1
0
mirror of https://github.com/gsi-upm/soil synced 2025-10-20 02:08:29 +00:00

Compare commits

..

26 Commits

Author SHA1 Message Date
J. Fernando Sánchez
d3cee18635 Add seed to cars example 2022-10-20 14:47:28 +02:00
J. Fernando Sánchez
9a7b62e88e Release 0.30.0rc3 2022-10-20 14:12:34 +02:00
J. Fernando Sánchez
c09e480d37 black formatting 2022-10-20 14:12:10 +02:00
J. Fernando Sánchez
b2d48cb4df Add test cases for 'ASK' 2022-10-20 14:10:34 +02:00
J. Fernando Sánchez
a1262edd2a Refactored time
Treating time and conditions as the same entity was getting confusing, and it
added a lot of unnecessary abstraction in a critical part (the scheduler).

The scheduling queue now has the time as a floating number (faster), the agent
id (for ties) and the condition, as well as the agent. The first three
elements (time, id, condition) can be considered as the "key" for the event.

To allow for agent execution to be "randomized" within every step, a new
parameter has been added to the scheduler, which makes it add a random number to
the key in order to change the ordering.

`EventedAgent.received` now checks the messages before returning control to the
user by default.
2022-10-20 12:15:25 +02:00
J. Fernando Sánchez
cbbaf73538 Fix bug EventedEnvironment 2022-10-20 12:07:56 +02:00
J. Fernando Sánchez
2f5e5d0a74 Black formatting 2022-10-18 17:03:40 +02:00
J. Fernando Sánchez
a2fb25c160 Version 0.30.0rc2
* Fix CLI arguments not being used when easy is passed a simulation instance
* Docs for `examples/events_and_messages/cars.py`
2022-10-18 17:02:12 +02:00
J. Fernando Sánchez
5fcf610108 Version 0.30.0rc1 2022-10-18 15:02:05 +02:00
J. Fernando Sánchez
159c9a9077 Add events 2022-10-18 13:11:01 +02:00
J. Fernando Sánchez
3776c4e5c5 Refactor
* Removed references to `set_state`
* Split some functionality from `agents` into separate files (`fsm` and
`network_agents`)
* Rename `neighboring_agents` to `neighbors`
* Delete some spurious functions
2022-10-17 21:49:31 +02:00
J. Fernando Sánchez
880a9f2a1c black formatting 2022-10-17 20:23:57 +02:00
J. Fernando Sánchez
227fdf050e Fix conditionals 2022-10-17 19:29:39 +02:00
J. Fernando Sánchez
5d759d0072 Add conditional time values 2022-10-17 13:58:14 +02:00
J. Fernando Sánchez
77d08fc592 Agent step can be a generator 2022-10-17 08:58:51 +02:00
J. Fernando Sánchez
0efcd24d90 Improve exporters 2022-10-16 21:57:30 +02:00
J. Fernando Sánchez
78833a9e08 Formatted with black 2022-10-16 17:58:19 +02:00
J. Fernando Sánchez
d9947c2c52 WIP: all tests pass
Documentation needs some improvement

The API has been simplified to only allow for ONE topology per
NetworkEnvironment.
This covers the main use case, and simplifies the code.
2022-10-16 17:56:23 +02:00
J. Fernando Sánchez
cd62c23cb9 WIP: all tests pass 2022-10-13 22:43:16 +02:00
J. Fernando Sánchez
f811ee18c5 WIP 2022-10-06 15:49:19 +02:00
J. Fernando Sánchez
0a9c6d8b19 WIP: removed stats 2022-09-16 18:14:16 +02:00
J. Fernando Sánchez
3dc56892c1 WIP: working config 2022-09-15 19:27:17 +02:00
J. Fernando Sánchez
e41dc3dae2 WIP 2022-09-13 18:16:31 +02:00
J. Fernando Sánchez
bbaed636a8 WIP 2022-07-19 17:18:02 +02:00
J. Fernando Sánchez
6f7481769e WIP 2022-07-19 17:17:23 +02:00
J. Fernando Sánchez
1a8313e4f6 WIP 2022-07-19 17:12:41 +02:00
144 changed files with 90699 additions and 8207 deletions

View File

@@ -1,7 +1,5 @@
**/soil_output
.*
**/.*
**/__pycache__
__pycache__
*.pyc
**/backup

3
.gitignore vendored
View File

@@ -8,5 +8,4 @@ soil_output
docs/_build*
build/*
dist/*
prof
backup
prof

View File

@@ -3,14 +3,21 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [UNRELEASED]
## [0.20.8]
## [0.30 UNRELEASED]
### Added
* Simple debugging capabilities in `soil.debugging`, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents). Try it with `soil --debug <simulation file>`
* Ability to run
* Ability to
* The `soil.exporters` module to export the results of datacollectors (model.datacollector) into files at the end of trials/simulations
* A modular set of classes for environments/models. Now the ability to configure the agents through an agent definition and a topology through a network configuration is split into two classes (`soil.agents.BaseEnvironment` for agents, `soil.agents.NetworkEnvironment` to add topology).
* FSM agents can now have generators as states. They work similar to normal states, with one caveat. Only `time` values can be yielded, not a state. This is because the state will not change, it will be resumed after the yield, at the appropriate time. The return value *can* be a state, or a `(state, time)` tuple, just like in normal states.
### Changed
* Tsih bumped to version 0.1.8
### Fixed
* Mentions to `id` in docs. It should be `state_id` now.
* Fixed bug: environment agents were not being added to the simulation
* Configuration schema is very different now. Check `soil.config` for more information. We are also using Pydantic for (de)serialization.
* There may be more than one topology/network in the simulation
* Ability
### Removed
* Any `tsih` and `History` integration in the main classes. To record the state of environments/agents, just use a datacollector. In some cases this may be slower or consume more memory than the previous system. However, few cases actually used the full potential of the history, and it came at the cost of unnecessary complexity and worse performance for the majority of cases.
## [0.20.7]
### Changed

