_class: SISaModel
weight: 1
topology: True
ratio: .1
state:
id: discontent
state_id: discontent
- agent_class: SISaModel
weight: 8
topology: True
ratio: 0.8
state:
id: neutral
environment_params:
state_id: neutral
prob_infect: 0.075
neutral_discontent_spon_prob: 0.1
neutral_discontent_infected_prob: 0.3

View File

@@ -1,8 +1,3 @@
.. Soil documentation master file, created by
sphinx-quickstart on Tue Apr 25 12:48:56 2017.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to Soil's documentation!
================================

View File

@@ -14,6 +14,10 @@ Now test that it worked by running the command line tool
soil --help
#or
python -m soil --help
Or, if you're using using soil programmatically:
.. code:: python
@@ -21,4 +25,4 @@ Or, if you're using using soil programmatically:
import soil
print(soil.__version__)
The latest version can be installed through `GitLab <https://lab.gsi.upm.es/soil/soil.git>`_ or `GitHub <https://github.com/gsi-upm/soil>`_.
The latest version can be installed through `GitHub <https://github.com/gsi-upm/soil>`_ or `GitLab <https://lab.gsi.upm.es/soil/soil.git>`_.

View File

@@ -12,7 +12,7 @@ set BUILDDIR=_build
set SPHINXPROJ=Soil
if "%1" == "" goto help
eE
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.

22
docs/mesa.rst Normal file
View File

@@ -0,0 +1,22 @@
Mesa compatibility
------------------
Soil is in the process of becoming fully compatible with MESA.
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
This is a non-exhaustive list of tasks to achieve compatibility:
- [ ] Integrate `soil.Simulation` with mesa's runners:
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
- [ ] Integrate `soil.Environment` with `mesa.Model`:
- [x] `Soil.Environment` inherits from `mesa.Model`
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
- [ ] Allow for `mesa.Model` to be used in a simulation.
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
- [x] Rename agent.id to unique_id?
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
- [ ] Provide examples
- [ ] Using mesa modules in a soil simulation
- [ ] Using soil modules in a mesa simulation
- [ ] Document the new APIs and usage

35
docs/notes_v0.30.rst Normal file
View File

@@ -0,0 +1,35 @@
What are the main changes between version 0.3 and 0.2?
######################################################
Version 0.3 is a major rewrite of the Soil system, focused on simplifying the API, aligning it with Mesa, and making it easier to use.
Unfortunately, this comes at the cost of backwards compatibility.
We drew several lessons from the previous version of Soil, and tried to address them in this version.
Mainly:
- The split between simulation configuration and simulation code was overly complicated for most use cases. As a result, most users ended up reusing configuration.
- Storing **all** the simulation data in a database is costly and unnecessary for most use cases. For most use cases, only a handful of variables need to be stored. This fits nicely with Mesa's data collection system.
- The API was too complex, and it was difficult to understand how to use it.
- Most parts of the API were not aligned with Mesa, which made it difficult to use Mesa's features or to integrate Soil modules with Mesa code, especially for newcomers.
- Many parts of the API were tightly coupled, which made it difficult to find bugs, test the system and add new features.
The 0.30 rewrite should provide a middle ground between Soil's opinionated approach and Mesa's flexibility.
The new Soil is less configuration-centric.
It aims to provide more modular and convenient functions, most of which can be used in vanilla Mesa.
How are agents assigned to nodes in the network
###############################################
The constructor of the `NetworkAgent` class has two arguments: `node_id` and `topology`.
If `topology` is not provided, it will default to `self.model.topology`.
This assignment might err if the model does not have a `topology` attribute, but most Soil environments derive from `NetworkEnvironment`, so they include a topology by default.
If `node_id` is not provided, a random node will be selected from the topology, until a node with no agent is found.
Then, the `node_id` of that node is assigned to the agent.
If no node with no agent is found, a new node is automatically added to the topology.
Can Soil environments include more than one network / topology?
###############################################################
Yes, but each network has to be included manually.
Somewhere between 0.20 and 0.30 we included the ability to include multiple networks, but it was deemed too complex and was removed.

View File

@@ -2,21 +2,24 @@
name: quickstart
num_trials: 1
max_time: 1000
network_agents:
model_params:
agents:
- agent_class: SISaModel
topology: true
state:
id: neutral
weight: 1
- agent_class: SISaModel
topology: true
state:
id: content
weight: 2
network_params:
topology:
params:
n: 100
k: 5
p: 0.2
generator: newman_watts_strogatz_graph
environment_params:
neutral_discontent_spon_prob: 0.05
neutral_discontent_infected_prob: 0.1
neutral_content_spon_prob: 0.2

View File

@@ -115,13 +115,13 @@ Here's the code:
@soil.agents.state
def neutral(self):
r = random.random()
if self['has_tv'] and r < self.env['prob_tv_spread']:
if self['has_tv'] and r < self.model['prob_tv_spread']:
return self.infected
return
@soil.agents.state
def infected(self):
prob_infect = self.env['prob_neighbor_spread']
prob_infect = self.model['prob_neighbor_spread']
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
r = random.random()
if r < prob_infect:
@@ -146,11 +146,11 @@ spreading the rumor.
class NewsEnvironmentAgent(soil.agents.BaseAgent):
def step(self):
if self.now == self['event_time']:
self.env['prob_tv_spread'] = 1
self.env['prob_neighbor_spread'] = 1
self.model['prob_tv_spread'] = 1
self.model['prob_neighbor_spread'] = 1
elif self.now > self['event_time']:
self.env['prob_tv_spread'] = self.env['prob_tv_spread'] * TV_FACTOR
self.env['prob_neighbor_spread'] = self.env['prob_neighbor_spread'] * NEIGHBOR_FACTOR
self.model['prob_tv_spread'] = self.model['prob_tv_spread'] * TV_FACTOR
self.model['prob_neighbor_spread'] = self.model['prob_neighbor_spread'] * NEIGHBOR_FACTOR
Testing the agents
~~~~~~~~~~~~~~~~~~

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@@ -1,54 +0,0 @@
---
version: '2'
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_steps: 100
interval: 1
seed: "CompleteSeed!"
model_class: Environment
model_params:
am_i_complete: true
topology:
params:
generator: complete_graph
n: 12
environment:
agents:
agent_class: CounterModel
topology: true
state:
times: 1
# In this group we are not specifying any topology
fixed:
- name: 'Environment Agent 1'
agent_class: BaseAgent
group: environment
topology: false
hidden: true
state:
times: 10
- agent_class: CounterModel
id: 0
group: fixed_counters
state:
times: 1
total: 0
- agent_class: CounterModel
group: fixed_counters
id: 1
distribution:
- agent_class: CounterModel
weight: 1
group: distro_counters
state:
times: 3
- agent_class: AggregatedCounter
weight: 0.2
override:
- filter:
agent_class: AggregatedCounter
n: 2
state:
times: 5

View File

@@ -1,16 +0,0 @@
---
name: custom-generator
description: Using a custom generator for the network
num_trials: 3
max_steps: 100
interval: 1
network_params:
generator: mymodule.mygenerator
# These are custom parameters
n: 10
n_edges: 5
network_agents:
- agent_class: CounterModel
weight: 1
state:
state_id: 0

View File

@@ -1,6 +1,7 @@
from networkx import Graph
import random
import networkx as nx
from soil import Simulation, Environment, CounterModel, parameters
def mygenerator(n=5, n_edges=5):
@@ -20,3 +21,19 @@ def mygenerator(n=5, n_edges=5):
n_out = random.choice(nodes)
G.add_edge(n_in, n_out)
return G
class GeneratorEnv(Environment):
"""Using a custom generator for the network"""
generator: parameters.function = staticmethod(mygenerator)
def init(self):
self.create_network(generator=self.generator, n=10, n_edges=5)
self.add_agents(CounterModel)
sim = Simulation(model=GeneratorEnv, max_steps=10, interval=1)
if __name__ == '__main__':
sim.run(dump=False)

View File

@@ -1,17 +1,17 @@
from soil.agents import FSM, state, default_state
from soil.time import Delta
class Fibonacci(FSM):
"""Agent that only executes in t_steps that are Fibonacci numbers"""
defaults = {"prev": 1}
prev = 1
@default_state
@state
def counting(self):
self.log("Stopping at {}".format(self.now))
prev, self["prev"] = self["prev"], max([self.now, self["prev"]])
return None, self.env.timeout(prev)
return None, Delta(prev)
class Odds(FSM):
@@ -21,18 +21,21 @@ class Odds(FSM):
@state
def odds(self):
self.log("Stopping at {}".format(self.now))
return None, self.env.timeout(1 + self.now % 2)
return None, Delta(1 + self.now % 2)
from soil import Environment, Simulation
from networkx import complete_graph
class TimeoutsEnv(Environment):
def init(self):
self.create_network(generator=complete_graph, n=2)
self.add_agent(agent_class=Fibonacci, node_id=0)
self.add_agent(agent_class=Odds, node_id=1)
sim = Simulation(model=TimeoutsEnv, max_steps=10, interval=1)
if __name__ == "__main__":
from soil import Simulation
s = Simulation(
network_agents=[
{"ids": [0], "agent_class": Fibonacci},
{"ids": [1], "agent_class": Odds},
],
network_params={"generator": "complete_graph", "n": 2},
max_time=100,
)
s.run(dry_run=True)
sim.run(dump=False)

View File

@@ -2,6 +2,8 @@ This example can be run like with command-line options, like this:
```bash
python cars.py --level DEBUG -e summary --csv
#or
soil cars.py -e summary
```
This will set the `CSV` (save the agent and model data to a CSV) and `summary` (print the a summary of the data to stdout) exporters, and set the log level to DEBUG.

View File

@@ -18,6 +18,7 @@ An example scenario could play like the following:
- If there are no more passengers available in the simulation, Drivers die
"""
from __future__ import annotations
from typing import Optional
from soil import *
from soil import events
from mesa.space import MultiGrid
@@ -33,12 +34,13 @@ class Journey:
A journey may have a driver assigned or not. If the driver has not been assigned, this
object is considered a "request for a journey".
"""
origin: (int, int)
destination: (int, int)
tip: float
passenger: Passenger
driver: Driver = None
driver: Optional[Driver] = None
class City(EventedEnvironment):
@@ -54,28 +56,25 @@ class City(EventedEnvironment):
:param int height: Height of the internal grid
:param int width: Width of the internal grid
"""
def __init__(self, *args, n_cars=1, n_passengers=10,
height=100, width=100, agents=None,
model_reporters=None,
**kwargs):
self.grid = MultiGrid(width=width, height=height, torus=False)
if agents is None:
agents = []
for i in range(n_cars):
agents.append({'agent_class': Driver})
for i in range(n_passengers):
agents.append({'agent_class': Passenger})
model_reporters = model_reporters or {'earnings': 'total_earnings', 'n_passengers': 'number_passengers'}
print('REPORTERS', model_reporters)
super().__init__(*args, agents=agents, model_reporters=model_reporters, **kwargs)
n_cars = 1
n_passengers = 10
height = 100
width = 100
def init(self):
self.grid = MultiGrid(width=self.width, height=self.height, torus=False)
if not self.agents:
self.add_agents(Driver, k=self.n_cars)
self.add_agents(Passenger, k=self.n_passengers)
for agent in self.agents:
self.grid.place_agent(agent, (0, 0))
self.grid.move_to_empty(agent)
@property
def total_earnings(self):
return sum(d.earnings for d in self.agents(agent_class=Driver))
self.total_earnings = 0
self.add_model_reporter("total_earnings")
@report
@property
def number_passengers(self):
return self.count_agents(agent_class=Passenger)
@@ -87,13 +86,13 @@ class Driver(Evented, FSM):
earnings = 0
def on_receive(self, msg, sender):
'''This is not a state. It will run (and block) every time check_messages is invoked'''
"""This is not a state. It will run (and block) every time check_messages is invoked"""
if self.journey is None and isinstance(msg, Journey) and msg.driver is None:
msg.driver = self
self.journey = msg
def check_passengers(self):
'''If there are no more passengers, stop forever'''
"""If there are no more passengers, stop forever"""
c = self.count_agents(agent_class=Passenger)
self.info(f"Passengers left {c}")
if not c:
@@ -102,16 +101,19 @@ class Driver(Evented, FSM):
@default_state
@state
def wandering(self):
'''Move around the city until a journey is accepted'''
"""Move around the city until a journey is accepted"""
target = None
self.check_passengers()
self.journey = None
while self.journey is None: # No potential journeys detected (see on_receive)
if target is None or not self.move_towards(target):
target = self.random.choice(self.model.grid.get_neighborhood(self.pos, moore=False))
target = self.random.choice(
self.model.grid.get_neighborhood(self.pos, moore=False)
)
self.check_passengers()
self.check_messages() # This will call on_receive behind the scenes, and the agent's status will be updated
# This will call on_receive behind the scenes, and the agent's status will be updated
self.check_messages()
yield Delta(30) # Wait at least 30 seconds before checking again
try:
@@ -126,17 +128,18 @@ class Driver(Evented, FSM):
@state
def driving(self):
'''The journey has been accepted. Pick them up and take them to their destination'''
"""The journey has been accepted. Pick them up and take them to their destination"""
while self.move_towards(self.journey.origin):
yield
while self.move_towards(self.journey.destination, with_passenger=True):
yield
self.earnings += self.journey.tip
self.model.total_earnings += self.journey.tip
self.check_passengers()
return self.wandering
def move_towards(self, target, with_passenger=False):
'''Move one cell at a time towards a target'''
"""Move one cell at a time towards a target"""
self.info(f"Moving { self.pos } -> { target }")
if target[0] == self.pos[0] and target[1] == self.pos[1]:
return False
@@ -151,7 +154,9 @@ class Driver(Evented, FSM):
break
self.model.grid.move_agent(self, tuple(next_pos))
if with_passenger:
self.journey.passenger.pos = self.pos # This could be communicated through messages
self.journey.passenger.pos = (
self.pos
) # This could be communicated through messages
return True
@@ -159,22 +164,26 @@ class Passenger(Evented, FSM):
pos = None
def on_receive(self, msg, sender):
'''This is not a state. It will be run synchronously every time `check_messages` is run'''
"""This is not a state. It will be run synchronously every time `check_messages` is run"""
if isinstance(msg, Journey):
self.journey = msg
return msg
@default_state
@state
def asking(self):
destination = (self.random.randint(0, self.model.grid.height), self.random.randint(0, self.model.grid.width))
destination = (
self.random.randint(0, self.model.grid.height),
self.random.randint(0, self.model.grid.width),
)
self.journey = None
journey = Journey(origin=self.pos,
journey = Journey(
origin=self.pos,
destination=destination,
tip=self.random.randint(10, 100),
passenger=self)
passenger=self,
)
timeout = 60
expiration = self.now + timeout
@@ -182,24 +191,36 @@ class Passenger(Evented, FSM):
while not self.journey:
self.info(f"Passenger at: { self.pos }. Checking for responses.")
try:
# This will call check_messages behind the scenes, and the agent's status will be updated
# If you want to avoid that, you can call it with: check=False
yield self.received(expiration=expiration)
except events.TimedOut:
self.info(f"Passenger at: { self.pos }. Asking for journey.")
self.model.broadcast(journey, ttl=timeout, sender=self, agent_class=Driver)
self.model.broadcast(
journey, ttl=timeout, sender=self, agent_class=Driver
)
expiration = self.now + timeout
self.check_messages()
return self.driving_home
@state
def driving_home(self):
while self.pos[0] != self.journey.destination[0] or self.pos[1] != self.journey.destination[1]:
while (
self.pos[0] != self.journey.destination[0]
or self.pos[1] != self.journey.destination[1]
):
try:
yield self.received(timeout=60)
self.info("Got home safe!")
self.die()
except events.TimedOut:
pass
self.die("Got home safe!")
simulation = Simulation(name='RideHailing', model_class=City, model_params={'n_passengers': 2})
simulation = Simulation(name="RideHailing",
model=City,
seed="carsSeed",
max_time=1000,
model_params=dict(n_passengers=2))
if __name__ == "__main__":
with easy(simulation) as s:
s.run()
easy(simulation)

View File

@@ -1,19 +0,0 @@
---
name: mesa_sim
group: tests
dir_path: "/tmp"
num_trials: 3
max_steps: 100
interval: 1
seed: '1'
model_class: social_wealth.MoneyEnv
model_params:
generator: social_wealth.graph_generator
agents:
topology: true
distribution:
- agent_class: social_wealth.SocialMoneyAgent
weight: 1
N: 10
width: 50
height: 50

View File

@@ -0,0 +1,7 @@
from soil import Simulation
from social_wealth import MoneyEnv, graph_generator
sim = Simulation(name="mesa_sim", dump=False, max_steps=10, interval=2, model=MoneyEnv, model_params=dict(generator=graph_generator, N=10, width=50, height=50))
if __name__ == "__main__":
sim.run()

View File

@@ -1,5 +1,5 @@
from mesa.visualization.ModularVisualization import ModularServer
from soil.visualization import UserSettableParameter
from mesa.visualization.UserParam import Slider, Choice
from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid
from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent
import networkx as nx
@@ -64,8 +64,7 @@ chart = ChartModule(
)
model_params = {
"N": UserSettableParameter(
"slider",
"N": Slider(
"N",
5,
1,
@@ -73,8 +72,7 @@ model_params = {
1,
description="Choose how many agents to include in the model",
),
"height": UserSettableParameter(
"slider",
"height": Slider(
"height",
5,
5,
@@ -82,8 +80,7 @@ model_params = {
1,
description="Grid height",
),
"width": UserSettableParameter(
"slider",
"width": Slider(
"width",
5,
5,
@@ -91,8 +88,7 @@ model_params = {
1,
description="Grid width",
),
"agent_class": UserSettableParameter(
"choice",
"agent_class": Choice(
"Agent class",
value="MoneyAgent",
choices=["MoneyAgent", "SocialMoneyAgent"],
@@ -111,4 +107,5 @@ server = ModularServer(
)
server.port = 8521
if __name__ == '__main__':
server.launch(open_browser=False)

View File

@@ -28,7 +28,7 @@ class MoneyAgent(MesaAgent):
It will only share wealth with neighbors based on grid proximity
"""
def __init__(self, unique_id, model, wealth=1):
def __init__(self, unique_id, model, wealth=1, **kwargs):
super().__init__(unique_id=unique_id, model=model)
self.wealth = wealth
@@ -53,7 +53,7 @@ class MoneyAgent(MesaAgent):
self.give_money()
class SocialMoneyAgent(NetworkAgent, MoneyAgent):
class SocialMoneyAgent(MoneyAgent, NetworkAgent):
wealth = 1
def give_money(self):

View File

@@ -1,133 +0,0 @@
---
default_state: {}
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_steps: 300
name: Sim_all_dumb
network_agents:
- agent_class: newsspread.DumbViewer
state:
has_tv: false
weight: 1
- agent_class: newsspread.DumbViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_steps: 300
name: Sim_half_herd
network_agents:
- agent_class: newsspread.DumbViewer
state:
has_tv: false
weight: 1
- agent_class: newsspread.DumbViewer
state:
has_tv: true
weight: 1
- agent_class: newsspread.HerdViewer
state:
has_tv: false
weight: 1
- agent_class: newsspread.HerdViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_steps: 300
name: Sim_all_herd
network_agents:
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_steps: 300
name: Sim_wise_herd
network_agents:
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_class: newsspread.WiseViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50
---
default_state: {}
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_steps: 300
name: Sim_all_wise
network_agents:
- agent_class: newsspread.WiseViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_class: newsspread.WiseViewer
state:
has_tv: true
weight: 1
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
network_params:
generator: barabasi_albert_graph
n: 500
m: 5
num_trials: 50

View File

@@ -1,87 +0,0 @@
from soil.agents import FSM, NetworkAgent, state, default_state, prob
import logging
class DumbViewer(FSM, NetworkAgent):
"""
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
"""
prob_neighbor_spread = 0.5
prob_tv_spread = 0.1
has_been_infected = False
@default_state
@state
def neutral(self):
if self["has_tv"]:
if self.prob(self.model["prob_tv_spread"]):
return self.infected
if self.has_been_infected:
return self.infected
@state
def infected(self):
for neighbor in self.get_neighbors(state_id=self.neutral.id):
if self.prob(self.model["prob_neighbor_spread"]):
neighbor.infect()
def infect(self):
"""
This is not a state. It is a function that other agents can use to try to
infect this agent. DumbViewer always gets infected, but other agents like
HerdViewer might not become infected right away
"""
self.has_been_infected = True
class HerdViewer(DumbViewer):
"""
A viewer whose probability of infection depends on the state of its neighbors.
