1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-24 11:52:29 +00:00
soil/soil.py
David García Martín de67fe3e74 Initial commit
2017-07-05 13:19:56 +02:00

215 lines
7.7 KiB
Python
Executable File

from models import *
from nxsim import NetworkSimulation
# import numpy
from matplotlib import pyplot as plt
import networkx as nx
import settings
import models
import math
import json
import operator
import community
POPULATION = 0
LEADERS = 1
HAVEN = 2
TRAINING = 3
NON_RADICAL = 0
NEUTRAL = 1
RADICAL = 2
#################
# Visualization #
#################
def visualization(graph_name):
for x in range(0, settings.network_params["number_of_nodes"]):
attributes = {}
spells = []
for attribute in models.networkStatus["agent_%s" % x]:
if attribute == 'visible':
lastvisible = False
laststep = 0
for t_step in models.networkStatus["agent_%s" % x][attribute]:
nowvisible = models.networkStatus["agent_%s" % x][attribute][t_step]
if nowvisible and not lastvisible:
laststep = t_step
if not nowvisible and lastvisible:
spells.append((laststep, t_step))
lastvisible = nowvisible
if lastvisible:
spells.append((laststep, None))
else:
emotionStatusAux = []
for t_step in models.networkStatus["agent_%s" % x][attribute]:
prec = 2
output = math.floor(models.networkStatus["agent_%s" % x][attribute][t_step] * (10 ** prec)) / (10 ** prec) # 2 decimals
emotionStatusAux.append((output, t_step, t_step + settings.network_params["timeout"]))
attributes[attribute] = emotionStatusAux
if spells:
G.add_node(x, attributes, spells=spells)
else:
G.add_node(x, attributes)
print("Done!")
with open('data.txt', 'w') as outfile:
json.dump(models.networkStatus, outfile, sort_keys=True, indent=4, separators=(',', ': '))
for node in range(settings.network_params["number_of_nodes"]):
G.node[node]['x'] = G.node[node]['pos'][0]
G.node[node]['y'] = G.node[node]['pos'][1]
G.node[node]['viz'] = {"position": {"x": G.node[node]['pos'][0], "y": G.node[node]['pos'][1], "z": 0.0}}
del (G.node[node]['pos'])
nx.write_gexf(G, graph_name+".gexf", version="1.2draft")
###########
# Results #
###########
def results(model_name):
x_values = []
neutral_values = []
non_radical_values = []
radical_values = []
attribute_plot = 'status'
for time in range(0, settings.network_params["max_time"]):
value_neutral = 0
value_non_radical = 0
value_radical = 0
real_time = time * settings.network_params["timeout"]
activity = False
for x in range(0, settings.network_params["number_of_nodes"]):
if attribute_plot in models.networkStatus["agent_%s" % x]:
if real_time in models.networkStatus["agent_%s" % x][attribute_plot]:
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == NON_RADICAL:
value_non_radical += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == NEUTRAL:
value_neutral += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == RADICAL:
value_radical += 1
activity = True
if activity:
x_values.append(real_time)
neutral_values.append(value_neutral)
non_radical_values.append(value_non_radical)
radical_values.append(value_radical)
activity = False
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
non_radical_line = ax1.plot(x_values, non_radical_values, label='Non radical')
neutral_line = ax1.plot(x_values, neutral_values, label='Neutral')
radical_line = ax1.plot(x_values, radical_values, label='Radical')
ax1.legend()
fig1.savefig(model_name+'.png')
plt.show()
###########
# Results #
###########
def resultadosTipo(model_name):
x_values = []
population_values = []
leaders_values = []
havens_values = []
training_enviroments_values = []
attribute_plot = 'type'
for time in range(0, settings.network_params["max_time"]):
value_population = 0
value_leaders = 0
value_havens = 0
value_training_enviroments = 0
real_time = time * settings.network_params["timeout"]
activity = False
for x in range(0, settings.network_params["number_of_nodes"]):
if attribute_plot in models.networkStatus["agent_%s" % x]:
if real_time in models.networkStatus["agent_%s" % x][attribute_plot]:
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == POPULATION:
value_population += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == LEADERS:
value_leaders += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == HAVEN:
value_havens += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == TRAINING:
value_training_enviroments += 1
activity = True
if activity:
x_values.append(real_time)
population_values.append(value_population)
leaders_values.append(value_leaders)
havens_values.append(value_havens)
training_enviroments_values.append(value_training_enviroments)
activity = False
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
population_line = ax2.plot(x_values, population_values, label='Population')
leaders_line = ax2.plot(x_values, leaders_values, label='Leader')
havens_line = ax2.plot(x_values, havens_values, label='Havens')
training_enviroments_line = ax2.plot(x_values, training_enviroments_values, label='Training Enviroments')
ax2.legend()
fig2.savefig(model_name+'_type'+'.png')
plt.show()
####################
# Network creation #
####################
# nx.degree_centrality(G);
if settings.network_params["network_type"] == 0:
G = nx.random_geometric_graph(settings.network_params["number_of_nodes"], 0.2)
settings.partition_param = community.best_partition(G)
settings.centrality_param = nx.betweenness_centrality(G).copy()
# print(settings.centrality_param)
# print(settings.partition_param)
# More types of networks can be added here
##############
# Simulation #
##############
agents = settings.environment_params['agent']
print("Using Agent(s): {agents}".format(agents=agents))
if len(agents) > 1:
for agent in agents:
sim = NetworkSimulation(topology=G, states=init_states, agent_type=locals()[agent], max_time=settings.network_params["max_time"],
num_trials=settings.network_params["num_trials"], logging_interval=1.0, **settings.environment_params)
sim.run_simulation()
print(str(agent))
results(str(agent))
resultadosTipo(str(agent))
visualization(str(agent))
else:
agent = agents[0]
sim = NetworkSimulation(topology=G, states=init_states, agent_type=locals()[agent], max_time=settings.network_params["max_time"],
num_trials=settings.network_params["num_trials"], logging_interval=1.0, **settings.environment_params)
sim.run_simulation()
results(str(agent))
resultadosTipo(str(agent))
visualization(str(agent))