View File

@@ -5,6 +5,42 @@ Learn how to run your own simulations with our [documentation](http://soilsim.re
Follow our [tutorial](examples/tutorial/soil_tutorial.ipynb) to develop your own agent models.
# Changes in version 0.3
Version 0.3 came packed with many changes to provide much better integration with MESA.
For a long time, we tried to keep soil backwards-compatible, but it turned out to be a big endeavour and the resulting code was less readable.
This translates to harder maintenance and a worse experience for newcomers.
In the end, we decided to make some breaking changes.
If you have an older Soil simulation, you have two options:
* Update the necessary configuration files and code. You may use the examples in the `examples` folder for reference, as well as the documentation.
* Keep using a previous `soil` version.
## Mesa compatibility
Soil is in the process of becoming fully compatible with MESA.
The idea is to provide a set of modular classes and functions that extend the functionality of mesa, whilst staying compatible.
In the end, it should be possible to add regular mesa agents to a soil simulation, or use a soil agent within a mesa simulation/model.
This is a non-exhaustive list of tasks to achieve compatibility:
- [ ] Integrate `soil.Simulation` with mesa's runners:
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
- [ ] Integrate `soil.Environment` with `mesa.Model`:
- [x] `Soil.Environment` inherits from `mesa.Model`
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
- [ ] Allow for `mesa.Model` to be used in a simulation.
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
- [x] Rename agent.id to unique_id?
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
- [ ] Provide examples
- [ ] Using mesa modules in a soil simulation
- [ ] Using soil modules in a mesa simulation
- [ ] Document the new APIs and usage
## Citation
@@ -31,24 +67,6 @@ If you use Soil in your research, don't forget to cite this paper:
```
## Mesa compatibility
Soil is in the process of becoming fully compatible with MESA.
As of this writing,
This is a non-exhaustive list of tasks to achieve compatibility:
* Environments.agents and mesa.Agent.agents are not the same. env is a property, and it only takes into account network and environment agents. Might rename environment_agents to other_agents or sth like that
- [ ] Integrate `soil.Simulation` with mesa's runners:
- [ ] `soil.Simulation` could mimic/become a `mesa.batchrunner`
- [ ] Integrate `soil.Environment` with `mesa.Model`:
- [x] `Soil.Environment` inherits from `mesa.Model`
- [x] `Soil.Environment` includes a Mesa-like Scheduler (see the `soil.time` module.
- [ ] Integrate `soil.Agent` with `mesa.Agent`:
- [x] Rename agent.id to unique_id?
- [x] mesa agents can be used in soil simulations (see `examples/mesa`)
- [ ] Document the new APIs and usage
@Copyright GSI - Universidad Politécnica de Madrid 2017-2021
[![SOIL](logo_gsi.png)](https://www.gsi.upm.es)

View File

@@ -13,7 +13,7 @@ Here's an example (``example.yml``).
This example configuration will run three trials (``num_trials``) of a simulation containing a randomly generated network (``network_params``).
The 100 nodes in the network will be SISaModel agents (``network_agents.agent_type``), which is an agent behavior that is included in Soil.
The 100 nodes in the network will be SISaModel agents (``network_agents.agent_class``), which is an agent behavior that is included in Soil.
10% of the agents (``weight=1``) will start in the content state, 10% in the discontent state, and the remaining 80% (``weight=8``) in the neutral state.
All agents will have access to the environment (``environment_params``), which only contains one variable, ``prob_infected``.
The state of the agents will be updated every 2 seconds (``interval``).
@@ -88,9 +88,18 @@ For example, the following configuration is equivalent to :code:`nx.complete_gra
Environment
============
The environment is the place where the shared state of the simulation is stored.
For instance, the probability of disease outbreak.
The configuration file may specify the initial value of the environment parameters:
That means both global parameters, such as the probability of disease outbreak.
But it also means other data, such as a map, or a network topology that connects multiple agents.
As a result, it is also typical to add custom functions in an environment that help agents interact with each other and with the state of the simulation.
Last but not least, an environment controls when and how its agents will be executed.
By default, soil environments incorporate a ``soil.time.TimedActivation`` model for agent execution (more on this on the following section).
Soil environments are very similar, and often interchangeable with, mesa models (``mesa.Model``).
A configuration may specify the initial value of the environment parameters:
.. code:: yaml
@@ -98,23 +107,33 @@ The configuration file may specify the initial value of the environment paramete
daily_probability_of_earthquake: 0.001
number_of_earthquakes: 0
All agents have access to the environment parameters.
All agents have access to the environment (and its parameters).
In some scenarios, it is useful to have a custom environment, to provide additional methods or to control the way agents update environment state.
For example, if our agents play the lottery, the environment could provide a method to decide whether the agent wins, instead of leaving it to the agent.
Agents
======
Agents are a way of modelling behavior.
Agents can be characterized with two variables: agent type (``agent_type``) and state.
Only one agent is executed at a time (generally, every ``interval`` seconds), and it has access to its state and the environment parameters.
Agents can be characterized with two variables: agent type (``agent_class``) and state.
The agent type is a ``soil.Agent`` class, which contains the code that encapsulates the behavior of the agent.
The state is a set of variables, which may change during the simulation, and that the code may use to control the behavior.
All agents provide a ``step`` method either explicitly or implicitly (by inheriting it from a superclass), which controls how the agent will behave in each step of the simulation.
When and how agent steps are executed in a simulation depends entirely on the ``environment``.
Most environments will internally use a scheduler (``mesa.time.BaseScheduler``), which controls the activation of agents.
In soil, we generally used the ``soil.time.TimedActivation`` scheduler, which allows agents to specify when their next activation will happen, defaulting to a
When an agent's step is executed (generally, every ``interval`` seconds), the agent has access to its state and the environment.
Through the environment, it can access the network topology and the state of other agents.
There are three three types of agents according to how they are added to the simulation: network agents and environment agent.
There are two types of agents according to how they are added to the simulation: network agents and environment agent.
Network Agents
##############
Network agents are attached to a node in the topology.
The configuration file allows you to specify how agents will be mapped to topology nodes.
@@ -123,17 +142,19 @@ Hence, every node in the network will be associated to an agent of that type.
.. code:: yaml
agent_type: SISaModel
agent_class: SISaModel
It is also possible to add more than one type of agent to the simulation, and to control the ratio of each type (using the ``weight`` property).
It is also possible to add more than one type of agent to the simulation.
To control the ratio of each type (using the ``weight`` property).
For instance, with following configuration, it is five times more likely for a node to be assigned a CounterModel type than a SISaModel type.
.. code:: yaml
network_agents:
- agent_type: SISaModel
- agent_class: SISaModel
weight: 1
- agent_type: CounterModel
- agent_class: CounterModel
weight: 5
The third option is to specify the type of agent on the node itself, e.g.:
@@ -144,10 +165,10 @@ The third option is to specify the type of agent on the node itself, e.g.:
topology:
nodes:
- id: first
agent_type: BaseAgent
agent_class: BaseAgent
states:
first:
agent_type: SISaModel
agent_class: SISaModel
This would also work with a randomly generated network:
@@ -158,9 +179,9 @@ This would also work with a randomly generated network:
network:
generator: complete
n: 5
agent_type: BaseAgent
agent_class: BaseAgent
states:
- agent_type: SISaModel
- agent_class: SISaModel
@@ -171,11 +192,11 @@ e.g., to populate the network with SISaModel, roughly 10% of them with a discont
.. code:: yaml
network_agents:
- agent_type: SISaModel
- agent_class: SISaModel
weight: 9
state:
id: neutral
- agent_type: SISaModel
- agent_class: SISaModel
weight: 1
state:
id: discontent
@@ -185,7 +206,7 @@ For instance, to add a state for the two nodes in this configuration:
.. code:: yaml
agent_type: SISaModel
agent_class: SISaModel
network:
generator: complete_graph
n: 2
@@ -210,10 +231,10 @@ These agents are programmed in much the same way as network agents, the only dif
.. code::
environment_agents:
- agent_type: MyAgent
- agent_class: MyAgent
state:
mood: happy
- agent_type: DummyAgent
- agent_class: DummyAgent
You may use environment agents to model events that a normal agent cannot control, such as natural disasters or chance.

View File

@@ -8,15 +8,15 @@ network_params:
n: 100
m: 2
network_agents:
- agent_type: SISaModel
- agent_class: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
- agent_class: SISaModel
weight: 1
state:
id: discontent
- agent_type: SISaModel
- agent_class: SISaModel
weight: 8
state:
id: neutral

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.3 KiB

After

Width:  |  Height:  |  Size: 7.0 KiB

BIN
docs/output_54_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_54_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_55_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_55_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
docs/output_55_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_55_9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
docs/output_56_9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

BIN
docs/output_61_0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

BIN
docs/output_63_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_66_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
docs/output_67_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 952 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/output_72_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/output_74_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
docs/output_75_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

BIN
docs/output_76_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

View File

@@ -3,11 +3,11 @@ name: quickstart
num_trials: 1
max_time: 1000
network_agents:
- agent_type: SISaModel
- agent_class: SISaModel
state:
id: neutral
weight: 1
- agent_type: SISaModel
- agent_class: SISaModel
state:
id: content
weight: 2

View File

@@ -1 +1 @@
ipython==7.31.1
ipython>=7.31.1

12
docs/soil-vs.rst Normal file
View File

@@ -0,0 +1,12 @@
### MESA
Starting with version 0.3, Soil has been redesigned to complement Mesa, while remaining compatible with it.
That means that every component in Soil (i.e., Models, Environments, etc.) can be mixed with existing mesa components.
In fact, there are examples that show how that integration may be used, in the `examples/mesa` folder in the repository.
Here are some reasons to use Soil instead of plain mesa:
- Less boilerplate for common scenarios (by some definitions of common)
- Functions to automatically populate a topology with an agent distribution (i.e., different ratios of agent class and state)
- The `soil.Simulation` class allows you to run multiple instances of the same experiment (i.e., multiple trials with the same parameters but a different randomness seed)
- Reporting functions that aggregate multiple

File diff suppressed because it is too large Load Diff

532
examples/NewsSpread.ipynb Normal file

File diff suppressed because one or more lines are too long

80808
examples/Untitled.ipynb Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,27 +1,54 @@
---
version: '2'
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
max_steps: 100
interval: 1
seed: "CompleteSeed!"
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_type: CounterModel
weight: 1
state:
state_id: 0
- agent_type: AggregatedCounter
weight: 0.2
environment_agents: []
environment_class: Environment
environment_params:
model_class: Environment
model_params:
