1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-24 11:52:29 +00:00

Initial commit

This commit is contained in:
David García Martín 2017-07-05 13:19:56 +02:00
parent bbc5386cf5
commit de67fe3e74
73 changed files with 10998 additions and 5997 deletions

0
LICENSE Normal file → Executable file
View File

View File

@ -1,4 +0,0 @@
include requirements.txt
include test-requirements.txt
include README.rst
graft soil

32
README.md Normal file → Executable file
View File

@ -1,34 +1,12 @@
# [SOIL](https://github.com/gsi-upm/soil)
#[Soil](https://github.com/gsi-upm/soil)
Soil is an extensible and user-friendly Agent-based Social Simulator for Social Networks.
Learn how to run your own simulations with our [documentation](http://soilsim.readthedocs.io).
The purpose of Soil (SOcial network sImuLator) is provding an Agent-based Social Simulator written in Python for Social Networks.
In order to see quickly how to use Soil, you can follow the following [tutorial](https://github.com/gsi-upm/soil/blob/master/soil_tutorial.ipynb).
Follow our [tutorial](notebooks/soil_tutorial.ipynb) to develop your own agent models.
If you use Soil in your research, don't forget to cite this paper:
```bibtex
@inbook{soil-gsi-conference-2017,
author = "S{\'a}nchez, Jes{\'u}s M. and Iglesias, Carlos A. and S{\'a}nchez-Rada, J. Fernando",
booktitle = "Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The PAAMS Collection",
doi = "10.1007/978-3-319-59930-4_19",
editor = "Demazeau Y., Davidsson P., Bajo J., Vale Z.",
isbn = "978-3-319-59929-8",
keywords = "soil;social networks;agent based social simulation;python",
month = "June",
organization = "PAAMS 2017",
pages = "234-245",
publisher = "Springer Verlag",
series = "LNAI",
title = "{S}oil: {A}n {A}gent-{B}ased {S}ocial {S}imulator in {P}ython for {M}odelling and {S}imulation of {S}ocial {N}etworks",
url = "https://link.springer.com/chapter/10.1007/978-3-319-59930-4_19",
volume = "10349",
year = "2017",
}
```
@Copyright GSI - Universidad Politécnica de Madrid 2017
[![SOIL](logo_gsi.png)](https://www.gsi.dit.upm.es)

BIN
TerroristModel.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

BIN
TerroristModel_tipo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
TerroristModel_type.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

BIN
clase_base.pyc Executable file

Binary file not shown.

8802
data.txt Executable file

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +0,0 @@
import soil
soil.main()
import pdb

0
docs/Makefile Normal file → Executable file
View File

File diff suppressed because it is too large Load Diff

0
docs/conf.py Normal file → Executable file
View File

29
docs/index.rst Normal file → Executable file
View File

@ -8,38 +8,13 @@ Welcome to Soil's documentation!
Soil is an Agent-based Social Simulator in Python for modelling and simulation of Social Networks.
If you use Soil in your research, do not forget to cite this paper:
.. code:: bibtex
@inbook{soil-gsi-conference-2017,
author = "S{\'a}nchez, Jes{\'u}s M. and Iglesias, Carlos A. and S{\'a}nchez-Rada, J. Fernando",
booktitle = "Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The PAAMS Collection",
doi = "10.1007/978-3-319-59930-4_19",
editor = "Demazeau Y., Davidsson P., Bajo J., Vale Z.",
isbn = "978-3-319-59929-8",
keywords = "soil;social networks;agent based social simulation;python",
month = "June",
organization = "PAAMS 2017",
pages = "234-245",
publisher = "Springer Verlag",
series = "LNAI",
title = "{S}oil: {A}n {A}gent-{B}ased {S}ocial {S}imulator in {P}ython for {M}odelling and {S}imulation of {S}ocial {N}etworks",
url = "https://link.springer.com/chapter/10.1007/978-3-319-59930-4_19",
volume = "10349",
year = "2017",
}
.. toctree::
:maxdepth: 2
:caption: Learn more about soil:
installation
quickstart
Tutorial - Spreading news
usage
models

21
docs/installation.rst Normal file → Executable file
View File

@ -1,24 +1,7 @@
Installation
------------
The easiest way to install Soil is through pip:
The latest version can be installed through GitLab.
.. code:: bash
pip install soil
Now test that it worked by running the command line tool
.. code:: bash
soil --help
Or using soil programmatically:
.. code:: python
import soil
print(soil.__version__)
The latest version can be installed through `GitLab <https://lab.cluster.gsi.dit.upm.es/soil/soil.git>`_.
git clone https://lab.cluster.gsi.dit.upm.es/soil/soil.git

0
docs/make.bat Normal file → Executable file
View File

112
docs/models.rst Executable file
View File

@ -0,0 +1,112 @@
Developing new models
---------------------
This document describes how to develop a new analysis model.
What is a model?
================
A model defines the behaviour of the agents with a view to assessing their effects on the system as a whole.
In practice, a model consists of at least two parts:
* Python module: the actual code that describes the behaviour.
* Setting up the variables in the Settings JSON file.
This separation allows us to run the simulation with different agents.
Models Code
===========
All the models are imported to the main file. The initialization look like this:
.. code:: python
import settings
networkStatus = {} # Dict that will contain the status of every agent in the network
sentimentCorrelationNodeArray = []
for x in range(0, settings.network_params["number_of_nodes"]):
sentimentCorrelationNodeArray.append({'id': x})
# Initialize agent states. Let's assume everyone is normal.
init_states = [{'id': 0, } for _ in range(settings.network_params["number_of_nodes"])]
# add keys as as necessary, but "id" must always refer to that state category
A new model have to inherit the BaseBehaviour class which is in the same module.
There are two basics methods:
* __init__
* step: used to define the behaviour over time.
Variable Initialization
=======================
The different parameters of the model have to be initialize in the Simulation Settings JSON file which will be
passed as a parameter to the simulation.
.. code:: json
{
"agent": ["SISaModel","ControlModelM2"],
"neutral_discontent_spon_prob": 0.04,
"neutral_discontent_infected_prob": 0.04,
"neutral_content_spon_prob": 0.18,
"neutral_content_infected_prob": 0.02,
"discontent_neutral": 0.13,
"discontent_content": 0.07,
"variance_d_c": 0.02,
"content_discontent": 0.009,
"variance_c_d": 0.003,
"content_neutral": 0.088,
"standard_variance": 0.055,
"prob_neutral_making_denier": 0.035,
"prob_infect": 0.075,
"prob_cured_healing_infected": 0.035,
"prob_cured_vaccinate_neutral": 0.035,
"prob_vaccinated_healing_infected": 0.035,
"prob_vaccinated_vaccinate_neutral": 0.035,
"prob_generate_anti_rumor": 0.035
}
In this file you will also define the models you are going to simulate. You can simulate as many models as you want.
The simulation returns one result for each model, executing each model separately. For the usage, see :doc:`usage`.
Example Model
=============
In this section, we will implement a Sentiment Correlation Model.
The class would look like this:
.. code:: python
from ..BaseBehaviour import *
from .. import sentimentCorrelationNodeArray
class SentimentCorrelationModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
self.anger_prob = environment.environment_params['anger_prob']
self.joy_prob = environment.environment_params['joy_prob']
self.sadness_prob = environment.environment_params['sadness_prob']
self.disgust_prob = environment.environment_params['disgust_prob']
self.time_awareness = []
for i in range(4): # In this model we have 4 sentiments
self.time_awareness.append(0) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
sentimentCorrelationNodeArray[self.id][self.env.now] = 0
def step(self, now):
self.behaviour() # Method which define the behaviour
super().step(now)
The variables will be modified by the user, so you have to include them in the Simulation Settings JSON file.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

View File

@ -1,194 +0,0 @@
Quickstart
----------
This section shows how to run simulations from simulation configuration files.
First of all, you need to install the package (See :doc:`installation`)
Simulation configuration files are ``json`` or ``yaml`` files that define all the parameters of a simulation.
Here's an example (``example.yml``).
.. code:: yaml
---
name: MyExampleSimulation
max_time: 50
num_trials: 3
timeout: 2
network_params:
network_type: barabasi_albert_graph
n: 100
m: 2
agent_distribution:
- agent_type: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
weight: 1
state:
id: discontent
- agent_type: SISaModel
weight: 8
state:
id: neutral
environment_params:
prob_infect: 0.075
Now run the simulation with the command line tool:
.. code:: bash
soil example.yml
Once the simulation finishes, its results will be stored in a folder named ``MyExampleSimulation``.
Four types of objects are saved by default: a pickle of the simulation, a ``YAML`` representation of the simulation (to re-launch it), for every trial, a csv file with the content of the state of every network node and the environment parameters at every step of the simulation as well as the network in gephi format (``gexf``).
.. code::
soil_output
├── Sim_prob_0
│   ├── Sim_prob_0.dumped.yml
│   ├── Sim_prob_0.simulation.pickle
│   ├── Sim_prob_0_trial_0.environment.csv
│   └── Sim_prob_0_trial_0.gexf
This example configuration will run three trials of a simulation containing a randomly generated network.
The 100 nodes in the network will be SISaModel agents, 10% of them will start in the content state, 10% in the discontent state, and the remaining 80% in the neutral state.
All agents will have access to the environment, which only contains one variable, ``prob_infected``.
The state of the agents will be updated every 2 seconds (``timeout``).
Network
=======
The network topology for the simulation can be loaded from an existing network file or generated with one of the random network generation methods from networkx.
Loading a network
#################
To load an existing network, specify its path in the configuration:
.. code:: yaml
---
network_params:
path: /tmp/mynetwork.gexf
Soil will try to guess what networkx method to use to read the file based on its extension.
However, we only test using ``gexf`` files.
Generating a random network
###########################
To generate a random network using one of networkx's built-in methods, specify the `graph generation algorithm <https://networkx.github.io/documentation/development/reference/generators.html>`_ and other parameters.
For example, the following configuration is equivalent to :code:`nx.complete_graph(100)`:
.. code:: yaml
network_params:
network_type: complete_graph
n: 100
Environment
============
The environment is the place where the shared state of the simulation is stored.
For instance, the probability of certain events.
The configuration file may specify the initial value of the environment parameters:
.. code:: yaml
environment_params:
daily_probability_of_earthquake: 0.001
number_of_earthquakes: 0
Agents
======
Agents are a way of modelling behavior.
Agents can be characterized with two variables: an agent type (``agent_type``) and its state.
Only one agent is executed at a time (generally, every ``timeout`` seconds), and it has access to its state and the environment parameters.
Through the environment, it can access the network topology and the state of other agents.
There are three three types of agents according to how they are added to the simulation: network agents, environment agent, and other agents.
Network Agents
##############
Network agents are attached to a node in the topology.
The configuration file allows you to specify how agents will be mapped to topology nodes.
The simplest way is to specify a single type of agent.
Hence, every node in the network will have an associated agent of that type.
.. code:: yaml
agent_type: SISaModel
It is also possible to add more than one type of agent to the simulation, and to control the ratio of each type (``weight``).
For instance, with following configuration, it is five times more likely for a node to be assigned a CounterModel type than a SISaModel type.
.. code:: yaml
agent_distribution:
- agent_type: SISaModel
weight: 1
- agent_type: CounterModel
weight: 5
In addition to agent type, you may also add a custom initial state to the distribution.
This is very useful to add the same agent type with different states.
e.g., to populate the network with SISaModel, roughly 10% of them with a discontent state:
.. code:: yaml
agent_distribution:
- agent_type: SISaModel
weight: 9
state:
id: neutral
- agent_type: SISaModel
weight: 1
state:
id: discontent
Lastly, the configuration may include initial state for one or more nodes.
For instance, to add a state for the two nodes in this configuration:
.. code:: yaml
agent_type: SISaModel
network:
network_type: complete_graph
n: 2
states:
- id: content
- id: discontent
Or to add state only to specific nodes (by ``id``).
For example, to apply special skills to Linux Torvalds in a simulation:
.. literalinclude:: ../examples/torvalds.yml
:language: yaml
Environment Agents
##################
In addition to network agents, more agents can be added to the simulation.
These agens are programmed in much the same way as network agents, the only difference is that they will not be assigned to network nodes.
.. code::
environment_agents:
- agent_type: MyAgent
state:
mood: happy
- agent_type: DummyAgent
Visualizing the results
=======================
The simulation will return a dynamic graph .gexf file which could be visualized with
`Gephi <https://gephi.org/users/download/>`__.

99
docs/usage.rst Executable file
View File

@ -0,0 +1,99 @@
Usage
-----
First of all, you need to install the package. See :doc:`installation` for installation instructions.
Simulation Settings
===================
Once installed, before running a simulation, you need to configure it.
* In the Settings JSON file you will find the configuration of the network.
.. code:: python
{
"network_type": 1,
"number_of_nodes": 1000,
"max_time": 50,
"num_trials": 1,
"timeout": 2
}
* In the Settings JSON file, you will also find the configuration of the models.
Network Types
=============
There are three types of network implemented, but you could add more.
.. code:: python
if settings.network_type == 0:
G = nx.complete_graph(settings.number_of_nodes)
if settings.network_type == 1:
G = nx.barabasi_albert_graph(settings.number_of_nodes, 10)
if settings.network_type == 2:
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
# More types of networks can be added here
Models Settings
===============
After having configured the simulation, the next step is setting up the variables of the models.
For this, you will need to modify the Settings JSON file again.
.. code:: json
{
"agent": ["SISaModel","ControlModelM2"],
"neutral_discontent_spon_prob": 0.04,
"neutral_discontent_infected_prob": 0.04,
"neutral_content_spon_prob": 0.18,
"neutral_content_infected_prob": 0.02,
"discontent_neutral": 0.13,
"discontent_content": 0.07,
"variance_d_c": 0.02,
"content_discontent": 0.009,
"variance_c_d": 0.003,
"content_neutral": 0.088,
"standard_variance": 0.055,
"prob_neutral_making_denier": 0.035,
"prob_infect": 0.075,
"prob_cured_healing_infected": 0.035,
"prob_cured_vaccinate_neutral": 0.035,
"prob_vaccinated_healing_infected": 0.035,
"prob_vaccinated_vaccinate_neutral": 0.035,
"prob_generate_anti_rumor": 0.035
}
In this file you will define the different models you are going to simulate. You can simulate as many models
as you want. Each model will be simulated separately.
After setting up the models, you have to initialize the parameters of each one. You will find the parameters needed
in the documentation of each model.
Parameter validation will fail if a required parameter without a default has not been provided.
Running the Simulation
======================
After setting all the configuration, you will be able to run the simulation. All you need to do is execute:
.. code:: bash
python3 soil.py
The simulation will return a dynamic graph .gexf file which could be visualized with
`Gephi <https://gephi.org/users/download/>`__.
It will also return one .png picture for each model simulated.