"""
def infect(self):
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
infected = self.count_neighbors(state_id=self.infected.id)
total = self.count_neighbors()
prob_infect = self.model["prob_neighbor_spread"] * infected / total
self.debug("prob_infect", prob_infect)
if self.prob(prob_infect):
self.has_been_infected = True
class WiseViewer(HerdViewer):
"""
A viewer that can change its mind.
"""
defaults = {
"prob_neighbor_spread": 0.5,
"prob_neighbor_cure": 0.25,
"prob_tv_spread": 0.1,
}
@state
def cured(self):
prob_cure = self.model["prob_neighbor_cure"]
for neighbor in self.get_neighbors(state_id=self.infected.id):
if self.prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
self.debug("Viewer {} cannot be cured".format(neighbor.id))
def cure(self):
self.has_been_cured = True
@state
def infected(self):
if self.has_been_cured:
return self.cured
cured = max(self.count_neighbors(self.cured.id), 1.0)
infected = max(self.count_neighbors(self.infected.id), 1.0)
prob_cure = self.model["prob_neighbor_cure"] * (cured / infected)
if self.prob(prob_cure):
return self.cured

View File

@@ -0,0 +1,134 @@
from soil.agents import FSM, NetworkAgent, state, default_state, prob
from soil.parameters import *
import logging
from soil.environment import Environment
class DumbViewer(FSM, NetworkAgent):
"""
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
"""
has_been_infected: bool = False
has_tv: bool = False
@default_state
@state
def neutral(self):
if self.has_tv:
if self.prob(self.get("prob_tv_spread")):
return self.infected
if self.has_been_infected:
return self.infected
@state
def infected(self):
for neighbor in self.get_neighbors(state_id=self.neutral.id):
if self.prob(self.get("prob_neighbor_spread")):
neighbor.infect()
def infect(self):
"""
This is not a state. It is a function that other agents can use to try to
infect this agent. DumbViewer always gets infected, but other agents like
HerdViewer might not become infected right away
"""
self.has_been_infected = True
class HerdViewer(DumbViewer):
"""
A viewer whose probability of infection depends on the state of its neighbors.
"""
def infect(self):
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
infected = self.count_neighbors(state_id=self.infected.id)
total = self.count_neighbors()
prob_infect = self.get("prob_neighbor_spread") * infected / total
self.debug("prob_infect", prob_infect)
if self.prob(prob_infect):
self.has_been_infected = True
class WiseViewer(HerdViewer):
"""
A viewer that can change its mind.
"""
@state
def cured(self):
prob_cure = self.get("prob_neighbor_cure")
for neighbor in self.get_neighbors(state_id=self.infected.id):
if self.prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
self.debug("Viewer {} cannot be cured".format(neighbor.id))
def cure(self):
self.has_been_cured = True
@state
def infected(self):
if self.has_been_cured:
return self.cured
cured = max(self.count_neighbors(self.cured.id), 1.0)
infected = max(self.count_neighbors(self.infected.id), 1.0)
prob_cure = self.get("prob_neighbor_cure") * (cured / infected)
if self.prob(prob_cure):
return self.cured
class NewsSpread(Environment):
ratio_dumb: probability = 1,
ratio_herd: probability = 0,
ratio_wise: probability = 0,
prob_tv_spread: probability = 0.1,
prob_neighbor_spread: probability = 0.1,
prob_neighbor_cure: probability = 0.05,
def init(self):
self.populate_network([DumbViewer, HerdViewer, WiseViewer],
[self.ratio_dumb, self.ratio_herd, self.ratio_wise])
from itertools import product
from soil import Simulation
# We want to investigate the effect of different agent distributions on the spread of news.
# To do that, we will run different simulations, with a varying ratio of DumbViewers, HerdViewers, and WiseViewers
# Because the effect of these agents might also depend on the network structure, we will run our simulations on two different networks:
# one with a small-world structure and one with a connected structure.
counter = 0
for [r1, r2] in product([0, 0.5, 1.0], repeat=2):
for (generator, netparams) in {
"barabasi_albert_graph": {"m": 5},
"erdos_renyi_graph": {"p": 0.1},
}.items():
print(r1, r2, 1-r1-r2, generator)
# Create new simulation
netparams["n"] = 500
Simulation(
name='newspread_sim',
model=NewsSpread,
model_params=dict(
ratio_dumb=r1,
ratio_herd=r2,
ratio_wise=1-r1-r2,
network_generator=generator,
network_params=netparams,
prob_neighbor_spread=0,
),
num_trials=5,
max_steps=300,
dump=False,
).run()
counter += 1
# Run all the necessary instances
print(f"A total of {counter} simulations were run.")

View File

@@ -1,41 +0,0 @@
"""
Example of a fully programmatic simulation, without definition files.
"""
from soil import Simulation, agents
from networkx import Graph
import logging
def mygenerator():
# Add only a node
G = Graph()
G.add_node(1)
return G
class MyAgent(agents.FSM):
@agents.default_state
@agents.state
def neutral(self):
self.debug("I am running")
if agents.prob(0.2):
self.info("This runs 2/10 times on average")
s = Simulation(
name="Programmatic",
network_params={"generator": mygenerator},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True,
)
# By default, logging will only print WARNING logs (and above).
# You need to choose a lower logging level to get INFO/DEBUG traces
logging.basicConfig(level=logging.INFO)
envs = s.run()
# Uncomment this to output the simulation to a YAML file
# s.dump_yaml('simulation.yaml')

View File

@@ -0,0 +1,53 @@
"""
Example of a fully programmatic simulation, without definition files.
"""
from soil import Simulation, Environment, agents
from networkx import Graph
import logging
def mygenerator():
# Add only a node
G = Graph()
G.add_node(1)
G.add_node(2)
return G
class MyAgent(agents.NetworkAgent, agents.FSM):
times_run = 0
@agents.default_state
@agents.state
def neutral(self):
self.debug("I am running")
if self.prob(0.2):
self.times_run += 1
self.info("This runs 2/10 times on average")
class ProgrammaticEnv(Environment):
def init(self):
self.create_network(generator=mygenerator)
assert len(self.G)
self.populate_network(agent_class=MyAgent)
self.add_agent_reporter('times_run')
simulation = Simulation(
name="Programmatic",
model=ProgrammaticEnv,
seed='Program',
num_trials=1,
max_time=100,
dump=False,
)
if __name__ == "__main__":
# By default, logging will only print WARNING logs (and above).
# You need to choose a lower logging level to get INFO/DEBUG traces
logging.basicConfig(level=logging.INFO)
envs = simulation.run()
for agent in envs[0].agents:
print(agent.times_run)

View File

@@ -1,26 +0,0 @@
---
name: pubcrawl
num_trials: 3
max_steps: 10
dump: false
network_params:
# Generate 100 empty nodes. They will be assigned a network agent
generator: empty_graph
n: 30
network_agents:
- agent_class: pubcrawl.Patron
description: Extroverted patron
state:
openness: 1.0
weight: 9
- agent_class: pubcrawl.Patron
description: Introverted patron
state:
openness: 0.1
weight: 1
environment_agents:
- agent_class: pubcrawl.Police
environment_class: pubcrawl.CityPubs
environment_params:
altercations: 0
number_of_pubs: 3

View File

@@ -1,6 +1,7 @@
from soil.agents import FSM, NetworkAgent, state, default_state
from soil import Environment
from soil import Environment, Simulation, parameters
from itertools import islice
import networkx as nx
import logging
@@ -8,19 +9,24 @@ class CityPubs(Environment):
"""Environment with Pubs"""
level = logging.INFO
number_of_pubs: parameters.Integer = 3
ratio_extroverted: parameters.probability = 0.1
pub_capacity: parameters.Integer = 10
def __init__(self, *args, number_of_pubs=3, pub_capacity=10, **kwargs):
super(CityPubs, self).__init__(*args, **kwargs)
pubs = {}
for i in range(number_of_pubs):
def init(self):
self.pubs = {}
for i in range(self.number_of_pubs):
newpub = {
"name": "The awesome pub #{}".format(i),
"open": True,
"capacity": pub_capacity,
"capacity": self.pub_capacity,
"occupancy": 0,
}
pubs[newpub["name"]] = newpub
self["pubs"] = pubs
self.pubs[newpub["name"]] = newpub
self.add_agent(agent_class=Police)
self.populate_network([Patron.w(openness=0.1), Patron.w(openness=1)],
[self.ratio_extroverted, 1-self.ratio_extroverted])
assert all(["agent" in node and isinstance(node["agent"], Patron) for (_, node) in self.G.nodes(data=True)])
def enter(self, pub_id, *nodes):
"""Agents will try to enter. The pub checks if it is possible"""
@@ -146,10 +152,10 @@ class Patron(FSM, NetworkAgent):
continue
if friend.befriend(self):
self.befriend(friend, force=True)
self.debug("Hooray! new friend: {}".format(friend.id))
self.debug("Hooray! new friend: {}".format(friend.unique_id))
befriended = True
else:
self.debug("{} does not want to be friends".format(friend.id))
self.debug("{} does not want to be friends".format(friend.unique_id))
return befriended
@@ -163,13 +169,27 @@ class Police(FSM):
def patrol(self):
drunksters = list(self.get_agents(drunk=True, state_id=Patron.drunk_in_pub.id))
for drunk in drunksters:
self.info("Kicking out the trash: {}".format(drunk.id))
self.info("Kicking out the trash: {}".format(drunk.unique_id))
drunk.kick_out()
else:
self.info("No trash to take out. Too bad.")
if __name__ == "__main__":
from soil import simulation
sim = Simulation(
model=CityPubs,
name="pubcrawl",
num_trials=3,
max_steps=10,
dump=False,
model_params=dict(
network_generator=nx.empty_graph,
network_params={"n": 30},
model=CityPubs,
altercations=0,
number_of_pubs=3,
)
)
simulation.run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)
if __name__ == "__main__":
sim.run(parallel=False)

View File

@@ -1,42 +0,0 @@
---
version: '2'
name: rabbits_basic
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: true
distribution:
- agent_class: rabbit_agents.Male
weight: 1
- agent_class: rabbit_agents.Female
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: false
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topology:
fixed:
directed: true
links: []
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@@ -1,42 +0,0 @@
---
version: '2'
name: rabbits_improved
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: true
distribution:
- agent_class: rabbit_agents.Male
weight: 1
- agent_class: rabbit_agents.Female
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: false
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topology:
fixed:
directed: true
links: []
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@@ -1,23 +1,20 @@
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, Simulation
from soil.time import Delta
from enum import Enum
from collections import Counter
import logging
import math
from rabbits_basic_sim import RabbitEnv
class RabbitEnv(Environment):
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
@property
def num_males(self):
return self.count_agents(agent_class=Male)
@property
def num_females(self):
return self.count_agents(agent_class=Female)
class RabbitsImprovedEnv(RabbitEnv):
def init(self):
"""Initialize the environment with the new versions of the agents"""
a1 = self.add_node(Male)
a2 = self.add_node(Female)
a1.add_edge(a2)
self.add_agent(RandomAccident)
class Rabbit(FSM, NetworkAgent):
@@ -150,8 +147,7 @@ class RandomAccident(BaseAgent):
self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__":
from soil import easy
sim = Simulation(model=RabbitsImprovedEnv, max_time=100, seed="MySeed", num_trials=1)
with easy("rabbits.yml") as sim:
if __name__ == "__main__":
sim.run()

View File

@@ -1,18 +1,29 @@
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment, Simulation, report, parameters as params
from collections import Counter
import logging
import math
class RabbitEnv(Environment):
prob_death: params.probability = 1e-100
def init(self):
a1 = self.add_node(Male)
a2 = self.add_node(Female)
a1.add_edge(a2)
self.add_agent(RandomAccident)
@report
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
@report
@property
def num_males(self):
return self.count_agents(agent_class=Male)
@report
@property
def num_females(self):
return self.count_agents(agent_class=Female)
@@ -129,11 +140,11 @@ class RandomAccident(BaseAgent):
if not rabbits_alive:
return self.die()
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
prob_death = self.model.prob_death * math.floor(
math.log10(max(1, rabbits_alive))
)
self.debug("Killing some rabbits with prob={}!".format(prob_death))
for i in self.iter_agents(agent_class=Rabbit):
for i in self.get_agents(agent_class=Rabbit):
if i.state_id == i.dead.id:
continue
if self.prob(prob_death):
@@ -143,8 +154,8 @@ class RandomAccident(BaseAgent):
self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__":
from soil import easy
with easy("rabbits.yml") as sim:
sim = Simulation(model=RabbitEnv, max_time=100, seed="MySeed", num_trials=1)
if __name__ == "__main__":
sim.run()

View File

@@ -2,7 +2,7 @@
Example of setting a
Example of a fully programmatic simulation, without definition files.
"""
from soil import Simulation, agents
from soil import Simulation, agents, Environment
from soil.time import Delta
@@ -29,14 +29,18 @@ class MyAgent(agents.FSM):
return None, Delta(self.random.expovariate(1 / 16))
class RandomEnv(Environment):
def init(self):
self.add_agent(agent_class=MyAgent)
s = Simulation(
name="Programmatic",
network_agents=[{"agent_class": MyAgent, "id": 0}],
topology={"nodes": [{"id": 0}], "links": []},
model=RandomEnv,
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True,
dump=False,
)

View File

@@ -1,30 +0,0 @@
---
sampler:
method: "SALib.sample.morris.sample"
N: 10
template:
group: simple
num_trials: 1
interval: 1
max_steps: 2
seed: "CompleteSeed!"
dump: false
model_params:
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_class: CounterModel
weight: "{{ x1 }}"
state:
state_id: 0
- agent_class: AggregatedCounter
weight: "{{ 1 - x1 }}"
name: "{{ x3 }}"
skip_test: true
vars:
bounds:
x1: [0, 1]
x2: [1, 2]
fixed:
x3: ["a", "b", "c"]

View File

@@ -1,62 +0,0 @@
name: TerroristNetworkModel_sim
max_steps: 150
num_trials: 1
model_params:
network_params:
generator: random_geometric_graph
radius: 0.2
# generator: geographical_threshold_graph
# theta: 20
n: 100
network_agents:
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.8
state:
id: civilian # Civilians
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.1
state:
id: leader # Leaders
- agent_class: TerroristNetworkModel.TrainingAreaModel
weight: 0.05
state:
id: terrorist # Terrorism
- agent_class: TerroristNetworkModel.HavenModel
weight: 0.05
state:
id: civilian # Civilian
# TerroristSpreadModel
information_spread_intensity: 0.7
terrorist_additional_influence: 0.035
max_vulnerability: 0.7
prob_interaction: 0.5
# TrainingAreaModel and HavenModel
training_influence: 0.20
haven_influence: 0.20
# TerroristNetworkModel
vision_range: 0.30
sphere_influence: 2
weight_social_distance: 0.035
weight_link_distance: 0.035
visualization_params:
# Icons downloaded from https://www.iconfinder.com/
shape_property: agent
shapes:
TrainingAreaModel: target
HavenModel: home
TerroristNetworkModel: person
colors:
- attr_id: civilian
color: '#40de40'
- attr_id: terrorist
color: red
- attr_id: leader
color: '#c16a6a'
background_image: 'map_4800x2860.jpg'
background_opacity: '0.9'
background_filter_color: 'blue'
skip_test: true # This simulation takes too long for automated tests.

View File

@@ -1,8 +1,47 @@
import networkx as nx
from soil.agents import Geo, NetworkAgent, FSM, state, default_state
from soil import Environment
from soil.agents import Geo, NetworkAgent, FSM, custom, state, default_state
from soil import Environment, Simulation
from soil.parameters import *
class TerroristEnvironment(Environment):
n: Integer = 100
radius: Float = 0.2
information_spread_intensity: probability = 0.7
terrorist_additional_influence: probability = 0.03
terrorist_additional_influence: probability = 0.035
max_vulnerability: probability = 0.7
prob_interaction: probability = 0.5
# TrainingAreaModel and HavenModel
training_influence: probability = 0.20
haven_influence: probability = 0.20
# TerroristNetworkModel
vision_range: Float = 0.30
sphere_influence: Integer = 2
weight_social_distance: Float = 0.035
weight_link_distance: Float = 0.035
ratio_civil: probability = 0.8
ratio_leader: probability = 0.1
ratio_training: probability = 0.05
ratio_haven: probability = 0.05
def init(self):
self.create_network(generator=self.generator, n=self.n, radius=self.radius)
self.populate_network([
TerroristNetworkModel.w(state_id='civilian'),
TerroristNetworkModel.w(state_id='leader'),
TrainingAreaModel,
HavenModel
], [self.ratio_civil, self.ratio_leader, self.ratio_training, self.ratio_haven])
@staticmethod
def generator(*args, **kwargs):
return nx.random_geometric_graph(*args, **kwargs)
class TerroristSpreadModel(FSM, Geo):
"""
Settings:
@@ -13,47 +52,35 @@ class TerroristSpreadModel(FSM, Geo):
min_vulnerability (optional else zero)
max_vulnerability
prob_interaction
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
information_spread_intensity = 0.1
terrorist_additional_influence = 0.1
min_vulnerability = 0
max_vulnerability = 1
self.information_spread_intensity = model.environment_params[
"information_spread_intensity"
]
self.terrorist_additional_influence = model.environment_params[
"terrorist_additional_influence"
]
self.prob_interaction = model.environment_params["prob_interaction"]
if self["id"] == self.civilian.id: # Civilian
self.mean_belief = self.random.uniform(0.00, 0.5)
elif self["id"] == self.terrorist.id: # Terrorist
def init(self):
if self.state_id == self.civilian.id: # Civilian
self.mean_belief = self.model.random.uniform(0.00, 0.5)
elif self.state_id == self.terrorist.id: # Terrorist
self.mean_belief = self.random.uniform(0.8, 1.00)
elif self["id"] == self.leader.id: # Leader
elif self.state_id == self.leader.id: # Leader
self.mean_belief = 1.00
else:
raise Exception("Invalid state id: {}".format(self["id"]))
if "min_vulnerability" in model.environment_params:
self.vulnerability = self.random.uniform(
model.environment_params["min_vulnerability"],
model.environment_params["max_vulnerability"],
)
else:
self.vulnerability = self.random.uniform(
0, model.environment_params["max_vulnerability"]
self.get("min_vulnerability", 0), self.get("max_vulnerability", 1)
)
@default_state
@state
def civilian(self):
neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel))
if len(neighbours) > 0:
# Only interact with some of the neighbors
interactions = list(
n for n in neighbours if self.random.random() <= self.prob_interaction
n for n in neighbours if self.random.random() <= self.model.prob_interaction
)
influence = sum(self.degree(i) for i in interactions)
mean_belief = sum(
@@ -99,7 +126,7 @@ class TerroristSpreadModel(FSM, Geo):
)
# Check if there are any leaders in the group
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours))
leaders = list(filter(lambda x: x.state_id == self.leader.id, neighbours))
if not leaders:
# Check if this is the potential leader
# Stop once it's found. Otherwise, set self as leader
@@ -108,14 +135,13 @@ class TerroristSpreadModel(FSM, Geo):
return
return self.leader
def ego_search(self, steps=1, center=False, node=None, **kwargs):
def ego_search(self, steps=1, center=False, agent=None, **kwargs):
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
node = as_node(node if node is not None else self)
node = agent.node_id
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, node, force=False):
node = as_node(node)
def degree(self, agent, force=False):
if (
force
or (not hasattr(self.model, "_degree"))
@@ -123,10 +149,9 @@ class TerroristSpreadModel(FSM, Geo):
):
self.model._degree = nx.degree_centrality(self.G)
self.model._last_step = self.now
return self.model._degree[node]
return self.model._degree[agent.node_id]
def betweenness(self, node, force=False):
node = as_node(node)
def betweenness(self, agent, force=False):
if (
force
or (not hasattr(self.model, "_betweenness"))
@@ -134,7 +159,7 @@ class TerroristSpreadModel(FSM, Geo):
):
self.model._betweenness = nx.betweenness_centrality(self.G)
self.model._last_step = self.now
return self.model._betweenness[node]
return self.model._betweenness[agent.node_id]
class TrainingAreaModel(FSM, Geo):
@@ -147,13 +172,12 @@ class TrainingAreaModel(FSM, Geo):
Requires TerroristSpreadModel.