am_i_complete: true
default_state:
incidents: 0
states:
- name: 'The first node'
- name: 'The second node'
topology:
params:
generator: complete_graph
n: 12
environment:
agents:
agent_class: CounterModel
topology: true
state:
times: 1
# In this group we are not specifying any topology
fixed:
- name: 'Environment Agent 1'
agent_class: BaseAgent
group: environment
topology: false
hidden: true
state:
times: 10
- agent_class: CounterModel
id: 0
group: fixed_counters
state:
times: 1
total: 0
- agent_class: CounterModel
group: fixed_counters
id: 1
distribution:
- agent_class: CounterModel
weight: 1
group: distro_counters
state:
times: 3
- agent_class: AggregatedCounter
weight: 0.2
override:
- filter:
agent_class: AggregatedCounter
n: 2
state:
times: 5

View File

@@ -2,7 +2,7 @@
name: custom-generator
description: Using a custom generator for the network
num_trials: 3
max_time: 100
max_steps: 100
interval: 1
network_params:
generator: mymodule.mygenerator
@@ -10,7 +10,7 @@ network_params:
n: 10
n_edges: 5
network_agents:
- agent_type: CounterModel
- agent_class: CounterModel
weight: 1
state:
state_id: 0

View File

@@ -1,27 +1,22 @@
from networkx import Graph
import random
import networkx as nx
from random import choice
def mygenerator(n=5, n_edges=5):
'''
"""
Just a simple generator that creates a network with n nodes and
n_edges edges. Edges are assigned randomly, only avoiding self loops.
'''
"""
G = nx.Graph()
for i in range(n):
G.add_node(i)
for i in range(n_edges):
nodes = list(G.nodes)
n_in = choice(nodes)
n_in = random.choice(nodes)
nodes.remove(n_in) # Avoid loops
n_out = choice(nodes)
n_out = random.choice(nodes)
G.add_edge(n_in, n_out)
return G

View File

@@ -2,34 +2,37 @@ from soil.agents import FSM, state, default_state
class Fibonacci(FSM):
'''Agent that only executes in t_steps that are Fibonacci numbers'''
"""Agent that only executes in t_steps that are Fibonacci numbers"""
defaults = {
'prev': 1
}
defaults = {"prev": 1}
@default_state
@state
def counting(self):
self.log('Stopping at {}'.format(self.now))
prev, self['prev'] = self['prev'], max([self.now, self['prev']])
self.log("Stopping at {}".format(self.now))
prev, self["prev"] = self["prev"], max([self.now, self["prev"]])
return None, self.env.timeout(prev)
class Odds(FSM):
'''Agent that only executes in odd t_steps'''
"""Agent that only executes in odd t_steps"""
@default_state
@state
def odds(self):
self.log('Stopping at {}'.format(self.now))
return None, self.env.timeout(1+self.now%2)
self.log("Stopping at {}".format(self.now))
return None, self.env.timeout(1 + self.now % 2)
if __name__ == '__main__':
import logging
logging.basicConfig(level=logging.INFO)
if __name__ == "__main__":
from soil import Simulation
s = Simulation(network_agents=[{'ids': [0], 'agent_type': Fibonacci},
{'ids': [1], 'agent_type': Odds}],
network_params={"generator": "complete_graph", "n": 2},
max_time=100,
)
s = Simulation(
network_agents=[
{"ids": [0], "agent_class": Fibonacci},
{"ids": [1], "agent_class": Odds},
],
network_params={"generator": "complete_graph", "n": 2},
max_time=100,
)
s.run(dry_run=True)

View File

@@ -0,0 +1,7 @@
This example can be run like with command-line options, like this:
```bash
python cars.py --level DEBUG -e summary --csv
```
This will set the `CSV` (save the agent and model data to a CSV) and `summary` (print the a summary of the data to stdout) exporters, and set the log level to DEBUG.

View File

@@ -0,0 +1,243 @@
"""
This is an example of a simplified city, where there are Passengers and Drivers that can take those passengers
from their location to their desired location.
An example scenario could play like the following:
- Drivers start in the `wandering` state, where they wander around the city until they have been assigned a journey
- Passenger(1) tells every driver that it wants to request a Journey.
- Each driver receives the request.
If Driver(2) is interested in providing the Journey, it asks Passenger(1) to confirm that it accepts Driver(2)'s request
- When Passenger(1) accepts the request, two things happen:
- Passenger(1) changes its state to `driving_home`
- Driver(2) starts moving towards the origin of the Journey
- Once Driver(2) reaches the origin, it starts moving itself and Passenger(1) to the destination of the Journey
- When Driver(2) reaches the destination (carrying Passenger(1) along):
- Driver(2) starts wondering again
- Passenger(1) dies, and is removed from the simulation
- If there are no more passengers available in the simulation, Drivers die
"""
from __future__ import annotations
from soil import *
from soil import events
from mesa.space import MultiGrid
# More complex scenarios may use more than one type of message between objects.
# A common pattern is to use `enum.Enum` to represent state changes in a request.
@dataclass
class Journey:
"""
This represents a request for a journey. Passengers and drivers exchange this object.
A journey may have a driver assigned or not. If the driver has not been assigned, this
object is considered a "request for a journey".
"""
origin: (int, int)
destination: (int, int)
tip: float
passenger: Passenger
driver: Driver = None
class City(EventedEnvironment):
"""
An environment with a grid where drivers and passengers will be placed.
The number of drivers and riders is configurable through its parameters:
:param str n_cars: The total number of drivers to add
:param str n_passengers: The number of passengers in the simulation
:param list agents: Specific agents to use in the simulation. It overrides the `n_passengers`
and `n_cars` params.
:param int height: Height of the internal grid
:param int width: Width of the internal grid
"""
def __init__(
self,
*args,
n_cars=1,
n_passengers=10,
height=100,
width=100,
agents=None,
model_reporters=None,
**kwargs,
):
self.grid = MultiGrid(width=width, height=height, torus=False)
if agents is None:
agents = []
for i in range(n_cars):
agents.append({"agent_class": Driver})
for i in range(n_passengers):
agents.append({"agent_class": Passenger})
model_reporters = model_reporters or {
"earnings": "total_earnings",
"n_passengers": "number_passengers",
}
print("REPORTERS", model_reporters)
super().__init__(
*args, agents=agents, model_reporters=model_reporters, **kwargs
)
for agent in self.agents:
self.grid.place_agent(agent, (0, 0))
self.grid.move_to_empty(agent)
@property
def total_earnings(self):
return sum(d.earnings for d in self.agents(agent_class=Driver))
@property
def number_passengers(self):
return self.count_agents(agent_class=Passenger)
class Driver(Evented, FSM):
pos = None
journey = None
earnings = 0
def on_receive(self, msg, sender):
"""This is not a state. It will run (and block) every time check_messages is invoked"""
if self.journey is None and isinstance(msg, Journey) and msg.driver is None:
msg.driver = self
self.journey = msg
def check_passengers(self):
"""If there are no more passengers, stop forever"""
c = self.count_agents(agent_class=Passenger)
self.info(f"Passengers left {c}")
if not c:
self.die()
@default_state
@state
def wandering(self):
"""Move around the city until a journey is accepted"""
target = None
self.check_passengers()
self.journey = None
while self.journey is None: # No potential journeys detected (see on_receive)
if target is None or not self.move_towards(target):
target = self.random.choice(
self.model.grid.get_neighborhood(self.pos, moore=False)
)
self.check_passengers()
# This will call on_receive behind the scenes, and the agent's status will be updated
self.check_messages()
yield Delta(30) # Wait at least 30 seconds before checking again
try:
# Re-send the journey to the passenger, to confirm that we have been selected
self.journey = yield self.journey.passenger.ask(self.journey, timeout=60)
except events.TimedOut:
# No journey has been accepted. Try again
self.journey = None
return
return self.driving
@state
def driving(self):
"""The journey has been accepted. Pick them up and take them to their destination"""
while self.move_towards(self.journey.origin):
yield
while self.move_towards(self.journey.destination, with_passenger=True):
yield
self.earnings += self.journey.tip
self.check_passengers()
return self.wandering
def move_towards(self, target, with_passenger=False):
"""Move one cell at a time towards a target"""
self.info(f"Moving { self.pos } -> { target }")
if target[0] == self.pos[0] and target[1] == self.pos[1]:
return False
next_pos = [self.pos[0], self.pos[1]]
for idx in [0, 1]:
if self.pos[idx] < target[idx]:
next_pos[idx] += 1
break
if self.pos[idx] > target[idx]:
next_pos[idx] -= 1
break
self.model.grid.move_agent(self, tuple(next_pos))
if with_passenger:
self.journey.passenger.pos = (
self.pos
) # This could be communicated through messages
return True
class Passenger(Evented, FSM):
pos = None
def on_receive(self, msg, sender):
"""This is not a state. It will be run synchronously every time `check_messages` is run"""
if isinstance(msg, Journey):
self.journey = msg
return msg
@default_state
@state
def asking(self):
destination = (
self.random.randint(0, self.model.grid.height),
self.random.randint(0, self.model.grid.width),
)
self.journey = None
journey = Journey(
origin=self.pos,
destination=destination,
tip=self.random.randint(10, 100),
passenger=self,
)
timeout = 60
expiration = self.now + timeout
self.model.broadcast(journey, ttl=timeout, sender=self, agent_class=Driver)
while not self.journey:
self.info(f"Passenger at: { self.pos }. Checking for responses.")
try:
# This will call check_messages behind the scenes, and the agent's status will be updated
# If you want to avoid that, you can call it with: check=False
yield self.received(expiration=expiration)
except events.TimedOut:
self.info(f"Passenger at: { self.pos }. Asking for journey.")
self.model.broadcast(
journey, ttl=timeout, sender=self, agent_class=Driver
)
expiration = self.now + timeout
return self.driving_home
@state
def driving_home(self):
while (
self.pos[0] != self.journey.destination[0]
or self.pos[1] != self.journey.destination[1]
):
try:
yield self.received(timeout=60)
except events.TimedOut:
pass
self.info("Got home safe!")
self.die()
simulation = Simulation(
name="RideHailing",
model_class=City,
model_params={"n_passengers": 2},
seed="carsSeed",
)
if __name__ == "__main__":
with easy(simulation) as s:
s.run()

View File

@@ -3,19 +3,17 @@ name: mesa_sim
group: tests
dir_path: "/tmp"
num_trials: 3
max_time: 100
max_steps: 100
interval: 1
seed: '1'
network_params:
model_class: social_wealth.MoneyEnv
model_params:
generator: social_wealth.graph_generator
n: 5
network_agents:
- agent_type: social_wealth.SocialMoneyAgent
weight: 1
environment_class: social_wealth.MoneyEnv
environment_params:
num_mesa_agents: 5
mesa_agent_type: social_wealth.MoneyAgent
agents:
topology: true
distribution:
- agent_class: social_wealth.SocialMoneyAgent
weight: 1
N: 10
width: 50
height: 50

View File

@@ -2,6 +2,7 @@ from mesa.visualization.ModularVisualization import ModularServer
from soil.visualization import UserSettableParameter
from mesa.visualization.modules import ChartModule, NetworkModule, CanvasGrid
from social_wealth import MoneyEnv, graph_generator, SocialMoneyAgent
import networkx as nx
class MyNetwork(NetworkModule):
@@ -13,15 +14,18 @@ def network_portrayal(env):
# The model ensures there is 0 or 1 agent per node
portrayal = dict()
wealths = {
node_id: data["agent"].wealth for (node_id, data) in env.G.nodes(data=True)
}
portrayal["nodes"] = [
{
"id": agent_id,
"size": env.get_agent(agent_id).wealth,
# "color": "#CC0000" if not agents or agents[0].wealth == 0 else "#007959",
"color": "#CC0000",
"label": f"{agent_id}: {env.get_agent(agent_id).wealth}",
"id": node_id,
"size": 2 * (wealth + 1),
"color": "#CC0000" if wealth == 0 else "#007959",
# "color": "#CC0000",
"label": f"{node_id}: {wealth}",
}
for (agent_id) in env.G.nodes
for (node_id, wealth) in wealths.items()
]
portrayal["edges"] = [
@@ -29,7 +33,6 @@ def network_portrayal(env):
for edge_id, (source, target) in enumerate(env.G.edges)
]
return portrayal
@@ -40,7 +43,7 @@ def gridPortrayal(agent):
:param agent: the agent in the simulation
:return: the portrayal dictionary
"""
color = max(10, min(agent.wealth*10, 100))
color = max(10, min(agent.wealth * 10, 100))
return {
"Shape": "rect",
"w": 1,
@@ -51,11 +54,11 @@ def gridPortrayal(agent):
"Text": agent.unique_id,
"x": agent.pos[0],
"y": agent.pos[1],
"Color": f"rgba(31, 10, 255, 0.{color})"
"Color": f"rgba(31, 10, 255, 0.{color})",
}
grid = MyNetwork(network_portrayal, 500, 500, library="sigma")
grid = MyNetwork(network_portrayal, 500, 500)
chart = ChartModule(
[{"Label": "Gini", "Color": "Black"}], data_collector_name="datacollector"
)
@@ -70,7 +73,6 @@ model_params = {
1,
description="Choose how many agents to include in the model",