View File

@ -1,24 +0,0 @@
---
name: simple
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
network_params:
generator: complete_graph
n: 10
network_agents:
- agent_type: CounterModel
weight: 1
state:
id: 0
- agent_type: AggregatedCounter
weight: 0.2
environment_agents: []
environment_params:
am_i_complete: true
default_state:
incidents: 0
states:
- name: 'The first node'
- name: 'The second node'

View File

@ -1,17 +0,0 @@
default_state: {}
environment_agents: []
environment_params: {prob_neighbor_spread: 0.0, prob_tv_spread: 0.01}
interval: 1
max_time: 20
name: Sim_prob_0
network_agents:
- agent_type: NewsSpread
state: {has_tv: false}
weight: 1
- agent_type: NewsSpread
state: {has_tv: true}
weight: 2
network_params: {generator: erdos_renyi_graph, n: 500, p: 0.1}
num_trials: 1
states:
- {has_tv: true}

View File

@ -1,20 +0,0 @@
import soil
import random
class NewsSpread(soil.agents.FSM):
@soil.agents.default_state
@soil.agents.state
def neutral(self):
r = random.random()
if self['has_tv'] and r < self.env['prob_tv_spread']:
return self.infected
return
@soil.agents.state
def infected(self):
prob_infect = self.env['prob_neighbor_spread']
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
r = random.random()
if r < prob_infect:
neighbor.state['id'] = self.infected.id
return

View File

@ -1,2 +0,0 @@
balkian Torvalds {}
anonymous Torvalds {}

View File

@ -1,14 +0,0 @@
---
name: torvalds_example
max_time: 1
interval: 2
agent_type: CounterModel
default_state:
skill_level: 'beginner'
network_params:
path: 'torvalds.edgelist'
states:
Torvalds:
skill_level: 'God'
balkian:
skill_level: 'developer'

0
logo_gsi.png Normal file → Executable file
View File

Before

Width:  |  Height:  |  Size: 35 KiB

After

Width:  |  Height:  |  Size: 35 KiB

0
logo_gsi.svg Normal file → Executable file
View File

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 18 KiB

View File

@ -0,0 +1,38 @@
import settings
from nxsim import BaseNetworkAgent
from .. import networkStatus
class BaseBehaviour(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self._attrs = {}
@property
def attrs(self):
now = self.env.now
if now not in self._attrs:
self._attrs[now] = {}
return self._attrs[now]
@attrs.setter
def attrs(self, value):
self._attrs[self.env.now] = value
def run(self):
while True:
self.step(self.env.now)
yield self.env.timeout(settings.network_params["timeout"])
def step(self, now):
networkStatus['agent_%s'% self.id] = self.to_json()
def to_json(self):
final = {}
for stamp, attrs in self._attrs.items():
for a in attrs:
if a not in final:
final[a] = {}
final[a][stamp] = attrs[a]
return final

View File

@ -0,0 +1 @@
from .BaseBehaviour import BaseBehaviour

View File

@ -0,0 +1,367 @@
import random
import numpy as np
from ..BaseBehaviour import *
import settings
import networkx as nx
POPULATION = 0
LEADERS = 1
HAVEN = 2
TRAININGENV = 3
NON_RADICAL = 0
NEUTRAL = 1
RADICAL = 2
POPNON =0
POPNE=1
POPRAD=2
HAVNON=3
HAVNE=4
HAVRAD=5
LEADER=6
TRAINING = 7
class TerroristModel(BaseBehaviour):
num_agents = 0
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.population = settings.network_params["number_of_nodes"] * settings.environment_params['initial_population']
self.havens = settings.network_params["number_of_nodes"] * settings.environment_params['initial_havens']
self.training_enviroments = settings.network_params["number_of_nodes"] * settings.environment_params['initial_training_enviroments']
self.initial_radicalism = settings.environment_params['initial_radicalism']
self.information_spread_intensity = settings.environment_params['information_spread_intensity']
self.influence = settings.environment_params['influence']
self.relative_inequality = settings.environment_params['relative_inequality']
self.additional_influence = settings.environment_params['additional_influence']
if TerroristModel.num_agents < self.population:
self.state['type'] = POPULATION
TerroristModel.num_agents = TerroristModel.num_agents + 1
random1 = random.random()
if random1 < 0.7:
self.state['id'] = NON_RADICAL
self.state['fstatus'] = POPNON
elif random1 >= 0.7 and random1 < 0.9:
self.state['id'] = NEUTRAL
self.state['fstatus'] = POPNE
elif random1 >= 0.9:
self.state['id'] = RADICAL
self.state['fstatus'] = POPRAD
elif TerroristModel.num_agents < self.havens + self.population:
self.state['type'] = HAVEN
TerroristModel.num_agents = TerroristModel.num_agents + 1
random2 = random.random()
random1 = random2 + self.initial_radicalism
if random1 < 1.2:
self.state['id'] = NON_RADICAL
self.state['fstatus'] = HAVNON
elif random1 >= 1.2 and random1 < 1.6:
self.state['id'] = NEUTRAL
self.state['fstatus'] = HAVNE
elif random1 >= 1.6:
self.state['id'] = RADICAL
self.state['fstatus'] = HAVRAD
elif TerroristModel.num_agents < self.training_enviroments + self.havens + self.population:
self.state['type'] = TRAININGENV
self.state['fstatus'] = TRAINING
TerroristModel.num_agents = TerroristModel.num_agents + 1
def step(self, now):
if self.state['type'] == POPULATION:
self.population_and_leader_conduct()
if self.state['type'] == LEADERS:
self.population_and_leader_conduct()
if self.state['type'] == HAVEN:
self.haven_conduct()
if self.state['type'] == TRAININGENV:
self.training_enviroment_conduct()
self.attrs['status'] = self.state['id']
self.attrs['type'] = self.state['type']
self.attrs['radicalism'] = self.state['rad']
self.attrs['fstatus'] = self.state['fstatus']
super().step(now)
def population_and_leader_conduct(self):
if self.state['id'] == NON_RADICAL:
if self.state['rad'] == 0.000:
self.state['rad'] = self.set_radicalism()
self.non_radical_behaviour()
if self.state['id'] == NEUTRAL:
if self.state['rad'] == 0.000:
self.state['rad'] = self.set_radicalism()
while self.state['id'] == RADICAL:
self.radical_behaviour()
break
self.neutral_behaviour()
if self.state['id'] == RADICAL:
if self.state['rad'] == 0.000:
self.state['rad'] = self.set_radicalism()
self.radical_behaviour()
def haven_conduct(self):
non_radical_neighbors = self.get_neighboring_agents(state_id=NON_RADICAL)
neutral_neighbors = self.get_neighboring_agents(state_id=NEUTRAL)
radical_neighbors = self.get_neighboring_agents(state_id=RADICAL)
neighbors_of_non_radical = len(neutral_neighbors) + len(radical_neighbors)
neighbors_of_neutral = len(non_radical_neighbors) + len(radical_neighbors)
neighbors_of_radical = len(non_radical_neighbors) + len(neutral_neighbors)
threshold = 8
if (len(non_radical_neighbors) > neighbors_of_non_radical) and len(non_radical_neighbors) >= threshold:
self.state['id'] = NON_RADICAL
elif (len(neutral_neighbors) > neighbors_of_neutral) and len(neutral_neighbors) >= threshold:
self.state['id'] = NEUTRAL
elif (len(radical_neighbors) > neighbors_of_radical) and len(radical_neighbors) >= threshold:
self.state['id'] = RADICAL
if self.state['id'] == NEUTRAL:
for neighbor in non_radical_neighbors:
neighbor.state['rad'] = neighbor.state['rad'] + (self.influence + self.additional_influence) * self.information_spread_intensity
if neighbor.state['rad'] >= 0.3 and neighbor.state['rad'] <= 0.59:
neighbor.state['id'] = NEUTRAL
if neighbor.state['type'] == POPULATION:
neighbor.state['fstatus'] = POPNE
elif neighbor.state['type'] == HAVEN:
neighbor.state['fstatus'] = HAVNE
elif neighbor.state['rad'] > 0.59:
neighbor.state['rad'] = 0.59
neighbor.state['id'] = NEUTRAL
if neighbor.state['type'] == POPULATION:
neighbor.state['fstatus'] = POPNE
elif neighbor.state['type'] == HAVEN:
neighbor.state['fstatus'] = HAVNE
if self.state['id'] == RADICAL:
for neighbor in non_radical_neighbors:
neighbor.state['rad'] = neighbor.state['rad'] + (self.influence + self.additional_influence) * self.information_spread_intensity
if neighbor.state['rad'] >= 0.3 and neighbor.state['rad'] <= 0.59:
neighbor.state['id'] = NEUTRAL
if neighbor.state['type'] == POPULATION:
neighbor.state['fstatus'] = POPNE
elif neighbor.state['type'] == HAVEN:
neighbor.state['fstatus'] = HAVNE
elif neighbor.state['rad'] > 0.59:
neighbor.state['rad'] = 0.59
neighbor.state['id'] = NEUTRAL
if neighbor.state['type'] == POPULATION:
neighbor.state['fstatus'] = POPNE
elif neighbor.state['type'] == HAVEN:
neighbor.state['fstatus'] = HAVNE
for neighbor in neutral_neighbors:
neighbor.state['rad'] = neighbor.state['rad'] + (self.influence + self.additional_influence) * self.information_spread_intensity
if neighbor.state['rad'] >= 0.6:
neighbor.state['id'] = RADICAL
if neighbor.state['type'] != HAVEN and neighbor.state['type']!=TRAININGENV:
if neighbor.state['rad'] >= 0.62:
if create_leader(neighbor):
neighbor.state['type'] = LEADERS
neighbor.state['fstatus'] = LEADER
# elif neighbor.state['type'] == LEADERS:
# neighbor.state['type'] = POPULATION
# neighbor.state['fstatus'] = POPRAD
elif neighbor.state['type'] == POPULATION:
neighbor.state['fstatus'] = POPRAD
elif neighbor.state['type'] == HAVEN:
neighbor.state['fstatus'] = HAVRAD
def training_enviroment_conduct(self):
self.state['id'] = RADICAL
self.state['rad'] = 1
neighbors = self.get_neighboring_agents()
for neighbor in neighbors:
if neighbor.state['id'] == NON_RADICAL:
neighbor.state['rad'] = neighbor.state['rad'] + (self.influence + self.additional_influence) * self.information_spread_intensity
if neighbor.state['rad'] >= 0.3 and self.state['rad'] <= 0.59:
neighbor.state['id'] = NEUTRAL
if neighbor.state['type'] == POPULATION:
neighbor.state['fstatus'] = POPNE
elif neighbor.state['type'] == HAVEN:
neighbor.state['fstatus'] = HAVNE
elif neighbor.state['rad'] > 0.59:
neighbor.state['rad'] = 0.59
neighbor.state['id'] = NEUTRAL
if neighbor.state['type'] == POPULATION:
neighbor.state['fstatus'] = POPNE
elif neighbor.state['type'] == HAVEN:
neighbor.state['fstatus'] = HAVNE
neighbor.state['rad'] = neighbor.state['rad'] + (neighbor.influence + neighbor.additional_influence) * neighbor.information_spread_intensity
if neighbor.state['rad'] >= 0.3 and neighbor.state['rad'] <= 0.59:
neighbor.state['id'] = NEUTRAL
if neighbor.state['type'] == POPULATION:
neighbor.state['fstatus'] = POPNE
elif neighbor.state['type'] == HAVEN:
neighbor.state['fstatus'] = HAVNE
elif neighbor.state['rad'] >= 0.6:
neighbor.state['id'] = RADICAL
if neighbor.state['type'] != HAVEN and neighbor.state['type'] != TRAININGENV:
if neighbor.state['rad'] >= 0.62:
if create_leader(neighbor):
neighbor.state['type'] = LEADERS
neighbor.state['fstatus'] = LEADER
# elif neighbor.state['type'] == LEADERS:
# neighbor.state['type'] = POPULATION
# neighbor.state['fstatus'] = POPRAD
elif neighbor.state['type'] == POPULATION:
neighbor.state['fstatus'] = POPRAD
elif neighbor.state['type'] == HAVEN:
neighbor.state['fstatus'] = HAVRAD
def non_radical_behaviour(self):
neighbors = self.get_neighboring_agents()
for neighbor in neighbors:
if neighbor.state['type'] == POPULATION:
if neighbor.state['id'] == NEUTRAL or neighbor.state['id'] == RADICAL:
self.state['rad'] = self.state['rad'] + self.influence * self.information_spread_intensity
if self.state['rad'] >= 0.3 and self.state['rad'] <= 0.59:
self.state['id'] = NEUTRAL
if self.state['type']==POPULATION:
self.state['fstatus'] = POPNE
elif self.state['type'] == HAVEN:
self.state['fstatus'] = HAVNE
elif self.state['rad'] > 0.59:
self.state['rad'] = 0.59
self.state['id'] = NEUTRAL
if self.state['type']==POPULATION:
self.state['fstatus'] = POPNE
elif self.state['type'] == HAVEN:
self.state['fstatus'] = HAVNE
elif neighbor.state['type'] == LEADERS:
if neighbor.state['id'] == NEUTRAL or neighbor.state['id'] == RADICAL:
self.state['rad'] = self.state['rad'] + (self.influence + self.additional_influence) * self.information_spread_intensity
if self.state['rad'] >= 0.3 and self.state['rad'] <= 0.59:
self.state['id'] = NEUTRAL
if self.state['type']==POPULATION:
self.state['fstatus'] = POPNE
elif self.state['type'] == HAVEN:
self.state['fstatus'] = HAVNE
elif self.state['rad'] > 0.59:
self.state['rad'] = 0.59
self.state['id'] = NEUTRAL
if self.state['type']==POPULATION:
self.state['fstatus'] = POPNE
elif self.state['type'] == HAVEN:
self.state['fstatus'] = HAVNE
def neutral_behaviour(self):
neighbors = self.get_neighboring_agents()
for neighbor in neighbors:
if neighbor.state['type'] == POPULATION:
if neighbor.state['id'] == RADICAL:
self.state['rad'] = self.state['rad'] + self.influence * self.information_spread_intensity
if self.state['rad'] >= 0.6:
self.state['id'] = RADICAL
if self.state['type'] != HAVEN:
if self.state['rad'] >= 0.62:
if create_leader(self):
self.state['type'] = LEADERS
self.state['fstatus'] = LEADER
# elif self.state['type'] == LEADERS:
# self.state['type'] = POPULATION
# self.state['fstatus'] = POPRAD
elif neighbor.state['type'] == POPULATION:
self.state['fstatus'] = POPRAD
elif self.state['type'] == HAVEN:
self.state['fstatus'] = HAVRAD
elif neighbor.state['type'] == LEADERS:
if neighbor.state['id'] == RADICAL:
self.state['rad'] = self.state['rad'] + (self.influence + self.additional_influence) * self.information_spread_intensity
if self.state['rad'] >= 0.6:
self.state['id'] = RADICAL
if self.state['type'] != HAVEN:
if self.state['rad'] >= 0.62:
if create_leader(self):
self.state['type'] = LEADERS
self.state['fstatus'] = LEADER
# elif self.state['type'] == LEADERS:
# self.state['type'] = POPULATION
# self.state['fstatus'] = POPRAD
elif neighbor.state['type'] == POPULATION:
self.state['fstatus'] = POPRAD
elif self.state['type'] == HAVEN:
self.state['fstatus'] = HAVRAD
def radical_behaviour(self):
neighbors = self.get_neighboring_agents(state_id=RADICAL)
for neighbor in neighbors:
if self.state['rad']< neighbor.state['rad'] and self.state['type']== LEADERS and neighbor.state['type']==LEADERS:
self.state['type'] = POPULATION
self.state['fstatus'] = POPRAD
def set_radicalism(self):
if self.state['id'] == NON_RADICAL:
radicalism = random.uniform(0.0, 0.29) * self.relative_inequality
return radicalism
elif self.state['id'] == NEUTRAL:
radicalism = 0.3 + random.uniform(0.3, 0.59) * self.relative_inequality
if radicalism >= 0.6:
self.state['id'] = RADICAL
return radicalism
elif self.state['id'] == RADICAL:
radicalism = 0.6 + random.uniform(0.6, 1.0) * self.relative_inequality
return radicalism
def get_partition(agent):
return settings.partition_param[agent.id]
def get_centrality(agent):
return settings.centrality_param[agent.id]
def get_centrality_given_id(id):
return settings.centrality_param[id]
def get_leader(partition):
if not bool(settings.leaders) or partition not in settings.leaders.keys():
return None
return settings.leaders[partition]
def set_leader(partition, agent):
settings.leaders[partition] = agent.id
def create_leader(agent):
my_partition = get_partition(agent)
old_leader = get_leader(my_partition)
if old_leader == None:
set_leader(my_partition, agent)
return True
else:
my_centrality = get_centrality(agent)
old_leader_centrality = get_centrality_given_id(old_leader)
if my_centrality > old_leader_centrality:
set_leader(my_partition, agent)
return True
return False

View File

@ -0,0 +1 @@
from .TerroristModel import TerroristModel

3
models/__init__.py Executable file
View File

@ -0,0 +1,3 @@
from .models import *
from .BaseBehaviour import *
from .TerroristModel import *