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.training_influence = model.environment_params["training_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
training_influence = 0.1
min_vulnerability = 0
def init(self):
self.mean_believe = 1
self.vulnerability = 0
@default_state
@state
@@ -177,18 +201,19 @@ class HavenModel(FSM, Geo):
Requires TerroristSpreadModel.
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.haven_influence = model.environment_params["haven_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
self.max_vulnerability = model.environment_params["max_vulnerability"]
min_vulnerability = 0
haven_influence = 0.1
max_vulnerability = 0.5
def init(self):
self.mean_believe = 0
self.vulnerability = 0
def get_occupants(self, **kwargs):
return self.get_neighbors(agent_class=TerroristSpreadModel, **kwargs)
return self.get_neighbors(agent_class=TerroristSpreadModel,
**kwargs)
@default_state
@state
def civilian(self):
civilians = self.get_occupants(state_id=self.civilian.id)
@@ -224,13 +249,10 @@ class TerroristNetworkModel(TerroristSpreadModel):
weight_link_distance
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.vision_range = model.environment_params["vision_range"]
self.sphere_influence = model.environment_params["sphere_influence"]
self.weight_social_distance = model.environment_params["weight_social_distance"]
self.weight_link_distance = model.environment_params["weight_link_distance"]
sphere_influence: float = 1
vision_range: float = 1
weight_social_distance: float = 0.5
weight_link_distance: float = 0.2
@state
def terrorist(self):
@@ -258,9 +280,7 @@ class TerroristNetworkModel(TerroristSpreadModel):
)
neighbours = set(
agent.id
for agent in self.get_neighbors(
agent_class=TerroristNetworkModel
)
for agent in self.get_neighbors(agent_class=TerroristNetworkModel)
)
search = (close_ups | step_neighbours) - neighbours
for agent in self.get_agents(search):
@@ -289,3 +309,32 @@ class TerroristNetworkModel(TerroristSpreadModel):
return nx.shortest_path_length(self.G, self.id, target)
except nx.NetworkXNoPath:
return float("inf")
sim = Simulation(
model=TerroristEnvironment,
num_trials=1,
name="TerroristNetworkModel_sim",
max_steps=150,
skip_test=False,
dump=False,
)
# TODO: integrate visualization
# visualization_params:
# # Icons downloaded from https://www.iconfinder.com/
# shape_property: agent
# shapes:
# TrainingAreaModel: target
# HavenModel: home
# TerroristNetworkModel: person
# colors:
# - attr_id: civilian
# color: '#40de40'
# - attr_id: terrorist
# color: red
# - attr_id: leader
# color: '#c16a6a'
# background_image: 'map_4800x2860.jpg'
# background_opacity: '0.9'
# background_filter_color: 'blue'

View File

@@ -1,15 +0,0 @@
---
name: torvalds_example
max_steps: 10
interval: 2
model_params:
agent_class: CounterModel
default_state:
skill_level: 'beginner'
network_params:
path: 'torvalds.edgelist'
states:
Torvalds:
skill_level: 'God'
balkian:
skill_level: 'developer'

25
examples/torvalds_sim.py Normal file
View File

@@ -0,0 +1,25 @@
from soil import Environment, Simulation, CounterModel, report
# Get directory path for current file
import os, sys, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
class TorvaldsEnv(Environment):
def init(self):
self.create_network(path=os.path.join(currentdir, 'torvalds.edgelist'))
self.populate_network(CounterModel, skill_level='beginner')
self.agent(node_id="Torvalds").skill_level = 'God'
self.agent(node_id="balkian").skill_level = 'developer'
self.add_agent_reporter("times")
@report
def god_developers(self):
return self.count_agents(skill_level='God')
sim = Simulation(name='torvalds_example',
max_steps=10,
interval=2,
model=TorvaldsEnv)

File diff suppressed because one or more lines are too long

View File

@@ -5,6 +5,8 @@ pyyaml>=5.1
pandas>=1
SALib>=1.3
Jinja2
Mesa>=1.1
Mesa>=1.2
pydantic>=1.9
sqlalchemy>=1.4
typing-extensions>=4.4
annotated-types>=0.4

View File

@@ -44,13 +44,18 @@ setup(
'Operating System :: MacOS :: MacOS X',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'Programming Language :: Python :: 3'],
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
],
install_requires=install_reqs,
extras_require=extras_require,
tests_require=test_reqs,
setup_requires=['pytest-runner', ],
pytest_plugins = ['pytest_profiling'],
include_package_data=True,
python_requires=">=3.8",
entry_points={
'console_scripts':
['soil = soil.__main__:main',

View File

@@ -1 +1 @@
0.30.0rc2
0.30.0rc4

View File

@@ -1,6 +1,7 @@
from __future__ import annotations
import importlib
from importlib.resources import path
import sys
import os
import logging
@@ -14,29 +15,33 @@ try:
except NameError:
basestring = str
from pathlib import Path
from .agents import *
from . import agents
from .simulation import *
from .environment import Environment, EventedEnvironment
from .datacollection import SoilCollector
from . import serialization
from .utils import logger
from .time import *
from .decorators import *
def main(
cfg="simulation.yml",
exporters=None,
parallel=None,
num_processes=1,
output="soil_output",
*,
do_run=False,
debug=False,
pdb=False,
**kwargs,
):
sim = None
if isinstance(cfg, Simulation):
sim = cfg
import argparse
from . import simulation
@@ -47,7 +52,7 @@ def main(
"file",
type=str,
nargs="?",
default=cfg if sim is None else '',
default=cfg if sim is None else "",
help="Configuration file for the simulation (e.g., YAML or JSON)",
)
parser.add_argument(
@@ -63,6 +68,11 @@ def main(
"--dry-run",
"--dry",
action="store_true",
help="Do not run the simulation",
)
parser.add_argument(
"--no-dump",
action="store_true",
help="Do not store the results of the simulation to disk, show in terminal instead.",
)
parser.add_argument(
@@ -92,11 +102,10 @@ def main(
default=output or "soil_output",
help="folder to write results to. It defaults to the current directory.",
)
if parallel is None:
parser.add_argument(
"--synchronous",
action="store_true",
help="Run trials serially and synchronously instead of in parallel. Defaults to false.",
"--num-processes",
default=num_processes,
help="Number of processes to use for parallel execution. Defaults to 1.",
)
parser.add_argument(
@@ -106,6 +115,17 @@ def main(
default=[],
help="Export environment and/or simulations using this exporter",
)
parser.add_argument(
"--until",
default="",
help="Set maximum time for the simulation to run. ",
)
parser.add_argument(
"--seed",
default=None,
help="Manually set a seed for the simulation.",
)
parser.add_argument(
"--only-convert",
@@ -132,9 +152,6 @@ def main(
if args.version:
return
if parallel is None:
parallel = not args.synchronous
exporters = exporters or [
"default",
]
@@ -162,38 +179,46 @@ def main(
res = []
try:
exp_params = {}
opts = dict(
dry_run=args.dry_run,
dump=not args.no_dump,
debug=debug,
exporters=exporters,
num_processes=args.num_processes,
outdir=output,
exporter_params=exp_params,
**kwargs)
if args.seed is not None:
opts["seed"] = args.seed
if sim:
logger.info("Loading simulation instance")
sim.dry_run = args.dry_run
sim.exporters = exporters
sim.parallel = parallel
sim.outdir = output
sims = [sim, ]
for (k, v) in opts.items():
setattr(sim, k, v)
sims = [sim]
else:
logger.info("Loading config file: {}".format(args.file))
if not os.path.exists(args.file):
logger.error("Please, input a valid file")
return
sims = list(simulation.iter_from_config(
assert opts["debug"] == debug
sims = list(
simulation.iter_from_file(
args.file,
dry_run=args.dry_run,
exporters=exporters,
parallel=parallel,
outdir=output,
exporter_params=exp_params,
**kwargs,
))
**opts,
)
)
for sim in sims:
assert sim.debug == debug
if args.set:
for s in args.set:
k, v = s.split("=", 1)[:2]
v = eval(v)
tail, *head = k.rsplit(".", 1)[::-1]
target = sim
target = sim.model_params
if head:
for part in head[0].split("."):
try:
@@ -208,11 +233,7 @@ def main(
if args.only_convert:
print(sim.to_yaml())
continue
if do_run:
res.append(sim.run())
else:
print("not running")
res.append(sim)
res.append(sim.run(until=args.until))
except Exception as ex:
if args.pdb:
@@ -233,7 +254,7 @@ def main(
@contextmanager
def easy(cfg, pdb=False, debug=False, **kwargs):
try:
yield main(cfg, debug=debug, pdb=pdb, **kwargs)[0]
return main(cfg, debug=debug, pdb=pdb, **kwargs)[0]
except Exception as e:
if os.environ.get("SOIL_POSTMORTEM"):
from .debugging import post_mortem
@@ -244,4 +265,4 @@ def easy(cfg, pdb=False, debug=False, **kwargs):
if __name__ == "__main__":
main(do_run=True)
main()

View File

@@ -2,8 +2,8 @@ from . import main as init_main
def main():
init_main(do_run=True)
init_main()
if __name__ == "__main__":
init_main(do_run=True)
init_main()

View File

@@ -22,7 +22,7 @@ class BassModel(FSM):
else:
aware_neighbors = self.get_neighbors(state_id=self.aware.id)
num_neighbors_aware = len(aware_neighbors)
if self.prob((self["imitation_prob"] * num_neighbors_aware)):
if self.prob((self.imitation_prob * num_neighbors_aware)):
self.sentimentCorrelation = 1
return self.aware

View File

@@ -1,118 +0,0 @@
from . import FSM, state, default_state
class BigMarketModel(FSM):
"""
Settings:
Names:
enterprises [Array]
tweet_probability_enterprises [Array]
Users:
tweet_probability_users
tweet_relevant_probability
tweet_probability_about [Array]
sentiment_about [Array]
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.enterprises = self.env.environment_params["enterprises"]
self.type = ""
if self.id < len(self.enterprises): # Enterprises
self._set_state(self.enterprise.id)
self.type = "Enterprise"
self.tweet_probability = environment.environment_params[
"tweet_probability_enterprises"
][self.id]
else: # normal users
self.type = "User"
self._set_state(self.user.id)
self.tweet_probability = environment.environment_params[
"tweet_probability_users"
]
self.tweet_relevant_probability = environment.environment_params[
"tweet_relevant_probability"
]
self.tweet_probability_about = environment.environment_params[
"tweet_probability_about"
] # List
self.sentiment_about = environment.environment_params[
"sentiment_about"
] # List
@state
def enterprise(self):
if self.random.random() < self.tweet_probability: # Tweets
aware_neighbors = self.get_neighbors(
state_id=self.number_of_enterprises
) # Nodes neighbour users
for x in aware_neighbors:
if self.random.uniform(0, 10) < 5:
x.sentiment_about[self.id] += 0.1 # Increments for enterprise
else:
x.sentiment_about[self.id] -= 0.1 # Decrements for enterprise
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id] < -1:
x.sentiment_about[self.id] = -1
x.attrs[
"sentiment_enterprise_%s" % self.enterprises[self.id]
] = x.sentiment_about[self.id]
@state
def user(self):
if self.random.random() < self.tweet_probability: # Tweets
if (
self.random.random() < self.tweet_relevant_probability
): # Tweets something relevant
# Tweet probability per enterprise
for i in range(len(self.enterprises)):
random_num = self.random.random()
if random_num < self.tweet_probability_about[i]:
# The condition is fulfilled, sentiments are evaluated towards that enterprise
if self.sentiment_about[i] < 0:
# NEGATIVO
self.userTweets("negative", i)
elif self.sentiment_about[i] == 0:
# NEUTRO
pass
else:
# POSITIVO
self.userTweets("positive", i)
for i in range(
len(self.enterprises)
): # So that it never is set to 0 if there are not changes (logs)
self.attrs[
"sentiment_enterprise_%s" % self.enterprises[i]
] = self.sentiment_about[i]
def userTweets(self, sentiment, enterprise):
aware_neighbors = self.get_neighbors(
state_id=self.number_of_enterprises
) # Nodes neighbours users
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] += 0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -= 0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs[
"sentiment_enterprise_%s" % self.enterprises[enterprise]
] = x.sentiment_about[enterprise]

View File

@@ -1,6 +1,12 @@
from . import NetworkAgent
from . import BaseAgent, NetworkAgent
class Ticker(BaseAgent):
times = 0
def step(self):
self.times += 1
class CounterModel(NetworkAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors

View File

@@ -1,14 +1,14 @@
from scipy.spatial import cKDTree as KDTree
import networkx as nx
from . import NetworkAgent, as_node
from . import NetworkAgent
class Geo(NetworkAgent):
"""In this type of network, nodes have a "pos" attribute."""
def geo_search(self, radius, node=None, center=False, **kwargs):
def geo_search(self, radius, agent=None, center=False, **kwargs):
"""Get a list of nodes whose coordinates are closer than *radius* to *node*."""
node = as_node(node if node is not None else self)
node = agent.node
G = self.subgraph(**kwargs)

View File

@@ -1,7 +1,7 @@
from . import BaseAgent
from . import Agent, state, default_state
class IndependentCascadeModel(BaseAgent):
class IndependentCascadeModel(Agent):
"""
Settings:
innovation_prob
@@ -9,42 +9,22 @@ class IndependentCascadeModel(BaseAgent):
imitation_prob
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.innovation_prob = self.env.environment_params["innovation_prob"]
self.imitation_prob = self.env.environment_params["imitation_prob"]
self.state["time_awareness"] = 0
self.state["sentimentCorrelation"] = 0
time_awareness = 0
sentimentCorrelation = 0
def step(self):
self.behaviour()
def behaviour(self):
aware_neighbors_1_time_step = []
# Outside effects
if self.prob(self.innovation_prob):
if self.state["id"] == 0:
self.state["id"] = 1
self.state["sentimentCorrelation"] = 1
self.state[
"time_awareness"
] = self.env.now # To know when they have been infected
else:
pass
@default_state
@state
def outside(self):
if self.prob(self.model.innovation_prob):
self.sentimentCorrelation = 1
self.time_awareness = self.model.now # To know when they have been infected
return self.imitate
return
@state
def imitate(self):
aware_neighbors = self.get_neighbors(state_id=1, time_awareness=self.now-1)
# Imitation effects
if self.state["id"] == 0:
aware_neighbors = self.get_neighbors(state_id=1)
for x in aware_neighbors:
if x.state["time_awareness"] == (self.env.now - 1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if self.prob(self.imitation_prob * num_neighbors_aware):
self.state["id"] = 1
self.state["sentimentCorrelation"] = 1
else:
pass
return
if self.prob(self.model.imitation_prob * len(aware_neighbors)):
self.sentimentCorrelation = 1
return self.outside

View File

@@ -1,270 +0,0 @@
import numpy as np
from . import BaseAgent
class SpreadModelM2(BaseAgent):
"""
Settings:
prob_neutral_making_denier
prob_infect
prob_cured_healing_infected
prob_cured_vaccinate_neutral
prob_vaccinated_healing_infected
prob_vaccinated_vaccinate_neutral
prob_generate_anti_rumor
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
# Use a single generator with the same seed as `self.random`
random = np.random.default_rng(seed=self._seed)
self.prob_neutral_making_denier = random.normal(
environment.environment_params["prob_neutral_making_denier"],
environment.environment_params["standard_variance"],
)
self.prob_infect = random.normal(
environment.environment_params["prob_infect"],
environment.environment_params["standard_variance"],
)
self.prob_cured_healing_infected = random.normal(
environment.environment_params["prob_cured_healing_infected"],
environment.environment_params["standard_variance"],
)
self.prob_cured_vaccinate_neutral = random.normal(
environment.environment_params["prob_cured_vaccinate_neutral"],
environment.environment_params["standard_variance"],
)
self.prob_vaccinated_healing_infected = random.normal(
environment.environment_params["prob_vaccinated_healing_infected"],
environment.environment_params["standard_variance"],
)
self.prob_vaccinated_vaccinate_neutral = random.normal(
environment.environment_params["prob_vaccinated_vaccinate_neutral"],
environment.environment_params["standard_variance"],
)
self.prob_generate_anti_rumor = random.normal(
environment.environment_params["prob_generate_anti_rumor"],
environment.environment_params["standard_variance"],
)
def step(self):
if self.state["id"] == 0: # Neutral
self.neutral_behaviour()
elif self.state["id"] == 1: # Infected
self.infected_behaviour()
elif self.state["id"] == 2: # Cured
self.cured_behaviour()
elif self.state["id"] == 3: # Vaccinated
self.vaccinated_behaviour()
def neutral_behaviour(self):
# Infected
infected_neighbors = self.get_neighbors(state_id=1)
if len(infected_neighbors) > 0:
if self.prob(self.prob_neutral_making_denier):
self.state["id"] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_infect):
neighbor.state["id"] = 1 # Infected
def cured_behaviour(self):
# Vaccinate
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state["id"] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected):
neighbor.state["id"] = 2 # Cured
def vaccinated_behaviour(self):
# Cure
infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected):
neighbor.state["id"] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state["id"] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors_2:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state["id"] = 2 # Cured
class ControlModelM2(BaseAgent):
"""
Settings:
prob_neutral_making_denier
prob_infect
prob_cured_healing_infected
prob_cured_vaccinate_neutral
prob_vaccinated_healing_infected
prob_vaccinated_vaccinate_neutral
prob_generate_anti_rumor
"""
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
self.prob_neutral_making_denier = np.random.normal(
environment.environment_params["prob_neutral_making_denier"],
environment.environment_params["standard_variance"],
)
self.prob_infect = np.random.normal(
environment.environment_params["prob_infect"],
environment.environment_params["standard_variance"],
)
self.prob_cured_healing_infected = np.random.normal(
environment.environment_params["prob_cured_healing_infected"],
environment.environment_params["standard_variance"],
)
self.prob_cured_vaccinate_neutral = np.random.normal(
environment.environment_params["prob_cured_vaccinate_neutral"],
environment.environment_params["standard_variance"],
)
self.prob_vaccinated_healing_infected = np.random.normal(
environment.environment_params["prob_vaccinated_healing_infected"],
environment.environment_params["standard_variance"],
)
self.prob_vaccinated_vaccinate_neutral = np.random.normal(
environment.environment_params["prob_vaccinated_vaccinate_neutral"],
environment.environment_params["standard_variance"],
)
self.prob_generate_anti_rumor = np.random.normal(
environment.environment_params["prob_generate_anti_rumor"],
environment.environment_params["standard_variance"],
)
def step(self):
if self.state["id"] == 0: # Neutral
self.neutral_behaviour()
elif self.state["id"] == 1: # Infected
self.infected_behaviour()
elif self.state["id"] == 2: # Cured
self.cured_behaviour()
elif self.state["id"] == 3: # Vaccinated
self.vaccinated_behaviour()
elif self.state["id"] == 4: # Beacon-off
self.beacon_off_behaviour()
elif self.state["id"] == 5: # Beacon-on
self.beacon_on_behaviour()
def neutral_behaviour(self):
self.state["visible"] = False
# Infected
infected_neighbors = self.get_neighbors(state_id=1)
if len(infected_neighbors) > 0:
if self.random(self.prob_neutral_making_denier):
self.state["id"] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_infect):
neighbor.state["id"] = 1 # Infected
self.state["visible"] = False
def cured_behaviour(self):
self.state["visible"] = True
# Vaccinate
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state["id"] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected):
neighbor.state["id"] = 2 # Cured
def vaccinated_behaviour(self):
self.state["visible"] = True
# Cure
infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected):
neighbor.state["id"] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state["id"] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors_2:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state["id"] = 2 # Cured
def beacon_off_behaviour(self):
self.state["visible"] = False
infected_neighbors = self.get_neighbors(state_id=1)
if len(infected_neighbors) > 0:
self.state["id"] == 5 # Beacon on
def beacon_on_behaviour(self):
self.state["visible"] = False
# Cure (M2 feature added)
infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state["id"] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighbors(state_id=0)