),
"network_agents": [{"agent_type": SocialMoneyAgent}],
"height": UserSettableParameter(
"slider",
"height",
@@ -79,7 +81,7 @@ model_params = {
10,
1,
description="Grid height",
),
),
"width": UserSettableParameter(
"slider",
"width",
@@ -88,13 +90,20 @@ model_params = {
10,
1,
description="Grid width",
),
"network_params": {
'generator': graph_generator
},
),
"agent_class": UserSettableParameter(
"choice",
"Agent class",
value="MoneyAgent",
choices=["MoneyAgent", "SocialMoneyAgent"],
),
"generator": graph_generator,
}
canvas_element = CanvasGrid(gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500)
canvas_element = CanvasGrid(
gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500
)
server = ModularServer(

View File

@@ -1,23 +1,26 @@
'''
"""
This is an example that adds soil agents and environment in a normal
mesa workflow.
'''
"""
from mesa import Agent as MesaAgent
from mesa.space import MultiGrid
# from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
import networkx as nx
from soil import NetworkAgent, Environment
from soil import NetworkAgent, Environment, serialization
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.agents]
x = sorted(agent_wealths)
N = len(list(model.agents))
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
return (1 + (1/N) - 2*B)
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
class MoneyAgent(MesaAgent):
"""
@@ -25,15 +28,14 @@ class MoneyAgent(MesaAgent):
It will only share wealth with neighbors based on grid proximity
"""
def __init__(self, unique_id, model):
def __init__(self, unique_id, model, wealth=1):
super().__init__(unique_id=unique_id, model=model)
self.wealth = 1
self.wealth = wealth
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
@@ -45,7 +47,7 @@ class MoneyAgent(MesaAgent):
self.wealth -= 1
def step(self):
self.info("Crying wolf", self.pos)
print("Crying wolf", self.pos)
self.move()
if self.wealth > 0:
self.give_money()
@@ -56,10 +58,10 @@ class SocialMoneyAgent(NetworkAgent, MoneyAgent):
def give_money(self):
cellmates = set(self.model.grid.get_cell_list_contents([self.pos]))
friends = set(self.get_neighboring_agents())
friends = set(self.get_neighbors())
self.info("Trying to give money")
self.debug("Cellmates: ", cellmates)
self.debug("Friends: ", friends)
self.info("Cellmates: ", cellmates)
self.info("Friends: ", friends)
nearby_friends = list(cellmates & friends)
@@ -69,14 +71,35 @@ class SocialMoneyAgent(NetworkAgent, MoneyAgent):
self.wealth -= 1
def graph_generator(n=5):
G = nx.Graph()
for ix in range(n):
G.add_edge(0, ix)
return G
class MoneyEnv(Environment):
"""A model with some number of agents."""
def __init__(self, N, width, height, *args, network_params, **kwargs):
network_params['n'] = N
super().__init__(*args, network_params=network_params, **kwargs)
def __init__(
self,
width,
height,
N,
generator=graph_generator,
agent_class=SocialMoneyAgent,
topology=None,
**kwargs
):
generator = serialization.deserialize(generator)
agent_class = serialization.deserialize(agent_class, globs=globals())
topology = generator(n=N)
super().__init__(topology=topology, N=N, **kwargs)
self.grid = MultiGrid(width, height, False)
self.populate_network(agent_class=agent_class)
# Create agents
for agent in self.agents:
x = self.random.randrange(self.grid.width)
@@ -84,37 +107,31 @@ class MoneyEnv(Environment):
self.grid.place_agent(agent, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": "wealth"})
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
def graph_generator(n=5):
G = nx.Graph()
for ix in range(n):
G.add_edge(0, ix)
return G
if __name__ == "__main__":
if __name__ == '__main__':
G = graph_generator()
fixed_params = {"topology": G,
"width": 10,
"network_agents": [{"agent_type": SocialMoneyAgent,
'weight': 1}],
"height": 10}
fixed_params = {
"generator": nx.complete_graph,
"width": 10,
"network_agents": [{"agent_class": SocialMoneyAgent, "weight": 1}],
"height": 10,
}
variable_params = {"N": range(10, 100, 10)}
batch_run = BatchRunner(MoneyEnv,
variable_parameters=variable_params,
fixed_parameters=fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini})
batch_run = BatchRunner(
MoneyEnv,
variable_parameters=variable_params,
fixed_parameters=fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini},
)
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)

View File

@@ -4,24 +4,26 @@ from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.schedule.agents]
x = sorted(agent_wealths)
N = model.num_agents
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
return (1 + (1/N) - 2*B)
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
class MoneyAgent(Agent):
""" An agent with fixed initial wealth."""
"""An agent with fixed initial wealth."""
def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
@@ -37,8 +39,10 @@ class MoneyAgent(Agent):
if self.wealth > 0:
self.give_money()
class MoneyModel(Model):
"""A model with some number of agents."""
def __init__(self, N, width, height):
self.num_agents = N
self.grid = MultiGrid(width, height, True)
@@ -55,29 +59,29 @@ class MoneyModel(Model):
self.grid.place_agent(a, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": "wealth"})
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
def step(self):
self.datacollector.collect(self)
self.schedule.step()
if __name__ == '__main__':
if __name__ == "__main__":
fixed_params = {"width": 10,
"height": 10}
fixed_params = {"width": 10, "height": 10}
variable_params = {"N": range(10, 500, 10)}
batch_run = BatchRunner(MoneyModel,
variable_params,
fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini})
batch_run = BatchRunner(
MoneyModel,
variable_params,
fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini},
)
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)

View File

@@ -2,12 +2,13 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-08T16:22:30.732107Z",
"start_time": "2017-11-08T17:22:30.059855+01:00"
}
},
"collapsed": true
},
"outputs": [],
"source": [
@@ -27,16 +28,24 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-08T16:22:35.580593Z",
"start_time": "2017-11-08T17:22:35.542745+01:00"
}
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [
"%matplotlib inline\n",
"%pylab inline\n",
"\n",
"from soil import *"
]
@@ -57,7 +66,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-08T16:22:37.242327Z",
@@ -77,14 +86,14 @@
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 300\r\n",
"max_time: 30\r\n",
"name: Sim_all_dumb\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@@ -101,22 +110,22 @@
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 300\r\n",
"max_time: 30\r\n",
"name: Sim_half_herd\r\n",
"network_agents:\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: DumbViewer\r\n",
"- agent_class: DumbViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: false\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@@ -133,18 +142,18 @@
" prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n",
"interval: 1\r\n",
"max_time: 300\r\n",
"max_time: 30\r\n",
"name: Sim_all_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" state_id: neutral\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" state_id: neutral\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"network_params:\r\n",
" generator: barabasi_albert_graph\r\n",
@@ -160,15 +169,15 @@
" prob_tv_spread: 0.01\r\n",
" prob_neighbor_cure: 0.1\r\n",
"interval: 1\r\n",
"max_time: 300\r\n",
"max_time: 30\r\n",
"name: Sim_wise_herd\r\n",
"network_agents:\r\n",
"- agent_type: HerdViewer\r\n",
"- agent_class: HerdViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" state_id: neutral\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@@ -186,15 +195,15 @@
" prob_tv_spread: 0.01\r\n",
" prob_neighbor_cure: 0.1\r\n",
"interval: 1\r\n",
"max_time: 300\r\n",
"max_time: 30\r\n",
"name: Sim_all_wise\r\n",
"network_agents:\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" state_id: neutral\r\n",
" id: neutral\r\n",
" weight: 1\r\n",
"- agent_type: WiseViewer\r\n",
"- agent_class: WiseViewer\r\n",
" state:\r\n",
" has_tv: true\r\n",
" weight: 1\r\n",
@@ -216,7 +225,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 22,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-08T18:07:46.781745Z",
@@ -224,24 +233,7 @@
},
"scrolled": true
},
"outputs": [
{
"ename": "ValueError",
"evalue": "No objects to concatenate",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m evodumb \u001b[38;5;241m=\u001b[39m \u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_data\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msoil_output/Sim_all_dumb/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprocess\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_count\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mid\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m;\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:14\u001b[0m, in \u001b[0;36mread_data\u001b[0;34m(group, *args, **kwargs)\u001b[0m\n\u001b[1;32m 12\u001b[0m iterable \u001b[38;5;241m=\u001b[39m _read_data(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m group:\n\u001b[0;32m---> 14\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgroup_trials\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterable\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(iterable)\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:201\u001b[0m, in \u001b[0;36mgroup_trials\u001b[0;34m(trials, aggfunc)\u001b[0m\n\u001b[1;32m 199\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(trials)\n\u001b[1;32m 200\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mmap\u001b[39m(\u001b[38;5;28;01mlambda\u001b[39;00m x: x[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mtuple\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m x, trials))\n\u001b[0;32m--> 201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcat\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrials\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mgroupby(level\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\u001b[38;5;241m.\u001b[39magg(aggfunc)\u001b[38;5;241m.\u001b[39mreorder_levels([\u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m1\u001b[39m] ,axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/util/_decorators.py:331\u001b[0m, in \u001b[0;36mdeprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m>\u001b[39m num_allow_args:\n\u001b[1;32m 326\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 327\u001b[0m msg\u001b[38;5;241m.\u001b[39mformat(arguments\u001b[38;5;241m=\u001b[39m_format_argument_list(allow_args)),\n\u001b[1;32m 328\u001b[0m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[1;32m 329\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[1;32m 330\u001b[0m )\n\u001b[0;32m--> 331\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:368\u001b[0m, in \u001b[0;36mconcat\u001b[0;34m(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)\u001b[0m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;129m@deprecate_nonkeyword_arguments\u001b[39m(version\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, allowed_args\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mobjs\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mconcat\u001b[39m(\n\u001b[1;32m 148\u001b[0m objs: Iterable[NDFrame] \u001b[38;5;241m|\u001b[39m Mapping[HashableT, NDFrame],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 157\u001b[0m copy: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 158\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame \u001b[38;5;241m|\u001b[39m Series:\n\u001b[1;32m 159\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;124;03m Concatenate pandas objects along a particular axis.\u001b[39;00m\n\u001b[1;32m 161\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 366\u001b[0m \u001b[38;5;124;03m 1 3 4\u001b[39;00m\n\u001b[1;32m 367\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 368\u001b[0m op \u001b[38;5;241m=\u001b[39m \u001b[43m_Concatenator\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 369\u001b[0m \u001b[43m \u001b[49m\u001b[43mobjs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 370\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_index\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_index\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mjoin\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkeys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43mnames\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnames\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 376\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify_integrity\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_integrity\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 378\u001b[0m \u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m op\u001b[38;5;241m.\u001b[39mget_result()\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:425\u001b[0m, in \u001b[0;36m_Concatenator.__init__\u001b[0;34m(self, objs, axis, join, keys, levels, names, ignore_index, verify_integrity, copy, sort)\u001b[0m\n\u001b[1;32m 422\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(objs)\n\u001b[1;32m 424\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(objs) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 425\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo objects to concatenate\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 427\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m keys \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 428\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(com\u001b[38;5;241m.\u001b[39mnot_none(\u001b[38;5;241m*\u001b[39mobjs))\n",