7
models/models.py Executable file
View File

@ -0,0 +1,7 @@
import settings
networkStatus = {} # Dict that will contain the status of every agent in the network
# Initialize agent states. Let's assume everyone is normal and all types are population.
init_states = [{'id': 0, 'type': 0, 'rad': 0, 'fstatus':0, } for _ in range(settings.network_params["number_of_nodes"])]

View File

@ -1,596 +0,0 @@
from nxsim import BaseNetworkAgent
import numpy as np
import random
import settings
settings.init()
##############################
# Variables initialization #
##############################
def init():
global networkStatus
networkStatus = {} # Dict that will contain the status of every agent in the network
sentimentCorrelationNodeArray=[]
for x in range(0, settings.number_of_nodes):
sentimentCorrelationNodeArray.append({'id':x})
# Initialize agent states. Let's assume everyone is normal.
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
####################
# Available models #
####################
class BaseBehaviour(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self._attrs = {}
@property
def attrs(self):
now = self.env.now
if now not in self._attrs:
self._attrs[now] = {}
return self._attrs[now]
@attrs.setter
def attrs(self, value):
self._attrs[self.env.now] = value
def run(self):
while True:
self.step(self.env.now)
yield self.env.timeout(settings.timeout)
def step(self, now):
networkStatus['agent_%s'% self.id] = self.to_json()
def to_json(self):
final = {}
for stamp, attrs in self._attrs.items():
for a in attrs:
if a not in final:
final[a] = {}
final[a][stamp] = attrs[a]
return final
class ControlModelM2(BaseBehaviour):
#Init infected
init_states[random.randint(0,settings.number_of_nodes-1)] = {'id':1}
init_states[random.randint(0,settings.number_of_nodes-1)] = {'id':1}
# Init beacons
init_states[random.randint(0, settings.number_of_nodes-1)] = {'id': 4}
init_states[random.randint(0, settings.number_of_nodes-1)] = {'id': 4}
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.prob_neutral_making_denier = np.random.normal(settings.prob_neutral_making_denier, settings.standard_variance)
self.prob_infect = np.random.normal(settings.prob_infect, settings.standard_variance)
self.prob_cured_healing_infected = np.random.normal(settings.prob_cured_healing_infected, settings.standard_variance)
self.prob_cured_vaccinate_neutral = np.random.normal(settings.prob_cured_vaccinate_neutral, settings.standard_variance)
self.prob_vaccinated_healing_infected = np.random.normal(settings.prob_vaccinated_healing_infected, settings.standard_variance)
self.prob_vaccinated_vaccinate_neutral = np.random.normal(settings.prob_vaccinated_vaccinate_neutral, settings.standard_variance)
self.prob_generate_anti_rumor = np.random.normal(settings.prob_generate_anti_rumor, settings.standard_variance)
def step(self, now):
if self.state['id'] == 0: #Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: #Infected
self.infected_behaviour()
elif self.state['id'] == 2: #Cured
self.cured_behaviour()
elif self.state['id'] == 3: #Vaccinated
self.vaccinated_behaviour()
elif self.state['id'] == 4: #Beacon-off
self.beacon_off_behaviour()
elif self.state['id'] == 5: #Beacon-on
self.beacon_on_behaviour()
self.attrs['status'] = self.state['id']
super().step(now)
def neutral_behaviour(self):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors)>0:
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
def cured_behaviour(self):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
def beacon_off_behaviour(self):
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
self.state['id'] == 5 #Beacon on
def beacon_on_behaviour(self):
# Cure (M2 feature added)
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
class SpreadModelM2(BaseBehaviour):
init_states[random.randint(0,settings.number_of_nodes)] = {'id':1}
init_states[random.randint(0,settings.number_of_nodes)] = {'id':1}
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.prob_neutral_making_denier = np.random.normal(settings.prob_neutral_making_denier, settings.standard_variance)
self.prob_infect = np.random.normal(settings.prob_infect, settings.standard_variance)
self.prob_cured_healing_infected = np.random.normal(settings.prob_cured_healing_infected, settings.standard_variance)
self.prob_cured_vaccinate_neutral = np.random.normal(settings.prob_cured_vaccinate_neutral, settings.standard_variance)
self.prob_vaccinated_healing_infected = np.random.normal(settings.prob_vaccinated_healing_infected, settings.standard_variance)
self.prob_vaccinated_vaccinate_neutral = np.random.normal(settings.prob_vaccinated_vaccinate_neutral, settings.standard_variance)
self.prob_generate_anti_rumor = np.random.normal(settings.prob_generate_anti_rumor, settings.standard_variance)
def step(self, now):
if self.state['id'] == 0: #Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: #Infected
self.infected_behaviour()
elif self.state['id'] == 2: #Cured
self.cured_behaviour()
elif self.state['id'] == 3: #Vaccinated
self.vaccinated_behaviour()
self.attrs['status'] = self.state['id']
super().step(now)
def neutral_behaviour(self):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors)>0:
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
def cured_behaviour(self):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
class SISaModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.neutral_discontent_spon_prob = np.random.normal(settings.neutral_discontent_spon_prob, settings.standard_variance)
self.neutral_discontent_infected_prob = np.random.normal(settings.neutral_discontent_infected_prob,settings.standard_variance)
self.neutral_content_spon_prob = np.random.normal(settings.neutral_content_spon_prob,settings.standard_variance)
self.neutral_content_infected_prob = np.random.normal(settings.neutral_content_infected_prob,settings.standard_variance)
self.discontent_neutral = np.random.normal(settings.discontent_neutral,settings.standard_variance)
self.discontent_content = np.random.normal(settings.discontent_content,settings.variance_d_c)
self.content_discontent = np.random.normal(settings.content_discontent,settings.variance_c_d)
self.content_neutral = np.random.normal(settings.content_neutral,settings.standard_variance)
def step(self, now):
if self.state['id'] == 0:
self.neutral_behaviour()
if self.state['id'] == 1:
self.discontent_behaviour()
if self.state['id'] == 2:
self.content_behaviour()
self.attrs['status'] = self.state['id']
super().step(now)
def neutral_behaviour(self):
#Spontaneus effects
if random.random() < self.neutral_discontent_spon_prob:
self.state['id'] = 1
if random.random() < self.neutral_content_spon_prob:
self.state['id'] = 2
#Infected
discontent_neighbors = self.get_neighboring_agents(state_id=1)
if random.random() < len(discontent_neighbors)*self.neutral_discontent_infected_prob:
self.state['id'] = 1
content_neighbors = self.get_neighboring_agents(state_id=2)
if random.random() < len(content_neighbors)*self.neutral_content_infected_prob:
self.state['id'] = 2
def discontent_behaviour(self):
#Healing
if random.random() < self.discontent_neutral:
self.state['id'] = 0
#Superinfected
content_neighbors = self.get_neighboring_agents(state_id=2)
if random.random() < len(content_neighbors)*self.discontent_content:
self.state['id'] = 2
def content_behaviour(self):
#Healing
if random.random() < self.content_neutral:
self.state['id'] = 0
#Superinfected
discontent_neighbors = self.get_neighboring_agents(state_id=1)
if random.random() < len(discontent_neighbors)*self.content_discontent:
self.state['id'] = 1
class BigMarketModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.enterprises = settings.enterprises
self.type = ""
self.number_of_enterprises = len(settings.enterprises)
if self.id < self.number_of_enterprises: #Enterprises
self.state['id']=self.id
self.type="Enterprise"
self.tweet_probability = settings.tweet_probability_enterprises[self.id]
else: #normal users
self.state['id']=self.number_of_enterprises
self.type="User"
self.tweet_probability = settings.tweet_probability_users
self.tweet_relevant_probability = settings.tweet_relevant_probability
self.tweet_probability_about = settings.tweet_probability_about #List
self.sentiment_about = settings.sentiment_about #List
def step(self, now):
if(self.id < self.number_of_enterprises): # Ennterprise
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
for i in range(self.number_of_enterprises): # So that it never is set to 0 if there are not changes (logs)
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
super().step(now)
def enterpriseBehaviour(self):
if random.random()< self.tweet_probability: #Tweets
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodes neighbour users
for x in aware_neighbors:
if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 #Increments for enterprise
else:
x.sentiment_about[self.id] -= 0.1 #Decrements for enterprise
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id]< -1:
x.sentiment_about[self.id] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
def userBehaviour(self):
if random.random() < self.tweet_probability: #Tweets
if random.random() < self.tweet_relevant_probability: #Tweets something relevant
#Tweet probability per enterprise
for i in range(self.number_of_enterprises):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
#The condition is fulfilled, sentiments are evaluated towards that enterprise
if self.sentiment_about[i] < 0:
#NEGATIVO
self.userTweets("negative",i)
elif self.sentiment_about[i] == 0:
#NEUTRO
pass
else:
#POSITIVO
self.userTweets("positive",i)
def userTweets(self,sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodes neighbours users
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[enterprise]] = x.sentiment_about[enterprise]
class SentimentCorrelationModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = settings.outside_effects_prob
self.anger_prob = settings.anger_prob
self.joy_prob = settings.joy_prob
self.sadness_prob = settings.sadness_prob
self.disgust_prob = settings.disgust_prob
self.time_awareness=[]
for i in range(4): #In this model we have 4 sentiments
self.time_awareness.append(0) #0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self, now):
self.behaviour()
super().step(now)
def behaviour(self):
angry_neighbors_1_time_step=[]
joyful_neighbors_1_time_step=[]
sad_neighbors_1_time_step=[]
disgusted_neighbors_1_time_step=[]
angry_neighbors = self.get_neighboring_agents(state_id=1)
for x in angry_neighbors:
if x.time_awareness[0] > (self.env.now-500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
for x in joyful_neighbors:
if x.time_awareness[1] > (self.env.now-500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
for x in sad_neighbors:
if x.time_awareness[2] > (self.env.now-500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
for x in disgusted_neighbors:
if x.time_awareness[3] > (self.env.now-500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob= settings.anger_prob+(len(angry_neighbors_1_time_step)*settings.anger_prob)
joy_prob= settings.joy_prob+(len(joyful_neighbors_1_time_step)*settings.joy_prob)
sadness_prob = settings.sadness_prob+(len(sad_neighbors_1_time_step)*settings.sadness_prob)
disgust_prob = settings.disgust_prob+(len(disgusted_neighbors_1_time_step)*settings.disgust_prob)
outside_effects_prob= settings.outside_effects_prob
num = random.random()
if(num<outside_effects_prob):
self.state['id'] = random.randint(1,4)
sentimentCorrelationNodeArray[self.id][self.env.now]=self.state['id'] #It is stored when it has been infected for the dynamic network
self.time_awareness[self.state['id']-1] = self.env.now
self.attrs['sentiment'] = self.state['id']
if(num<anger_prob):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
self.state['id'] = 2
sentimentCorrelationNodeArray[self.id][self.env.now]=2
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
self.state['id'] = 3
sentimentCorrelationNodeArray[self.id][self.env.now]=3
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
self.state['id'] = 4
sentimentCorrelationNodeArray[self.id][self.env.now]=4
self.time_awareness[self.state['id']-1] = self.env.now
self.attrs['sentiment'] = self.state['id']
class BassModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self, now):
self.behaviour()
super().step(now)
def behaviour(self):
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
return
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
class IndependentCascadeModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
self.time_awareness = 0
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self,now):
self.behaviour()
super().step(now)
def behaviour(self):
aware_neighbors_1_time_step=[]
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness = self.env.now #To know when they have been infected
else:
pass
self.attrs['status'] = self.state['id']
return
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
for x in aware_neighbors:
if x.time_awareness == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
return

File diff suppressed because one or more lines are too long

1
requirements.txt Normal file → Executable file
View File

@ -3,4 +3,3 @@ simpy
networkx
numpy
matplotlib
pyyaml

23
settings.json Executable file
View File

@ -0,0 +1,23 @@
[
{
"network_type": 0,
"number_of_nodes": 80,
"max_time": 50,
"num_trials": 1,
"timeout": 2
},
{
"agent": ["TerroristModel"],
"initial_population": 0.85,
"initial_havens": 0.1,
"initial_training_enviroments": 0.05,
"initial_radicalism": 0.12,
"relative_inequality": 0.33,
"information_spread_intensity": 0.1,
"influence": 0.4,
"additional_influence": 0.1
}
]

13
settings.py Executable file
View File

@ -0,0 +1,13 @@
# General configuration
import json
with open('settings.json', 'r') as f:
settings = json.load(f)
network_params = settings[0]
environment_params = settings[1]
centrality_param = {}
partition_param={}
leaders={}

View File

@ -1,39 +0,0 @@
import pip
from setuptools import setup
# parse_requirements() returns generator of pip.req.InstallRequirement objects
from pip.req import parse_requirements
from soil import __version__
try:
install_reqs = parse_requirements(
"requirements.txt", session=pip.download.PipSession())
test_reqs = parse_requirements(
"test-requirements.txt", session=pip.download.PipSession())
except AttributeError:
install_reqs = parse_requirements("requirements.txt")
test_reqs = parse_requirements("test-requirements.txt")
install_reqs = [str(ir.req) for ir in install_reqs]
test_reqs = [str(ir.req) for ir in test_reqs]
setup(
name='soil',
packages=['soil'], # this must be the same as the name above
version=__version__,
description=('An Agent-Based Social Simulator for Social Networks'),
author='J. Fernando Sanchez',
author_email='jf.sanchez@upm.es',
url='https://github.com/gsi-upm/soil', # use the URL to the github repo
download_url='https://github.com/gsi-upm/soil/archive/{}.tar.gz'.format(
__version__),
keywords=['agent', 'social', 'simulator'],
classifiers=[],
install_requires=install_reqs,
tests_require=test_reqs,
setup_requires=['pytest-runner', ],
include_package_data=True,
entry_points={
'console_scripts':
['soil = soil.__init__:main']
})

BIN
sim_01/log.0.state.pickled Executable file

Binary file not shown.

BIN
sim_01/log.1.state.pickled Normal file

Binary file not shown.