for neighbor in neutral_neighbors_infected:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state["id"] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighbors(state_id=1)
for neighbor in infected_neighbors_infected:
if self.prob(self.prob_generate_anti_rumor):
neighbor.state["id"] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state["id"] = 3 # Vaccinated

View File

@@ -1,8 +1,9 @@
import numpy as np
from . import FSM, state
from hashlib import sha512
from . import Agent, state, default_state
class SISaModel(FSM):
class SISaModel(Agent):
"""
Settings:
neutral_discontent_spon_prob
@@ -28,38 +29,45 @@ class SISaModel(FSM):
standard_variance
"""
def __init__(self, environment, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
random = np.random.default_rng(seed=self._seed)
seed = self.model._seed
if isinstance(seed, (str, bytes, bytearray)):
if isinstance(seed, str):
seed = seed.encode()
seed = int.from_bytes(seed + sha512(seed).digest(), 'big')
random = np.random.default_rng(seed=seed)
self.neutral_discontent_spon_prob = random.normal(
self.env["neutral_discontent_spon_prob"], self.env["standard_variance"]
self.model.neutral_discontent_spon_prob, self.model.standard_variance
)
self.neutral_discontent_infected_prob = random.normal(
self.env["neutral_discontent_infected_prob"], self.env["standard_variance"]
self.model.neutral_discontent_infected_prob, self.model.standard_variance
)
self.neutral_content_spon_prob = random.normal(
self.env["neutral_content_spon_prob"], self.env["standard_variance"]
self.model.neutral_content_spon_prob, self.model.standard_variance
)
self.neutral_content_infected_prob = random.normal(
self.env["neutral_content_infected_prob"], self.env["standard_variance"]
self.model.neutral_content_infected_prob, self.model.standard_variance
)
self.discontent_neutral = random.normal(
self.env["discontent_neutral"], self.env["standard_variance"]
self.model.discontent_neutral, self.model.standard_variance
)
self.discontent_content = random.normal(
self.env["discontent_content"], self.env["variance_d_c"]
self.model.discontent_content, self.model.variance_d_c
)
self.content_discontent = random.normal(
self.env["content_discontent"], self.env["variance_c_d"]
self.model.content_discontent, self.model.variance_c_d
)
self.content_neutral = random.normal(
self.env["content_neutral"], self.env["standard_variance"]
self.model.discontent_neutral, self.model.standard_variance
)
@default_state
@state
def neutral(self):
# Spontaneous effects
@@ -70,10 +78,10 @@ class SISaModel(FSM):
# Infected
discontent_neighbors = self.count_neighbors(state_id=self.discontent)
if self.prob(scontent_neighbors * self.neutral_discontent_infected_prob):
if self.prob(discontent_neighbors * self.neutral_discontent_infected_prob):
return self.discontent
content_neighbors = self.count_neighbors(state_id=self.content.id)
if self.prob(s * self.neutral_content_infected_prob):
if self.prob(content_neighbors * self.neutral_content_infected_prob):
return self.content
return self.neutral
@@ -85,7 +93,7 @@ class SISaModel(FSM):
# Superinfected
content_neighbors = self.count_neighbors(state_id=self.content.id)
if self.prob(s * self.discontent_content):
if self.prob(content_neighbors * self.discontent_content):
return self.content
return self.discontent
@@ -97,6 +105,6 @@ class SISaModel(FSM):
# Superinfected
discontent_neighbors = self.count_neighbors(state_id=self.discontent.id)
if self.prob(scontent_neighbors * self.content_discontent):
if self.prob(discontent_neighbors * self.content_discontent):
self.discontent
return self.content

View File

@@ -1,115 +0,0 @@
from . import BaseAgent
class SentimentCorrelationModel(BaseAgent):
"""
Settings:
outside_effects_prob
anger_prob
joy_prob
sadness_prob
disgust_prob
"""
def __init__(self, environment, unique_id=0, state=()):
super().__init__(model=environment, unique_id=unique_id, state=state)
self.outside_effects_prob = environment.environment_params[
"outside_effects_prob"
]
self.anger_prob = environment.environment_params["anger_prob"]
self.joy_prob = environment.environment_params["joy_prob"]
self.sadness_prob = environment.environment_params["sadness_prob"]
self.disgust_prob = environment.environment_params["disgust_prob"]
self.state["time_awareness"] = []
for i in range(4): # In this model we have 4 sentiments
self.state["time_awareness"].append(
0
) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
self.state["sentimentCorrelation"] = 0
def step(self):
self.behaviour()
def behaviour(self):
angry_neighbors_1_time_step = []
joyful_neighbors_1_time_step = []
sad_neighbors_1_time_step = []
disgusted_neighbors_1_time_step = []
angry_neighbors = self.get_neighbors(state_id=1)
for x in angry_neighbors:
if x.state["time_awareness"][0] > (self.env.now - 500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighbors(state_id=2)
for x in joyful_neighbors:
if x.state["time_awareness"][1] > (self.env.now - 500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighbors(state_id=3)
for x in sad_neighbors:
if x.state["time_awareness"][2] > (self.env.now - 500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighbors(state_id=4)
for x in disgusted_neighbors:
if x.state["time_awareness"][3] > (self.env.now - 500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob = self.anger_prob + (
len(angry_neighbors_1_time_step) * self.anger_prob
)
joy_prob = self.joy_prob + (len(joyful_neighbors_1_time_step) * self.joy_prob)
sadness_prob = self.sadness_prob + (
len(sad_neighbors_1_time_step) * self.sadness_prob
)
disgust_prob = self.disgust_prob + (
len(disgusted_neighbors_1_time_step) * self.disgust_prob
)
outside_effects_prob = self.outside_effects_prob
num = self.random.random()
if num < outside_effects_prob:
self.state["id"] = self.random.randint(1, 4)
self.state["sentimentCorrelation"] = self.state[
"id"
] # It is stored when it has been infected for the dynamic network
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
self.state["sentiment"] = self.state["id"]
if num < anger_prob:
self.state["id"] = 1
self.state["sentimentCorrelation"] = 1
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
elif num < joy_prob + anger_prob and num > anger_prob:
self.state["id"] = 2
self.state["sentimentCorrelation"] = 2
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
elif num < sadness_prob + anger_prob + joy_prob and num > joy_prob + anger_prob:
self.state["id"] = 3
self.state["sentimentCorrelation"] = 3
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
elif (
num < disgust_prob + sadness_prob + anger_prob + joy_prob
and num > sadness_prob + anger_prob + joy_prob
):
self.state["id"] = 4
self.state["sentimentCorrelation"] = 4
self.state["time_awareness"][self.state["id"] - 1] = self.env.now
self.state["sentiment"] = self.state["id"]

View File

@@ -11,19 +11,15 @@ import inspect
import types
import textwrap
import networkx as nx
import warnings
import sys
from typing import Any
from mesa import Agent as MesaAgent
from mesa import Agent as MesaAgent, Model
from typing import Dict, List
from .. import serialization, utils, time, config
def as_node(agent):
if isinstance(agent, BaseAgent):
return agent.id
return agent
from .. import serialization, network, utils, time, config
IGNORED_FIELDS = ("model", "logger")
@@ -96,11 +92,7 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
Any attribute that is not preceded by an underscore (`_`) will also be added to its state.
"""
def __init__(self, unique_id, model, name=None, interval=None, **kwargs):
# Check for REQUIRED arguments
# Initialize agent parameters
if isinstance(unique_id, MesaAgent):
raise Exception()
def __init__(self, unique_id, model, name=None, init=True, interval=None, **kwargs):
assert isinstance(unique_id, int)
super().__init__(unique_id=unique_id, model=model)
@@ -126,6 +118,11 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
for (k, v) in kwargs.items():
setattr(self, k, v)
if init:
self.init()
def init(self):
pass
def __hash__(self):
return hash(self.unique_id)
@@ -133,9 +130,16 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
def prob(self, probability):
return prob(probability, self.model.random)
@classmethod
def w(cls, **kwargs):
return custom(cls, **kwargs)
# TODO: refactor to clean up mesa compatibility
@property
def id(self):
msg = "This attribute is deprecated. Use `unique_id` instead"
warnings.warn(msg, DeprecationWarning)
print(msg, file=sys.stderr)
return self.unique_id
@classmethod
@@ -185,7 +189,11 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
return it
def get(self, key, default=None):
return self[key] if key in self else default
if key in self:
return self[key]
elif key in self.model:
return self.model[key]
return default
@property
def now(self):
@@ -195,8 +203,10 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
# No environment
return None
def die(self):
self.info(f"agent dying")
def die(self, msg=None):
if msg:
self.info("Agent dying:", msg)
self.debug(f"agent dying")
self.alive = False
try:
self.model.schedule.remove(self)
@@ -205,14 +215,16 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
return time.NEVER
def step(self):
raise NotImplementedError("Agent must implement step method")
def _check_alive(self):
if not self.alive:
raise time.DeadAgent(self.unique_id)
return super().step() or time.Delta(self.interval)
def log(self, message, *args, level=logging.INFO, **kwargs):
def log(self, *message, level=logging.INFO, **kwargs):
if not self.logger.isEnabledFor(level):
return
message = message + " ".join(str(i) for i in args)
message = " ".join(str(i) for i in message)
message = "[@{:>4}]\t{:>10}: {}".format(self.now, repr(self), message)
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
@@ -385,7 +397,7 @@ class AgentView(Mapping, Set):
def filter_agents(
agents,
agents: dict,
*id_args,
unique_id=None,
state_id=None,
@@ -414,7 +426,7 @@ def filter_agents(
if ids:
f = (agents[aid] for aid in ids if aid in agents)
else:
f = (a for a in agents.values())
f = agents.values()
if state_id is not None and not isinstance(state_id, (tuple, list)):
state_id = tuple([state_id])
@@ -564,9 +576,9 @@ def _from_fixed(
def _from_distro(
distro: List[config.AgentDistro],
n: int,
topology: str,
default: config.SingleAgentConfig,
random,
topology: str = None
) -> List[Dict[str, Any]]:
agents = []
@@ -630,14 +642,22 @@ def _from_distro(
from .network_agents import *
from .fsm import *
from .evented import *
from typing import Optional
class Agent(NetworkAgent, FSM, EventedAgent):
"""Default agent class, has both network and event capabilities"""
from ..environment import NetworkEnvironment
from .BassModel import *
from .BigMarketModel import *
from .IndependentCascadeModel import *
from .ModelM2 import *
from .SentimentCorrelationModel import *
from .SISaModel import *
from .CounterModel import *
try:
import scipy
from .Geo import Geo
@@ -645,3 +665,8 @@ except ImportError:
import sys
print("Could not load the Geo Agent, scipy is not installed", file=sys.stderr)
def custom(cls, **kwargs):
"""Create a new class from a template class and keyword arguments"""
return type(cls.__name__, (cls,), kwargs)

View File

@@ -1,57 +1,77 @@
from . import BaseAgent
from ..events import Message, Tell, Ask, Reply, TimedOut
from ..time import Cond
from ..events import Message, Tell, Ask, TimedOut
from ..time import BaseCond
from functools import partial
from collections import deque
class Evented(BaseAgent):
class ReceivedOrTimeout(BaseCond):
def __init__(
self, agent, expiration=None, timeout=None, check=True, ignore=False, **kwargs
):
if expiration is None:
if timeout is not None:
expiration = agent.now + timeout
self.expiration = expiration
self.ignore = ignore
self.check = check
super().__init__(**kwargs)
def expired(self, time):
return self.expiration and self.expiration < time
def ready(self, agent, time):
return len(agent._inbox) or self.expired(time)
def return_value(self, agent):
if not self.ignore and self.expired(agent.now):
raise TimedOut("No messages received")
if self.check:
agent.check_messages()
return None
def schedule_next(self, time, delta, first=False):
if self._delta is not None:
delta = self._delta
return (time + delta, self)
def __repr__(self):
return f"ReceivedOrTimeout(expires={self.expiration})"
class EventedAgent(BaseAgent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._inbox = deque()
self._received = 0
self._processed = 0
def on_receive(self, *args, **kwargs):
pass
def received(self, expiration=None, timeout=None):
current = self._received
if expiration is None:
expiration = float('inf') if timeout is None else self.now + timeout
def received(self, *args, **kwargs):
return ReceivedOrTimeout(self, *args, **kwargs)
if expiration < self.now:
raise ValueError("Invalid expiration time")
def tell(self, msg, sender=None):
self._inbox.append(Tell(timestamp=self.now, payload=msg, sender=sender))
def ready(agent):
return agent._received > current or agent.now >= expiration
def value(agent):
if agent.now > expiration:
raise TimedOut("No message received")
c = Cond(func=ready, return_func=value)
c._checked = True
return c
def tell(self, msg, sender):
self._received += 1
self._inbox.append(Tell(payload=msg, sender=sender))
def ask(self, msg, timeout=None):
self._received += 1
ask = Ask(payload=msg)
def ask(self, msg, timeout=None, **kwargs):
ask = Ask(timestamp=self.now, payload=msg, sender=self)
self._inbox.append(ask)
expiration = float('inf') if timeout is None else self.now + timeout
return ask.replied(expiration=expiration)
expiration = float("inf") if timeout is None else self.now + timeout
return ask.replied(expiration=expiration, **kwargs)
def check_messages(self):
changed = False
while self._inbox:
msg = self._inbox.popleft()
self._processed += 1
if msg.expired(self.now):
continue
changed = True
reply = self.on_receive(msg.payload, sender=msg.sender)
if isinstance(msg, Ask):
msg.reply = reply
return changed
Evented = EventedAgent

View File

@@ -1,4 +1,5 @@
from . import MetaAgent, BaseAgent
from ..time import Delta
from functools import partial, wraps
import inspect
@@ -38,8 +39,6 @@ def state(name=None):
self._last_return = None
self._last_except = None
func.id = name or func.__name__
func.is_default = False
return func
@@ -87,8 +86,8 @@ class MetaFSM(MetaAgent):
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, **kwargs):
super(FSM, self).__init__(**kwargs)
def __init__(self, init=True, **kwargs):
super().__init__(**kwargs, init=False)
if not hasattr(self, "state_id"):
if not self._default_state:
raise ValueError(
@@ -97,12 +96,15 @@ class FSM(BaseAgent, metaclass=MetaFSM):
self.state_id = self._default_state.id
self._coroutine = None
self.default_interval = Delta(self.model.interval)
self._set_state(self.state_id)
if init:
self.init()
def step(self):
self.debug(f"Agent {self.unique_id} @ state {self.state_id}")
default_interval = super().step()
self._check_alive()
next_state = self._states[self.state_id](self)
when = None
@@ -122,7 +124,7 @@ class FSM(BaseAgent, metaclass=MetaFSM):
if next_state is not None:
self._set_state(next_state)
return when or default_interval
return when or self.default_interval
def _set_state(self, state, when=None):
if hasattr(state, "id"):
@@ -134,8 +136,8 @@ class FSM(BaseAgent, metaclass=MetaFSM):
self.model.schedule.add(self, when=when)
return state
def die(self):
return self.dead, super().die()
def die(self, *args, **kwargs):
return self.dead, super().die(*args, **kwargs)
@state
def dead(self):

View File

@@ -2,20 +2,37 @@ from . import BaseAgent
class NetworkAgent(BaseAgent):
def __init__(self, *args, topology, node_id, **kwargs):
super().__init__(*args, **kwargs)
def __init__(self, *args, topology=None, init=True, node_id=None, **kwargs):
super().__init__(*args, init=False, **kwargs)
assert topology is not None
assert node_id is not None
self.G = topology
self.G = topology or self.model.G
assert self.G
if node_id is None:
nodes = self.random.choices(list(self.G.nodes), k=len(self.G))
for n_id in nodes:
if "agent" not in self.G.nodes[n_id] or self.G.nodes[n_id]["agent"] is None:
node_id = n_id
break
else:
node_id = len(self.G)
self.info(f"All nodes ({len(self.G)}) have an agent assigned, adding a new node to the graph for agent {self.unique_id}")
self.G.add_node(node_id)
assert node_id is not None
self.G.nodes[node_id]["agent"] = self
self.node_id = node_id
if init:
self.init()
def count_neighbors(self, state_id=None, **kwargs):
return len(self.get_neighbors(state_id=state_id, **kwargs))
if init:
self.init()
def iter_neighbors(self, **kwargs):
return self.iter_agents(limit_neighbors=True, **kwargs)
def get_neighbors(self, **kwargs):
return list(self.iter_agents(limit_neighbors=True, **kwargs))
return list(self.iter_neighbors(**kwargs))
@property
def node(self):
@@ -35,8 +52,9 @@ class NetworkAgent(BaseAgent):
if limit_neighbors:
neighbor_ids = set()
for node_id in self.G.neighbors(self.node_id):
if self.G.nodes[node_id].get("agent") is not None:
neighbor_ids.add(node_id)
agent = self.G.nodes[node_id].get("agent")
if agent is not None:
neighbor_ids.add(agent.unique_id)
if unique_ids:
unique_ids = unique_ids & neighbor_ids
else:
@@ -54,7 +72,7 @@ class NetworkAgent(BaseAgent):
return G
def remove_node(self):
print(f"Removing node for {self.unique_id}: {self.node_id}")
self.debug(f"Removing node for {self.unique_id}: {self.node_id}")
self.G.remove_node(self.node_id)
self.node_id = None
@@ -80,3 +98,6 @@ class NetworkAgent(BaseAgent):
if remove:
self.remove_node()
return super().die()
NetAgent = NetworkAgent

View File

@@ -1,270 +1,2 @@
from __future__ import annotations
from enum import Enum
from pydantic import BaseModel, ValidationError, validator, root_validator
import yaml
import os
import sys
from typing import Any, Callable, Dict, List, Optional, Union, Type
from pydantic import BaseModel, Extra
from . import environment, utils
import networkx as nx
# Could use TypeAlias in python >= 3.10
nodeId = int
class Node(BaseModel):
id: nodeId
state: Optional[Dict[str, Any]] = {}
class Edge(BaseModel):
source: nodeId
target: nodeId
value: Optional[float] = 1
class Topology(BaseModel):
nodes: List[Node]
directed: bool
links: List[Edge]
class NetParams(BaseModel, extra=Extra.allow):
generator: Union[Callable, str]
n: int
class NetConfig(BaseModel):
params: Optional[NetParams]
fixed: Optional[Union[Topology, nx.Graph]]
path: Optional[str]
class Config:
arbitrary_types_allowed = True
@staticmethod
def default():
return NetConfig(topology=None, params=None)
@root_validator
def validate_all(cls, values):
if "params" not in values and "topology" not in values:
raise ValueError(
"You must specify either a topology or the parameters to generate a graph"
)
return values
class EnvConfig(BaseModel):
@staticmethod
def default():
return EnvConfig()
class SingleAgentConfig(BaseModel):
agent_class: Optional[Union[Type, str]] = None
unique_id: Optional[int] = None
topology: Optional[bool] = False
node_id: Optional[Union[int, str]] = None
state: Optional[Dict[str, Any]] = {}
class FixedAgentConfig(SingleAgentConfig):
n: Optional[int] = 1
hidden: Optional[bool] = False # Do not count this agent towards total agent count
@root_validator
def validate_all(cls, values):
if values.get("unique_id", None) is not None and values.get("n", 1) > 1:
raise ValueError(
f"An unique_id can only be provided when there is only one agent ({values.get('n')} given)"
)
return values
class OverrideAgentConfig(FixedAgentConfig):
filter: Optional[Dict[str, Any]] = None
class Strategy(Enum):
topology = "topology"
total = "total"
class AgentDistro(SingleAgentConfig):
weight: Optional[float] = 1
strategy: Strategy = Strategy.topology
class AgentConfig(SingleAgentConfig):
n: Optional[int] = None
distribution: Optional[List[AgentDistro]] = None
fixed: Optional[List[FixedAgentConfig]] = None
override: Optional[List[OverrideAgentConfig]] = None
@staticmethod
def default():
return AgentConfig()
@root_validator
def validate_all(cls, values):
if "distribution" in values and (
"n" not in values and "topology" not in values
):
raise ValueError(
"You need to provide the number of agents or a topology to extract the value from."