"\u001b[0;31mValueError\u001b[0m: No objects to concatenate"
]
}
],
"outputs": [],
"source": [
"evodumb = analysis.read_data('soil_output/Sim_all_dumb/', process=analysis.get_count, group=True, keys=['id']);"
]
@@ -729,9 +721,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "venv-soil",
"display_name": "Python 3",
"language": "python",
"name": "venv-soil"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -743,7 +735,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
"version": "3.6.2"
},
"toc": {
"colors": {

View File

@@ -1,19 +1,18 @@
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 300
max_steps: 300
name: Sim_all_dumb
network_agents:
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: false
weight: 1
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: true
weight: 1
@@ -24,28 +23,27 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 300
max_steps: 300
name: Sim_half_herd
network_agents:
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: false
weight: 1
- agent_type: DumbViewer
- agent_class: newsspread.DumbViewer
state:
has_tv: true
weight: 1
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: false
weight: 1
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
weight: 1
@@ -56,21 +54,20 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 300
max_steps: 300
name: Sim_all_herd
network_agents:
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
@@ -82,22 +79,21 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 300
max_steps: 300
name: Sim_wise_herd
network_agents:
- agent_type: HerdViewer
- agent_class: newsspread.HerdViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_type: WiseViewer
- agent_class: newsspread.WiseViewer
state:
has_tv: true
weight: 1
@@ -108,22 +104,21 @@ network_params:
num_trials: 50
---
default_state: {}
load_module: newsspread
environment_agents: []
environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 300
max_steps: 300
name: Sim_all_wise
network_agents:
- agent_type: WiseViewer
- agent_class: newsspread.WiseViewer
state:
has_tv: true
state_id: neutral
weight: 1
- agent_type: WiseViewer
- agent_class: newsspread.WiseViewer
state:
has_tv: true
weight: 1

View File

@@ -1,86 +1,87 @@
from soil.agents import FSM, state, default_state, prob
from soil.agents import FSM, NetworkAgent, state, default_state, prob
import logging
class DumbViewer(FSM):
'''
class DumbViewer(FSM, NetworkAgent):
"""
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
'''
defaults = {
'prob_neighbor_spread': 0.5,
'prob_tv_spread': 0.1,
}
"""
prob_neighbor_spread = 0.5
prob_tv_spread = 0.1
has_been_infected = False
@default_state
@state
def neutral(self):
if self['has_tv']:
if prob(self.env['prob_tv_spread']):
if self["has_tv"]:
if self.prob(self.model["prob_tv_spread"]):
return self.infected
if self.has_been_infected:
return self.infected
@state
def infected(self):
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
if prob(self.env['prob_neighbor_spread']):
for neighbor in self.get_neighbors(state_id=self.neutral.id):
if self.prob(self.model["prob_neighbor_spread"]):
neighbor.infect()
def infect(self):
'''
"""
This is not a state. It is a function that other agents can use to try to
infect this agent. DumbViewer always gets infected, but other agents like
HerdViewer might not become infected right away
'''
"""
self.set_state(self.infected)
self.has_been_infected = True
class HerdViewer(DumbViewer):
'''
"""
A viewer whose probability of infection depends on the state of its neighbors.
'''
"""
def infect(self):
'''Notice again that this is NOT a state. See DumbViewer.infect for reference'''
infected = self.count_neighboring_agents(state_id=self.infected.id)
total = self.count_neighboring_agents()
prob_infect = self.env['prob_neighbor_spread'] * infected/total
self.debug('prob_infect', prob_infect)
if prob(prob_infect):
self.set_state(self.infected)
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
infected = self.count_neighbors(state_id=self.infected.id)
total = self.count_neighbors()
prob_infect = self.model["prob_neighbor_spread"] * infected / total
self.debug("prob_infect", prob_infect)
if self.prob(prob_infect):
self.has_been_infected = True
class WiseViewer(HerdViewer):
'''
"""
A viewer that can change its mind.
'''
"""
defaults = {
'prob_neighbor_spread': 0.5,
'prob_neighbor_cure': 0.25,
'prob_tv_spread': 0.1,
"prob_neighbor_spread": 0.5,
"prob_neighbor_cure": 0.25,
"prob_tv_spread": 0.1,
}
@state
def cured(self):
prob_cure = self.env['prob_neighbor_cure']
for neighbor in self.get_neighboring_agents(state_id=self.infected.id):
if prob(prob_cure):
prob_cure = self.model["prob_neighbor_cure"]
for neighbor in self.get_neighbors(state_id=self.infected.id):
if self.prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
self.debug('Viewer {} cannot be cured'.format(neighbor.id))
self.debug("Viewer {} cannot be cured".format(neighbor.id))
def cure(self):
self.set_state(self.cured.id)
self.has_been_cured = True
@state
def infected(self):
cured = max(self.count_neighboring_agents(self.cured.id),
1.0)
infected = max(self.count_neighboring_agents(self.infected.id),
1.0)
prob_cure = self.env['prob_neighbor_cure'] * (cured/infected)
if prob(prob_cure):
if self.has_been_cured:
return self.cured
cured = max(self.count_neighbors(self.cured.id), 1.0)
infected = max(self.count_neighbors(self.infected.id), 1.0)
prob_cure = self.model["prob_neighbor_cure"] * (cured / infected)
if self.prob(prob_cure):
return self.cured
return self.set_state(super().infected)

View File

@@ -1,6 +1,6 @@
'''
"""
Example of a fully programmatic simulation, without definition files.
'''
"""
from soil import Simulation, agents
from networkx import Graph
import logging
@@ -14,21 +14,22 @@ def mygenerator():
class MyAgent(agents.FSM):
@agents.default_state
@agents.state
def neutral(self):
self.debug('I am running')
self.debug("I am running")
if agents.prob(0.2):
self.info('This runs 2/10 times on average')
self.info("This runs 2/10 times on average")
s = Simulation(name='Programmatic',
network_params={'generator': mygenerator},
num_trials=1,
max_time=100,
agent_type=MyAgent,
dry_run=True)
s = Simulation(
name="Programmatic",
network_params={"generator": mygenerator},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True,
)
# By default, logging will only print WARNING logs (and above).

View File

@@ -1,12 +1,12 @@
from soil.agents import FSM, state, default_state
from soil.agents import FSM, NetworkAgent, state, default_state
from soil import Environment
from random import random, shuffle
from itertools import islice
import logging
class CityPubs(Environment):
'''Environment with Pubs'''
"""Environment with Pubs"""
level = logging.INFO
def __init__(self, *args, number_of_pubs=3, pub_capacity=10, **kwargs):
@@ -14,70 +14,70 @@ class CityPubs(Environment):
pubs = {}
for i in range(number_of_pubs):
newpub = {
'name': 'The awesome pub #{}'.format(i),
'open': True,
'capacity': pub_capacity,
'occupancy': 0,
"name": "The awesome pub #{}".format(i),
"open": True,
"capacity": pub_capacity,
"occupancy": 0,
}
pubs[newpub['name']] = newpub
self['pubs'] = pubs
pubs[newpub["name"]] = newpub
self["pubs"] = pubs
def enter(self, pub_id, *nodes):
'''Agents will try to enter. The pub checks if it is possible'''
"""Agents will try to enter. The pub checks if it is possible"""
try:
pub = self['pubs'][pub_id]
pub = self["pubs"][pub_id]
except KeyError:
raise ValueError('Pub {} is not available'.format(pub_id))
if not pub['open'] or (pub['capacity'] < (len(nodes) + pub['occupancy'])):
raise ValueError("Pub {} is not available".format(pub_id))
if not pub["open"] or (pub["capacity"] < (len(nodes) + pub["occupancy"])):
return False
pub['occupancy'] += len(nodes)
pub["occupancy"] += len(nodes)
for node in nodes:
node['pub'] = pub_id
node["pub"] = pub_id
return True
def available_pubs(self):
for pub in self['pubs'].values():
if pub['open'] and (pub['occupancy'] < pub['capacity']):
yield pub['name']
for pub in self["pubs"].values():
if pub["open"] and (pub["occupancy"] < pub["capacity"]):
yield pub["name"]
def exit(self, pub_id, *node_ids):
'''Agents will notify the pub they want to leave'''
"""Agents will notify the pub they want to leave"""
try:
pub = self['pubs'][pub_id]
pub = self["pubs"][pub_id]
except KeyError:
raise ValueError('Pub {} is not available'.format(pub_id))
raise ValueError("Pub {} is not available".format(pub_id))
for node_id in node_ids:
node = self.get_agent(node_id)
if pub_id == node['pub']:
del node['pub']
pub['occupancy'] -= 1
if pub_id == node["pub"]:
del node["pub"]
pub["occupancy"] -= 1
class Patron(FSM):
'''Agent that looks for friends to drink with. It will do three things:
1) Look for other patrons to drink with
2) Look for a bar where the agent and other agents in the same group can get in.
3) While in the bar, patrons only drink, until they get drunk and taken home.
'''
class Patron(FSM, NetworkAgent):
"""Agent that looks for friends to drink with. It will do three things:
1) Look for other patrons to drink with
2) Look for a bar where the agent and other agents in the same group can get in.
3) While in the bar, patrons only drink, until they get drunk and taken home.
"""
level = logging.DEBUG
defaults = {
'pub': None,
'drunk': False,
'pints': 0,
'max_pints': 3,
}
pub = None
drunk = False
pints = 0
max_pints = 3
kicked_out = False
@default_state
@state
def looking_for_friends(self):
'''Look for friends to drink with'''
self.info('I am looking for friends')
available_friends = list(self.get_agents(drunk=False,
pub=None,
state_id=self.looking_for_friends.id))
"""Look for friends to drink with"""
self.info("I am looking for friends")
available_friends = list(
self.get_agents(drunk=False, pub=None, state_id=self.looking_for_friends.id)
)
if not available_friends:
self.info('Life sucks and I\'m alone!')
self.info("Life sucks and I'm alone!")
return self.at_home
befriended = self.try_friends(available_friends)
if befriended:
@@ -85,91 +85,91 @@ class Patron(FSM):
@state
def looking_for_pub(self):
'''Look for a pub that accepts me and my friends'''
if self['pub'] != None:
"""Look for a pub that accepts me and my friends"""
if self["pub"] != None:
return self.sober_in_pub
self.debug('I am looking for a pub')
group = list(self.get_neighboring_agents())
for pub in self.env.available_pubs():
self.debug('We\'re trying to get into {}: total: {}'.format(pub, len(group)))
if self.env.enter(pub, self, *group):
self.info('We\'re all {} getting in {}!'.format(len(group), pub))
self.debug("I am looking for a pub")
group = list(self.get_neighbors())
for pub in self.model.available_pubs():
self.debug("We're trying to get into {}: total: {}".format(pub, len(group)))
if self.model.enter(pub, self, *group):
self.info("We're all {} getting in {}!".format(len(group), pub))
return self.sober_in_pub
@state
def sober_in_pub(self):
'''Drink up.'''
"""Drink up."""
self.drink()
if self['pints'] > self['max_pints']:
if self["pints"] > self["max_pints"]:
return self.drunk_in_pub
@state
def drunk_in_pub(self):
'''I'm out. Take me home!'''
self.info('I\'m so drunk. Take me home!')
self['drunk'] = True
pass # out drunk
"""I'm out. Take me home!"""
self.info("I'm so drunk. Take me home!")
self["drunk"] = True
if self.kicked_out:
return self.at_home
pass # out drun
@state
def at_home(self):
'''The end'''
"""The end"""
others = self.get_agents(state_id=Patron.at_home.id, limit_neighbors=True)
self.debug('I\'m home. Just like {} of my friends'.format(len(others)))
self.debug("I'm home. Just like {} of my friends".format(len(others)))
def drink(self):
self['pints'] += 1
self.debug('Cheers to that')
self["pints"] += 1
self.debug("Cheers to that")
def kick_out(self):
self.set_state(self.at_home)
self.kicked_out = True
def befriend(self, other_agent, force=False):
'''
"""
Try to become friends with another agent. The chances of