View File

@ -1,63 +0,0 @@
---
name: ControlModelM2_sim
max_time: 50
num_trials: 1
timeout: 2
network_params:
generator: barabasi_albert_graph
n: 100
m: 2
agent_distribution:
- agent_type: ControlModelM2
weight: 0.1
state:
id: 1
- agent_type: ControlModelM2
weight: 0.9
state:
id: 0
environment_params:
prob_neutral_making_denier: 0.035
prob_infect: 0.075
prob_cured_healing_infected: 0.035
prob_cured_vaccinate_neutral: 0.035
prob_vaccinated_healing_infected: 0.035
prob_vaccinated_vaccinate_neutral: 0.035
prob_generate_anti_rumor: 0.035
standard_variance: 0.055
---
name: SISA_sm
max_time: 50
num_trials: 2
timeout: 2
network_params:
generator: erdos_renyi_graph
n: 10000
p: 0.05
#other_agents:
# - agent_type: DrawingAgent
agent_distribution:
- agent_type: SISaModel
weight: 1
state:
id: content
- agent_type: SISaModel
weight: 1
state:
id: neutral
- agent_type: SISaModel
weight: 1
state:
id: discontent
environment_params:
neutral_discontent_spon_prob: 0.04
neutral_discontent_infected_prob: 0.04
neutral_content_spon_prob: 0.18
neutral_content_infected_prob: 0.02
discontent_neutral: 0.13
discontent_content: 0.07
variance_d_c: 0.02
content_discontent: 0.009
variance_c_d: 0.003
content_neutral: 0.088
standard_variance: 0.055

215
soil.py Executable file
View File

@ -0,0 +1,215 @@
from models import *
from nxsim import NetworkSimulation
# import numpy
from matplotlib import pyplot as plt
import networkx as nx
import settings
import models
import math
import json
import operator
import community
POPULATION = 0
LEADERS = 1
HAVEN = 2
TRAINING = 3
NON_RADICAL = 0
NEUTRAL = 1
RADICAL = 2
#################
# Visualization #
#################
def visualization(graph_name):
for x in range(0, settings.network_params["number_of_nodes"]):
attributes = {}
spells = []
for attribute in models.networkStatus["agent_%s" % x]:
if attribute == 'visible':
lastvisible = False
laststep = 0
for t_step in models.networkStatus["agent_%s" % x][attribute]:
nowvisible = models.networkStatus["agent_%s" % x][attribute][t_step]
if nowvisible and not lastvisible:
laststep = t_step
if not nowvisible and lastvisible:
spells.append((laststep, t_step))
lastvisible = nowvisible
if lastvisible:
spells.append((laststep, None))
else:
emotionStatusAux = []
for t_step in models.networkStatus["agent_%s" % x][attribute]:
prec = 2
output = math.floor(models.networkStatus["agent_%s" % x][attribute][t_step] * (10 ** prec)) / (10 ** prec) # 2 decimals
emotionStatusAux.append((output, t_step, t_step + settings.network_params["timeout"]))
attributes[attribute] = emotionStatusAux
if spells:
G.add_node(x, attributes, spells=spells)
else:
G.add_node(x, attributes)
print("Done!")
with open('data.txt', 'w') as outfile:
json.dump(models.networkStatus, outfile, sort_keys=True, indent=4, separators=(',', ': '))
for node in range(settings.network_params["number_of_nodes"]):
G.node[node]['x'] = G.node[node]['pos'][0]
G.node[node]['y'] = G.node[node]['pos'][1]
G.node[node]['viz'] = {"position": {"x": G.node[node]['pos'][0], "y": G.node[node]['pos'][1], "z": 0.0}}
del (G.node[node]['pos'])
nx.write_gexf(G, graph_name+".gexf", version="1.2draft")
###########
# Results #
###########
def results(model_name):
x_values = []
neutral_values = []
non_radical_values = []
radical_values = []
attribute_plot = 'status'
for time in range(0, settings.network_params["max_time"]):
value_neutral = 0
value_non_radical = 0
value_radical = 0
real_time = time * settings.network_params["timeout"]
activity = False
for x in range(0, settings.network_params["number_of_nodes"]):
if attribute_plot in models.networkStatus["agent_%s" % x]:
if real_time in models.networkStatus["agent_%s" % x][attribute_plot]:
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == NON_RADICAL:
value_non_radical += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == NEUTRAL:
value_neutral += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == RADICAL:
value_radical += 1
activity = True
if activity:
x_values.append(real_time)
neutral_values.append(value_neutral)
non_radical_values.append(value_non_radical)
radical_values.append(value_radical)
activity = False
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
non_radical_line = ax1.plot(x_values, non_radical_values, label='Non radical')
neutral_line = ax1.plot(x_values, neutral_values, label='Neutral')
radical_line = ax1.plot(x_values, radical_values, label='Radical')
ax1.legend()
fig1.savefig(model_name+'.png')
plt.show()
###########
# Results #
###########
def resultadosTipo(model_name):
x_values = []
population_values = []
leaders_values = []
havens_values = []
training_enviroments_values = []
attribute_plot = 'type'
for time in range(0, settings.network_params["max_time"]):
value_population = 0
value_leaders = 0
value_havens = 0
value_training_enviroments = 0
real_time = time * settings.network_params["timeout"]
activity = False
for x in range(0, settings.network_params["number_of_nodes"]):
if attribute_plot in models.networkStatus["agent_%s" % x]:
if real_time in models.networkStatus["agent_%s" % x][attribute_plot]:
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == POPULATION:
value_population += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == LEADERS:
value_leaders += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == HAVEN:
value_havens += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == TRAINING:
value_training_enviroments += 1
activity = True
if activity:
x_values.append(real_time)
population_values.append(value_population)
leaders_values.append(value_leaders)
havens_values.append(value_havens)
training_enviroments_values.append(value_training_enviroments)
activity = False
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
population_line = ax2.plot(x_values, population_values, label='Population')
leaders_line = ax2.plot(x_values, leaders_values, label='Leader')
havens_line = ax2.plot(x_values, havens_values, label='Havens')
training_enviroments_line = ax2.plot(x_values, training_enviroments_values, label='Training Enviroments')
ax2.legend()
fig2.savefig(model_name+'_type'+'.png')
plt.show()
####################
# Network creation #
####################
# nx.degree_centrality(G);
if settings.network_params["network_type"] == 0:
G = nx.random_geometric_graph(settings.network_params["number_of_nodes"], 0.2)
settings.partition_param = community.best_partition(G)
settings.centrality_param = nx.betweenness_centrality(G).copy()
# print(settings.centrality_param)
# print(settings.partition_param)
# More types of networks can be added here
##############
# Simulation #
##############
agents = settings.environment_params['agent']
print("Using Agent(s): {agents}".format(agents=agents))
if len(agents) > 1:
for agent in agents:
sim = NetworkSimulation(topology=G, states=init_states, agent_type=locals()[agent], max_time=settings.network_params["max_time"],
num_trials=settings.network_params["num_trials"], logging_interval=1.0, **settings.environment_params)
sim.run_simulation()
print(str(agent))
results(str(agent))
resultadosTipo(str(agent))
visualization(str(agent))
else:
agent = agents[0]
sim = NetworkSimulation(topology=G, states=init_states, agent_type=locals()[agent], max_time=settings.network_params["max_time"],
num_trials=settings.network_params["num_trials"], logging_interval=1.0, **settings.environment_params)
sim.run_simulation()
results(str(agent))
resultadosTipo(str(agent))
visualization(str(agent))

394
soil.py~ Executable file
View File

@ -0,0 +1,394 @@
from nxsim import NetworkSimulation
from nxsim import BaseNetworkAgent
from nxsim import BaseLoggingAgent
from random import randint
from matplotlib import pyplot as plt
import random
import numpy as np
import networkx as nx
import settings
settings.init()
if settings.network_type == 0:
G = nx.complete_graph(settings.number_of_nodes)
if settings.network_type == 1:
G = nx.barabasi_albert_graph(settings.number_of_nodes,3)
if settings.network_type == 2:
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
myList=[]
networkStatus=[]
for x in range(0, settings.number_of_nodes):
networkStatus.append({'id':x})
# # Just like subclassing a process in SimPy
# class MyAgent(BaseNetworkAgent):
# def __init__(self, environment=None, agent_id=0, state=()): # Make sure to have these three keyword arguments
# super().__init__(environment=environment, agent_id=agent_id, state=state)
# # Add your own attributes here
# def run(self):
# # Add your behaviors here
class SentimentCorrelationModel(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = settings.outside_effects_prob
self.anger_prob = settings.anger_prob
self.joy_prob = settings.joy_prob
self.sadness_prob = settings.sadness_prob
self.disgust_prob = settings.disgust_prob
self.time_awareness=[]
for i in range(4):
self.time_awareness.append(0) #0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
networkStatus[self.id][self.env.now]=0
def run(self):
while True:
if self.env.now > 10:
G.add_node(205)
G.add_edge(205,0)
angry_neighbors_1_time_step=[]
joyful_neighbors_1_time_step=[]
sad_neighbors_1_time_step=[]
disgusted_neighbors_1_time_step=[]
angry_neighbors = self.get_neighboring_agents(state_id=1)
for x in angry_neighbors:
if x.time_awareness[0] > (self.env.now-500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
for x in joyful_neighbors:
if x.time_awareness[1] > (self.env.now-500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
for x in sad_neighbors:
if x.time_awareness[2] > (self.env.now-500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
for x in disgusted_neighbors:
if x.time_awareness[3] > (self.env.now-500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
# #Outside effects. Asignamos un estado aleatorio
# if random.random() < settings.outside_effects_prob:
# if self.state['id'] == 0:
# self.state['id'] = random.randint(1,4)
# myList.append(self.id)
# networkStatus[self.id][self.env.now]=self.state['id'] #Almaceno cuando se ha infectado para la red dinamica
# self.time_awareness = self.env.now #Para saber cuando se han contagiado
# yield self.env.timeout(settings.timeout)
# else:
# yield self.env.timeout(settings.timeout)
# #Imitation effects-Joy
# if random.random() < (settings.joy_prob*(num_neighbors_joyful)/10):
# myList.append(self.id)
# self.state['id'] = 2
# networkStatus[self.id][self.env.now]=2
# yield self.env.timeout(settings.timeout)
# #Imitation effects-Sadness
# if random.random() < (settings.sadness_prob*(num_neighbors_sad)/10):
# myList.append(self.id)
# self.state['id'] = 3
# networkStatus[self.id][self.env.now]=3
# yield self.env.timeout(settings.timeout)
# #Imitation effects-Disgust
# if random.random() < (settings.disgust_prob*(num_neighbors_disgusted)/10):
# myList.append(self.id)
# self.state['id'] = 4
# networkStatus[self.id][self.env.now]=4
# yield self.env.timeout(settings.timeout)
# #Imitation effects-Anger
# if random.random() < (settings.anger_prob*(num_neighbors_angry)/10):
# myList.append(self.id)
# self.state['id'] = 1
# networkStatus[self.id][self.env.now]=1
# yield self.env.timeout(settings.timeout)
# yield self.env.timeout(settings.timeout)
###########################################
anger_prob= settings.anger_prob+(len(angry_neighbors_1_time_step)*settings.anger_prob)
print("anger_prob " + str(anger_prob))
joy_prob= settings.joy_prob+(len(joyful_neighbors_1_time_step)*settings.joy_prob)
print("joy_prob " + str(joy_prob))
sadness_prob = settings.sadness_prob+(len(sad_neighbors_1_time_step)*settings.sadness_prob)
print("sadness_prob "+ str(sadness_prob))
disgust_prob = settings.disgust_prob+(len(disgusted_neighbors_1_time_step)*settings.disgust_prob)
print("disgust_prob " + str(disgust_prob))
outside_effects_prob= settings.outside_effects_prob
print("outside_effects_prob " + str(outside_effects_prob))
num = random.random()
if(num<outside_effects_prob):
self.state['id'] = random.randint(1,4)
myList.append(self.id)
networkStatus[self.id][self.env.now]=self.state['id'] #Almaceno cuando se ha infectado para la red dinamica
self.time_awareness[self.state['id']-1] = self.env.now
yield self.env.timeout(settings.timeout)
if(num<anger_prob):
myList.append(self.id)
self.state['id'] = 1
networkStatus[self.id][self.env.now]=1
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
myList.append(self.id)
self.state['id'] = 2
networkStatus[self.id][self.env.now]=2
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
myList.append(self.id)
self.state['id'] = 3
networkStatus[self.id][self.env.now]=3
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
myList.append(self.id)
self.state['id'] = 4
networkStatus[self.id][self.env.now]=4
self.time_awareness[self.state['id']-1] = self.env.now
yield self.env.timeout(settings.timeout)
# anger_propagation = settings.anger_prob*num_neighbors_angry/10
# joy_propagation = anger_propagation + (settings.joy_prob*num_neighbors_joyful/10)
# sadness_propagation = joy_propagation + (settings.sadness_prob*num_neighbors_sad/10)
# disgust_propagation = sadness_propagation + (settings.disgust_prob*num_neighbors_disgusted/10)
# outside_effects_propagation = disgust_propagation + settings.outside_effects_prob
# if (num<anger_propagation):
# if(self.state['id'] !=0):
# myList.append(self.id)
# self.state['id'] = 1
# networkStatus[self.id][self.env.now]=1
# yield self.env.timeout(settings.timeout)
# if (num<joy_propagation):
# if(self.state['id'] !=0):
# myList.append(self.id)
# self.state['id'] = 2
# networkStatus[self.id][self.env.now]=2
# yield self.env.timeout(settings.timeout)
# if(num<sadness_propagation):
# if(self.state['id'] !=0):
# myList.append(self.id)
# self.state['id'] = 3
# networkStatus[self.id][self.env.now]=3
# yield self.env.timeout(settings.timeout)
# # if(num<disgust_propagation):
# # if(self.state['id'] !=0):
# # myList.append(self.id)
# # self.state['id'] = 4
# # networkStatus[self.id][self.env.now]=4
# # yield self.env.timeout(settings.timeout)
# if(num <outside_effects_propagation):
# if self.state['id'] == 0:
# self.state['id'] = random.randint(1,4)
# myList.append(self.id)
# networkStatus[self.id][self.env.now]=self.state['id'] #Almaceno cuando se ha infectado para la red dinamica
# self.time_awareness = self.env.now #Para saber cuando se han contagiado
# yield self.env.timeout(settings.timeout)
# else:
# yield self.env.timeout(settings.timeout)
# else:
# yield self.env.timeout(settings.timeout)
class BassModel(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
networkStatus[self.id][self.env.now]=0
def run(self):
while True:
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
myList.append(self.id)
networkStatus[self.id][self.env.now]=1
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
myList.append(self.id)
self.state['id'] = 1
networkStatus[self.id][self.env.now]=1
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
class IndependentCascadeModel(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
self.time_awareness = 0
networkStatus[self.id][self.env.now]=0
def run(self):
while True:
aware_neighbors_1_time_step=[]
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
myList.append(self.id)
networkStatus[self.id][self.env.now]=1
self.time_awareness = self.env.now #Para saber cuando se han contagiado
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
for x in aware_neighbors:
if x.time_awareness == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
myList.append(self.id)
self.state['id'] = 1
networkStatus[self.id][self.env.now]=1
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
class ZombieOutbreak(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.bite_prob = settings.bite_prob
networkStatus[self.id][self.env.now]=0
def run(self):
while True:
if random.random() < settings.heal_prob:
if self.state['id'] == 1:
self.zombify()
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
else:
if self.state['id'] == 1:
print("Soy el zombie " + str(self.id) + " y me voy a curar porque el num aleatorio ha sido " + str(num))
networkStatus[self.id][self.env.now]=0
if self.id in myList:
myList.remove(self.id)
self.state['id'] = 0
yield self.env.timeout(settings.timeout)
else:
yield self.env.timeout(settings.timeout)
def zombify(self):
normal_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in normal_neighbors:
if random.random() < self.bite_prob:
print("Soy el zombie " + str(self.id) + " y voy a contagiar a " + str(neighbor.id))
neighbor.state['id'] = 1 # zombie
myList.append(neighbor.id)
networkStatus[self.id][self.env.now]=1
networkStatus[neighbor.id][self.env.now]=1
print(self.env.now, "Soy el zombie: "+ str(self.id), "Mi vecino es: "+ str(neighbor.id), sep='\t')
break
# Initialize agent states. Let's assume everyone is normal.
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
# Seed a zombie
#init_states[5] = {'id': 1}
#init_states[3] = {'id': 1}
sim = NetworkSimulation(topology=G, states=init_states, agent_type=SentimentCorrelationModel,
max_time=settings.max_time, num_trials=settings.num_trials, logging_interval=1.0)
sim.run_simulation()
myList = sorted(myList, key=int)
#print("Los zombies son: " + str(myList))
trial = BaseLoggingAgent.open_trial_state_history(dir_path='sim_01', trial_id=0)
zombie_census = [sum([1 for node_id, state in g.items() if state['id'] == 1]) for t,g in trial.items()]
#for x in range(len(myList)):
# G.node[myList[x]]['viz'] = {'color': {'r': 255, 'g': 0, 'b': 0, 'a': 0}}
#G.node[1]['viz'] = {'color': {'r': 255, 'g': 0, 'b': 0, 'a': 0}}
#lista = nx.nodes(G)
#print('Nodos: ' + str(lista))
for x in range(0, settings.number_of_nodes):
networkStatusAux=[]
for tiempo in networkStatus[x]:
if tiempo != 'id':
networkStatusAux.append((networkStatus[x][tiempo],tiempo,None))
G.add_node(x, zombie= networkStatusAux)
#print(networkStatus)
nx.write_gexf(G,"test.gexf", version="1.2draft")
plt.plot(zombie_census)
plt.draw() # pyplot draw()
plt.savefig("zombie.png")
#print(networkStatus)
#nx.draw(G)
#plt.show()
#plt.savefig("path.png")