)
return values
class Config(BaseModel, extra=Extra.allow):
version: Optional[str] = "1"
name: str = "Unnamed Simulation"
description: Optional[str] = None
group: str = None
dir_path: Optional[str] = None
num_trials: int = 1
max_time: float = 100
max_steps: int = -1
interval: float = 1
seed: str = ""
dry_run: bool = False
model_class: Union[Type, str] = environment.Environment
model_params: Optional[Dict[str, Any]] = {}
visualization_params: Optional[Dict[str, Any]] = {}
@classmethod
def from_raw(cls, cfg):
if isinstance(cfg, Config):
def load_config(cfg):
return cfg
if cfg.get("version", "1") == "1" and any(
k in cfg for k in ["agents", "agent_class", "topology", "environment_class"]
):
return convert_old(cfg)
return Config(**cfg)
def convert_old(old, strict=True):
"""
Try to convert old style configs into the new format.
This is still a work in progress and might not work in many cases.
"""
utils.logger.warning(
"The old configuration format is deprecated. The converted file MAY NOT yield the right results"
)
new = old.copy()
network = {}
if "topology" in old:
del new["topology"]
network["topology"] = old["topology"]
if "network_params" in old and old["network_params"]:
del new["network_params"]
for (k, v) in old["network_params"].items():
if k == "path":
network["path"] = v
else:
network.setdefault("params", {})[k] = v
topology = None
if network:
topology = network
agents = {"fixed": [], "distribution": []}
def updated_agent(agent):
"""Convert an agent definition"""
newagent = dict(agent)
return newagent
by_weight = []
fixed = []
override = []
if "environment_agents" in new:
for agent in new["environment_agents"]:
agent.setdefault("state", {})["group"] = "environment"
if "agent_id" in agent:
agent["state"]["name"] = agent["agent_id"]
del agent["agent_id"]
agent["hidden"] = True
agent["topology"] = False
fixed.append(updated_agent(agent))
del new["environment_agents"]
if "agent_class" in old:
del new["agent_class"]
agents["agent_class"] = old["agent_class"]
if "default_state" in old:
del new["default_state"]
agents["state"] = old["default_state"]
if "network_agents" in old:
agents["topology"] = True
agents.setdefault("state", {})["group"] = "network"
for agent in new["network_agents"]:
agent = updated_agent(agent)
if "agent_id" in agent:
agent["state"]["name"] = agent["agent_id"]
del agent["agent_id"]
fixed.append(agent)
else:
by_weight.append(agent)
del new["network_agents"]
if "agent_class" in old and (not fixed and not by_weight):
agents["topology"] = True
by_weight = [{"agent_class": old["agent_class"], "weight": 1}]
# TODO: translate states properly
if "states" in old:
del new["states"]
states = old["states"]
if isinstance(states, dict):
states = states.items()
else:
states = enumerate(states)
for (k, v) in states:
override.append({"filter": {"node_id": k}, "state": v})
agents["override"] = override
agents["fixed"] = fixed
agents["distribution"] = by_weight
model_params = {}
if "environment_params" in new:
del new["environment_params"]
model_params = dict(old["environment_params"])
if "environment_class" in old:
del new["environment_class"]
new["model_class"] = old["environment_class"]
if "dump" in old:
del new["dump"]
new["dry_run"] = not old["dump"]
model_params["topology"] = topology
model_params["agents"] = agents
return Config(version="2", model_params=model_params, **new)

View File

@@ -1,6 +1,17 @@
from mesa import DataCollector as MDC
class SoilDataCollector(MDC):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
class SoilCollector(MDC):
def __init__(self, model_reporters=None, agent_reporters=None, tables=None, **kwargs):
model_reporters = model_reporters or {}
agent_reporters = agent_reporters or {}
tables = tables or {}
if 'agent_count' not in model_reporters:
model_reporters['agent_count'] = lambda m: m.schedule.get_agent_count()
if 'state_id' not in agent_reporters:
agent_reporters['agent_id'] = lambda agent: getattr(agent, 'state_id', None)
super().__init__(model_reporters=model_reporters,
agent_reporters=agent_reporters,
tables=tables,
**kwargs)

View File

@@ -8,6 +8,7 @@ from textwrap import indent
from functools import wraps
from .agents import FSM, MetaFSM
from mesa import Model, Agent
def wrapcmd(func):
@@ -15,14 +16,22 @@ def wrapcmd(func):
def wrapper(self, arg: str, temporary=False):
sys.settrace(self.trace_dispatch)
lastself = self
known = globals()
known.update(self.curframe.f_globals)
known.update(self.curframe.f_locals)
known["agent"] = known.get("self", None)
known["model"] = known.get("self", {}).get("model")
known["attrs"] = arg.strip().split()
exec(func.__code__, known, known)
this = known.get("self", None)
if isinstance(this, Model):
known["model"] = this
elif isinstance(this, Agent):
known["agent"] = this
known["model"] = this.model
known["self"] = lastself
return exec(func.__code__, known, known)
return wrapper
@@ -57,6 +66,7 @@ class Debug(pdb.Pdb):
do_sl = do_soil_list
def do_continue_state(self, arg):
"""Continue until next time this state is reached"""
self.do_break_state(arg, temporary=True)
return self.do_continue("")
@@ -80,6 +90,49 @@ class Debug(pdb.Pdb):
do_aa = do_soil_agent
def do_break_step(self, arg: str):
"""
Break before the next step.
"""
try:
known = globals()
known.update(self.curframe.f_globals)
known.update(self.curframe.f_locals)
func = getattr(known["model"], "step")
except AttributeError as ex:
self.error(f"The model does not have a step function: {ex}")
return
if hasattr(func, "__func__"):
func = func.__func__
code = func.__code__
# use co_name to identify the bkpt (function names
# could be aliased, but co_name is invariant)
funcname = code.co_name
lineno = code.co_firstlineno
filename = code.co_filename
# Check for reasonable breakpoint
line = self.checkline(filename, lineno)
if not line:
raise ValueError("no line found")
# now set the break point
existing = self.get_breaks(filename, line)
if existing:
self.message("Breakpoint already exists at %s:%d" % (filename, line))
return
cond = f"self.schedule.steps > {model.schedule.steps}"
err = self.set_break(filename, line, True, cond, funcname)
if err:
self.error(err)
else:
bp = self.get_breaks(filename, line)[-1]
self.message("Breakpoint %d at %s:%d" % (bp.number, bp.file, bp.line))
return self.do_continue("")
do_bstep = do_break_step
def do_break_state(self, arg: str, instances=None, temporary=False):
"""
Break before a specified state is stepped into.

6
soil/decorators.py Normal file
View File

@@ -0,0 +1,6 @@
def report(f: property):
if isinstance(f, property):
setattr(f.fget, "add_to_report", True)
else:
setattr(f, "add_to_report", True)
return f

View File

@@ -6,21 +6,21 @@ import math
import logging
import inspect
from typing import Any, Dict, Optional, Union
from typing import Any, Callable, Dict, Optional, Union, List, Type
from collections import namedtuple
from time import time as current_time
from copy import deepcopy
from networkx.readwrite import json_graph
import networkx as nx
from mesa import Model
from mesa.datacollection import DataCollector
from mesa import Model, Agent
from . import agents as agentmod, config, serialization, utils, time, network, events
from . import agents as agentmod, datacollection, serialization, utils, time, network, events
# TODO: maybe add metaclass to read attributes of a model
class BaseEnvironment(Model):
"""
The environment is key in a simulation. It controls how agents interact,
@@ -34,100 +34,83 @@ class BaseEnvironment(Model):
:meth:`soil.environment.Environment.get` method.
"""
def __init__(
self,
id="unnamed_env",
def __new__(cls,
*args: Any,
seed="default",
schedule=None,
dir_path=None,
interval=1,
agent_class=None,
agents: [tuple[type, Dict[str, Any]]] = {},
collector_class: type = datacollection.SoilCollector,
agent_reporters: Optional[Any] = None,
model_reporters: Optional[Any] = None,
tables: Optional[Any] = None,
**kwargs: Any) -> Any:
"""Create a new model with a default seed value"""
self = super().__new__(cls, *args, seed=seed, **kwargs)
self.dir_path = dir_path or os.getcwd()
collector_class = serialization.deserialize(collector_class)
self.datacollector = collector_class(
model_reporters=model_reporters,
agent_reporters=agent_reporters,
tables=tables,
)
for k in dir(cls):
v = getattr(cls, k)
if isinstance(v, property):
v = v.fget
if getattr(v, "add_to_report", False):
self.add_model_reporter(k, v)
return self
def __init__(
self,
*,
id="unnamed_env",
seed="default",
dir_path=None,
schedule_class=time.TimedActivation,
interval=1,
agents: Optional[Dict] = None,
collector_class: type = datacollection.SoilCollector,
agent_reporters: Optional[Any] = None,
model_reporters: Optional[Any] = None,
tables: Optional[Any] = None,
init: bool = True,
**env_params,
):
super().__init__(seed=seed)
self.env_params = env_params or {}
super().__init__()
self.current_id = -1
self.id = id
self.dir_path = dir_path or os.getcwd()
if schedule is None:
schedule = time.TimedActivation(self)
self.schedule = schedule
self.agent_class = agent_class or agentmod.BaseAgent
if schedule_class is None:
schedule_class = time.TimedActivation
else:
schedule_class = serialization.deserialize(schedule_class)
self.interval = interval
self.init_agents(agents)
self.schedule = schedule_class(self)
self.logger = utils.logger.getChild(self.id)
self.datacollector = DataCollector(
model_reporters=model_reporters,
agent_reporters=agent_reporters,
tables=tables,
)
for (k, v) in env_params.items():
self[k] = v
def _agent_from_dict(self, agent):
"""
Translate an agent dictionary into an agent
"""
agent = dict(**agent)
cls = agent.pop("agent_class", None) or self.agent_class
unique_id = agent.pop("unique_id", None)
if unique_id is None:
unique_id = self.next_id()
if agents:
self.add_agents(**agents)
if init:
self.init()
return serialization.deserialize(cls)(unique_id=unique_id, model=self, **agent)
def init_agents(self, agents: Union[config.AgentConfig, [Dict[str, Any]]] = {}):
"""
Initialize the agents in the model from either a `soil.config.AgentConfig` or a list of
dictionaries that each describes an agent.
If given a list of dictionaries, an agent will be created for each dictionary. The agent
class can be specified through the `agent_class` key. The rest of the items will be used
as parameters to the agent.
"""
if not agents:
return
lst = agents
override = []
if not isinstance(lst, list):
if not isinstance(agents, config.AgentConfig):
lst = config.AgentConfig(**agents)
if lst.override:
override = lst.override
lst = self._agent_dict_from_config(lst)
# TODO: check override is working again. It cannot (easily) be part of agents.from_config anymore,
# because it needs attribute such as unique_id, which are only present after init
new_agents = [self._agent_from_dict(agent) for agent in lst]
for a in new_agents:
self.schedule.add(a)
for rule in override:
for agent in agentmod.filter_agents(self.schedule._agents, **rule.filter):
for attr, value in rule.state.items():
setattr(agent, attr, value)
def _agent_dict_from_config(self, cfg):
return agentmod.from_config(cfg, random=self.random)
def init(self):
pass
@property
def agents(self):
return agentmod.AgentView(self.schedule._agents)
def find_one(self, *args, **kwargs):
def agent(self, *args, **kwargs):
return agentmod.AgentView(self.schedule._agents).one(*args, **kwargs)
def count_agents(self, *args, **kwargs):
@@ -140,17 +123,34 @@ class BaseEnvironment(Model):
raise Exception(
"The environment has not been scheduled, so it has no sense of time"
)
def init_agents(self):
pass
def add_agent(self, unique_id=None, **kwargs):
def add_agent(self, agent_class, unique_id=None, **agent):
if unique_id is None:
unique_id = self.next_id()
kwargs["unique_id"] = unique_id
a = self._agent_from_dict(kwargs)
agent["unique_id"] = unique_id
agent = dict(**agent)
unique_id = agent.pop("unique_id", None)
if unique_id is None:
unique_id = self.next_id()
a = serialization.deserialize(agent_class)(unique_id=unique_id, model=self, **agent)
self.schedule.add(a)
return a
def add_agents(self, agent_classes: List[type], k, weights: Optional[List[float]] = None, **kwargs):
if isinstance(agent_classes, type):
agent_classes = [agent_classes]
if weights is None:
weights = [1] * len(agent_classes)
for cls in self.random.choices(agent_classes, weights=weights, k=k):
self.add_agent(agent_class=cls, **kwargs)
def log(self, message, *args, level=logging.INFO, **kwargs):
if not self.logger.isEnabledFor(level):
return
@@ -168,31 +168,56 @@ class BaseEnvironment(Model):
Advance one step in the simulation, and update the data collection and scheduler appropriately
"""
super().step()
self.logger.info(
f"--- Step: {self.schedule.steps:^5} - Time: {self.now:^5} ---"
)
self.schedule.step()
self.datacollector.collect(self)
def __contains__(self, key):
return key in self.env_params
msg = "Model data:\n"
max_width = max(len(k) for k in self.datacollector.model_vars.keys())
for (k, v) in self.datacollector.model_vars.items():
msg += f"\t{k:<{max_width}}: {v[-1]:>6}\n"
self.logger.info(f"--- Steps: {self.schedule.steps:^5} - Time: {self.now:^5} --- " + msg)
def get(self, key, default=None):
"""
Get the value of an environment attribute.
Return `default` if the value is not set.
"""
return self.env_params.get(key, default)
def add_model_reporter(self, name, func=None):
if not func:
func = lambda env: getattr(env, name)
self.datacollector._new_model_reporter(name, func)
def add_agent_reporter(self, name, agent_type=None):
if agent_type:
reporter = lambda a: getattr(a, name) if isinstance(a, agent_type) else None
else:
reporter = name
self.datacollector._new_agent_reporter(name, reporter)
def __getitem__(self, key):
return self.env_params.get(key)
try:
return getattr(self, key)
except AttributeError:
raise KeyError(f"key {key} not found in environment")
def __delitem__(self, key):
return delattr(self, key)
def __contains__(self, key):
return hasattr(self, key)
def __setitem__(self, key, value):
return self.env_params.__setitem__(key, value)
setattr(self, key, value)
def __str__(self):
return str(self.env_params)
return str(dict(self))
def __len__(self):
return sum(1 for n in self.keys())
def __iter__(self):
return iter(self.agents())
def get(self, key, default=None):
return self[key] if key in self else default
def keys(self):
return (k for k in self.__dict__ if k[0] != "_")
class NetworkEnvironment(BaseEnvironment):
"""
@@ -200,69 +225,71 @@ class NetworkEnvironment(BaseEnvironment):
and methods to associate agents to nodes and vice versa.
"""
def __init__(
self, *args, topology: Union[config.NetConfig, nx.Graph] = None, **kwargs
):
agents = kwargs.pop("agents", None)
super().__init__(*args, agents=None, **kwargs)
def __init__(self,
*args,
topology: Optional[Union[nx.Graph, str]] = None,
agent_class: Optional[Type[agentmod.Agent]] = None,
network_generator: Optional[Callable] = None,
network_params: Optional[Dict] = {},
init=True,
**kwargs):
self.topology = topology
self.network_generator = network_generator
self.network_params = network_params
if topology or network_params or network_generator:
self.create_network(topology, generator=network_generator, **network_params)
else:
self.G = nx.Graph()
super().__init__(*args, **kwargs, init=False)
self._set_topology(topology)
self.agent_class = agent_class
if agent_class:
self.agent_class = serialization.deserialize(agent_class)
if self.agent_class:
self.populate_network(self.agent_class)
self._check_agent_nodes()
if init:
self.init()
self.init_agents(agents)
def add_agent(self, agent_class, *args, node_id=None, topology=None, **kwargs):
if node_id is None and topology is None:
return super().add_agent(agent_class, *args, **kwargs)
try:
a = super().add_agent(agent_class, *args, node_id=node_id, **kwargs)
except TypeError:
self.logger.warning(f"Agent constructor for {agent_class} does not have a node_id attribute. Might be a bug.")
a = super().add_agent(agent_class, *args, **kwargs)
self.G.nodes[node_id]["agent"] = a
return a
def add_agents(self, *args, k=None, **kwargs):
if not k and not self.G:
raise ValueError("Cannot add agents to an empty network")
super().add_agents(*args, k=k or len(self.G), **kwargs)
def create_network(self, topology=None, generator=None, path=None, **network_params):
if topology is not None:
topology = network.from_topology(topology, dir_path=self.dir_path)
elif path is not None:
topology = network.from_topology(path, dir_path=self.dir_path)
elif generator is not None:
topology = network.from_params(generator=generator, dir_path=self.dir_path, **network_params)
else:
raise ValueError("topology must be a networkx.Graph or a string, or network_generator must be provided")
self.G = topology
def init_agents(self, *args, **kwargs):
"""Initialize the agents from a"""
super().init_agents(*args, **kwargs)
for agent in self.schedule._agents.values():
if hasattr(agent, "node_id"):
self._init_node(agent)
def _init_node(self, agent):
"""
Make sure the node for a given agent has the proper attributes.
"""
self.G.nodes[agent.node_id]["agent"] = agent
def _agent_dict_from_config(self, cfg):
return agentmod.from_config(cfg, topology=self.G, random=self.random)
def _agent_from_dict(self, agent, unique_id=None):
agent = dict(agent)
if not agent.get("topology", False):
return super()._agent_from_dict(agent)
if unique_id is None:
unique_id = self.next_id()
node_id = agent.get("node_id", None)
if node_id is None:
node_id = network.find_unassigned(self.G, random=self.random)
self.G.nodes[node_id]["agent"] = None
agent["node_id"] = node_id
agent["unique_id"] = unique_id
agent["topology"] = self.G
node_attrs = self.G.nodes[node_id]
node_attrs.update(agent)
agent = node_attrs
a = super()._agent_from_dict(agent)
self._init_node(a)
return a
def _set_topology(self, cfg=None, dir_path=None):
if cfg is None:
cfg = nx.Graph()
elif not isinstance(cfg, nx.Graph):
cfg = network.from_config(cfg, dir_path=dir_path or self.dir_path)
self.G = cfg
@property
def network_agents(self):
for a in self.schedule._agents:
if isinstance(a, agentmod.NetworkAgent):
yield a
"""Return agents still alive and assigned to a node in the network."""
for (id, data) in self.G.nodes(data=True):
if "agent" in data:
agent = data["agent"]
if getattr(agent, "alive", True):
yield agent
def add_node(self, agent_class, unique_id=None, node_id=None, **kwargs):
if unique_id is None:
@@ -278,7 +305,6 @@ class NetworkEnvironment(BaseEnvironment):
self.G.add_node(node_id)
assert "agent" not in self.G.nodes[node_id]
self.G.nodes[node_id]["agent"] = None # Reserve
a = self.add_agent(
unique_id=unique_id,
@@ -290,35 +316,80 @@ class NetworkEnvironment(BaseEnvironment):
a["visible"] = True
return a
def add_agent(self, *args, **kwargs):
a = super().add_agent(*args, **kwargs)
if "node_id" in a:
assert self.G.nodes[a.node_id]["agent"] == a
return a
def _check_agent_nodes(self):
"""
Detect nodes that have agents assigned to them.