success depend on both agents' openness.
'''
if force or self['openness'] > random():
self.env.add_edge(self, other_agent)
self.info('Made some friend {}'.format(other_agent))
"""
if force or self["openness"] > self.random.random():
self.add_edge(self, other_agent)
self.info("Made some friend {}".format(other_agent))
return True
return False
def try_friends(self, others):
''' Look for random agents around me and try to befriend them'''
"""Look for random agents around me and try to befriend them"""
befriended = False
k = int(10*self['openness'])
shuffle(others)
k = int(10 * self["openness"])
self.random.shuffle(others)
for friend in islice(others, k): # random.choice >= 3.7
if friend == self:
continue
if friend.befriend(self):
self.befriend(friend, force=True)
self.debug('Hooray! new friend: {}'.format(friend.id))
self.debug("Hooray! new friend: {}".format(friend.id))
befriended = True
else:
self.debug('{} does not want to be friends'.format(friend.id))
self.debug("{} does not want to be friends".format(friend.id))
return befriended
class Police(FSM):
'''Simple agent to take drunk people out of pubs.'''
"""Simple agent to take drunk people out of pubs."""
level = logging.INFO
@default_state
@state
def patrol(self):
drunksters = list(self.get_agents(drunk=True,
state_id=Patron.drunk_in_pub.id))
drunksters = list(self.get_agents(drunk=True, state_id=Patron.drunk_in_pub.id))
for drunk in drunksters:
self.info('Kicking out the trash: {}'.format(drunk.id))
self.info("Kicking out the trash: {}".format(drunk.id))
drunk.kick_out()
else:
self.info('No trash to take out. Too bad.')
self.info("No trash to take out. Too bad.")
if __name__ == '__main__':
if __name__ == "__main__":
from soil import simulation
simulation.run_from_config('pubcrawl.yml',
dry_run=True,
dump=None,
parallel=False)
simulation.run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)

View File

@@ -1,25 +1,25 @@
---
name: pubcrawl
num_trials: 3
max_time: 10
max_steps: 10
dump: false
network_params:
# Generate 100 empty nodes. They will be assigned a network agent
generator: empty_graph
n: 30
network_agents:
- agent_type: pubcrawl.Patron
- agent_class: pubcrawl.Patron
description: Extroverted patron
state:
openness: 1.0
weight: 9
- agent_type: pubcrawl.Patron
- agent_class: pubcrawl.Patron
description: Introverted patron
state:
openness: 0.1
weight: 1
environment_agents:
- agent_type: pubcrawl.Police
- agent_class: pubcrawl.Police
environment_class: pubcrawl.CityPubs
environment_params:
altercations: 0

View File

@@ -0,0 +1,14 @@
There are two similar implementations of this simulation.
- `basic`. Using simple primites
- `improved`. Using more advanced features such as the `time` module to avoid unnecessary computations (i.e., skip steps), and generator functions.
The examples can be run directly in the terminal, and they accept command like arguments.
For example, to enable the CSV exporter and the Summary exporter, while setting `max_time` to `100` and `seed` to `CustomSeed`:
```
python rabbit_agents.py --set max_time=100 --csv -e summary --set 'seed="CustomSeed"'
```
To learn more about how this functionality works, check out the `soil.easy` function.

View File

@@ -0,0 +1,150 @@
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
from collections import Counter
import logging
import math
class RabbitEnv(Environment):
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
@property
def num_males(self):
return self.count_agents(agent_class=Male)
@property
def num_females(self):
return self.count_agents(agent_class=Female)
class Rabbit(NetworkAgent, FSM):
sexual_maturity = 30
life_expectancy = 300
@default_state
@state
def newborn(self):
self.info("I am a newborn.")
self.age = 0
self.offspring = 0
return self.youngling
@state
def youngling(self):
self.age += 1
if self.age >= self.sexual_maturity:
self.info(f"I am fertile! My age is {self.age}")
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
@state
def dead(self):
self.die()
class Male(Rabbit):
max_females = 5
mating_prob = 0.001
@state
def fertile(self):
self.age += 1
if self.age > self.life_expectancy:
return self.dead
# Males try to mate
for f in self.model.agents(
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
):
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
if self.prob(self["mating_prob"]):
f.impregnate(self)
break # Take a break
class Female(Rabbit):
gestation = 10
pregnancy = -1
@state
def fertile(self):
# Just wait for a Male
self.age += 1
if self.age > self.life_expectancy:
return self.dead
if self.pregnancy >= 0:
return self.pregnant
def impregnate(self, male):
self.info(f"impregnated by {repr(male)}")
self.mate = male
self.pregnancy = 0
self.number_of_babies = int(8 + 4 * self.random.random())
@state
def pregnant(self):
self.info("I am pregnant")
self.age += 1
if self.age >= self.life_expectancy:
return self.die()
if self.pregnancy < self.gestation:
self.pregnancy += 1
return
self.info("Having {} babies".format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class, **state)
child.add_edge(self)
try:
child.add_edge(self.mate)
self.model.agents[self.mate].offspring += 1
except ValueError:
self.debug("The father has passed away")
self.offspring += 1
self.mate = None
self.pregnancy = -1
return self.fertile
def die(self):
if "pregnancy" in self and self["pregnancy"] > -1:
self.info("A mother has died carrying a baby!!")
return super().die()
class RandomAccident(BaseAgent):
def step(self):
rabbits_alive = self.model.G.number_of_nodes()
if not rabbits_alive:
return self.die()
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
math.log10(max(1, rabbits_alive))
)
self.debug("Killing some rabbits with prob={}!".format(prob_death))
for i in self.get_agents(agent_class=Rabbit):
if i.state_id == i.dead.id:
continue
if self.prob(prob_death):
self.info("I killed a rabbit: {}".format(i.id))
rabbits_alive -= 1
i.die()
self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__":
from soil import easy
with easy("rabbits.yml") as sim:
sim.run()

View File

@@ -0,0 +1,42 @@
---
version: '2'
name: rabbits_basic
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: true
distribution:
- agent_class: rabbit_agents.Male
weight: 1
- agent_class: rabbit_agents.Female
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: false
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topology:
fixed:
directed: true
links: []
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@@ -0,0 +1,157 @@
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
from soil.time import Delta
from enum import Enum
from collections import Counter
import logging
import math
class RabbitEnv(Environment):
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
@property
def num_males(self):
return self.count_agents(agent_class=Male)
@property
def num_females(self):
return self.count_agents(agent_class=Female)
class Rabbit(FSM, NetworkAgent):
sexual_maturity = 30
life_expectancy = 300
birth = None
@property
def age(self):
if self.birth is None:
return None
return self.now - self.birth
@default_state
@state
def newborn(self):
self.info("I am a newborn.")
self.birth = self.now
self.offspring = 0
return self.youngling, Delta(self.sexual_maturity - self.age)
@state
def youngling(self):
if self.age >= self.sexual_maturity:
self.info(f"I am fertile! My age is {self.age}")
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
@state
def dead(self):
self.die()
class Male(Rabbit):
max_females = 5
mating_prob = 0.001
@state
def fertile(self):
if self.age > self.life_expectancy:
return self.dead
# Males try to mate
for f in self.model.agents(
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
):
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
if self.prob(self["mating_prob"]):
f.impregnate(self)
break # Do not try to impregnate other females
class Female(Rabbit):
gestation = 10
conception = None
@state
def fertile(self):
# Just wait for a Male
if self.age > self.life_expectancy:
return self.dead
if self.conception is not None:
return self.pregnant
@property
def pregnancy(self):
if self.conception is None:
return None
return self.now - self.conception
def impregnate(self, male):
self.info(f"impregnated by {repr(male)}")
self.mate = male
self.conception = self.now
self.number_of_babies = int(8 + 4 * self.random.random())
@state
def pregnant(self):
self.debug("I am pregnant")
if self.age > self.life_expectancy:
self.info("Dying before giving birth")
return self.die()
if self.pregnancy >= self.gestation:
self.info("Having {} babies".format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class, **state)
child.add_edge(self)
if self.mate:
child.add_edge(self.mate)
self.mate.offspring += 1
else:
self.debug("The father has passed away")
self.offspring += 1
self.mate = None
return self.fertile
def die(self):
if self.pregnancy is not None:
self.info("A mother has died carrying a baby!!")
return super().die()
class RandomAccident(BaseAgent):
def step(self):
rabbits_alive = self.model.G.number_of_nodes()
if not rabbits_alive:
return self.die()
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
math.log10(max(1, rabbits_alive))
)
self.debug("Killing some rabbits with prob={}!".format(prob_death))
for i in self.iter_agents(agent_class=Rabbit):
if i.state_id == i.dead.id:
continue
if self.prob(prob_death):
self.info("I killed a rabbit: {}".format(i.id))
rabbits_alive -= 1
i.die()
self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__":
from soil import easy
with easy("rabbits.yml") as sim:
sim.run()

View File

@@ -0,0 +1,42 @@
---
version: '2'
name: rabbits_improved
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: true
distribution:
- agent_class: rabbit_agents.Male
weight: 1
- agent_class: rabbit_agents.Female
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: false
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topology:
fixed:
directed: true
links: []
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@@ -1,135 +0,0 @@
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from enum import Enum
from random import random, choice
import logging
import math
class Genders(Enum):
male = 'male'
female = 'female'
class RabbitModel(FSM):
defaults = {
'age': 0,
'gender': Genders.male.value,
'mating_prob': 0.001,
'offspring': 0,
}
sexual_maturity = 3 #4*30
life_expectancy = 365 * 3
gestation = 33
pregnancy = -1
max_females = 5
@default_state
@state
def newborn(self):
self.debug(f'I am a newborn at age {self["age"]}')
self['age'] += 1
if self['age'] >= self.sexual_maturity:
self.debug('I am fertile!')
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
@state
def dead(self):
self.info('Agent {} is dying'.format(self.id))
self.die()
class Male(RabbitModel):
@state
def fertile(self):
self['age'] += 1
if self['age'] > self.life_expectancy:
return self.dead
if self['gender'] == Genders.female.value:
return
# Males try to mate
for f in self.get_agents(state_id=Female.fertile.id,
agent_type=Female,
limit_neighbors=False,
limit=self.max_females):
r = random()
if r < self['mating_prob']:
self.impregnate(f)
break # Take a break
def impregnate(self, whom):
whom['pregnancy'] = 0
whom['mate'] = self.id
whom.set_state(whom.pregnant)
self.debug('{} impregnating: {}. {}'.format(self.id, whom.id, whom.state))
class Female(RabbitModel):
@state
def fertile(self):
# Just wait for a Male
pass
@state
def pregnant(self):
self['age'] += 1
if self['age'] > self.life_expectancy:
return self.dead
self['pregnancy'] += 1
self.debug('Pregnancy: {}'.format(self['pregnancy']))
if self['pregnancy'] >= self.gestation:
number_of_babies = int(8+4*random())
self.info('Having {} babies'.format(number_of_babies))
for i in range(number_of_babies):
state = {}
state['gender'] = choice(list(Genders)).value
child = self.env.add_node(self.__class__, state)
self.env.add_edge(self.id, child.id)
self.env.add_edge(self['mate'], child.id)
# self.add_edge()
self.debug('A BABY IS COMING TO LIFE')
self.env['rabbits_alive'] = self.env.get('rabbits_alive', self.topology.number_of_nodes())+1
self.debug('Rabbits alive: {}'.format(self.env['rabbits_alive']))
self['offspring'] += 1
self.env.get_agent(self['mate'])['offspring'] += 1
del self['mate']
self['pregnancy'] = -1
return self.fertile
@state
def dead(self):
super().dead()
if 'pregnancy' in self and self['pregnancy'] > -1:
self.info('A mother has died carrying a baby!!')
class RandomAccident(NetworkAgent):
level = logging.DEBUG
def step(self):
rabbits_total = self.topology.number_of_nodes()
if 'rabbits_alive' not in self.env:
self.env['rabbits_alive'] = 0
rabbits_alive = self.env.get('rabbits_alive', rabbits_total)
prob_death = self.env.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.env.network_agents:
if i.state['id'] == i.dead.id:
continue
r = random()
if r < prob_death:
self.debug('I killed a rabbit: {}'.format(i.id))
