mirror of
https://github.com/gsi-upm/soil
synced 2025-08-23 19:52:19 +00:00
Settings modules
This commit is contained in:
@@ -1,9 +1,6 @@
|
||||
import settings
|
||||
import random
|
||||
from ..BaseBehaviour import *
|
||||
|
||||
settings.init()
|
||||
|
||||
|
||||
class BigMarketModel(BaseBehaviour):
|
||||
"""
|
||||
@@ -22,45 +19,44 @@ class BigMarketModel(BaseBehaviour):
|
||||
sentiment_about [Array]
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self, environment=None, agent_id=0, state=()):
|
||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
||||
self.enterprises = settings.enterprises
|
||||
self.enterprises = environment.enterprises
|
||||
self.type = ""
|
||||
self.number_of_enterprises = len(settings.enterprises)
|
||||
self.number_of_enterprises = len(environment.enterprises)
|
||||
|
||||
if self.id < self.number_of_enterprises: # Enterprises
|
||||
if self.id < self.number_of_enterprises: # Enterprises
|
||||
self.state['id']=self.id
|
||||
self.type="Enterprise"
|
||||
self.tweet_probability = settings.tweet_probability_enterprises[self.id]
|
||||
else: # normal users
|
||||
self.tweet_probability = environment.tweet_probability_enterprises[self.id]
|
||||
else: # normal users
|
||||
self.state['id']=self.number_of_enterprises
|
||||
self.type="User"
|
||||
self.tweet_probability = settings.tweet_probability_users
|
||||
self.tweet_relevant_probability = settings.tweet_relevant_probability
|
||||
self.tweet_probability_about = settings.tweet_probability_about # List
|
||||
self.sentiment_about = settings.sentiment_about # List
|
||||
self.tweet_probability = environment.tweet_probability_users
|
||||
self.tweet_relevant_probability = environment.tweet_relevant_probability
|
||||
self.tweet_probability_about = environment.tweet_probability_about # List
|
||||
self.sentiment_about = environment.sentiment_about # List
|
||||
|
||||
def step(self, now):
|
||||
|
||||
if(self.id < self.number_of_enterprises): # Enterprise
|
||||
if self.id < self.number_of_enterprises: # Enterprise
|
||||
self.enterpriseBehaviour()
|
||||
else: # Usuario
|
||||
self.userBehaviour()
|
||||
for i in range(self.number_of_enterprises): # So that it never is set to 0 if there are not changes (logs)
|
||||
for i in range(self.number_of_enterprises): # So that it never is set to 0 if there are not changes (logs)
|
||||
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
|
||||
|
||||
super().step(now)
|
||||
|
||||
def enterpriseBehaviour(self):
|
||||
|
||||
if random.random()< self.tweet_probability: # Tweets
|
||||
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodes neighbour users
|
||||
if random.random()< self.tweet_probability: # Tweets
|
||||
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbour users
|
||||
for x in aware_neighbors:
|
||||
if random.uniform(0,10) < 5:
|
||||
x.sentiment_about[self.id] += 0.1 # Increments for enterprise
|
||||
x.sentiment_about[self.id] += 0.1 # Increments for enterprise
|
||||
else:
|
||||
x.sentiment_about[self.id] -= 0.1 # Decrements for enterprise
|
||||
x.sentiment_about[self.id] -= 0.1 # Decrements for enterprise
|
||||
|
||||
# Establecemos limites
|
||||
if x.sentiment_about[self.id] > 1:
|
||||
@@ -72,8 +68,8 @@ class BigMarketModel(BaseBehaviour):
|
||||
|
||||
def userBehaviour(self):
|
||||
|
||||
if random.random() < self.tweet_probability: # Tweets
|
||||
if random.random() < self.tweet_relevant_probability: # Tweets something relevant
|
||||
if random.random() < self.tweet_probability: # Tweets
|
||||
if random.random() < self.tweet_relevant_probability: # Tweets something relevant
|
||||
# Tweet probability per enterprise
|
||||
for i in range(self.number_of_enterprises):
|
||||
random_num = random.random()
|
||||
@@ -90,7 +86,7 @@ class BigMarketModel(BaseBehaviour):
|
||||
self.userTweets("positive",i)
|
||||
|
||||
def userTweets(self,sentiment,enterprise):
|
||||
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodes neighbours users
|
||||
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbours users
|
||||
for x in aware_neighbors:
|
||||
if sentiment == "positive":
|
||||
x.sentiment_about[enterprise] +=0.003
|
||||
|
@@ -1,10 +1,7 @@
|
||||
import settings
|
||||
import random
|
||||
import numpy as np
|
||||
from ..BaseBehaviour import *
|
||||
|
||||
settings.init()
|
||||
|
||||
|
||||
class SISaModel(BaseBehaviour):
|
||||
"""
|
||||
@@ -35,19 +32,20 @@ class SISaModel(BaseBehaviour):
|
||||
def __init__(self, environment=None, agent_id=0, state=()):
|
||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
||||
|
||||
self.neutral_discontent_spon_prob = np.random.normal(settings.neutral_discontent_spon_prob,
|
||||
settings.standard_variance)
|
||||
self.neutral_discontent_infected_prob = np.random.normal(settings.neutral_discontent_infected_prob,
|
||||
settings.standard_variance)
|
||||
self.neutral_content_spon_prob = np.random.normal(settings.neutral_content_spon_prob, settings.standard_variance)
|
||||
self.neutral_content_infected_prob = np.random.normal(settings.neutral_content_infected_prob,
|
||||
settings.standard_variance)
|
||||
self.neutral_discontent_spon_prob = np.random.normal(environment.neutral_discontent_spon_prob,
|
||||
environment.standard_variance)
|
||||
self.neutral_discontent_infected_prob = np.random.normal(environment.neutral_discontent_infected_prob,
|
||||
environment.standard_variance)
|
||||
self.neutral_content_spon_prob = np.random.normal(environment.neutral_content_spon_prob,
|
||||
environment.standard_variance)
|
||||
self.neutral_content_infected_prob = np.random.normal(environment.neutral_content_infected_prob,
|
||||
environment.standard_variance)
|
||||
|
||||
self.discontent_neutral = np.random.normal(settings.discontent_neutral, settings.standard_variance)
|
||||
self.discontent_content = np.random.normal(settings.discontent_content, settings.variance_d_c)
|
||||
self.discontent_neutral = np.random.normal(environment.discontent_neutral, environment.standard_variance)
|
||||
self.discontent_content = np.random.normal(environment.discontent_content, environment.variance_d_c)
|
||||
|
||||
self.content_discontent = np.random.normal(settings.content_discontent, settings.variance_c_d)
|
||||
self.content_neutral = np.random.normal(settings.content_neutral, settings.standard_variance)
|
||||
self.content_discontent = np.random.normal(environment.content_discontent, environment.variance_c_d)
|
||||
self.content_neutral = np.random.normal(environment.content_neutral, environment.standard_variance)
|
||||
|
||||
def step(self, now):
|
||||
if self.state['id'] == 0:
|
||||
|
Reference in New Issue
Block a user