"""
for (id, data) in self.G.nodes(data=True):
if "agent_id" in data:
agent = self.agents(data["agent_id"])
self.G.nodes[id]["agent"] = agent
assert not getattr(agent, "node_id", None) or agent.node_id == id
agent.node_id = id
for agent in self.agents():
if hasattr(agent, "node_id"):
node_id = agent["node_id"]
if node_id not in self.G.nodes:
raise ValueError(f"Agent {agent} is assigned to node {agent.node_id} which is not in the network")
node = self.G.nodes[node_id]
if node.get("agent") is not None and node["agent"] != agent:
raise ValueError(f"Node {node_id} already has a different agent assigned to it")
self.G.nodes[node_id]["agent"] = agent
def add_agents(self, agent_classes: List[type], k=None, weights: Optional[List[float]] = None, **kwargs):
if k is None:
k = len(self.G)
if not k:
raise ValueError("Cannot add agents to an empty network")
super().add_agents(agent_classes, k=k, weights=weights, **kwargs)
def agent_for_node_id(self, node_id):
return self.G.nodes[node_id].get("agent")
def populate_network(self, agent_class, weights=None, **agent_params):
if not hasattr(agent_class, "len"):
def populate_network(self, agent_class: List[Model], weights: List[float] = None, **agent_params):
if isinstance(agent_class, type):
agent_class = [agent_class]
weights = None
for (node_id, node) in self.G.nodes(data=True):
else:
agent_class = list(agent_class)
if not weights:
weights = [1] * len(agent_class)
assert len(self.G)
classes = self.random.choices(agent_class, weights, k=len(self.G))
toadd = []
for (cls, (node_id, node)) in zip(classes, self.G.nodes(data=True)):
if "agent" in node:
continue
a_class = self.random.choices(agent_class, weights)[0]
self.add_agent(node_id=node_id, agent_class=a_class, **agent_params)
node["agent"] = None # Reserve
toadd.append(dict(node_id=node_id, topology=self.G, agent_class=cls, **agent_params))
for d in toadd:
a = self.add_agent(**d)
self.G.nodes[d["node_id"]]["agent"] = a
assert all("agent" in node for (_, node) in self.G.nodes(data=True))
assert len(list(self.network_agents))
Environment = NetworkEnvironment
class EventedEnvironment(Environment):
def broadcast(self, msg, sender, expiration=None, ttl=None, **kwargs):
class EventedEnvironment(BaseEnvironment):
def broadcast(self, msg, sender=None, expiration=None, ttl=None, **kwargs):
for agent in self.agents(**kwargs):
self.logger.info(f'Telling {repr(agent)}: {msg} ttl={ttl}')
if agent == sender:
continue
self.logger.info(f"Telling {repr(agent)}: {msg} ttl={ttl}")
try:
agent._inbox.append(events.Tell(payload=msg, sender=sender, expiration=expiration if ttl is None else self.now+ttl))
inbox = agent._inbox
except AttributeError:
self.info(f'Agent {agent.unique_id} cannot receive events')
self.logger.info(
f"Agent {agent.unique_id} cannot receive events because it does not have an inbox"
)
continue
# Allow for AttributeError exceptions in this part of the code
inbox.append(
events.Tell(
payload=msg,
sender=sender,
expiration=expiration if ttl is None else self.now + ttl,
)
)
class Environment(NetworkEnvironment, EventedEnvironment):
"""Default environment class, has both network and event capabilities"""

View File

@@ -1,38 +1,51 @@
from .time import Cond
from .time import BaseCond
from dataclasses import dataclass, field
from typing import Any
from uuid import uuid4
class Event:
pass
@dataclass
class Message:
payload: Any
sender: Any = None
expiration: float = None
timestamp: float = None
id: int = field(default_factory=uuid4)
def expired(self, when):
return self.expiration is not None and self.expiration < when
class Reply(Message):
source: Message
class ReplyCond(BaseCond):
def __init__(self, ask, *args, **kwargs):
self._ask = ask
super().__init__(*args, **kwargs)
def ready(self, agent, time):
return self._ask.reply is not None or self._ask.expired(time)
def return_value(self, agent):
if self._ask.expired(agent.now):
raise TimedOut()
return self._ask.reply
def __repr__(self):
return f"ReplyCond({self._ask.id})"
class Ask(Message):
reply: Message = None
def replied(self, expiration=None):
def ready(agent):
return self.reply is not None or agent.now > expiration
def value(agent):
if agent.now > expiration:
raise TimedOut(f'No answer received for {self}')
return self.reply
return Cond(func=ready, return_func=value)
return ReplyCond(self)
class Tell(Message):

View File

@@ -38,7 +38,7 @@ class DryRunner(BytesIO):
except UnicodeDecodeError:
pass
logger.info(
"**Not** written to {} (dry run mode):\n\n{}\n\n".format(
"**Not** written to {} (no_dump mode):\n\n{}\n\n".format(
self.__fname, content
)
)
@@ -51,12 +51,12 @@ class Exporter:
if you don't plan to implement all the methods.
"""
def __init__(self, simulation, outdir=None, dry_run=None, copy_to=None):
def __init__(self, simulation, outdir=None, dump=True, copy_to=None):
self.simulation = simulation
outdir = outdir or os.path.join(os.getcwd(), "soil_output")
self.outdir = os.path.join(outdir, simulation.group or "", simulation.name)
self.dry_run = dry_run
if copy_to is None and dry_run:
self.dump = dump
if copy_to is None and not dump:
copy_to = sys.stdout
self.copy_to = copy_to
@@ -77,7 +77,7 @@ class Exporter:
pass
def output(self, f, mode="w", **kwargs):
if self.dry_run:
if not self.dump:
f = DryRunner(f, copy_to=self.copy_to)
else:
try:
@@ -104,22 +104,20 @@ def get_dc_dfs(dc, trial_id=None):
yield from dfs.items()
class default(Exporter):
"""Default exporter. Writes sqlite results, as well as the simulation YAML"""
class SQLite(Exporter):
"""Writes sqlite results"""
def sim_start(self):
if self.dry_run:
logger.info("NOT dumping results")
if not self.dump:
logger.debug("NOT dumping results")
return
logger.info("Dumping results to %s", self.outdir)
with self.output(self.simulation.name + ".dumped.yml") as f:
f.write(self.simulation.to_yaml())
self.dbpath = os.path.join(self.outdir, f"{self.simulation.name}.sqlite")
logger.info("Dumping results to %s", self.dbpath)
try_backup(self.dbpath, remove=True)
def trial_end(self, env):
if self.dry_run:
logger.info("Running in DRY_RUN mode, the database will NOT be created")
if not self.dump:
logger.info("Running in NO DUMP mode, the database will NOT be created")
return
with timer(
@@ -131,7 +129,6 @@ class default(Exporter):
for (t, df) in self.get_dfs(env):
df.to_sql(t, con=engine, if_exists="append")
class csv(Exporter):
"""Export the state of each environment (and its agents) in a separate CSV file"""
@@ -150,8 +147,8 @@ class csv(Exporter):
# TODO: reimplement GEXF exporting without history
class gexf(Exporter):
def trial_end(self, env):
if self.dry_run:
logger.info("Not dumping GEXF in dry_run mode")
if not self.dump:
logger.info("Not dumping GEXF (NO_DUMP mode)")
return
with timer(
@@ -199,15 +196,61 @@ class summary(Exporter):
"""Print a summary of each trial to sys.stdout"""
def trial_end(self, env):
msg = ""
for (t, df) in self.get_dfs(env):
if not len(df):
continue
msg = indent(str(df.describe()), " ")
logger.info(
dedent(
f"""
tabs = "\t" * 2
description = indent(str(df.describe()), tabs)
last_line = indent(str(df.iloc[-1:]), tabs)
# value_counts = indent(str(df.value_counts()), tabs)
value_counts = indent(str(df.apply(lambda x: x.value_counts()).T.stack()), tabs)
msg += dedent("""
Dataframe {t}:
"""
)
+ msg
)
Last line: :
{last_line}
Description:
{description}
Value counts:
{value_counts}
""").format(**locals())
logger.info(msg)
class YAML(Exporter):
"""Writes the configuration of the simulation to a YAML file"""
def sim_start(self):
if not self.dump:
logger.debug("NOT dumping results")
return
with self.output(self.simulation.name + ".dumped.yml") as f:
logger.info(f"Dumping simulation configuration to {self.outdir}")
f.write(self.simulation.to_yaml())
class default(Exporter):
"""Default exporter. Writes sqlite results, as well as the simulation YAML"""
def __init__(self, *args, exporter_cls=[], **kwargs):
exporter_cls = exporter_cls or [YAML, SQLite]
self.inner = [cls(*args, **kwargs) for cls in exporter_cls]
def sim_start(self):
for exporter in self.inner:
exporter.sim_start()
def sim_end(self):
for exporter in self.inner:
exporter.sim_end()
def trial_start(self, env):
for exporter in self.inner:
exporter.trial_start(env)
def trial_end(self, env):
for exporter in self.inner:
exporter.trial_end(env)

View File

@@ -10,12 +10,21 @@ import networkx as nx
from . import config, serialization, basestring
def from_config(cfg: config.NetConfig, dir_path: str = None):
if not isinstance(cfg, config.NetConfig):
cfg = config.NetConfig(**cfg)
def from_topology(topology, dir_path: str = None):
if topology is None:
return nx.Graph()
if isinstance(topology, nx.Graph):
return topology
if cfg.path:
path = cfg.path
# If it's a dict, assume it's a node-link graph
if isinstance(topology, dict):
try:
return nx.json_graph.node_link_graph(topology)
except Exception as ex:
raise ValueError("Unknown topology format")
# Otherwise, treat like a path
path = topology
if dir_path and not os.path.isabs(path):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
@@ -29,28 +38,19 @@ def from_config(cfg: config.NetConfig, dir_path: str = None):
raise AttributeError("Unknown format")
return method(path, **kwargs)
if cfg.params:
net_args = cfg.params.dict()
net_gen = net_args.pop("generator")
def from_params(generator, dir_path: str = None, **params):
if dir_path not in sys.path:
sys.path.append(dir_path)
method = serialization.deserializer(
net_gen,
generator,
known_modules=[
"networkx.generators",
],
)
return method(**net_args)
if isinstance(cfg.fixed, config.Topology):
cfg = cfg.fixed.dict()
if isinstance(cfg, str) or isinstance(cfg, dict):
return nx.json_graph.node_link_graph(cfg)
return nx.Graph()
return method(**params)
def find_unassigned(G, shuffle=False, random=random):
@@ -59,7 +59,6 @@ def find_unassigned(G, shuffle=False, random=random):
If node_id is None, a node without an agent_id will be found.
"""
# TODO: test
candidates = list(G.nodes(data=True))
if shuffle:
random.shuffle(candidates)

32
soil/parameters.py Normal file
View File

@@ -0,0 +1,32 @@
from __future__ import annotations
from typing_extensions import Annotated
import annotated_types
from typing import *
from dataclasses import dataclass
class Parameter:
pass
def floatrange(
*,
gt: Optional[float] = None,
ge: Optional[float] = None,
lt: Optional[float] = None,
le: Optional[float] = None,
multiple_of: Optional[float] = None,
) -> type[float]:
return Annotated[
float,
annotated_types.Interval(gt=gt, ge=ge, lt=lt, le=le),
annotated_types.MultipleOf(multiple_of) if multiple_of is not None else None,
]
function = Annotated[Callable, Parameter]
Integer = Annotated[int, Parameter]
Float = Annotated[float, Parameter]
probability = floatrange(ge=0, le=1)

View File

@@ -4,14 +4,15 @@ import ast
import sys
import re
import importlib
import importlib.machinery, importlib.util
from glob import glob
from itertools import product, chain
from .config import Config
import yaml
import networkx as nx
from . import config
from jinja2 import Template
@@ -90,23 +91,55 @@ def load_files(*patterns, **kwargs):
for i in glob(pattern, **kwargs, recursive=True):
for cfg in load_file(i):
path = os.path.abspath(i)
yield Config.from_raw(cfg), path
yield cfg, path
def load_config(cfg):
if isinstance(cfg, Config):
yield cfg, os.getcwd()
elif isinstance(cfg, dict):
yield Config.from_raw(cfg), os.getcwd()
if isinstance(cfg, dict):
yield config.load_config(cfg), os.getcwd()
else:
yield from load_files(cfg)
builtins = importlib.import_module("builtins")
KNOWN_MODULES = [
"soil",
]
KNOWN_MODULES = {
'soil': None,
}
MODULE_FILES = {}
def add_source_file(file):
"""Add a file to the list of known modules"""
file = os.path.abspath(file)
if file in MODULE_FILES:
logger.warning(f"File {file} already added as module {MODULE_FILES[file]}. Reloading")
remove_source_file(file)
modname = f"imported_module_{len(MODULE_FILES)}"
loader = importlib.machinery.SourceFileLoader(modname, file)
spec = importlib.util.spec_from_loader(loader.name, loader)
my_module = importlib.util.module_from_spec(spec)
loader.exec_module(my_module)
MODULE_FILES[file] = modname
KNOWN_MODULES[modname] = my_module
def remove_source_file(file):
"""Remove a file from the list of known modules"""
file = os.path.abspath(file)
modname = None
try:
modname = MODULE_FILES.pop(file)
KNOWN_MODULES.pop(modname)
except KeyError as ex:
raise ValueError(f"File {file} had not been added as a module: {ex}")
def get_module(modname):
"""Get a module from the list of known modules"""
if modname not in KNOWN_MODULES or KNOWN_MODULES[modname] is None:
module = importlib.import_module(modname)
KNOWN_MODULES[modname] = module
return KNOWN_MODULES[modname]
def name(value, known_modules=KNOWN_MODULES):
@@ -124,9 +157,7 @@ def name(value, known_modules=KNOWN_MODULES):
if known_modules and modname in known_modules:
return tname
for kmod in known_modules:
if not kmod:
continue
module = importlib.import_module(kmod)
module = get_module(kmod)
if hasattr(module, tname):
return tname
return "{}.{}".format(modname, tname)
@@ -146,7 +177,10 @@ def serialize(v, known_modules=KNOWN_MODULES):
def serialize_dict(d, known_modules=KNOWN_MODULES):
try:
d = dict(d)
except (ValueError, TypeError) as ex:
return serialize(d)[0]
for (k, v) in d.items():
if isinstance(v, dict):
d[k] = serialize_dict(v, known_modules=known_modules)
@@ -174,7 +208,7 @@ def deserializer(type_, known_modules=KNOWN_MODULES):
match = IS_CLASS.match(type_)
if match:
modname, tname = match.group(1).rsplit(".", 1)
module = importlib.import_module(modname)
module = get_module(modname)
cls = getattr(module, tname)
return getattr(cls, "deserialize", cls)
@@ -192,7 +226,7 @@ def deserializer(type_, known_modules=KNOWN_MODULES):
errors = []
for modname, tname in options:
try:
module = importlib.import_module(modname)
module = get_module(modname)
cls = getattr(module, tname)
return getattr(cls, "deserialize", cls)
except (ImportError, AttributeError) as ex:
@@ -221,8 +255,6 @@ def deserialize(type_, value=None, globs=None, **kwargs):
def deserialize_all(names, *args, known_modules=KNOWN_MODULES, **kwargs):
"""Return the list of deserialized objects"""
# TODO: remove
print("SERIALIZATION", kwargs)
objects = []
for name in names:
mod = deserialize(name, known_modules=known_modules)

View File

@@ -10,37 +10,74 @@ import networkx as nx
from textwrap import dedent
from dataclasses import dataclass, field, asdict
from dataclasses import dataclass, field, asdict, replace
from typing import Any, Dict, Union, Optional, List
from networkx.readwrite import json_graph
from functools import partial
from contextlib import contextmanager
import pickle
from . import serialization, exporters, utils, basestring, agents
from .environment import Environment
from .utils import logger, run_and_return_exceptions
from .config import Config, convert_old
from .debugging import set_trace
_AVOID_RUNNING = False
_QUEUED = []
@contextmanager
def do_not_run():
global _AVOID_RUNNING
_AVOID_RUNNING = True
try:
logger.debug("NOT RUNNING")
yield
finally:
logger.debug("RUNNING AGAIN")
_AVOID_RUNNING = False
def _iter_queued():
while _QUEUED:
(cls, args, kwargs) = _QUEUED.pop(0)
yield replace(cls, **kwargs)
# TODO: change documentation for simulation
@dataclass
class Simulation:
"""
Parameters
---------
config (optional): :class:`config.Config`
name of the Simulation
A simulation is a collection of agents and a model. It is responsible for running the model and agents, and collecting data from them.
kwargs: parameters to use to initialize a new configuration, if one not been provided.
Args:
version: The version of the simulation. This is used to determine how to load the simulation.
name: The name of the simulation.
description: A description of the simulation.
group: The group that the simulation belongs to.
model: The model to use for the simulation. This can be a string or a class.
model_params: The parameters to pass to the model.
seed: The seed to use for the simulation.
dir_path: The directory path to use for the simulation.
max_time: The maximum time to run the simulation.
max_steps: The maximum number of steps to run the simulation.
interval: The interval to use for the simulation.
num_trials: The number of trials (times) to run the simulation.
num_processes: The number of processes to use for the simulation. If greater than one, simulations will be performed in parallel. This may make debugging and error handling difficult.
tables: The tables to use in the simulation datacollector
agent_reporters: The agent reporters to use in the datacollector
model_reporters: The model reporters to use in the datacollector
dry_run: Whether or not to run the simulation. If True, the simulation will not be run.
source_file: Python file to use to find additional classes.
"""
version: str = "2"
name: str = "Unnamed simulation"
source_file: Optional[str] = None
name: Optional[str] = None
description: Optional[str] = ""
group: str = None
model_class: Union[str, type] = "soil.Environment"
model: Union[str, type] = "soil.Environment"
model_params: dict = field(default_factory=dict)
seed: str = field(default_factory=lambda: current_time())
dir_path: str = field(default_factory=lambda: os.getcwd())
@@ -48,28 +85,25 @@ class Simulation:
max_steps: int = -1
interval: int = 1
num_trials: int = 1
parallel: Optional[bool] = None
exporters: Optional[List[str]] = field(default_factory=list)
num_processes: Optional[int] = 1
exporters: Optional[List[str]] = field(default_factory=lambda: [exporters.default])
model_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
agent_reporters: Optional[Dict[str, Any]] = field(default_factory=dict)
tables: Optional[Dict[str, Any]] = field(default_factory=dict)
outdir: Optional[str] = None
exporter_params: Optional[Dict[str, Any]] = field(default_factory=dict)
dry_run: bool = False
dump: bool = False
extra: Dict[str, Any] = field(default_factory=dict)
skip_test: Optional[bool] = False
debug: Optional[bool] = False
@classmethod
def from_dict(cls, env, **kwargs):
ignored = {
k: v for k, v in env.items() if k not in inspect.signature(cls).parameters
}
d = {k: v for k, v in env.items() if k not in ignored}
if ignored:
d.setdefault("extra", {}).update(ignored)
if ignored:
print(f'Warning: Ignoring these parameters (added to "extra"): { ignored }')
d.update(kwargs)
return cls(**d)
def __post_init__(self):
if self.name is None:
if isinstance(self.model, str):
self.name = self.model
else:
self.name = self.model.__class__.__name__
def run_simulation(self, *args, **kwargs):
return self.run(*args, **kwargs)
@@ -85,12 +119,16 @@ class Simulation:
)
+ self.to_yaml()
)
return list(self.run_gen(*args, **kwargs))
if _AVOID_RUNNING:
_QUEUED.append((self, args, kwargs))
return []
return list(self._run_gen(*args, **kwargs))
def run_gen(
def _run_gen(
self,
parallel=False,
num_processes=1,
dry_run=None,
dump=None,
exporters=None,
outdir=None,
exporter_params={},
@@ -105,6 +143,8 @@ class Simulation:
logger.info("Output directory: %s", outdir)
if dry_run is None:
dry_run = self.dry_run
if dump is None:
dump = self.dump
if exporters is None:
exporters = self.exporters
if not exporter_params:
@@ -116,25 +156,37 @@ class Simulation:
known_modules=[
"soil.exporters",
],
dry_run=dry_run,
dump=dump and not dry_run,
outdir=outdir,
**exporter_params,
)
if self.source_file:
source_file = self.source_file
if not os.path.isabs(source_file):
source_file = os.path.abspath(os.path.join(self.dir_path, source_file))
serialization.add_source_file(source_file)
try:
with utils.timer("simulation {}".format(self.name)):
for exporter in exporters:
exporter.sim_start()
if dry_run:
def func(*args, **kwargs):
return None
else:
func = self.run_trial
for env in utils.run_parallel(
func=self.run_trial,
iterable=range(int(self.num_trials)),
parallel=parallel,
num_processes=num_processes,
log_level=log_level,
**kwargs,
):
for exporter in exporters:
exporter.trial_start(env)
if env is None and dry_run:
continue
for exporter in exporters:
exporter.trial_end(env)
@@ -143,6 +195,11 @@ class Simulation:
for exporter in exporters:
exporter.sim_end()
finally:
pass
# TODO: reintroduce
# if self.source_file:
# serialization.remove_source_file(self.source_file)
def get_env(self, trial_id=0, model_params=None, **kwargs):
"""Create an environment for a trial of the simulation"""
@@ -158,16 +215,22 @@ class Simulation:
params.update(model_params)
params.update(kwargs)
agent_reporters = deserialize_reporters(params.pop("agent_reporters", {}))
model_reporters = deserialize_reporters(params.pop("model_reporters", {}))
agent_reporters = self.agent_reporters.copy()
agent_reporters.update(deserialize_reporters(params.pop("agent_reporters", {})))
model_reporters = self.model_reporters.copy()
model_reporters.update(deserialize_reporters(params.pop("model_reporters", {})))
tables = self.tables.copy()
tables.update(deserialize_reporters(params.pop("tables", {})))
env = serialization.deserialize(self.model_class)
env = serialization.deserialize(self.model)
return env(
id=f"{self.name}_trial_{trial_id}",
seed=f"{self.seed}_trial_{trial_id}",
dir_path=self.dir_path,
interval=self.interval,
agent_reporters=agent_reporters,
model_reporters=model_reporters,
tables=tables,
**params,
)
@@ -201,6 +264,9 @@ class Simulation:
def is_done():
return prev() or model.schedule.time >= until
if not model.schedule.agents:
raise Exception("No agents in model. This is probably a bug. Make sure that the model has agents scheduled after its initialization.")
if self.max_steps and self.max_steps > 0 and hasattr(model.schedule, "steps"):
prev_steps = is_done
@@ -212,47 +278,52 @@ class Simulation:
dedent(
f"""
Model stats:
Agents (total: { model.schedule.get_agent_count() }):
- { (newline + ' - ').join(str(a) for a in model.schedule.agents) }
Agent count: { model.schedule.get_agent_count() }):
Topology size: { len(model.G) if hasattr(model, "G") else 0 }
"""
)
)
if self.debug:
set_trace()
while not is_done():
utils.logger.debug(
f'Simulation time {model.schedule.time}/{until}. Next: {getattr(model.schedule, "next_time", model.schedule.time + self.interval)}'
f'Simulation time {model.schedule.time}/{until}.'