rabbits_alive = self.env['rabbits_alive'] = rabbits_alive -1
self.log('Rabbits alive: {}'.format(self.env['rabbits_alive']))
i.set_state(i.dead)
self.log('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
if self.count_agents(state_id=RabbitModel.dead.id) == self.topology.number_of_nodes():
self.die()

View File

@@ -1,21 +0,0 @@
---
load_module: rabbit_agents
name: rabbits_example
max_time: 1000
interval: 1
seed: MySeed
agent_type: rabbit_agents.RabbitModel
environment_agents:
- agent_type: rabbit_agents.RandomAccident
environment_params:
prob_death: 0.001
default_state:
mating_prob: 0.1
topology:
nodes:
- id: 1
agent_type: rabbit_agents.Male
- id: 0
agent_type: rabbit_agents.Female
directed: true
links: []

View File

@@ -1,45 +1,43 @@
'''
"""
Example of setting a
Example of a fully programmatic simulation, without definition files.
'''
"""
from soil import Simulation, agents
from soil.time import Delta
from random import expovariate
import logging
class MyAgent(agents.FSM):
'''
"""
An agent that first does a ping
'''
"""
defaults = {'pong_counts': 2}
defaults = {"pong_counts": 2}
@agents.default_state
@agents.state
def ping(self):
self.info('Ping')
return self.pong, Delta(expovariate(1/16))
self.info("Ping")
return self.pong, Delta(self.random.expovariate(1 / 16))
@agents.state
def pong(self):
self.info('Pong')
self.info("Pong")
self.pong_counts -= 1
self.info(str(self.pong_counts))
if self.pong_counts < 1:
return self.die()
return None, Delta(expovariate(1/16))
return None, Delta(self.random.expovariate(1 / 16))
s = Simulation(name='Programmatic',
network_agents=[{'agent_type': MyAgent, 'id': 0}],
topology={'nodes': [{'id': 0}], 'links': []},
num_trials=1,
max_time=100,
agent_type=MyAgent,
dry_run=True)
s = Simulation(
name="Programmatic",
network_agents=[{"agent_class": MyAgent, "id": 0}],
topology={"nodes": [{"id": 0}], "links": []},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True,
)
logging.basicConfig(level=logging.INFO)
envs = s.run()

View File

@@ -6,20 +6,20 @@ template:
group: simple
num_trials: 1
interval: 1
max_time: 2
max_steps: 2
seed: "CompleteSeed!"
dump: false
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_type: CounterModel
weight: "{{ x1 }}"
state:
state_id: 0
- agent_type: AggregatedCounter
weight: "{{ 1 - x1 }}"
environment_params:
model_params:
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_class: CounterModel
weight: "{{ x1 }}"
state:
state_id: 0
- agent_class: AggregatedCounter
weight: "{{ 1 - x1 }}"
name: "{{ x3 }}"
skip_test: true
vars:

View File

@@ -1,4 +1,3 @@
import random
import networkx as nx
from soil.agents import Geo, NetworkAgent, FSM, state, default_state
from soil import Environment
@@ -21,56 +20,83 @@ class TerroristSpreadModel(FSM, Geo):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.information_spread_intensity = model.environment_params['information_spread_intensity']
self.terrorist_additional_influence = model.environment_params['terrorist_additional_influence']
self.prob_interaction = model.environment_params['prob_interaction']
self.information_spread_intensity = model.environment_params[
"information_spread_intensity"
]
self.terrorist_additional_influence = model.environment_params[
"terrorist_additional_influence"
]
self.prob_interaction = model.environment_params["prob_interaction"]
if self['id'] == self.civilian.id: # Civilian
self.mean_belief = random.uniform(0.00, 0.5)
elif self['id'] == self.terrorist.id: # Terrorist
self.mean_belief = random.uniform(0.8, 1.00)
elif self['id'] == self.leader.id: # Leader
if self["id"] == self.civilian.id: # Civilian
self.mean_belief = self.random.uniform(0.00, 0.5)
elif self["id"] == self.terrorist.id: # Terrorist
self.mean_belief = self.random.uniform(0.8, 1.00)
elif self["id"] == self.leader.id: # Leader
self.mean_belief = 1.00
else:
raise Exception('Invalid state id: {}'.format(self['id']))
if 'min_vulnerability' in model.environment_params:
self.vulnerability = random.uniform( model.environment_params['min_vulnerability'], model.environment_params['max_vulnerability'] )
else :
self.vulnerability = random.uniform( 0, model.environment_params['max_vulnerability'] )
raise Exception("Invalid state id: {}".format(self["id"]))
if "min_vulnerability" in model.environment_params:
self.vulnerability = self.random.uniform(
model.environment_params["min_vulnerability"],
model.environment_params["max_vulnerability"],
)
else:
self.vulnerability = self.random.uniform(
0, model.environment_params["max_vulnerability"]
)
@state
def civilian(self):
neighbours = list(self.get_neighboring_agents(agent_type=TerroristSpreadModel))
neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel))
if len(neighbours) > 0:
# Only interact with some of the neighbors
interactions = list(n for n in neighbours if random.random() <= self.prob_interaction)
influence = sum( self.degree(i) for i in interactions )
mean_belief = sum( i.mean_belief * self.degree(i) / influence for i in interactions )
mean_belief = mean_belief * self.information_spread_intensity + self.mean_belief * ( 1 - self.information_spread_intensity )
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * ( 1 - self.vulnerability )
interactions = list(
n for n in neighbours if self.random.random() <= self.prob_interaction
)
influence = sum(self.degree(i) for i in interactions)
mean_belief = sum(
i.mean_belief * self.degree(i) / influence for i in interactions
)
mean_belief = (
mean_belief * self.information_spread_intensity
+ self.mean_belief * (1 - self.information_spread_intensity)
)
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
1 - self.vulnerability
)
if self.mean_belief >= 0.8:
return self.terrorist
@state
def leader(self):
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
for neighbour in self.get_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]):
self.mean_belief = self.mean_belief ** (1 - self.terrorist_additional_influence)
for neighbour in self.get_neighbors(
state_id=[self.terrorist.id, self.leader.id]
):
if self.betweenness(neighbour) > self.betweenness(self):
return self.terrorist
@state
def terrorist(self):
neighbours = self.get_agents(state_id=[self.terrorist.id, self.leader.id],
agent_type=TerroristSpreadModel,
limit_neighbors=True)
neighbours = self.get_agents(
state_id=[self.terrorist.id, self.leader.id],
agent_class=TerroristSpreadModel,
limit_neighbors=True,
)
if len(neighbours) > 0:
influence = sum( self.degree(n) for n in neighbours )
mean_belief = sum( n.mean_belief * self.degree(n) / influence for n in neighbours )
mean_belief = mean_belief * self.vulnerability + self.mean_belief * ( 1 - self.vulnerability )
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
influence = sum(self.degree(n) for n in neighbours)
mean_belief = sum(
n.mean_belief * self.degree(n) / influence for n in neighbours
)
mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
1 - self.vulnerability
)
self.mean_belief = self.mean_belief ** (
1 - self.terrorist_additional_influence
)
# Check if there are any leaders in the group
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours))
@@ -82,6 +108,34 @@ class TerroristSpreadModel(FSM, Geo):
return
return self.leader
def ego_search(self, steps=1, center=False, node=None, **kwargs):
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
node = as_node(node if node is not None else self)
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, node, force=False):
node = as_node(node)
if (
force
or (not hasattr(self.model, "_degree"))
or getattr(self.model, "_last_step", 0) < self.now
):
self.model._degree = nx.degree_centrality(self.G)
self.model._last_step = self.now
return self.model._degree[node]
def betweenness(self, node, force=False):
node = as_node(node)
if (
force
or (not hasattr(self.model, "_betweenness"))
or getattr(self.model, "_last_step", 0) < self.now
):
self.model._betweenness = nx.betweenness_centrality(self.G)
self.model._last_step = self.now
return self.model._betweenness[node]
class TrainingAreaModel(FSM, Geo):
"""
@@ -95,17 +149,20 @@ class TrainingAreaModel(FSM, Geo):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.training_influence = model.environment_params['training_influence']
if 'min_vulnerability' in model.environment_params:
self.min_vulnerability = model.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
self.training_influence = model.environment_params["training_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
@default_state
@state
def terrorist(self):
for neighbour in self.get_neighboring_agents(agent_type=TerroristSpreadModel):
for neighbour in self.get_neighbors(agent_class=TerroristSpreadModel):
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.training_influence )
neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.training_influence
)
class HavenModel(FSM, Geo):
@@ -122,14 +179,15 @@ class HavenModel(FSM, Geo):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.haven_influence = model.environment_params['haven_influence']
if 'min_vulnerability' in model.environment_params:
self.min_vulnerability = model.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
self.max_vulnerability = model.environment_params['max_vulnerability']
self.haven_influence = model.environment_params["haven_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
self.max_vulnerability = model.environment_params["max_vulnerability"]
def get_occupants(self, **kwargs):
return self.get_neighboring_agents(agent_type=TerroristSpreadModel, **kwargs)
return self.get_neighbors(agent_class=TerroristSpreadModel, **kwargs)
@state
def civilian(self):
@@ -139,14 +197,18 @@ class HavenModel(FSM, Geo):
for neighbour in self.get_occupants():
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability * ( 1 - self.haven_influence )
neighbour.vulnerability = neighbour.vulnerability * (
1 - self.haven_influence
)
return self.civilian
@state
def terrorist(self):
for neighbour in self.get_occupants():
if neighbour.vulnerability < self.max_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.haven_influence )
neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.haven_influence
)
return self.terrorist
@@ -165,10 +227,10 @@ class TerroristNetworkModel(TerroristSpreadModel):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.vision_range = model.environment_params['vision_range']
self.sphere_influence = model.environment_params['sphere_influence']
self.weight_social_distance = model.environment_params['weight_social_distance']
self.weight_link_distance = model.environment_params['weight_link_distance']
self.vision_range = model.environment_params["vision_range"]
self.sphere_influence = model.environment_params["sphere_influence"]
self.weight_social_distance = model.environment_params["weight_social_distance"]
self.weight_link_distance = model.environment_params["weight_link_distance"]
@state
def terrorist(self):
@@ -181,28 +243,47 @@ class TerroristNetworkModel(TerroristSpreadModel):
return super().leader()
def update_relationships(self):
if self.count_neighboring_agents(state_id=self.civilian.id) == 0:
close_ups = set(self.geo_search(radius=self.vision_range, agent_type=TerroristNetworkModel))
step_neighbours = set(self.ego_search(self.sphere_influence, agent_type=TerroristNetworkModel, center=False))
neighbours = set(agent.id for agent in self.get_neighboring_agents(agent_type=TerroristNetworkModel))
if self.count_neighbors(state_id=self.civilian.id) == 0:
close_ups = set(
self.geo_search(
radius=self.vision_range, agent_class=TerroristNetworkModel
)
)
step_neighbours = set(
self.ego_search(
self.sphere_influence,
agent_class=TerroristNetworkModel,
center=False,
)
)
neighbours = set(
agent.id
for agent in self.get_neighbors(agent_class=TerroristNetworkModel)
)
search = (close_ups | step_neighbours) - neighbours
for agent in self.get_agents(search):
social_distance = 1 / self.shortest_path_length(agent.id)
spatial_proximity = ( 1 - self.get_distance(agent.id) )
prob_new_interaction = self.weight_social_distance * social_distance + self.weight_link_distance * spatial_proximity
if agent['id'] == agent.civilian.id and random.random() < prob_new_interaction:
spatial_proximity = 1 - self.get_distance(agent.id)
prob_new_interaction = (
self.weight_social_distance * social_distance
+ self.weight_link_distance * spatial_proximity
)
if (
agent["id"] == agent.civilian.id
and self.random.random() < prob_new_interaction
):
self.add_edge(agent)
break
def get_distance(self, target):
source_x, source_y = nx.get_node_attributes(self.topology, 'pos')[self.id]
target_x, target_y = nx.get_node_attributes(self.topology, 'pos')[target]
dx = abs( source_x - target_x )
dy = abs( source_y - target_y )
return ( dx ** 2 + dy ** 2 ) ** ( 1 / 2 )
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.id]