View File

@ -1,42 +0,0 @@
import importlib
import sys
import os
__version__ = "0.9.2"
try:
basestring
except NameError:
basestring = str
from . import agents
from . import simulation
from . import environment
from . import utils
from . import settings
def main():
import argparse
from . import simulation
parser = argparse.ArgumentParser(description='Run a SOIL simulation')
parser.add_argument('file', type=str,
nargs="?",
default='simulation.yml',
help='python module containing the simulation configuration.')
parser.add_argument('--module', '-m', type=str,
help='file containing the code of any custom agents.')
args = parser.parse_args()
if args.module:
sys.path.append(os.getcwd())
importlib.import_module(args.module)
print('Loading config file: {}'.format(args.file))
simulation.run_from_config(args.file)
if __name__ == '__main__':
main()

View File

@ -1,123 +0,0 @@
import nxsim
from collections import OrderedDict
from copy import deepcopy
import json
from functools import wraps
class BaseAgent(nxsim.BaseAgent):
"""
A special simpy BaseAgent that keeps track of its state history.
"""
def __init__(self, *args, **kwargs):
self._history = OrderedDict()
self._neighbors = None
super().__init__(*args, **kwargs)
self._history[None] = deepcopy(self.state)
@property
def now(self):
try:
return self.env.now
except AttributeError:
# No environment
return None
def run(self):
while True:
res = self.step()
self._history[self.env.now] = deepcopy(self.state)
yield res or self.env.timeout(self.env.interval)
def step(self):
pass
def to_json(self):
return json.dumps(self._history)
class NetworkAgent(BaseAgent, nxsim.BaseNetworkAgent):
def count_agents(self, state_id=None, limit_neighbors=False):
if limit_neighbors:
agents = self.global_topology.neighbors(self.id)
else:
agents = self.global_topology.nodes()
count = 0
for agent in agents:
if state_id and state_id != self.global_topology.node[agent]['agent'].state['id']:
continue
count += 1
return count
def count_neighboring_agents(self, state_id=None):
return self.count_agents(state_id, limit_neighbors=True)
def state(func):
@wraps(func)
def func_wrapper(self):
when = None
next_state = func(self)
try:
next_state, when = next_state
except TypeError:
pass
if next_state:
try:
self.state['id'] = next_state.id
except AttributeError:
raise NotImplemented('State id %s is not valid.' % next_state)
return when
func_wrapper.id = func.__name__
func_wrapper.is_default = False
return func_wrapper
def default_state(func):
func.is_default = True
return func
class MetaFSM(type):
def __init__(cls, name, bases, nmspc):
super(MetaFSM, cls).__init__(name, bases, nmspc)
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i.states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for name, func in nmspc.items():
if hasattr(func, 'id'):
if func.is_default:
default_state = func
states[func.id] = func
cls.default_state = default_state
cls.states = states
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
if 'id' not in self.state:
self.state['id'] = self.default_state.id
def step(self):
if 'id' in self.state:
next_state = self.state['id']
elif self.default_state:
next_state = self.default_state.id
else:
raise Exception('{} has no valid state id or default state'.format(self))
if next_state not in self.states:
raise Exception('{} is not a valid id for {}'.format(next_state, self))
self.states[next_state](self)

View File

@ -1,40 +0,0 @@
import random
from . import NetworkAgent
class BassModel(NetworkAgent):
"""
Settings:
innovation_prob
imitation_prob
"""
def __init__(self, environment, agent_id, state):
super().__init__(environment=environment, agent_id=agent_id, state=state)
env_params = environment.environment_params
self.state['sentimentCorrelation'] = 0
def step(self):
self.behaviour()
def behaviour(self):
# Outside effects
if random.random() < self.state_params['innovation_prob']:
if self.state['id'] == 0:
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
else:
pass
return
# Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (self.state_params['imitation_prob']*num_neighbors_aware):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
else:
pass

View File

@ -1,102 +0,0 @@
import random
from . import NetworkAgent
class BigMarketModel(NetworkAgent):
"""
Settings:
Names:
enterprises [Array]
tweet_probability_enterprises [Array]
Users:
tweet_probability_users
tweet_relevant_probability
tweet_probability_about [Array]
sentiment_about [Array]
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.enterprises = environment.environment_params['enterprises']
self.type = ""
self.number_of_enterprises = len(environment.environment_params['enterprises'])
if self.id < self.number_of_enterprises: # Enterprises
self.state['id'] = self.id
self.type = "Enterprise"
self.tweet_probability = environment.environment_params['tweet_probability_enterprises'][self.id]
else: # normal users
self.state['id'] = self.number_of_enterprises
self.type = "User"
self.tweet_probability = environment.environment_params['tweet_probability_users']
self.tweet_relevant_probability = environment.environment_params['tweet_relevant_probability']
self.tweet_probability_about = environment.environment_params['tweet_probability_about'] # List
self.sentiment_about = environment.environment_params['sentiment_about'] # List
def step(self):
if self.id < self.number_of_enterprises: # Enterprise
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
for i in range(self.number_of_enterprises): # So that it never is set to 0 if there are not changes (logs)
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
def enterpriseBehaviour(self):
if random.random() < self.tweet_probability: # Tweets
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbour users
for x in aware_neighbors:
if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 # Increments for enterprise
else:
x.sentiment_about[self.id] -= 0.1 # Decrements for enterprise
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id]< -1:
x.sentiment_about[self.id] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
def userBehaviour(self):
if random.random() < self.tweet_probability: # Tweets
if random.random() < self.tweet_relevant_probability: # Tweets something relevant
# Tweet probability per enterprise
for i in range(self.number_of_enterprises):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
# The condition is fulfilled, sentiments are evaluated towards that enterprise
if self.sentiment_about[i] < 0:
# NEGATIVO
self.userTweets("negative",i)
elif self.sentiment_about[i] == 0:
# NEUTRO
pass
else:
# POSITIVO
self.userTweets("positive",i)
def userTweets(self,sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) # Nodes neighbours users
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[enterprise]] = x.sentiment_about[enterprise]

View File

@ -1,31 +0,0 @@
from . import NetworkAgent
class CounterModel(NetworkAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
"""
def step(self):
# Outside effects
total = len(self.get_all_agents())
neighbors = len(self.get_neighboring_agents())
self.state['times'] = self.state.get('times', 0) + 1
self.state['neighbors'] = neighbors
self.state['total'] = total
class AggregatedCounter(NetworkAgent):
"""
Dummy behaviour. It counts the number of nodes in the network and neighbors
in each step and adds it to its state.
"""
def step(self):
# Outside effects
total = len(self.get_all_agents())
neighbors = len(self.get_neighboring_agents())
self.state['times'] = self.state.get('times', 0) + 1
self.state['neighbors'] = self.state.get('neighbors', 0) + neighbors
self.state['total'] = self.state.get('total', 0) + total

View File

@ -1,18 +0,0 @@
from . import BaseAgent
import os.path
import matplotlib
import matplotlib.pyplot as plt
import networkx as nx
class DrawingAgent(BaseAgent):
"""
Agent that draws the state of the network.
"""
def step(self):
# Outside effects
f = plt.figure()
nx.draw(self.env.G, node_size=10, width=0.2, pos=nx.spring_layout(self.env.G, scale=100), ax=f.add_subplot(111))
f.savefig(os.path.join(self.env.sim().dir_path, "graph-"+str(self.env.now)+".png"))

View File

@ -1,49 +0,0 @@
import random
from . import BaseAgent
class IndependentCascadeModel(BaseAgent):
"""
Settings:
innovation_prob
imitation_prob
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = environment.environment_params['innovation_prob']
self.imitation_prob = environment.environment_params['imitation_prob']
self.state['time_awareness'] = 0
self.state['sentimentCorrelation'] = 0
def step(self):
self.behaviour()
def behaviour(self):
aware_neighbors_1_time_step = []
# Outside effects
if random.random() < self.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
self.state['time_awareness'] = self.env.now # To know when they have been infected
else:
pass
return
# Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
for x in aware_neighbors:
if x.state['time_awareness'] == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (self.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
else:
pass
return

View File

@ -1,242 +0,0 @@
import random
import numpy as np
from . import NetworkAgent
class SpreadModelM2(NetworkAgent):
"""
Settings:
prob_neutral_making_denier
prob_infect
prob_cured_healing_infected
prob_cured_vaccinate_neutral
prob_vaccinated_healing_infected
prob_vaccinated_vaccinate_neutral
prob_generate_anti_rumor
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
self.prob_infect = np.random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
self.prob_cured_healing_infected = np.random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = np.random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_healing_infected = np.random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = np.random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = np.random.normal(environment.environment_params['prob_generate_anti_rumor'],
environment.environment_params['standard_variance'])
def step(self):
if self.state['id'] == 0: # Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: # Infected
self.infected_behaviour()
elif self.state['id'] == 2: # Cured
self.cured_behaviour()
elif self.state['id'] == 3: # Vaccinated
self.vaccinated_behaviour()
def neutral_behaviour(self):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
def cured_behaviour(self):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
class ControlModelM2(NetworkAgent):
"""
Settings:
prob_neutral_making_denier
prob_infect
prob_cured_healing_infected
prob_cured_vaccinate_neutral
prob_vaccinated_healing_infected
prob_vaccinated_vaccinate_neutral
prob_generate_anti_rumor
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
self.prob_infect = np.random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
self.prob_cured_healing_infected = np.random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = np.random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_healing_infected = np.random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = np.random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = np.random.normal(environment.environment_params['prob_generate_anti_rumor'],
environment.environment_params['standard_variance'])
def step(self):
if self.state['id'] == 0: # Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: # Infected
self.infected_behaviour()
elif self.state['id'] == 2: # Cured
self.cured_behaviour()
elif self.state['id'] == 3: # Vaccinated
self.vaccinated_behaviour()
elif self.state['id'] == 4: # Beacon-off
self.beacon_off_behaviour()
elif self.state['id'] == 5: # Beacon-on
self.beacon_on_behaviour()
def neutral_behaviour(self):
self.state['visible'] = False
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
self.state['visible'] = False
def cured_behaviour(self):
self.state['visible'] = True
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
self.state['visible'] = True
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
def beacon_off_behaviour(self):
self.state['visible'] = False
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
self.state['id'] == 5 # Beacon on
def beacon_on_behaviour(self):
self.state['visible'] = False
# Cure (M2 feature added)
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated

View File

@ -1,93 +0,0 @@
import random
import numpy as np
from . import FSM, state
class SISaModel(FSM):
"""
Settings:
neutral_discontent_spon_prob
neutral_discontent_infected_prob
neutral_content_spong_prob
neutral_content_infected_prob
discontent_neutral
discontent_content
variance_d_c
content_discontent
variance_c_d
content_neutral
standard_variance
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.neutral_discontent_spon_prob = np.random.normal(environment.environment_params['neutral_discontent_spon_prob'],
environment.environment_params['standard_variance'])
self.neutral_discontent_infected_prob = np.random.normal(environment.environment_params['neutral_discontent_infected_prob'],
environment.environment_params['standard_variance'])
self.neutral_content_spon_prob = np.random.normal(environment.environment_params['neutral_content_spon_prob'],
environment.environment_params['standard_variance'])
self.neutral_content_infected_prob = np.random.normal(environment.environment_params['neutral_content_infected_prob'],
environment.environment_params['standard_variance'])
self.discontent_neutral = np.random.normal(environment.environment_params['discontent_neutral'],
environment.environment_params['standard_variance'])
self.discontent_content = np.random.normal(environment.environment_params['discontent_content'],
environment.environment_params['variance_d_c'])
self.content_discontent = np.random.normal(environment.environment_params['content_discontent'],
environment.environment_params['variance_c_d'])
self.content_neutral = np.random.normal(environment.environment_params['content_neutral'],
environment.environment_params['standard_variance'])
@state
def neutral(self):
# Spontaneous effects
if random.random() < self.neutral_discontent_spon_prob:
return self.discontent
if random.random() < self.neutral_content_spon_prob:
return self.content
# Infected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent)
if random.random() < discontent_neighbors * self.neutral_discontent_infected_prob:
return self.discontent
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
if random.random() < content_neighbors * self.neutral_content_infected_prob:
return self.content
return self.neutral
@state
def discontent(self):
# Healing
if random.random() < self.discontent_neutral:
return self.neutral
# Superinfected
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
if random.random() < content_neighbors * self.discontent_content:
return self.content
return self.discontent
@state
def content(self):
# Healing
if random.random() < self.content_neutral:
return self.neutral
# Superinfected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent.id)
if random.random() < discontent_neighbors * self.content_discontent:
self.discontent
return self.content

View File

@ -1,102 +0,0 @@
import random
from . import NetworkAgent
class SentimentCorrelationModel(NetworkAgent):
"""
Settings:
outside_effects_prob
anger_prob
joy_prob
sadness_prob
disgust_prob
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
self.anger_prob = environment.environment_params['anger_prob']
self.joy_prob = environment.environment_params['joy_prob']
self.sadness_prob = environment.environment_params['sadness_prob']
self.disgust_prob = environment.environment_params['disgust_prob']
self.state['time_awareness'] = []
for i in range(4): # In this model we have 4 sentiments
self.state['time_awareness'].append(0) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
self.state['sentimentCorrelation'] = 0
def step(self):
self.behaviour()
def behaviour(self):
angry_neighbors_1_time_step = []
joyful_neighbors_1_time_step = []
sad_neighbors_1_time_step = []
disgusted_neighbors_1_time_step = []
angry_neighbors = self.get_neighboring_agents(state_id=1)
for x in angry_neighbors:
if x.state['time_awareness'][0] > (self.env.now-500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
for x in joyful_neighbors:
if x.state['time_awareness'][1] > (self.env.now-500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
for x in sad_neighbors:
if x.state['time_awareness'][2] > (self.env.now-500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
for x in disgusted_neighbors:
if x.state['time_awareness'][3] > (self.env.now-500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob = self.anger_prob+(len(angry_neighbors_1_time_step)*self.anger_prob)
joy_prob = self.joy_prob+(len(joyful_neighbors_1_time_step)*self.joy_prob)
sadness_prob = self.sadness_prob+(len(sad_neighbors_1_time_step)*self.sadness_prob)
disgust_prob = self.disgust_prob+(len(disgusted_neighbors_1_time_step)*self.disgust_prob)
outside_effects_prob = self.outside_effects_prob
num = random.random()
if num<outside_effects_prob:
self.state['id'] = random.randint(1, 4)
self.state['sentimentCorrelation'] = self.state['id'] # It is stored when it has been infected for the dynamic network
self.state['time_awareness'][self.state['id']-1] = self.env.now
self.state['sentiment'] = self.state['id']
if(num<anger_prob):
self.state['id'] = 1
self.state['sentimentCorrelation'] = 1
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
self.state['id'] = 2
self.state['sentimentCorrelation'] = 2
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
self.state['id'] = 3
self.state['sentimentCorrelation'] = 3
self.state['time_awareness'][self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
self.state['id'] = 4
self.state['sentimentCorrelation'] = 4
self.state['time_awareness'][self.state['id']-1] = self.env.now
self.state['sentiment'] = self.state['id']