)
model.step()
if (
model.schedule.time < until
): # Simulation ended (no more steps) before the expected time
model.schedule.time = until
return model
def to_dict(self):
d = asdict(self)
if not isinstance(d["model_class"], str):
d["model_class"] = serialization.name(d["model_class"])
d["model_params"] = serialization.serialize_dict(d["model_params"])
d["dir_path"] = str(d["dir_path"])
d["version"] = "2"
return d
return serialization.serialize_dict(d)
def to_yaml(self):
return yaml.dump(self.to_dict())
def iter_from_file(*files, **kwargs):
for f in files:
try:
yield from iter_from_py(f, **kwargs)
except ValueError as ex:
yield from iter_from_config(f, **kwargs)
def from_file(*args, **kwargs):
return list(iter_from_file(*args, **kwargs))
def iter_from_config(*cfgs, **kwargs):
for config in cfgs:
configs = list(serialization.load_config(config))
for config, path in configs:
d = dict(config)
d.update(kwargs)
if "dir_path" not in d:
d["dir_path"] = os.path.dirname(path)
yield Simulation.from_dict(d, **kwargs)
yield Simulation(**d)
def from_config(conf_or_path):
@@ -262,7 +333,47 @@ def from_config(conf_or_path):
return lst[0]
def run_from_config(*configs, **kwargs):
for sim in iter_from_config(*configs):
def iter_from_py(pyfile, module_name='custom_simulation', **kwargs):
"""Try to load every Simulation instance in a given Python file"""
import importlib
import inspect
added = False
sims = []
assert not _AVOID_RUNNING
with do_not_run():
assert _AVOID_RUNNING
spec = importlib.util.spec_from_file_location(module_name, pyfile)
folder = os.path.dirname(pyfile)
if folder not in sys.path:
added = True
sys.path.append(folder)
if not spec:
raise ValueError(f"{pyfile} does not seem to be a Python module")
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
for (_name, sim) in inspect.getmembers(module, lambda x: isinstance(x, Simulation)):
sims.append(sim)
for sim in _iter_queued():
sims.append(sim)
if not sims:
for (_name, sim) in inspect.getmembers(module, lambda x: inspect.isclass(x) and issubclass(x, Simulation)):
sims.append(sim(**kwargs))
del sys.modules[module_name]
assert not _AVOID_RUNNING
if not sims:
raise AttributeError(f"No valid configurations found in {pyfile}")
if added:
sys.path.remove(folder)
for sim in sims:
yield replace(sim, **kwargs)
def from_py(pyfile):
return next(iter_from_py(pyfile))
def run_from_file(*files, **kwargs):
for sim in iter_from_file(*files):
logger.info(f"Using config(s): {sim.name}")
sim.run_simulation(**kwargs)

View File

@@ -1,10 +1,11 @@
from mesa.time import BaseScheduler
from queue import Empty
from heapq import heappush, heappop, heapify
from heapq import heappush, heappop
import math
from inspect import getsource
from numbers import Number
from textwrap import dedent
from .utils import logger
from mesa import Agent as MesaAgent
@@ -23,65 +24,11 @@ class When:
return time
self._time = time
def next(self, time):
def abs(self, time):
return self._time
def abs(self, time):
return self
def __repr__(self):
return str(f"When({self._time})")
def __lt__(self, other):
if isinstance(other, Number):
return self._time < other
return self._time < other.next(self._time)
def __gt__(self, other):
if isinstance(other, Number):
return self._time > other
return self._time > other.next(self._time)
def ready(self, agent):
return self._time <= agent.model.schedule.time
def return_value(self, agent):
return None
class Cond(When):
def __init__(self, func, delta=1, return_func=lambda agent: None):
self._func = func
self._delta = delta
self._checked = False
self._return_func = return_func
def next(self, time):
if self._checked:
return time + self._delta
return time
def abs(self, time):
return self
def ready(self, agent):
self._checked = True
return self._func(agent)
def return_value(self, agent):
return self._return_func(agent)
def __eq__(self, other):
return False
def __lt__(self, other):
return True
def __gt__(self, other):
return False
def __repr__(self):
return str(f'Cond("{getsource(self._func)}")')
def schedule_next(self, time, delta, first=False):
return (self._time, None)
NEVER = When(INFINITY)
@@ -91,48 +38,95 @@ class Delta(When):
def __init__(self, delta):
self._delta = delta
def abs(self, time):
return self._time + self._delta
def __eq__(self, other):
if isinstance(other, Delta):
return self._delta == other._delta
return False
def abs(self, time):
return When(self._delta + time)
def next(self, time):
return time + self._delta
def schedule_next(self, time, delta, first=False):
return (time + self._delta, None)
def __repr__(self):
return str(f"Delta({self._delta})")
class BaseCond:
def __init__(self, msg=None, delta=None, eager=False):
self._msg = msg
self._delta = delta
self.eager = eager
def schedule_next(self, time, delta, first=False):
if first and self.eager:
return (time, self)
if self._delta:
delta = self._delta
return (time + delta, self)
def return_value(self, agent):
return None
def __repr__(self):
return self._msg or self.__class__.__name__
class Cond(BaseCond):
def __init__(self, func, *args, **kwargs):
self._func = func
super().__init__(*args, **kwargs)
def ready(self, agent, time):
return self._func(agent)
def __repr__(self):
if self._msg:
return self._msg
return str(f'Cond("{dedent(getsource(self._func)).strip()}")')
class TimedActivation(BaseScheduler):
"""A scheduler which activates each agent when the agent requests.
In each activation, each agent will update its 'next_time'.
"""
def __init__(self, *args, **kwargs):
def __init__(self, *args, shuffle=True, **kwargs):
super().__init__(*args, **kwargs)
self._next = {}
self._queue = []
self.next_time = 0
self._shuffle = shuffle
# self.step_interval = getattr(self.model, "interval", 1)
self.step_interval = self.model.interval
self.logger = logger.getChild(f"time_{ self.model }")
def add(self, agent: MesaAgent, when=None):
if when is None:
when = When(self.time)
elif not isinstance(when, When):
when = When(when)
if agent.unique_id in self._agents:
del self._agents[agent.unique_id]
if agent.unique_id in self._next:
self._queue.remove((self._next[agent.unique_id], agent))
heapify(self._queue)
when = self.time
elif isinstance(when, When):
when = when.abs()
self._next[agent.unique_id] = when
heappush(self._queue, (when, agent))
self._schedule(agent, None, when)
super().add(agent)
def _schedule(self, agent, condition=None, when=None):
if condition:
if not when:
when, condition = condition.schedule_next(
when or self.time, self.step_interval
)
else:
if when is None:
when = self.time + self.step_interval
condition = None
if self._shuffle:
key = (when, self.model.random.random(), condition)
else:
key = (when, agent.unique_id, condition)
self._next[agent.unique_id] = key
heappush(self._queue, (key, agent))
def step(self) -> None:
"""
Executes agents in order, one at a time. After each step,
@@ -140,76 +134,75 @@ class TimedActivation(BaseScheduler):
"""
self.logger.debug(f"Simulation step {self.time}")
if not self.model.running:
if not self.model.running or self.time == INFINITY:
return
when = NEVER
to_process = []
skipped = []
next_time = INFINITY
ix = 0
self.logger.debug(f"Queue length: {len(self._queue)}")
self.logger.debug(f"Queue length: %s", len(self._queue))
while self._queue:
(when, agent) = self._queue[0]
((when, _id, cond), agent) = self._queue[0]
if when > self.time:
break
heappop(self._queue)
if when.ready(agent):
if cond:
if not cond.ready(agent, self.time):
self._schedule(agent, cond)
continue
try:
agent._last_return = when.return_value(agent)
agent._last_return = cond.return_value(agent)
except Exception as ex:
agent._last_except = ex
else:
agent._last_return = None
agent._last_except = None
self.logger.debug("Stepping agent %s", agent)
self._next.pop(agent.unique_id, None)
to_process.append(agent)
continue
next_time = min(next_time, when.next(self.time))
self._next[agent.unique_id] = next_time
skipped.append((when, agent))
if self._queue:
next_time = min(next_time, self._queue[0][0].next(self.time))
self._queue = [*skipped, *self._queue]
for agent in to_process:
self.logger.debug(f"Stepping agent {agent}")
try:
returned = ((agent.step() or Delta(1))).abs(self.time)
returned = agent.step()
except DeadAgent:
if agent.unique_id in self._next:
del self._next[agent.unique_id]
agent.alive = False
continue
# Check status for MESA agents
if not getattr(agent, "alive", True):
continue
value = returned.next(self.time)
agent._last_return = value
if value < self.time:
raise Exception(
f"Cannot schedule an agent for a time in the past ({when} < {self.time})"
if returned:
next_check = returned.schedule_next(
self.time, self.step_interval, first=True
)
if value < INFINITY:
next_time = min(value, next_time)
self._next[agent.unique_id] = returned
heappush(self._queue, (returned, agent))
self._schedule(agent, when=next_check[0], condition=next_check[1])
else:
assert not self._next[agent.unique_id]
next_check = (self.time + self.step_interval, None)
self._schedule(agent)
self.steps += 1
self.logger.debug(f"Updating time step: {self.time} -> {next_time}")
self.time = next_time
if not self._queue or next_time == INFINITY:
if not self._queue:
self.time = INFINITY
self.model.running = False
return self.time
next_time = self._queue[0][0][0]
if next_time < self.time:
raise Exception(
f"An agent has been scheduled for a time in the past, there is probably an error ({when} < {self.time})"
)
self.logger.debug(f"Updating time step: {self.time} -> {next_time}")
self.time = next_time
class ShuffledTimedActivation(TimedActivation):
def __init__(self, *args, **kwargs):
super().__init__(*args, shuffle=True, **kwargs)
class OrderedTimedActivation(TimedActivation):
def __init__(self, *args, **kwargs):
super().__init__(*args, shuffle=False, **kwargs)

View File

@@ -5,7 +5,7 @@ import traceback
from functools import partial
from shutil import copyfile, move
from multiprocessing import Pool
from multiprocessing import Pool, cpu_count
from contextlib import contextmanager
@@ -24,7 +24,7 @@ consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logging.basicConfig(
level=logging.INFO,
level=logging.DEBUG,
handlers=[
consoleHandler,
],
@@ -140,9 +140,11 @@ def run_and_return_exceptions(func, *args, **kwargs):
return ex
def run_parallel(func, iterable, parallel=False, **kwargs):
if parallel and not os.environ.get("SOIL_DEBUG", None):
p = Pool()
def run_parallel(func, iterable, num_processes=1, **kwargs):
if num_processes > 1 and not os.environ.get("SOIL_DEBUG", None):
if num_processes < 1:
num_processes = cpu_count() - num_processes
p = Pool(processes=num_processes)
wrapped_func = partial(run_and_return_exceptions, func, **kwargs)
for i in p.imap_unordered(wrapped_func, iterable):
if isinstance(i, Exception):

View File

@@ -1,6 +0,0 @@
from mesa.visualization.UserParam import UserSettableParameter
class UserSettableParameter(UserSettableParameter):
def __str__(self):
return self.value

View File

@@ -1,49 +0,0 @@
---
version: '2'
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
model_class: Environment
model_params:
topology:
params:
generator: complete_graph
n: 4
agents:
agent_class: CounterModel
state:
group: network
times: 1
topology: true
distribution:
- agent_class: CounterModel
weight: 0.25
state:
state_id: 0
times: 1
- agent_class: AggregatedCounter
weight: 0.5
state:
times: 2
override:
- filter:
node_id: 1
state:
name: 'Node 1'
- filter:
node_id: 2
state:
name: 'Node 2'
fixed:
- agent_class: BaseAgent
hidden: true
topology: false
state:
name: 'Environment Agent 1'
times: 10
group: environment
am_i_complete: true

View File

@@ -1,37 +0,0 @@
---
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
network_params:
generator: complete_graph
n: 4
network_agents:
- agent_class: CounterModel
weight: 0.25
state:
state_id: 0
times: 1
- agent_class: AggregatedCounter
weight: 0.5
state:
times: 2
environment_agents:
- agent_id: 'Environment Agent 1'
agent_class: BaseAgent
state:
times: 10
environment_class: Environment
environment_params:
am_i_complete: true
agent_class: CounterModel
default_state:
times: 1
states:
1:
name: 'Node 1'
2:
name: 'Node 2'

View File

@@ -12,34 +12,36 @@ class Dead(agents.FSM):
return self.die()
class TestMain(TestCase):
class TestAgents(TestCase):
def test_die_returns_infinity(self):
'''The last step of a dead agent should return time.INFINITY'''
"""The last step of a dead agent should return time.INFINITY"""
d = Dead(unique_id=0, model=environment.Environment())
ret = d.step().abs(0)
print(ret, "next")
ret = d.step()
assert ret == stime.NEVER
def test_die_raises_exception(self):
'''A dead agent should raise an exception if it is stepped after death'''
"""A dead agent should raise an exception if it is stepped after death"""
d = Dead(unique_id=0, model=environment.Environment())
assert d.alive
d.step()
assert not d.alive
with pytest.raises(stime.DeadAgent):
d.step()
def test_agent_generator(self):
'''
"""
The step function of an agent could be a generator. In that case, the state of the
agent will be resumed after every call to step.
'''
"""
a = 0
class Gen(agents.BaseAgent):
def step(self):
nonlocal a
for i in range(5):
yield
a += 1
e = environment.Environment()
g = Gen(model=e, unique_id=e.next_id())
e.schedule.add(g)
@@ -51,8 +53,9 @@ class TestMain(TestCase):
def test_state_decorator(self):
class MyAgent(agents.FSM):
run = 0
@agents.default_state
@agents.state('original')
@agents.state("original")
def root(self):
self.run += 1
return self.other
@@ -66,4 +69,109 @@ class TestMain(TestCase):
a.step()
assert a.run == 1
a.step()
assert a.run == 2
def test_broadcast(self):
"""
An agent should be able to broadcast messages to every other agent, AND each receiver should be able
to process it
"""
class BCast(agents.Evented):
pings_received = 0
def step(self):
print(self.model.broadcast)
try:
self.model.broadcast("PING")
except Exception as ex:
print(ex)
while True:
self.check_messages()
yield
def on_receive(self, msg, sender=None):
self.pings_received += 1
e = environment.EventedEnvironment()
for i in range(10):
e.add_agent(agent_class=BCast)
e.step()
pings_received = lambda: [a.pings_received for a in e.agents]
assert sorted(pings_received()) == list(range(1, 11))
e.step()
assert all(x == 10 for x in pings_received())
def test_ask_messages(self):
"""
An agent should be able to ask another agent, and wait for a response.
"""
# There are two agents, they try to send pings
# This is arguably a very contrived example.
# There should be a delay of one step between agent 0 and 1
# On the first step:
# Agent 0 sends a PING, but blocks before a PONG
# Agent 1 detects the PING, responds with a PONG, and blocks after its own PING
# After that step, every agent can both receive (there are pending messages) and send.
# In each step, for each agent, one message is sent, and another one is received
# (although not necessarily in that order).
# Results depend on ordering (agents are normally shuffled)
# so we force the timedactivation not to be shuffled
pings = []
pongs = []
responses = []
class Ping(agents.EventedAgent):
def step(self):
target_id = (self.unique_id + 1) % self.count_agents()
target = self.model.agents[target_id]
print("starting")
while True:
if pongs or not pings: # First agent, or anyone after that
pings.append(self.now)
response = yield target.ask("PING")
responses.append(response)
else:
print("NOT sending ping")
print("Checking msgs")
# Do not block if we have already received a PING
if not self.check_messages():
yield self.received()
print("done")
def on_receive(self, msg, sender=None):
if msg == "PING":
pongs.append(self.now)
return "PONG"
raise Exception("This should never happen")
e = environment.EventedEnvironment(schedule_class=stime.OrderedTimedActivation)
for i in range(2):
e.add_agent(agent_class=Ping)
assert e.now == 0
for i in range(5):
e.step()
time = i + 1
assert e.now == time
assert len(pings) == 2 * time
assert len(pongs) == (2 * time) - 1
# Every step between 0 and t appears twice
assert sum(pings) == sum(range(time)) * 2
# It is the same as pings, without the leading 0
assert sum(pongs) == sum(range(time)) * 2
def test_agent_filter(self):
e = environment.Environment()
e.add_agent(agent_class=agents.BaseAgent)
e.add_agent(agent_class=agents.Evented)
base = list(e.agents(agent_class=agents.BaseAgent))
assert len(base) == 2
ev = list(e.agents(agent_class=agents.Evented))
assert len(ev) == 1
assert ev[0].unique_id == 1
null = list(e.agents(unique_ids=[0, 1], agent_class=agents.NetworkAgent))
assert not null

View File

@@ -1,4 +1,4 @@
from unittest import TestCase
from unittest import TestCase, skip
import os
import yaml
import copy
@@ -23,85 +23,18 @@ def isequal(a, b):
assert a == b
# @skip("new versions of soil do not rely on configuration files")
class TestConfig(TestCase):
def test_conversion(self):
expected = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
old = serialization.load_file(join(ROOT, "old_complete.yml"))[0]
converted_defaults = config.convert_old(old, strict=False)
converted = converted_defaults.dict(exclude_unset=True)
isequal(converted, expected)
def test_configuration_changes(self):
"""
The configuration should not change after running
the simulation.
"""
config = serialization.load_file(join(EXAMPLES, "complete.yml"))[0]
s = simulation.from_config(config)
init_config = copy.copy(s.to_dict())
s.run_simulation(dry_run=True)
nconfig = s.to_dict()
# del nconfig['to
isequal(init_config, nconfig)
def test_topology_config(self):
netconfig = config.NetConfig(**{"path": join(ROOT, "test.gexf")})
net = network.from_config(netconfig, dir_path=ROOT)
assert len(net.nodes) == 2
assert len(net.edges) == 1
def test_env_from_config(self):
"""
Simple configuration that tests that the graph is loaded, and that
network agents are initialized properly.