target_x, target_y = nx.get_node_attributes(self.G, "pos")[target]
dx = abs(source_x - target_x)
dy = abs(source_y - target_y)
return (dx**2 + dy**2) ** (1 / 2)
def shortest_path_length(self, target):
try:
return nx.shortest_path_length(self.topology, self.id, target)
return nx.shortest_path_length(self.G, self.id, target)
except nx.NetworkXNoPath:
return float('inf')
return float("inf")

View File

@@ -1,32 +1,31 @@
name: TerroristNetworkModel_sim
load_module: TerroristNetworkModel
max_time: 150
max_steps: 150
num_trials: 1
network_params:
generator: random_geometric_graph
radius: 0.2
# generator: geographical_threshold_graph
# theta: 20
n: 100
network_agents:
- agent_type: TerroristNetworkModel
weight: 0.8
state:
id: civilian # Civilians
- agent_type: TerroristNetworkModel
weight: 0.1
state:
id: leader # Leaders
- agent_type: TrainingAreaModel
weight: 0.05
state:
id: terrorist # Terrorism
- agent_type: HavenModel
weight: 0.05
state:
id: civilian # Civilian
model_params:
network_params:
generator: random_geometric_graph
radius: 0.2
# generator: geographical_threshold_graph
# theta: 20
n: 100
network_agents:
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.8
state:
id: civilian # Civilians
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.1
state:
id: leader # Leaders
- agent_class: TerroristNetworkModel.TrainingAreaModel
weight: 0.05
state:
id: terrorist # Terrorism
- agent_class: TerroristNetworkModel.HavenModel
weight: 0.05
state:
id: civilian # Civilian
environment_params:
# TerroristSpreadModel
information_spread_intensity: 0.7
terrorist_additional_influence: 0.035

View File

@@ -1,14 +1,15 @@
---
name: torvalds_example
max_time: 10
max_steps: 10
interval: 2
agent_type: CounterModel
default_state:
skill_level: 'beginner'
network_params:
path: 'torvalds.edgelist'
states:
Torvalds:
skill_level: 'God'
balkian:
skill_level: 'developer'
model_params:
agent_class: CounterModel
default_state:
skill_level: 'beginner'
network_params:
path: 'torvalds.edgelist'
states:
Torvalds:
skill_level: 'God'
balkian:
skill_level: 'developer'

View File

@@ -12330,11 +12330,11 @@ Notice how node 0 is the only one with a TV.</p>
<span class="n">sim</span> <span class="o">=</span> <span class="n">soil</span><span class="o">.</span><span class="n">Simulation</span><span class="p">(</span><span class="n">topology</span><span class="o">=</span><span class="n">G</span><span class="p">,</span>
<span class="n">num_trials</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">max_time</span><span class="o">=</span><span class="n">MAX_TIME</span><span class="p">,</span>
<span class="n">environment_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="n">environment_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;event_time&#39;</span><span class="p">:</span> <span class="n">EVENT_TIME</span>
<span class="p">}}],</span>
<span class="n">network_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="n">network_agents</span><span class="o">=</span><span class="p">[{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">}],</span>
<span class="n">states</span><span class="o">=</span><span class="p">{</span><span class="mi">0</span><span class="p">:</span> <span class="p">{</span><span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">True</span><span class="p">}},</span>
<span class="n">default_state</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">False</span><span class="p">},</span>
@@ -12468,14 +12468,14 @@ For this demo, we will use a python dictionary:</p>
<span class="p">},</span>
<span class="s1">&#39;network_agents&#39;</span><span class="p">:</span> <span class="p">[</span>
<span class="p">{</span>
<span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">False</span>
<span class="p">}</span>
<span class="p">},</span>
<span class="p">{</span>
<span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsSpread</span><span class="p">,</span>
<span class="s1">&#39;weight&#39;</span><span class="p">:</span> <span class="mi">2</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;has_tv&#39;</span><span class="p">:</span> <span class="kc">True</span>
@@ -12483,7 +12483,7 @@ For this demo, we will use a python dictionary:</p>
<span class="p">}</span>
<span class="p">],</span>
<span class="s1">&#39;environment_agents&#39;</span><span class="p">:[</span>
<span class="p">{</span><span class="s1">&#39;agent_type&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="p">{</span><span class="s1">&#39;agent_class&#39;</span><span class="p">:</span> <span class="n">NewsEnvironmentAgent</span><span class="p">,</span>
<span class="s1">&#39;state&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;event_time&#39;</span><span class="p">:</span> <span class="mi">10</span>
<span class="p">}</span>

File diff suppressed because one or more lines are too long

View File

@@ -2,8 +2,9 @@ networkx>=2.5
numpy
matplotlib
pyyaml>=5.1
pandas>=0.23
pandas>=1
SALib>=1.3
Jinja2
Mesa>=0.8
tsih>=0.1.9
Mesa>=1.1
pydantic>=1.9
sqlalchemy>=1.4

View File

@@ -49,9 +49,10 @@ setup(
extras_require=extras_require,
tests_require=test_reqs,
setup_requires=['pytest-runner', ],
pytest_plugins = ['pytest_profiling'],
include_package_data=True,
entry_points={
'console_scripts':
['soil = soil.__init__:main',
['soil = soil.__main__:main',
'soil-web = soil.web.__init__:main']
})

View File

@@ -1 +1 @@
0.20.8
0.30.0rc3

View File

@@ -1,8 +1,11 @@
from __future__ import annotations
import importlib
import sys
import os
import pdb
import logging
import traceback
from contextlib import contextmanager
from .version import __version__
@@ -14,86 +17,235 @@ except NameError:
from .agents import *
from . import agents
from .simulation import *
from .environment import Environment
from .environment import Environment, EventedEnvironment
from . import serialization
from . import analysis
from .utils import logger
from .time import *
def main():
def main(
cfg="simulation.yml",
exporters=None,
parallel=None,
output="soil_output",
*,
do_run=False,
debug=False,
pdb=False,
**kwargs,
):
if isinstance(cfg, Simulation):
sim = cfg
import argparse
from . import simulation
logger.info('Running SOIL version: {}'.format(__version__))
logger.info("Running SOIL version: {}".format(__version__))
parser = argparse.ArgumentParser(description='Run a SOIL simulation')
parser.add_argument('file', type=str,
nargs="?",
default='simulation.yml',
help='Configuration file for the simulation (e.g., YAML or JSON)')
parser.add_argument('--version', action='store_true',
help='Show version info and exit')
parser.add_argument('--module', '-m', type=str,
help='file containing the code of any custom agents.')
parser.add_argument('--dry-run', '--dry', action='store_true',
help='Do not store the results of the simulation.')
parser.add_argument('--pdb', action='store_true',
help='Use a pdb console in case of exception.')
parser.add_argument('--graph', '-g', action='store_true',
help='Dump GEXF graph. Defaults to false.')
parser.add_argument('--csv', action='store_true',
help='Dump history in CSV format. Defaults to false.')
parser.add_argument('--level', type=str,
help='Logging level')
parser.add_argument('--output', '-o', type=str, default="soil_output",
help='folder to write results to. It defaults to the current directory.')
parser.add_argument('--synchronous', action='store_true',
help='Run trials serially and synchronously instead of in parallel. Defaults to false.')
parser.add_argument('-e', '--exporter', action='append',
help='Export environment and/or simulations using this exporter')
parser = argparse.ArgumentParser(description="Run a SOIL simulation")
parser.add_argument(
"file",
type=str,
nargs="?",
default=cfg if sim is None else "",
help="Configuration file for the simulation (e.g., YAML or JSON)",
)
parser.add_argument(
"--version", action="store_true", help="Show version info and exit"
)
parser.add_argument(
"--module",
"-m",
type=str,
help="file containing the code of any custom agents.",
)
parser.add_argument(
"--dry-run",
"--dry",
action="store_true",
help="Do not store the results of the simulation to disk, show in terminal instead.",
)
parser.add_argument(
"--pdb", action="store_true", help="Use a pdb console in case of exception."
)
parser.add_argument(
"--debug",
action="store_true",
help="Run a customized version of a pdb console to debug a simulation.",
)
parser.add_argument(
"--graph",
"-g",
action="store_true",
help="Dump each trial's network topology as a GEXF graph. Defaults to false.",
)
parser.add_argument(
"--csv",
action="store_true",
help="Dump all data collected in CSV format. Defaults to false.",
)
parser.add_argument("--level", type=str, help="Logging level")
parser.add_argument(
"--output",
"-o",
type=str,
default=output or "soil_output",
help="folder to write results to. It defaults to the current directory.",
)
if parallel is None:
parser.add_argument(
"--synchronous",
action="store_true",
help="Run trials serially and synchronously instead of in parallel. Defaults to false.",
)
parser.add_argument(
"-e",
"--exporter",
action="append",
default=[],
help="Export environment and/or simulations using this exporter",
)
parser.add_argument(
"--only-convert",
"--convert",
action="store_true",
help="Do not run the simulation, only convert the configuration file(s) and output them.",
)
parser.add_argument(
"--set",
metavar="KEY=VALUE",
action="append",
help="Set a number of parameters that will be passed to the simulation."
"(do not put spaces before or after the = sign). "
"If a value contains spaces, you should define "
"it with double quotes: "
'foo="this is a sentence". Note that '
"values are always treated as strings.",
)
args = parser.parse_args()
logging.basicConfig(level=getattr(logging, (args.level or 'INFO').upper()))
logger.setLevel(getattr(logging, (args.level or "INFO").upper()))
if args.version:
return
if parallel is None:
parallel = not args.synchronous
exporters = exporters or [
"default",
]
for exp in args.exporter:
if exp not in exporters:
exporters.append(exp)
if args.csv:
exporters.append("csv")
if args.graph:
exporters.append("gexf")
if os.getcwd() not in sys.path:
sys.path.append(os.getcwd())
if args.module:
importlib.import_module(args.module)
if output is None:
output = args.output
logger.info('Loading config file: {}'.format(args.file))
debug = debug or args.debug
if args.pdb:
if args.pdb or debug:
args.synchronous = True
os.environ["SOIL_POSTMORTEM"] = "true"
res = []
try:
exporters = list(args.exporter or ['default', ])
if args.csv:
exporters.append('csv')
if args.graph:
exporters.append('gexf')
exp_params = {}
if args.dry_run:
exp_params['copy_to'] = sys.stdout
if not os.path.exists(args.file):
logger.error('Please, input a valid file')
return
simulation.run_from_config(args.file,
dry_run=args.dry_run,
exporters=exporters,
parallel=(not args.synchronous),
outdir=args.output,
exporter_params=exp_params)
except Exception:
if sim:
logger.info("Loading simulation instance")
sim.dry_run = args.dry_run
sim.exporters = exporters
sim.parallel = parallel
sim.outdir = output
sims = [
sim,
]
else:
logger.info("Loading config file: {}".format(args.file))
if not os.path.exists(args.file):
logger.error("Please, input a valid file")
return
sims = list(
simulation.iter_from_config(
args.file,
dry_run=args.dry_run,
exporters=exporters,
parallel=parallel,
outdir=output,
exporter_params=exp_params,
**kwargs,
)
)
for sim in sims:
if args.set:
for s in args.set:
k, v = s.split("=", 1)[:2]
v = eval(v)
tail, *head = k.rsplit(".", 1)[::-1]
target = sim
if head:
for part in head[0].split("."):
try:
target = getattr(target, part)
except AttributeError:
target = target[part]
try:
setattr(target, tail, v)
except AttributeError:
target[tail] = v
if args.only_convert:
print(sim.to_yaml())
continue
if do_run:
res.append(sim.run())
else:
print("not running")
res.append(sim)
except Exception as ex:
if args.pdb:
pdb.post_mortem()
from .debugging import post_mortem
print(traceback.format_exc())
post_mortem()
else:
raise
if debug:
from .debugging import set_trace
os.environ["SOIL_DEBUG"] = "true"
set_trace()
return res
if __name__ == '__main__':
main()
@contextmanager
def easy(cfg, pdb=False, debug=False, **kwargs):
try:
yield main(cfg, debug=debug, pdb=pdb, **kwargs)[0]
except Exception as e:
if os.environ.get("SOIL_POSTMORTEM"):
from .debugging import post_mortem
print(traceback.format_exc())
post_mortem()
raise
if __name__ == "__main__":
main(do_run=True)

View File

@@ -1,4 +1,9 @@
from . import main
from . import main as init_main
if __name__ == '__main__':
main()
def main():
init_main(do_run=True)
if __name__ == "__main__":
init_main(do_run=True)

Some files were not shown because too many files have changed in this diff Show More