View File

@ -1,166 +0,0 @@
# networkStatus = {} # Dict that will contain the status of every agent in the network
# sentimentCorrelationNodeArray = []
# for x in range(0, settings.network_params["number_of_nodes"]):
# sentimentCorrelationNodeArray.append({'id': x})
# Initialize agent states. Let's assume everyone is normal.
import nxsim
from collections import OrderedDict
from copy import deepcopy
import json
from functools import wraps
agent_types = {}
class MetaAgent(type):
def __init__(cls, name, bases, nmspc):
super(MetaAgent, cls).__init__(name, bases, nmspc)
agent_types[name] = cls
class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
"""
A special simpy BaseAgent that keeps track of its state history.
"""
def __init__(self, *args, **kwargs):
self._history = OrderedDict()
self._neighbors = None
super().__init__(*args, **kwargs)
def __getitem__(self, key):
if isinstance(key, tuple):
k, t_step = key
if k is not None:
if t_step is not None:
return self._history[t_step][k]
else:
return {tt: tv.get(k, None) for tt, tv in self._history.items()}
else:
return self._history[t_step]
return self.state[key]
def __setitem__(self, key, value):
self.state[key] = value
def save_state(self):
self._history[self.now] = deepcopy(self.state)
@property
def now(self):
try:
return self.env.now
except AttributeError:
# No environment
return None
def run(self):
while True:
res = self.step()
yield res or self.env.timeout(self.env.interval)
def step(self):
pass
def to_json(self):
return json.dumps(self._history)
class NetworkAgent(BaseAgent, nxsim.BaseNetworkAgent):
def count_agents(self, state_id=None, limit_neighbors=False):
if limit_neighbors:
agents = self.global_topology.neighbors(self.id)
else:
agents = self.global_topology.nodes()
count = 0
for agent in agents:
if state_id and state_id != self.global_topology.node[agent]['agent'].state['id']:
continue
count += 1
return count
def count_neighboring_agents(self, state_id=None):
return self.count_agents(state_id, limit_neighbors=True)
def state(func):
@wraps(func)
def func_wrapper(self):
when = None
next_state = func(self)
try:
next_state, when = next_state
except TypeError:
pass
if next_state:
try:
self.state['id'] = next_state.id
except AttributeError:
raise NotImplemented('State id %s is not valid.' % next_state)
return when
func_wrapper.id = func.__name__
func_wrapper.is_default = False
return func_wrapper
def default_state(func):
func.is_default = True
return func
class MetaFSM(MetaAgent):
def __init__(cls, name, bases, nmspc):
super(MetaFSM, cls).__init__(name, bases, nmspc)
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i.states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for name, func in nmspc.items():
if hasattr(func, 'id'):
if func.is_default:
default_state = func
states[func.id] = func
cls.default_state = default_state
cls.states = states
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
if 'id' not in self.state:
self.state['id'] = self.default_state.id
def step(self):
if 'id' in self.state:
next_state = self.state['id']
elif self.default_state:
next_state = self.default_state.id
else:
raise Exception('{} has no valid state id or default state'.format(self))
if next_state not in self.states:
raise Exception('{} is not a valid id for {}'.format(next_state, self))
self.states[next_state](self)
from .BassModel import *
from .BigMarketModel import *
from .IndependentCascadeModel import *
from .ModelM2 import *
from .SentimentCorrelationModel import *
from .SISaModel import *
from .CounterModel import *
from .DrawingAgent import *

View File

@ -1,23 +0,0 @@
import pandas as pd
import glob
import yaml
from os.path import join
def get_data(pattern, process=True, attributes=None):
for folder in glob.glob(pattern):
config_file = glob.glob(join(folder, '*.yml'))[0]
config = yaml.load(open(config_file))
for trial_data in sorted(glob.glob(join(folder, '*.environment.csv'))):
df = pd.read_csv(trial_data)
if process:
if attributes is not None:
df = df[df['attribute'].isin(attributes)]
df = df.pivot_table(values='attribute', index='tstep', columns=['value'], aggfunc='count').fillna(0)
yield config_file, df, config
def plot_all(*args, **kwargs):
for config_file, df, config in sorted(get_data(*args, **kwargs)):
df.plot(title=config['name'])

View File

@ -1,190 +0,0 @@
import os
import csv
import weakref
from random import random
from copy import deepcopy
import networkx as nx
import nxsim
class SoilEnvironment(nxsim.NetworkEnvironment):
def __init__(self, name=None,
network_agents=None,
environment_agents=None,
states=None,
default_state=None,
interval=1,
*args, **kwargs):
self.name = name or 'UnnamedEnvironment'
self.states = deepcopy(states) or {}
self.default_state = deepcopy(default_state) or {}
super().__init__(*args, **kwargs)
self._env_agents = {}
self._history = {}
self.interval = interval
self.logger = None
# Add environment agents first, so their events get
# executed before network agents
self.environment_agents = environment_agents or []
self.network_agents = network_agents or []
self.process(self.save_state())
@property
def agents(self):
yield from self.environment_agents
yield from self.network_agents
@property
def environment_agents(self):
for ref in self._env_agents.values():
yield ref()
@environment_agents.setter
def environment_agents(self, environment_agents):
# Set up environmental agent
self._env_agents = {}
for item in environment_agents:
kwargs = deepcopy(item)
atype = kwargs.pop('agent_type')
kwargs['agent_id'] = kwargs.get('agent_id', atype.__name__)
kwargs['state'] = kwargs.get('state', {})
a = atype(**kwargs,
environment=self)
self._env_agents[a.id] = weakref.ref(a)
@property
def network_agents(self):
for i in self.G.nodes():
node = self.G.node[i]
if 'agent' in node:
yield node['agent']
@network_agents.setter
def network_agents(self, network_agents):
for ix in self.G.nodes():
i = ix
node = self.G.node[i]
v = random()
found = False
for d in network_agents:
threshold = d['threshold']
if v >= threshold[0] and v < threshold[1]:
agent = d['agent_type']
state = None
if 'state' in d:
state = deepcopy(d['state'])
else:
try:
state = self.states[i]
except (IndexError, KeyError):
state = deepcopy(self.default_state)
node['agent'] = agent(environment=self,
agent_id=i,
state=state)
found = True
break
assert found
def run(self, *args, **kwargs):
self._save_state()
super().run(*args, **kwargs)
self._save_state()
def _save_state(self):
for agent in self.agents:
agent.save_state()
self._history[self.now] = deepcopy(self.environment_params)
def save_state(self):
while True:
ev = self.event()
ev._ok = True
# Schedule the event with minimum priority so
# that it executes after all agents are done
self.schedule(ev, -1, self.interval)
yield ev
self._save_state()
def __getitem__(self, key):
return self.environment_params[key]
def __setitem__(self, key, value):
self.environment_params[key] = value
def get_path(self, dir_path=None):
dir_path = dir_path or self.sim().dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
return dir_path
def get_agent(self, agent_id):
return self.G.node[agent_id]['agent']
def get_agents(self):
return list(self.agents)
def dump_csv(self, dir_path=None):
csv_name = os.path.join(self.get_path(dir_path),
'{}.environment.csv'.format(self.name))
with open(csv_name, 'w') as f:
cr = csv.writer(f)
cr.writerow(('agent_id', 'tstep', 'attribute', 'value'))
for i in self.history_to_tuples():
cr.writerow(i)
def dump_gexf(self, dir_path=None):
G = self.history_to_graph()
graph_path = os.path.join(self.get_path(dir_path),
self.name+".gexf")
nx.write_gexf(G, graph_path, version="1.2draft")
def history_to_tuples(self):
for tstep, state in self._history.items():
for attribute, value in state.items():
yield ('env', tstep, attribute, value)
for agent in self.agents:
for tstep, state in agent._history.items():
for attribute, value in state.items():
yield (agent.id, tstep, attribute, value)
def history_to_graph(self):
G = nx.Graph(self.G)
for agent in self.agents:
attributes = {'agent': str(agent.__class__)}
lastattributes = {}
spells = []
lastvisible = False
laststep = None
for t_step, state in reversed(agent._history.items()):
for attribute, value in state.items():
if attribute == 'visible':
nowvisible = state[attribute]
if nowvisible and not lastvisible:
laststep = t_step
if not nowvisible and lastvisible:
spells.append((laststep, t_step))
lastvisible = nowvisible
else:
if attribute not in lastattributes or lastattributes[attribute][0] != value:
laststep = lastattributes.get(attribute,
(None, None))[1]
value = (state[attribute], t_step, laststep)
key = 'attr_' + attribute
if key not in attributes:
attributes[key] = list()
attributes[key].append(value)
lastattributes[attribute] = (state[attribute], t_step)
if lastvisible:
spells.append((laststep, None))
if spells:
G.add_node(agent.id, attributes, spells=spells)
else:
G.add_node(agent.id, attributes)
return G

View File

@ -1 +0,0 @@
# General configuration

View File

@ -1,241 +0,0 @@
import weakref
import os
import csv
import time
import yaml
import networkx as nx
from networkx.readwrite import json_graph
from copy import deepcopy
from random import random
from matplotlib import pyplot as plt
import pickle
from nxsim import NetworkSimulation
from . import agents, utils, environment, basestring
class SoilSimulation(NetworkSimulation):
"""
Subclass of nsim.NetworkSimulation with three main differences:
1) agent type can be specified by name or by class.
2) instead of just one type, an network_agents can be used.
The distribution specifies the weight (or probability) of each
agent type in the topology. This is an example distribution: ::
[
{'agent_type': 'agent_type_1',
'weight': 0.2,
'state': {
'id': 0
}
},
{'agent_type': 'agent_type_2',
'weight': 0.8,
'state': {
'id': 1
}
}
]
In this example, 20% of the nodes will be marked as type
'agent_type_1'.
3) if no initial state is given, each node's state will be set
to `{'id': 0}`.
"""
def __init__(self, name=None, topology=None, network_params=None,
network_agents=None, agent_type=None, states=None,
default_state=None, interval=1,
dir_path=None, num_trials=3, max_time=100,
agent_module=None,
environment_agents=None, environment_params=None):
if topology is None:
topology = utils.load_network(network_params,
dir_path=dir_path)
elif isinstance(topology, basestring) or isinstance(topology, dict):
topology = json_graph.node_link_graph(topology)
self.topology = nx.Graph(topology)
self.network_params = network_params
self.name = name or 'UnnamedSimulation'
self.num_trials = num_trials
self.max_time = max_time
self.default_state = default_state or {}
self.dir_path = dir_path or os.getcwd()
self.interval = interval
self.environment_params = environment_params or {}
environment_agents = environment_agents or []
self.environment_agents = self._convert_agent_types(environment_agents)
distro = self.calculate_distribution(network_agents,
agent_type)
self.network_agents = self._convert_agent_types(distro)
self.states = self.validate_states(states,
topology)
def calculate_distribution(self,
network_agents=None,
agent_type=None):
if network_agents:
network_agents = deepcopy(network_agents)
elif agent_type:
network_agents = [{'agent_type': agent_type}]
else:
return []
# Calculate the thresholds
total = sum(x.get('weight', 1) for x in network_agents)
acc = 0
for v in network_agents:
upper = acc + (v.get('weight', 1)/total)
v['threshold'] = [acc, upper]
acc = upper
return network_agents
def serialize_distribution(self):
d = self._convert_agent_types(self.network_agents,
to_string=True)
for v in d:
if 'threshold' in v:
del v['threshold']
return d
def _convert_agent_types(self, ind, to_string=False):
d = deepcopy(ind)
for v in d:
agent_type = v['agent_type']
if to_string and not isinstance(agent_type, str):
v['agent_type'] = str(agent_type.__name__)
elif not to_string and isinstance(agent_type, str):
v['agent_type'] = agents.agent_types[agent_type]
return d
def validate_states(self, states, topology):
states = states or []
# Validate states to avoid ignoring states during
# initialization
if isinstance(states, dict):
for x in states:
assert x in self.topology.node
else:
assert len(states) <= len(self.topology)
return states
def run_simulation(self):
return self.run()
def run(self):
return list(self.run_simulation_gen())
def run_simulation_gen(self):
with utils.timer('simulation'):
for i in range(self.num_trials):
yield self.run_trial(i)
def run_trial(self, trial_id=0):
"""Run a single trial of the simulation
Parameters
----------
trial_id : int
"""
# Set-up trial environment and graph
print('Trial: {}'.format(trial_id))
env_name = '{}_trial_{}'.format(self.name, trial_id)
env = environment.SoilEnvironment(name=env_name,
topology=self.topology.copy(),
initial_time=0,
interval=self.interval,
network_agents=self.network_agents,
states=self.states,
default_state=self.default_state,
environment_agents=self.environment_agents,
**self.environment_params)
env.sim = weakref.ref(self)
# Set up agents on nodes
print('\tRunning')
with utils.timer('trial'):
env.run(until=self.max_time)
return env
def to_dict(self):
return self.__getstate__()
def to_yaml(self):
return yaml.dump(self.to_dict())
def dump_yaml(self, dir_path=None, file_name=None):
dir_path = dir_path or self.dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
if not file_name:
file_name = os.path.join(dir_path,
'{}.dumped.yml'.format(self.name))
with open(file_name, 'w') as f:
f.write(self.to_yaml())
def dump_pickle(self, dir_path=None, pickle_name=None):
dir_path = dir_path or self.dir_path
if not os.path.exists(dir_path):
os.makedirs(dir_path)
if not pickle_name:
pickle_name = os.path.join(dir_path,
'{}.simulation.pickle'.format(self.name))
with open(pickle_name, 'wb') as f:
pickle.dump(self, f)
def __getstate__(self):
state = self.__dict__.copy()
state['topology'] = json_graph.node_link_data(self.topology)
state['network_agents'] = self.serialize_distribution()
state['environment_agents'] = self._convert_agent_types(self.environment_agents,
to_string=True)
return state
def __setstate__(self, state):
self.__dict__ = state
self.topology = json_graph.node_link_graph(state['topology'])
self.network_agents = self._convert_agent_types(self.network_agents)
self.environment_agents = self._convert_agent_types(self.environment_agents)
return state
def from_config(config, G=None):
config = list(utils.load_config(config))
if len(config) > 1:
raise AttributeError('Provide only one configuration')
config = config[0][0]
sim = SoilSimulation(**config)
return sim
def run_from_config(*configs, dump=True, results_dir=None, timestamp=False):
if not results_dir:
results_dir = 'soil_output'
for config_def in configs:
for config, cpath in utils.load_config(config_def):
name = config.get('name', 'unnamed')
print("Using config(s): {name}".format(name=name))
sim = SoilSimulation(**config)
if timestamp:
sim_folder = '{}_{}'.format(sim.name,
time.strftime("%Y-%m-%d_%H:%M:%S"))
else:
sim_folder = sim.name
dir_path = os.path.join(results_dir,
sim_folder)
results = sim.run_simulation()
if dump:
sim.dump_pickle(dir_path)
sim.dump_yaml(dir_path)
for env in results:
env.dump_gexf(dir_path)
env.dump_csv(dir_path)

View File

@ -1,61 +0,0 @@
import os
import yaml
from time import time
from glob import glob
import networkx as nx
from contextlib import contextmanager
def load_network(network_params, dir_path=None):
path = network_params.get('path', None)
if path:
if dir_path and not os.path.isabs(path):
path = os.path.join(dir_path, path)
extension = os.path.splitext(path)[1][1:]
kwargs = {}
if extension == 'gexf':
kwargs['version'] = '1.2draft'
kwargs['node_type'] = int
try:
method = getattr(nx.readwrite, 'read_' + extension)
except AttributeError:
raise AttributeError('Unknown format')
return method(path, **kwargs)
net_args = network_params.copy()
net_type = net_args.pop('generator')
method = getattr(nx.generators, net_type)
return method(**net_args)
def load_file(infile):
with open(infile, 'r') as f:
return list(yaml.load_all(f))
def load_files(*patterns):
for pattern in patterns:
for i in glob(pattern):
for config in load_file(i):
yield config, os.path.abspath(i)
def load_config(config):
if isinstance(config, dict):
yield config, None
else:
yield from load_files(config)
@contextmanager
def timer(name='task', pre="", function=print, to_object=None):
start = time()
yield start
end = time()
function('{}Finished {} in {} seconds'.format(pre, name, str(end-start)))
if to_object:
to_object.start = start
to_object.end = end