"""
cfg = {
"name": "CounterAgent",
"network_params": {"path": join(ROOT, "test.gexf")},
"agent_class": "CounterModel",
# 'states': [{'times': 10}, {'times': 20}],
"max_time": 2,
"dry_run": True,
"num_trials": 1,
"environment_params": {},
}
conf = config.convert_old(cfg)
s = simulation.from_config(conf)
env = s.get_env()
assert len(env.G.nodes) == 2
assert len(env.G.edges) == 1
assert len(env.agents) == 2
assert env.agents[0].G == env.G
def test_agents_from_config(self):
"""We test that the known complete configuration produces
the right agents in the right groups"""
cfg = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
s = simulation.from_config(cfg)
env = s.get_env()
assert len(env.G.nodes) == 4
assert len(env.agents(group="network")) == 4
assert len(env.agents(group="environment")) == 1
def test_yaml(self):
"""
The YAML version of a newly created configuration should be equivalent
to the configuration file used.
Values not present in the original config file should have reasonable
defaults.
"""
with utils.timer("loading"):
config = serialization.load_file(join(EXAMPLES, "complete.yml"))[0]
s = simulation.from_config(config)
with utils.timer("serializing"):
serial = s.to_yaml()
with utils.timer("recovering"):
recovered = yaml.load(serial, Loader=yaml.SafeLoader)
for (k, v) in config.items():
assert recovered[k] == v
def test_torvalds_config(self):
sim = simulation.from_config(os.path.join(ROOT, "test_config.yml"))
assert sim.interval == 2
envs = sim.run()
assert len(envs) == 1
env = envs[0]
assert env.interval == 2
assert env.count_agents() == 3
assert env.now == 20
def make_example_test(path, cfg):
@@ -109,24 +42,23 @@ def make_example_test(path, cfg):
root = os.getcwd()
print(path)
s = simulation.from_config(cfg)
# for s in simulation.all_from_config(path):
# iterations = s.config.max_time * s.config.num_trials
# if iterations > 1000:
# s.config.max_time = 100
# s.config.num_trials = 1
# if config.get('skip_test', False) and not FORCE_TESTS:
# self.skipTest('Example ignored.')
# envs = s.run_simulation(dry_run=True)
# assert envs
# for env in envs:
# assert env
# try:
# n = config['network_params']['n']
# assert len(list(env.network_agents)) == n
# assert env.now > 0 # It has run
# assert env.now <= config['max_time'] # But not further than allowed
# except KeyError:
# pass
iterations = s.max_time * s.num_trials
if iterations > 1000:
s.max_time = 100
s.num_trials = 1
if cfg.skip_test and not FORCE_TESTS:
self.skipTest('Example ignored.')
envs = s.run_simulation(dump=False)
assert envs
for env in envs:
assert env
try:
n = cfg.model_params['topology']['params']['n']
assert len(list(env.network_agents)) == n
assert env.now > 0 # It has run
assert env.now <= cfg.max_time # But not further than allowed
except KeyError:
pass
return wrapped

5
tests/test_config.yml Normal file
View File

@@ -0,0 +1,5 @@
---
source_file: "../examples/torvalds_sim.py"
model: "TorvaldsEnv"
max_steps: 10
interval: 2

View File

@@ -1,8 +1,12 @@
from unittest import TestCase
from unittest.case import SkipTest
import os
from os.path import join
from glob import glob
from soil import serialization, simulation, config
from soil import simulation
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, "..", "examples")
@@ -11,45 +15,63 @@ FORCE_TESTS = os.environ.get("FORCE_TESTS", "")
class TestExamples(TestCase):
"""Empty class that will be populated with auto-discovery tests for every example"""
pass
def make_example_test(path, cfg):
def wrapped(self):
def get_test_for_sims(sims, path):
root = os.getcwd()
for s in simulation.iter_from_config(cfg):
iterations = s.max_steps * s.num_trials
def wrapped(self):
run = False
for sim in sims:
if sim.skip_test and not FORCE_TESTS:
continue
run = True
iterations = sim.max_steps * sim.num_trials
if iterations < 0 or iterations > 1000:
s.max_steps = 100
s.num_trials = 1
assert isinstance(cfg, config.Config)
if getattr(cfg, "skip_test", False) and not FORCE_TESTS:
self.skipTest("Example ignored.")
envs = s.run_simulation(dry_run=True)
sim.max_steps = 100
sim.num_trials = 1
envs = sim.run_simulation(dump=False)
assert envs
for env in envs:
assert env
assert env.now > 0
try:
n = cfg.model_params["network_params"]["n"]
n = sim.model_params["network_params"]["n"]
assert len(list(env.network_agents)) == n
except KeyError:
pass
assert env.schedule.steps > 0 # It has run
assert env.schedule.steps <= s.max_steps # But not further than allowed
assert env.schedule.steps <= sim.max_steps # But not further than allowed
if not run:
raise SkipTest("Example ignored because all simulations are set up to be skipped.")
return wrapped
def add_example_tests():
for cfg, path in serialization.load_files(
join(EXAMPLES, "**", "*.yml"),
):
p = make_example_test(path=path, cfg=config.Config.from_raw(cfg))
sim_paths = {}
for path in glob(join(EXAMPLES, '**', '*.yml')):
if "soil_output" in path:
continue
if path not in sim_paths:
sim_paths[path] = []
for sim in simulation.iter_from_config(path):
sim_paths[path].append(sim)
for path in glob(join(EXAMPLES, '**', '*_sim.py')):
if path not in sim_paths:
sim_paths[path] = []
for sim in simulation.iter_from_py(path):
sim_paths[path].append(sim)
for (path, sims) in sim_paths.items():
test_case = get_test_for_sims(sims, path)
fname = os.path.basename(path)
p.__name__ = "test_example_file_%s" % fname
p.__doc__ = "%s should be a valid configuration" % fname
setattr(TestExamples, p.__name__, p)
del p
test_case.__name__ = "test_example_file_%s" % fname
test_case.__doc__ = "%s should be a valid configuration" % fname
setattr(TestExamples, test_case.__name__, test_case)
del test_case
add_example_tests()

View File

@@ -6,9 +6,12 @@ import sqlite3
from unittest import TestCase
from soil import exporters
from soil import environment
from soil import simulation
from soil import agents
from mesa import Agent as MesaAgent
class Dummy(exporters.Exporter):
started = False
@@ -38,17 +41,17 @@ class Exporters(TestCase):
def test_basic(self):
# We need to add at least one agent to make sure the scheduler
# ticks every step
class SimpleEnv(environment.Environment):
def init(self):
self.add_agent(agent_class=MesaAgent)
num_trials = 5
max_time = 2
config = {
"name": "exporter_sim",
"model_params": {"agents": [{"agent_class": agents.BaseAgent}]},
"max_time": max_time,
"num_trials": num_trials,
}
s = simulation.from_config(config)
s = simulation.Simulation(num_trials=num_trials, max_time=max_time, name="exporter_sim",
dump=False, model=SimpleEnv)
for env in s.run_simulation(exporters=[Dummy], dry_run=True):
for env in s.run_simulation(exporters=[Dummy], dump=False):
assert len(env.agents) == 1
assert Dummy.started
@@ -60,16 +63,20 @@ class Exporters(TestCase):
assert Dummy.total_time == max_time * num_trials
def test_writing(self):
"""Try to write CSV, sqlite and YAML (without dry_run)"""
"""Try to write CSV, sqlite and YAML (without no_dump)"""
n_trials = 5
n_nodes = 4
max_time = 2
config = {
"name": "exporter_sim",
"network_params": {"generator": "complete_graph", "n": 4},
"model_params": {
"network_generator": "complete_graph",
"network_params": {"n": n_nodes},
"agent_class": "CounterModel",
"max_time": 2,
},
"max_time": max_time,
"num_trials": n_trials,
"dry_run": False,
"environment_params": {},
"dump": True,
}
output = io.StringIO()
s = simulation.from_config(config)
@@ -85,7 +92,7 @@ class Exporters(TestCase):
"constant": lambda x: 1,
},
},
dry_run=False,
dump=True,
outdir=tmpdir,
exporter_params={"copy_to": output},
)
@@ -98,12 +105,13 @@ class Exporters(TestCase):
try:
for e in envs:
db = sqlite3.connect(os.path.join(simdir, f"{s.name}.sqlite"))
dbpath = os.path.join(simdir, f"{s.name}.sqlite")
db = sqlite3.connect(dbpath)
cur = db.cursor()
agent_entries = cur.execute("SELECT * from agents").fetchall()
env_entries = cur.execute("SELECT * from env").fetchall()
assert len(agent_entries) > 0
assert len(env_entries) > 0
agent_entries = cur.execute("SELECT times FROM agents WHERE times > 0").fetchall()
env_entries = cur.execute("SELECT constant from env WHERE constant == 1").fetchall()
assert len(agent_entries) == n_nodes * n_trials * max_time
assert len(env_entries) == n_trials * max_time
with open(os.path.join(simdir, "{}.env.csv".format(e.id))) as f:
result = f.read()

View File

@@ -6,9 +6,11 @@ import networkx as nx
from functools import partial
from os.path import join
from soil import simulation, Environment, agents, network, serialization, utils, config
from soil import simulation, Environment, agents, network, serialization, utils, config, from_file
from soil.time import Delta
from mesa import Agent as MesaAgent
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, "..", "examples")
@@ -29,12 +31,13 @@ class TestMain(TestCase):
"""A simulation with a base behaviour should do nothing"""
config = {
"model_params": {
"network_params": {"path": join(ROOT, "test.gexf")},
"agent_class": "BaseAgent",
}
"topology": join(ROOT, "test.gexf"),
"agent_class": MesaAgent,
},
"max_time": 1
}
s = simulation.from_config(config)
s.run_simulation(dry_run=True)
s.run_simulation(dump=False)
def test_network_agent(self):
"""
@@ -62,46 +65,21 @@ class TestMain(TestCase):
"""
The initial states should be applied to the agent and the
agent should be able to update its state."""
config = {
"version": "2",
"name": "CounterAgent",
"dry_run": True,
"num_trials": 1,
"max_time": 2,
"model_params": {
"topology": {"path": join(ROOT, "test.gexf")},
"agents": {
"agent_class": "CounterModel",
"topology": True,
"fixed": [{"state": {"times": 10}}, {"state": {"times": 20}}],
},
},
}
s = simulation.from_config(config)
env = s.get_env()
assert isinstance(env.agents[0], agents.CounterModel)
assert env.agents[0].G == env.G
assert env.agents[0]["times"] == 10
env = Environment()
env.add_agent(agents.Ticker, times=10)
env.add_agent(agents.Ticker, times=20)
assert isinstance(env.agents[0], agents.Ticker)
assert env.agents[0]["times"] == 10
assert env.agents[1]["times"] == 20
env.step()
assert env.agents[0]["times"] == 11
assert env.agents[1]["times"] == 21
def test_init_and_count_agents(self):
"""Agents should be properly initialized and counting should filter them properly"""
# TODO: separate this test into two or more test cases
config = {
"max_time": 10,
"model_params": {
"agents": [
{"agent_class": CustomAgent, "weight": 1, "topology": True},
{"agent_class": CustomAgent, "weight": 3, "topology": True},
],
"topology": {"path": join(ROOT, "test.gexf")},
},
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
env = Environment(topology=join(ROOT, "test.gexf"))
env.populate_network([CustomAgent.w(weight=1), CustomAgent.w(weight=3)])
assert env.agents[0].weight == 1
assert env.count_agents() == 2
assert env.count_agents(weight=1) == 1
@@ -110,26 +88,28 @@ class TestMain(TestCase):
def test_torvalds_example(self):
"""A complete example from a documentation should work."""
config = serialization.load_file(join(EXAMPLES, "torvalds.yml"))[0]
config["model_params"]["network_params"]["path"] = join(
EXAMPLES, config["model_params"]["network_params"]["path"]
)
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
owd = os.getcwd()
pyfile = join(EXAMPLES, "torvalds_sim.py")
try:
os.chdir(os.path.dirname(pyfile))
s = simulation.from_py(pyfile)
env = s.run_simulation(dump=False)[0]
for a in env.network_agents:
skill_level = a.state["skill_level"]
if a.id == "Torvalds":
skill_level = a["skill_level"]
if a.node_id == "Torvalds":
assert skill_level == "God"
assert a.state["total"] == 3
assert a.state["neighbors"] == 2
elif a.id == "balkian":
assert a["total"] == 3
assert a["neighbors"] == 2
elif a.node_id == "balkian":
assert skill_level == "developer"
assert a.state["total"] == 3
assert a.state["neighbors"] == 1
assert a["total"] == 3
assert a["neighbors"] == 1
else:
assert skill_level == "beginner"
assert a.state["total"] == 3
assert a.state["neighbors"] == 1
assert a["total"] == 3
assert a["neighbors"] == 1
finally:
os.chdir(owd)
def test_serialize_class(self):
ser, name = serialization.serialize(agents.BaseAgent, known_modules=[])
@@ -166,31 +146,24 @@ class TestMain(TestCase):
assert ser == "BaseAgent"
pickle.dumps(ser)
def test_templates(self):
"""Loading a template should result in several configs"""
configs = serialization.load_file(join(EXAMPLES, "template.yml"))
assert len(configs) > 0
def test_until(self):
config = {
"name": "until_sim",
"model_params": {
"network_params": {},
"agents": {
"fixed": [
{
"agent_class": agents.BaseAgent,
}
]
},
},
"max_time": 2,
"num_trials": 50,
}
s = simulation.from_config(config)
runs = list(s.run_simulation(dry_run=True))
n_runs = 0
class CheckRun(agents.BaseAgent):
def step(self):
nonlocal n_runs
n_runs += 1
n_trials = 50
max_time = 2
s = simulation.Simulation(
model_params=dict(agents=dict(agent_classes=[CheckRun], k=1)),
num_trials=n_trials,
max_time=max_time,
)
runs = list(s.run_simulation(dump=False))
over = list(x.now for x in runs if x.now > 2)
assert len(runs) == config["num_trials"]
assert len(runs) == n_trials
assert len(over) == 0
def test_fsm(self):
@@ -231,3 +204,21 @@ class TestMain(TestCase):
assert when == 2
when = a.step()
assert when == Delta(a.interval)
def test_load_sim(self):
"""Make sure at least one of the examples can be loaded"""
sims = from_file(os.path.join(EXAMPLES, "newsspread", "newsspread_sim.py"))
assert len(sims) == 3*3*2
for sim in sims:
assert sim
assert sim.name == "newspread_sim"
assert sim.num_trials == 5
assert sim.max_steps == 300
assert not sim.dump
assert sim.model_params
assert "ratio_dumb" in sim.model_params
assert "ratio_herd" in sim.model_params
assert "ratio_wise" in sim.model_params
assert "network_generator" in sim.model_params
assert "network_params" in sim.model_params
assert "prob_neighbor_spread" in sim.model_params

View File

@@ -19,13 +19,11 @@ class TestNetwork(TestCase):
Load a graph from file if the extension is known.
Raise an exception otherwise.
"""
config = {"network_params": {"path": join(ROOT, "test.gexf")}}
G = network.from_config(config["network_params"])
G = network.from_topology(join(ROOT, "test.gexf"))
assert G
assert len(G) == 2
with self.assertRaises(AttributeError):
config = {"network_params": {"path": join(ROOT, "unknown.extension")}}
G = network.from_config(config["network_params"])
G = network.from_topology(join(ROOT, "unknown.extension"))
print(G)
def test_generate_barabasi(self):
@@ -33,12 +31,12 @@ class TestNetwork(TestCase):
If no path is given, a generator and network parameters
should be used to generate a network
"""
cfg = {"params": {"generator": "barabasi_albert_graph"}}
cfg = {"generator": "barabasi_albert_graph"}
with self.assertRaises(Exception):
G = network.from_config(cfg)
cfg["params"]["n"] = 100
cfg["params"]["m"] = 10
G = network.from_config(cfg)
G = network.from_params(**cfg)
cfg["n"] = 100
cfg["m"] = 10
G = network.from_params(**cfg)
assert len(G) == 100
def test_save_geometric(self):
@@ -54,56 +52,35 @@ class TestNetwork(TestCase):
def test_networkenvironment_creation(self):
"""Networkenvironment should accept netconfig as parameters"""
model_params = {
"topology": {"path": join(ROOT, "test.gexf")},
"agents": {
"topology": True,
"distribution": [
{
"agent_class": CustomAgent,
}
],
},
}
env = environment.Environment(**model_params)
env = environment.Environment(topology=join(ROOT, "test.gexf"))
env.populate_network(CustomAgent)
assert env.G
env.step()
assert len(env.G) == 2
assert len(env.agents) == 2
assert env.agents[1].count_agents(state_id="normal") == 2
assert env.agents[1].count_agents(state_id="normal", limit_neighbors=True) == 1
assert env.agents[0].neighbors == 1
assert env.agents[0].count_neighbors() == 1
def test_custom_agent_neighbors(self):
"""Allow for search of neighbors with a certain state_id"""
config = {
"model_params": {
"topology": {"path": join(ROOT, "test.gexf")},
"agents": {
"topology": True,
"distribution": [{"weight": 1, "agent_class": CustomAgent}],
},
},
"max_time": 10,
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
env = environment.Environment()
env.create_network(join(ROOT, "test.gexf"))
env.populate_network(CustomAgent)
assert env.agents[1].count_agents(state_id="normal") == 2
assert env.agents[1].count_agents(state_id="normal", limit_neighbors=True) == 1
assert env.agents[0].neighbors == 1
assert env.agents[0].count_neighbors() == 1
def test_subgraph(self):
"""An agent should be able to subgraph the global topology"""
G = nx.Graph()
G.add_node(3)
G.add_edge(1, 2)
distro = agents.calculate_distribution(agent_class=agents.NetworkAgent)
aconfig = config.AgentConfig(distribution=distro, topology=True)
env = environment.Environment(name="Test", topology=G, agents=aconfig)
lst = list(env.network_agents)
env = environment.Environment(name="Test", topology=G)
env.populate_network(agents.NetworkAgent)
a2 = env.find_one(node_id=2)
a3 = env.find_one(node_id=3)
a2 = env.agent(node_id=2)
a3 = env.agent(node_id=3)
assert len(a2.subgraph(limit_neighbors=True)) == 2
assert len(a3.subgraph(limit_neighbors=True)) == 1
assert len(a3.subgraph(limit_neighbors=True, center=False)) == 0

View File

@@ -2,11 +2,12 @@ from unittest import TestCase
from soil import time, agents, environment
class TestMain(TestCase):
def test_cond(self):
'''
"""
A condition should match a When if the concition is True
'''
"""
t = time.Cond(lambda t: True)
f = time.Cond(lambda t: False)
@@ -16,59 +17,59 @@ class TestMain(TestCase):
assert w is not f
def test_cond(self):
'''
"""
Comparing a Cond to a Delta should always return False
'''
"""
c = time.Cond(lambda t: False)
d = time.Delta(1)
assert c is not d
def test_cond_env(self):
'''
'''
""" """
times_started = []
times_awakened = []
times_asleep = []
times = []
done = 0
done = []
class CondAgent(agents.BaseAgent):
def step(self):
nonlocal done
times_started.append(self.now)
while True:
yield time.Cond(lambda agent: agent.model.schedule.time >= 10)
times_asleep.append(self.now)
yield time.Cond(lambda agent: agent.now >= 10, delta=2)
times_awakened.append(self.now)
if self.now >= 10:
break
done += 1
env = environment.Environment(agents=[{'agent_class': CondAgent}])
done.append(self.now)
env = environment.Environment()
env.add_agent(CondAgent)
while env.schedule.time < 11:
env.step()
times.append(env.now)
env.step()
assert env.schedule.time == 11
assert times_started == [0]
assert times_awakened == [10]
assert done == 1
assert done == [10]
# The first time will produce the Cond.
# Since there are no other agents, time will not advance, but the number
# of steps will.
assert env.schedule.steps == 12
assert len(times) == 12
assert env.schedule.steps == 6
assert len(times) == 6
while env.schedule.time < 12:
env.step()
while env.schedule.time < 13:
times.append(env.now)
env.step()
assert env.schedule.time == 12
assert times == [0, 2, 4, 6, 8, 10, 11]
assert env.schedule.time == 13
assert times_started == [0, 11]
assert times_awakened == [10, 11]
assert done == 2
assert times_awakened == [10]
assert done == [10]
# Once more to yield the cond, another one to continue
assert env.schedule.steps == 14
assert len(times) == 14
assert env.schedule.steps == 7
assert len(times) == 7