913
soil_tutorial.ipynb Executable file
View File

@ -0,0 +1,913 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"./logo_gsi.png\" alt=\"Grupo de Sistemas Inteligentes\" width=\"100px\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# SOIL Tutorial "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook contains a tutorial to learn how to use the SOcial network sImuLator (SOIL) written in Python. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"SOIL is based in 2 main files:\n",
"* __soil.py__: It's the main file of SOIL. The network creation, simulation and visualization are done in this file.\n",
"+ __settings.json__: This file contains every variable needed in the simulation in order to be modified easily.\n",
"- __models__: All the spread models already implemented are stored in this directory as modules."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Requirements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"SOIL requires to install:\n",
"* **Python 3** - you can use the Conda distribution\n",
"* **NetworkX** - install with conda install networkx or pip install networkx\n",
"* **simpy** - install with pip install simpy\n",
"* **nxsim** - install with pip install nxsim\n",
"* **Gephi** - Available at https://gephi.org"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Soil.py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Imports and data initialization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First of all, you need to make all the imports. This simulator is based on [nxsim](https://pypi.python.org/pypi/nxsim), using [networkx](https://networkx.github.io/) for network management. We will also include the models and settings files where the spread models and initialization variables are stored."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from models import *\n",
"from nxsim import NetworkSimulation\n",
"# import numpy\n",
"from matplotlib import pyplot as plt\n",
"import networkx as nx\n",
"import settings\n",
"import models\n",
"import math\n",
"import json"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Network creation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using a parameter provided in the settings file, we can choose what type of network we want to create, as well as the number of nodes and some other parameters. More types of networks can be implemented using [networkx](https://networkx.github.io/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"if settings.network_params[\"network_type\"] == 0:\n",
" G = nx.complete_graph(settings.network_params[\"number_of_nodes\"])\n",
"if settings.network_params[\"network_type\"] == 1:\n",
" G = nx.barabasi_albert_graph(settings.network_params[\"number_of_nodes\"], 10)\n",
"if settings.network_params[\"network_type\"] == 2:\n",
" G = nx.margulis_gabber_galil_graph(settings.network_params[\"number_of_nodes\"], None)\n",
"# More types of networks can be added here"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Visualization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In order to analyse the results of the simulation. We include them in the topology and a .gexf file is generated. This allows the user to picture the network in [Gephi](https://gephi.org/). A JSON file is also generated to permit further analysis.\n",
"\n",
"The JSON file follows this schema. The file has three depth levels. In the first one we can find the identifier of each agent in the network. Secondly, inside every agent we can observe every attribute that the creator of the model wanted to make visible. In the deepest level the different values of each attribute are\n",
"visible.\n",
"\n",
"\t{\n",
"\t\t\"agent_0\": {\n",
"\t\t\t\"attribute_X\": {\n",
"\t\t\t\t\"0\": 0,\n",
"\t\t\t\t\"2\": 0,\n",
"\t\t\t\t\"4\": 1,\n",
"\t\t\t\t\"6\": 2,\n",
"\t\t\t\t...\n",
"\t\t\t}\n",
"\t\t},\n",
"\t\t\"agent_1\": {\n",
"\t\t\t\"attribute_X\": {\n",
"\t\t\t\t\"0\": 0,\n",
"\t\t\t\t\"2\": 3,\n",
"\t\t\t\t...\n",
"\t\t\t}\n",
"\t\t},\n",
"\t\t...\t\t\n",
"\t}\n",
"\n",
"This is done with the following code:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def visualization(graph_name):\n",
"\n",
" for x in range(0, settings.network_params[\"number_of_nodes\"]):\n",
" for attribute in models.networkStatus[\"agent_%s\" % x]:\n",
" emotionStatusAux = []\n",
" for t_step in models.networkStatus[\"agent_%s\" % x][attribute]:\n",
" prec = 2\n",
" output = math.floor(models.networkStatus[\"agent_%s\" % x][attribute][t_step] * (10 ** prec)) / (10 ** prec) # 2 decimals\n",
" emotionStatusAux.append((output, t_step, t_step + settings.network_params[\"timeout\"]))\n",
" attributes = {}\n",
" attributes[attribute] = emotionStatusAux\n",
" G.add_node(x, attributes)\n",
"\n",
" print(\"Done!\")\n",
"\n",
" with open('data.txt', 'w') as outfile:\n",
" json.dump(models.networkStatus, outfile, sort_keys=True, indent=4, separators=(',', ': '))\n",
"\n",
" nx.write_gexf(G, graph_name+\".gexf\", version=\"1.2draft\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That's only the basic visualization. Everything you need can be implemented as well. For example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def results(model_name):\n",
" x_values = []\n",
" infected_values = []\n",
" neutral_values = []\n",
" cured_values = []\n",
" vaccinated_values = []\n",
"\n",
" attribute_plot = 'status'\n",
" for time in range(0, settings.network_params[\"max_time\"]):\n",
" value_infectados = 0\n",
" value_neutral = 0\n",
" value_cured = 0\n",
" value_vaccinated = 0\n",
" real_time = time * settings.network_params[\"timeout\"]\n",
" activity = False\n",
" for x in range(0, settings.network_params[\"number_of_nodes\"]):\n",
" if attribute_plot in models.networkStatus[\"agent_%s\" % x]:\n",
" if real_time in models.networkStatus[\"agent_%s\" % x][attribute_plot]:\n",
" if models.networkStatus[\"agent_%s\" % x][attribute_plot][real_time] == 1: ## Infected\n",
" value_infectados += 1\n",
" activity = True\n",
" if models.networkStatus[\"agent_%s\" % x][attribute_plot][real_time] == 0: ## Neutral\n",
" value_neutral += 1\n",
" activity = True\n",
" if models.networkStatus[\"agent_%s\" % x][attribute_plot][real_time] == 2: ## Cured\n",
" value_cured += 1\n",
" activity = True\n",
" if models.networkStatus[\"agent_%s\" % x][attribute_plot][real_time] == 3: ## Vaccinated\n",
" value_vaccinated += 1\n",
" activity = True\n",
"\n",
" if activity:\n",
" x_values.append(real_time)\n",
" infected_values.append(value_infectados)\n",
" neutral_values.append(value_neutral)\n",
" cured_values.append(value_cured)\n",
" vaccinated_values.append(value_vaccinated)\n",
" activity = False\n",
"\n",
" fig1 = plt.figure()\n",
" ax1 = fig1.add_subplot(111)\n",
"\n",
" infected_line = ax1.plot(x_values, infected_values, label='Infected')\n",
" neutral_line = ax1.plot(x_values, neutral_values, label='Neutral')\n",
" cured_line = ax1.plot(x_values, cured_values, label='Cured')\n",
" vaccinated_line = ax1.plot(x_values, vaccinated_values, label='Vaccinated')\n",
" ax1.legend()\n",
" fig1.savefig(model_name + '.png')\n",
" # plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Simulation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The simulation starts with the following code. The user can provide the network topology, the maximum time of simulation, the spread model to be used as well as other parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"agents = settings.environment_params['agent']\n",
"\n",
"print(\"Using Agent(s): {agents}\".format(agents=agents))\n",
"\n",
"if len(agents) > 1:\n",
" for agent in agents:\n",
" sim = NetworkSimulation(topology=G, states=init_states, agent_type=locals()[agent], max_time=settings.network_params[\"max_time\"],\n",
" num_trials=settings.network_params[\"num_trials\"], logging_interval=1.0, **settings.environment_params)\n",
" sim.run_simulation()\n",
" print(str(agent))\n",
" results(str(agent))\n",
" visualization(str(agent))\n",
"else:\n",
" agent = agents[0]\n",
" sim = NetworkSimulation(topology=G, states=init_states, agent_type=locals()[agent], max_time=settings.network_params[\"max_time\"],\n",
" num_trials=settings.network_params[\"num_trials\"], logging_interval=1.0, **settings.environment_params)\n",
" sim.run_simulation()\n",
" results(str(agent))\n",
" visualization(str(agent))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Imports and initialization"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import settings\n",
"\n",
"networkStatus = {} # Dict that will contain the status of every agent in the network\n",
"\n",
"sentimentCorrelationNodeArray = []\n",
"for x in range(0, settings.network_params[\"number_of_nodes\"]):\n",
" sentimentCorrelationNodeArray.append({'id': x})\n",
"# Initialize agent states. Let's assume everyone is normal.\n",
"init_states = [{'id': 0, } for _ in range(settings.network_params[\"number_of_nodes\"])]\n",
" # add keys as as necessary, but \"id\" must always refer to that state category"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Base behaviour"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Every spread model used in SOIL should extend the base behaviour class. By doing this the exportation of the attributes values will be automatic. This feature will be explained in the Spread Models section. The class looks like this:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import settings\n",
"from nxsim import BaseNetworkAgent\n",
"\n",
"\n",
"class BaseBehaviour(BaseNetworkAgent):\n",
"\n",
" def __init__(self, environment=None, agent_id=0, state=()):\n",
" super().__init__(environment=environment, agent_id=agent_id, state=state)\n",
" self._attrs = {}\n",
"\n",
" @property\n",
" def attrs(self):\n",
" now = self.env.now\n",
" if now not in self._attrs:\n",
" self._attrs[now] = {}\n",
" return self._attrs[now]\n",
"\n",
" @attrs.setter\n",
" def attrs(self, value):\n",
" self._attrs[self.env.now] = value\n",
"\n",
" def run(self):\n",
" while True:\n",
" self.step(self.env.now)\n",
" yield self.env.timeout(settings.network_params[\"timeout\"])\n",
"\n",
" def step(self, now):\n",
" networkStatus['agent_%s'% self.id] = self.to_json()\n",
"\n",
" def to_json(self):\n",
" final = {}\n",
" for stamp, attrs in self._attrs.items():\n",
" for a in attrs:\n",
" if a not in final:\n",
" final[a] = {}\n",
" final[a][stamp] = attrs[a]\n",
" return final"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Spread models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Every model to be implemented must include an init and a step function. Depending on your model, you would need different attributes. If you want them to be automatic exported for a further analysis, you must name them like this *self.attrs['name_of_attribute']*. Moreover, the last thing you should do inside the step function is call the following method *super().step(now)*. This call will store the values.\n",
"\n",
"Some other tips:\n",
"* __self.state['id']__: To check the id of the current agent/node.\n",
"* __self.get_neighboring_agents(state_id=x)__: Returns the neighbours agents/nodes with the id provided\n",
"\n",
"An example of a spread model already implemented and working:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import settings\n",
"import random\n",
"import numpy as np\n",
"\n",
"\n",
"class ControlModelM2(BaseBehaviour):\n",
"\n",
" # Init infected\n",
" init_states[random.randint(0, settings.network_params[\"number_of_nodes\"]-1)] = {'id': 1}\n",
" init_states[random.randint(0, settings.network_params[\"number_of_nodes\"]-1)] = {'id': 1}\n",
"\n",
" # Init beacons\n",
" init_states[random.randint(0, settings.network_params[\"number_of_nodes\"]-1)] = {'id': 4}\n",
" init_states[random.randint(0, settings.network_params[\"number_of_nodes\"]-1)] = {'id': 4}\n",
"\n",
" def __init__(self, environment=None, agent_id=0, state=()):\n",
" super().__init__(environment=environment, agent_id=agent_id, state=state)\n",
"\n",
" self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],\n",
" environment.environment_params['standard_variance'])\n",
"\n",
" self.prob_infect = np.random.normal(environment.environment_params['prob_infect'],\n",
" environment.environment_params['standard_variance'])\n",
"\n",
" self.prob_cured_healing_infected = np.random.normal(environment.environment_params['prob_cured_healing_infected'],\n",
" environment.environment_params['standard_variance'])\n",
" self.prob_cured_vaccinate_neutral = np.random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],\n",
" environment.environment_params['standard_variance'])\n",
"\n",
" self.prob_vaccinated_healing_infected = np.random.normal(environment.environment_params['prob_vaccinated_healing_infected'],\n",
" environment.environment_params['standard_variance'])\n",
" self.prob_vaccinated_vaccinate_neutral = np.random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],\n",
" environment.environment_params['standard_variance'])\n",
" self.prob_generate_anti_rumor = np.random.normal(environment.environment_params['prob_generate_anti_rumor'],\n",
" environment.environment_params['standard_variance'])\n",
"\n",
" def step(self, now):\n",
"\n",
" if self.state['id'] == 0: # Neutral\n",
" self.neutral_behaviour()\n",
" elif self.state['id'] == 1: # Infected\n",
" self.infected_behaviour()\n",
" elif self.state['id'] == 2: # Cured\n",
" self.cured_behaviour()\n",
" elif self.state['id'] == 3: # Vaccinated\n",
" self.vaccinated_behaviour()\n",
" elif self.state['id'] == 4: # Beacon-off\n",
" self.beacon_off_behaviour()\n",
" elif self.state['id'] == 5: # Beacon-on\n",
" self.beacon_on_behaviour()\n",
"\n",
" self.attrs['status'] = self.state['id']\n",
" super().step(now)\n",
"\n",
" def neutral_behaviour(self):\n",
"\n",
" # Infected\n",
" infected_neighbors = self.get_neighboring_agents(state_id=1)\n",
" if len(infected_neighbors) > 0:\n",
" if random.random() < self.prob_neutral_making_denier:\n",
" self.state['id'] = 3 # Vaccinated making denier\n",
"\n",
" def infected_behaviour(self):\n",
"\n",
" # Neutral\n",
" neutral_neighbors = self.get_neighboring_agents(state_id=0)\n",
" for neighbor in neutral_neighbors:\n",
" if random.random() < self.prob_infect:\n",
" neighbor.state['id'] = 1 # Infected\n",
"\n",
" def cured_behaviour(self):\n",
"\n",
" # Vaccinate\n",
" neutral_neighbors = self.get_neighboring_agents(state_id=0)\n",
" for neighbor in neutral_neighbors:\n",
" if random.random() < self.prob_cured_vaccinate_neutral:\n",
" neighbor.state['id'] = 3 # Vaccinated\n",
"\n",
" # Cure\n",
" infected_neighbors = self.get_neighboring_agents(state_id=1)\n",
" for neighbor in infected_neighbors:\n",
" if random.random() < self.prob_cured_healing_infected:\n",
" neighbor.state['id'] = 2 # Cured\n",
"\n",
" def vaccinated_behaviour(self):\n",
"\n",
" # Cure\n",
" infected_neighbors = self.get_neighboring_agents(state_id=1)\n",
" for neighbor in infected_neighbors:\n",
" if random.random() < self.prob_cured_healing_infected:\n",
" neighbor.state['id'] = 2 # Cured\n",
"\n",
" # Vaccinate\n",
" neutral_neighbors = self.get_neighboring_agents(state_id=0)\n",
" for neighbor in neutral_neighbors:\n",
" if random.random() < self.prob_cured_vaccinate_neutral:\n",
" neighbor.state['id'] = 3 # Vaccinated\n",
"\n",
" # Generate anti-rumor\n",
" infected_neighbors_2 = self.get_neighboring_agents(state_id=1)\n",
" for neighbor in infected_neighbors_2:\n",
" if random.random() < self.prob_generate_anti_rumor:\n",
" neighbor.state['id'] = 2 # Cured\n",
"\n",
" def beacon_off_behaviour(self):\n",
" infected_neighbors = self.get_neighboring_agents(state_id=1)\n",
" if len(infected_neighbors) > 0:\n",
" self.state['id'] == 5 # Beacon on\n",
"\n",
" def beacon_on_behaviour(self):\n",
"\n",
" # Cure (M2 feature added)\n",
" infected_neighbors = self.get_neighboring_agents(state_id=1)\n",
" for neighbor in infected_neighbors:\n",
" if random.random() < self.prob_generate_anti_rumor:\n",
" neighbor.state['id'] = 2 # Cured\n",
" neutral_neighbors_infected = neighbor.get_neighboring_agents(state_id=0)\n",
" for neighbor in neutral_neighbors_infected:\n",
" if random.random() < self.prob_generate_anti_rumor:\n",
" neighbor.state['id'] = 3 # Vaccinated\n",
" infected_neighbors_infected = neighbor.get_neighboring_agents(state_id=1)\n",
" for neighbor in infected_neighbors_infected:\n",
" if random.random() < self.prob_generate_anti_rumor:\n",
" neighbor.state['id'] = 2 # Cured\n",
"\n",
" # Vaccinate\n",
" neutral_neighbors = self.get_neighboring_agents(state_id=0)\n",
" for neighbor in neutral_neighbors:\n",
" if random.random() < self.prob_cured_vaccinate_neutral:\n",
" neighbor.state['id'] = 3 # Vaccinated"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Settings.json"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This file contains all the variables that can be modified from the simulation. In case of implementing a new spread model, the new variables should be also included in this file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"[\n",
" {\n",
" \"network_type\": 1,\n",
" \"number_of_nodes\": 1000,\n",
" \"max_time\": 50,\n",
" \"num_trials\": 1,\n",
" \"timeout\": 2\n",
" },\n",
"\n",
" {\n",
" \"agent\": [\"BaseBehaviour\",\"SISaModel\",\"ControlModelM2\"],\n",
"\n",
"\n",
" \"bite_prob\": 0.01,\n",
" \"heal_prob\": 0.01,\n",
"\n",
" \"innovation_prob\": 0.001,\n",
" \"imitation_prob\": 0.005,\n",
"\n",
" \"outside_effects_prob\": 0.2,\n",
" \"anger_prob\": 0.06,\n",
" \"joy_prob\": 0.05,\n",
" \"sadness_prob\": 0.02,\n",
" \"disgust_prob\": 0.02,\n",
"\n",
" \"enterprises\": [\"BBVA\", \"Santander\", \"Bankia\"],\n",
"\n",
" \"tweet_probability_users\": 0.44,\n",
" \"tweet_relevant_probability\": 0.25,\n",
" \"tweet_probability_about\": [0.15, 0.15, 0.15],\n",
" \"sentiment_about\": [0, 0, 0],\n",
"\n",
" \"tweet_probability_enterprises\": [0.3, 0.3, 0.3],\n",
"\n",
" \"neutral_discontent_spon_prob\": 0.04,\n",
" \"neutral_discontent_infected_prob\": 0.04,\n",
" \"neutral_content_spon_prob\": 0.18,\n",
" \"neutral_content_infected_prob\": 0.02,\n",
"\n",
" \"discontent_neutral\": 0.13,\n",
" \"discontent_content\": 0.07,\n",
" \"variance_d_c\": 0.02,\n",
"\n",
" \"content_discontent\": 0.009,\n",
" \"variance_c_d\": 0.003,\n",
" \"content_neutral\": 0.088,\n",
"\n",
" \"standard_variance\": 0.055,\n",
"\n",
"\n",
" \"prob_neutral_making_denier\": 0.035,\n",
"\n",
" \"prob_infect\": 0.075,\n",
"\n",
" \"prob_cured_healing_infected\": 0.035,\n",
" \"prob_cured_vaccinate_neutral\": 0.035,\n",
"\n",
" \"prob_vaccinated_healing_infected\": 0.035,\n",
" \"prob_vaccinated_vaccinate_neutral\": 0.035,\n",
" \"prob_generate_anti_rumor\": 0.035\n",
" }\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model Library"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To test this simulator in all the experiments we have used the Albert\n",
"Barabasi Graph [34] to automatically generate the network and the con-\n",
"nections among the agents due it is one of the most suitable graphs to\n",
"recreate social networks.\n",
"\n",
"Using different human behaviour models we will recreate the different\n",
"decisions of each agent.\n",
"\n",
"Moreover there are some parameters regarding the basic simulation that\n",
"have to be settled. In addition, more parameters will be needed depend-\n",
"ing on the spread model used for the experiment."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Spread Model M2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This model is based on the New Spread Model\n",
"M2 [1] which also refers to the cascade model [2]. Agents, usually Twit-\n",
"ter users, have four states regarding a rumour: neutral (initial state),\n",
"infected, vaccinated and cured.\n",
"\n",
"An agent becomes: infected when believes the rumour; vaccinated when is\n",
"influenced before being infected by a cured or already vaccinated agent\n",
"and cured when after becoming infected the agent is influenced by a\n",
"vaccinated/cured user.\n",
"\n",
"After a certain period of time, a random infected user develops an anti-\n",
"rumour and spreads it to its neighbours in order to vaccinate the neutral\n",
"and cure the infected ones.\n",
"\n",
"This model includes the fact that infected users who made a mistake\n",
"believing in the rumour will not be in favour of spreading theirs mistakes\n",
"through the network. Therefore, only vaccinated users will spread anti-\n",
"rumours. The probability of making a denier and becoming vaccinated\n",
"when a neutral user has an infected neighbour and the first already had\n",
"information about the rumour being false.\n",
"\n",
"* [1] E. Serrano and C. A. Iglesias. “Validating viral marketing\n",
"strategies in Twitter via agent-based social simulation”. In:\n",
"Expert Systems with Applications 50.1 (2016),\n",
"* [2] L. Weng et al. “Virality prediction and community structure\n",
"in social networks”. In: Scientific Reports 3 (2013)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Control model M2,2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This model is based on the New Control Model\n",
"M2,2 [1]. It includes the use of beacons, special agents, that represent\n",
"an authority which can work against the rumour once it is detected. It\n",
"only has two states: on or off. Beacons will switch to on status when they\n",
"detect the misinformation in an infected neighbour agent.\n",
"Once the beacon is activated, they will try to cure and vaccinate other\n",
"agents starting a anti-rumour. Therefore this model also takes into ac-\n",
"count that infected users might not admit a previous mistake.\n",
"\n",
"* [1] E. Serrano and C. A. Iglesias. “Validating viral marketing\n",
"strategies in Twitter via agent-based social simulation”. In:\n",
"Expert Systems with Applications 50.1 (2016),"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### SISa Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The SISa model of infection is already included in the simulator. Its the evolution of the classic disease spread Susceptible-Infective-Susceptible (SIS) model [1, 2].\n",
"\n",
"The SISa model is proposed by [3] and the main new feature is considering the spontaneous generation process of sentiment. This model has two assumptions: first, a susceptible agent who is close and more exposed to the infected has a higher probability of infection that other agent; second, the number of infected agents does not affect the probability of recovery.\n",
"\n",
"Based on some recent implementations of the SISa model [3], every agent can be in three states: neutral (initial), content and discontent.\n",
"\n",
"All the transitions between every different state are allowed depending on customizable probabilities. This model includes the fact that an agent will be more likely to change state as the number of neighbours with this state increases.\n",
"\n",
"* [1] P. Weng and X.-Q. Zhao. “Spreading speed and traveling waves for a multi-type SIS epidemic model”. In: Journal of Differential Equations 229.1 (2006)\n",
"\n",
"* [2] P. V. Mieghem. “Epidemic phase transition of the SIS type in networks”. In: A Letters Journal Exploring the Frontiers of Physics 97.4 (2012).\n",
"* [3] A. L. Hill et al. “Emotions as infectious diseases in a large social network: the SISa model”. In: Proceedings of the Royal Society of London B: Biological Sciences 277.1701 (2010),"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Big Market Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As stated in several papers [24], social networks like Twitter are the perfect scenario to study the propagation of ideas, sentiments and marketing strategies. In this scenario several enterprises want to take advantage of social networks to promote their companies and connect with their clients.\n",
"\n",
"The goal of this model [1] is to recreate the behaviour of several enterprises in a social network. Following the example of HashtKat, we want to measure the effect of different marketing strategies in social networks.\n",
"Depending on the sentiment towards an enterprise the user will post positive or negative tweets about these enterprises. The fact that an user can increase its probabilities of posting a relevant tweet about a certain\n",
"company depending on its sentiment towards it is also considered.\n",
"In this model the number of enterprises as well as tweet rate probabilities of both companies and users can be changed.\n",
"\n",
"* [1] E. Serrano and C. A. Iglesias. “Validating viral marketing\n",
"strategies in Twitter via agent-based social simulation”. In:\n",
"Expert Systems with Applications 50.1 (2016)\n",
"* [2] B. A. Huberman et al. “Social Networks that Matter: Twitter\n",
"Under the Microscope”. In: Social Science Research Network\n",
"(2008).\n",
"* [3] M. Cha et al. “Measuring User Influence in Twitter: The\n",
"Million Follower Fallacy.” In: ICWSM 10.10-17 (2010),\n",
"* [4] M. Bulearca and S. Bulearca. “Twitter: a viable marketing\n",
"tool for SMEs?” In: Global business and management research\n",
"2.4 (2010),"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sentiment Correlation Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With this model we want to study\n",
"the influence of different sentiments in a social network. In order to do so, we base our model on the research made by [1]. In this paper the authors found out that in a social network (in this case Weibo) the correlation\n",
"of anger is significantly higher than joy and sadness meaning that the anger sentiment would occasionally spread faster than the others.\n",
"\n",
"They also confirmed some intuitive ideas such as a pair of users who have higher interactions are more likely to be influenced by each other, and that users with more friends would influence their neighbours more than other agents.\n",
"\n",
"In this simulation we have four emotions: anger, joy, sadness and disgust.\n",
"\n",
"Using the probabilities extracted from the dataset used by [1] we can visualise the graph and confirm the conclusions of the paper. Anger sentiment propagation rate is much higher than any other. Joy sentiment also spreads easily to the neighbours. However, sadness and disgust propagation rate is really small, few neighbours get affected by them.\n",
"\n",
"* [1] R. Fan et al. “Anger is More Influential Than Joy: Sentiment\n",
"Correlation in Weibo”. In: CoRR abs/1309.2402 (2013)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Bass Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Even though Bass Model can be applied to many appli-\n",
"cations [5760] it can be used to study the diffusion of information as\n",
"well.\n",
"This model is based on the implementation proposed by Rand and Wilen-\n",
"sky [13]. In this scenario there are only two states: unaware (initial) and\n",
"aware. For this simulation we assume that agents can only change status\n",
"from advertising (outside effects) and word of mouth (information inside\n",
"the network).\n",
"The probability of being affected by imitation (word of mouth effect)\n",
"increases as a function of the agent aware neighbours. In this model once\n",
"the user changes to aware status it remains in this state for the whole\n",
"simulation.\n",
"\n",
"* F. M. Bass. “A New Product Growth for Model ConsumerDurables”. In: Management Science 15.5 (1969),\n",
"W. Dodds. “An Application of the Bass Model in Long-TermNew Product Forecasting”. In: Journal of Marketing Research\n",
"10.3 (1973),\n",
"* F. Douglas Tigert. “The Bass New Product Growth Model: A Sensitivity Analysis for a High Technology Product”. In: Journal of Marketing 45.4 (1981),\n",
"* Z. Jiang et al. “Virtual Bass Model and the left-hand data-truncation bias in diffusion of innovation studies”. In: International Journal of Research in Marketing 23.1 (2006), "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Independent Cascade Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As stated by Rand and Wilensky [1], the Independent Cascade Model [61] suits better the case we want to\n",
"study as it is more appropriate for social networks than the Bass Model.\n",
"\n",
"In this scenario we also have two states: unaware (initial) and aware. The new feature in this model is that one agent will only get infected once at least one neighbour became aware the previous time step. There is also\n",
"a probability of becoming aware by outside effects (innovation).\n",
"\n",
"This new feature can be explained intuitively, one agent will have more influence on another if the first just infected and wants to spread the new information he acquired.\n",
"\n",
"\n",
"* [1] W. Rand and U. Wilensky. An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. MIT Press, 2015.\n",
"* [2] J. Goldenberg et al. “Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth”. In: Marketing Letters 12.3 (2001),\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Copyright"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"SOIL has been developed by the Intelligent Systems Group, Universidad Politécnica de Madrid, 2016-2017.\n",
"\n",
"@Copyright Universidad Politécnica de Madrid, 2016-2017\n",
" <img src=\"./logo_gsi.png\" alt=\"Grupo de Sistemas Inteligentes\" width=\"100px\">"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

View File

@ -1,225 +0,0 @@
from unittest import TestCase
import os
import yaml
from functools import partial
from os.path import join
from soil import simulation, agents, utils
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
class TestMain(TestCase):
def test_load_graph(self):
"""
Load a graph from file if the extension is known.
Raise an exception otherwise.
"""
config = {
'network_params': {
'path': join(ROOT, 'test.gexf')
}
}
G = utils.load_network(config['network_params'])
assert G
assert len(G) == 2
with self.assertRaises(AttributeError):
config = {
'network_params': {
'path': join(ROOT, 'unknown.extension')
}
}
G = utils.load_network(config['network_params'])
print(G)
def test_generate_barabasi(self):
"""
If no path is given, a generator and network parameters
should be used to generate a network
"""
config = {
'network_params': {
'generator': 'barabasi_albert_graph'
}
}
with self.assertRaises(TypeError):
G = utils.load_network(config['network_params'])
config['network_params']['n'] = 100
config['network_params']['m'] = 10
G = utils.load_network(config['network_params'])
assert len(G) == 100
def test_empty_simulation(self):
"""A simulation with a base behaviour should do nothing"""
config = {
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'agent_type': 'NetworkAgent',
'environment_params': {
}
}
s = simulation.from_config(config)
s.run_simulation()
def test_counter_agent(self):
"""
The initial states should be applied to the agent and the
agent should be able to update its state."""
config = {
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'agent_type': 'CounterModel',
'states': [{'neighbors': 10}, {'total': 12}],
'max_time': 2,
'num_trials': 1,
'environment_params': {
}
}
s = simulation.from_config(config)
env = s.run_simulation()[0]
assert env.get_agent(0)['neighbors', 0] == 10
assert env.get_agent(0)['neighbors', 1] == 1
assert env.get_agent(1)['total', 0] == 12
assert env.get_agent(1)['neighbors', 1] == 1
def test_counter_agent_history(self):
"""
The evolution of the state should be recorded in the logging agent
"""
config = {
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'network_agents': [{
'agent_type': 'AggregatedCounter',
'weight': 1,
'state': {'id': 0}
}],
'max_time': 10,
'environment_params': {
}
}
s = simulation.from_config(config)
env = s.run_simulation()[0]
for agent in env.network_agents:
last = 0
assert len(agent._history) == 11
for step, total in agent['total', None].items():
if step > 0:
assert total == last + 2
last = total
def test_custom_agent(self):
"""Allow for search of neighbors with a certain state_id"""
class CustomAgent(agents.NetworkAgent):
def step(self):
self.state['neighbors'] = self.count_agents(state_id=0,
limit_neighbors=True)
config = {
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'network_agents': [{
'agent_type': CustomAgent,
'weight': 1,
'state': {'id': 0}
}],
'max_time': 10,
'environment_params': {
}
}
s = simulation.from_config(config)
env = s.run_simulation()[0]
assert env.get_agent(0).state['neighbors'] == 1
def test_torvalds_example(self):
"""A complete example from a documentation should work."""
config = utils.load_file(join(EXAMPLES, 'torvalds.yml'))[0]
config['network_params']['path'] = join(EXAMPLES,
config['network_params']['path'])
s = simulation.from_config(config)
env = s.run_simulation()[0]
for a in env.network_agents:
skill_level = a.state['skill_level']
if a.id == 'Torvalds':
assert skill_level == 'God'
assert a.state['total'] == 3
assert a.state['neighbors'] == 2
elif a.id == 'balkian':
assert skill_level == 'developer'
assert a.state['total'] == 3
assert a.state['neighbors'] == 1
else:
assert skill_level == 'beginner'
assert a.state['total'] == 3
assert a.state['neighbors'] == 1
def test_yaml(self):
"""
The YAML version of a newly created simulation
should be equivalent to the configuration file used
"""
with utils.timer('loading'):
config = utils.load_file(join(EXAMPLES, 'complete.yml'))[0]
s = simulation.from_config(config)
with utils.timer('serializing'):
serial = s.to_yaml()
with utils.timer('recovering'):
recovered = yaml.load(serial)
with utils.timer('deleting'):
del recovered['topology']
assert config == recovered
def test_configuration_changes(self):
"""
The configuration should not change after running
the simulation.
"""
config = utils.load_file('examples/complete.yml')[0]
s = simulation.from_config(config)
for i in range(5):
s.run_simulation()
nconfig = s.to_dict()
del nconfig['topology']
assert config == nconfig
def test_examples(self):
"""
Make sure all examples in the examples folder are correct
"""
def make_example_test(path, config):
def wrapped(self):
root = os.getcwd()
os.chdir(os.path.dirname(path))
s = simulation.from_config(config)
envs = s.run_simulation()
for env in envs:
n = config['network_params'].get('n', None)
if n is not None:
assert len(env.get_agents()) == n
os.chdir(root)
return wrapped
def add_example_tests():
for config, path in utils.load_config(join(EXAMPLES, '*.yml')):
p = make_example_test(path=path, config=config)
fname = os.path.basename(path)
p.__name__ = 'test_example_file_%s' % fname
p.__doc__ = '%s should be a valid configuration' % fname
setattr(TestMain, p.__name__, p)
del p
add_example_tests()

View File

@ -1 +0,0 @@
This is an unknown file