1
0
mirror of https://github.com/gsi-upm/soil synced 2025-08-23 19:52:19 +00:00

Separate models in modules

This commit is contained in:
Tasio Mendez
2017-04-20 13:36:17 +02:00
parent d157a5e0b5
commit dd4ce15a3d
18 changed files with 737 additions and 1 deletions

View File

@@ -0,0 +1,108 @@
import settings
import random
from ..BaseBehaviour import *
settings.init()
class BigMarketModel(BaseBehaviour):
"""
Settings:
Names:
enterprises [Array]
tweet_probability_enterprises [Array]
Users:
tweet_probability_users
tweet_relevant_probability
tweet_probability_about [Array]
sentiment_about [Array]
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.enterprises = settings.enterprises
self.type = ""
self.number_of_enterprises = len(settings.enterprises)
if self.id < self.number_of_enterprises: # Enterprises
self.state['id']=self.id
self.type="Enterprise"
self.tweet_probability = settings.tweet_probability_enterprises[self.id]
else: # normal users
self.state['id']=self.number_of_enterprises
self.type="User"
self.tweet_probability = settings.tweet_probability_users
self.tweet_relevant_probability = settings.tweet_relevant_probability
self.tweet_probability_about = settings.tweet_probability_about # List
self.sentiment_about = settings.sentiment_about # List
def step(self, now):
if(self.id < self.number_of_enterprises): # Enterprise
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
for i in range(self.number_of_enterprises): # So that it never is set to 0 if there are not changes (logs)
self.attrs['sentiment_enterprise_%s'% self.enterprises[i]] = self.sentiment_about[i]
super().step(now)
def enterpriseBehaviour(self):
if random.random()< self.tweet_probability: # Tweets
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodes neighbour users
for x in aware_neighbors:
if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 # Increments for enterprise
else:
x.sentiment_about[self.id] -= 0.1 # Decrements for enterprise
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id]< -1:
x.sentiment_about[self.id] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
def userBehaviour(self):
if random.random() < self.tweet_probability: # Tweets
if random.random() < self.tweet_relevant_probability: # Tweets something relevant
# Tweet probability per enterprise
for i in range(self.number_of_enterprises):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
# The condition is fulfilled, sentiments are evaluated towards that enterprise
if self.sentiment_about[i] < 0:
# NEGATIVO
self.userTweets("negative",i)
elif self.sentiment_about[i] == 0:
# NEUTRO
pass
else:
# POSITIVO
self.userTweets("positive",i)
def userTweets(self,sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodes neighbours users
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[enterprise]] = x.sentiment_about[enterprise]

View File

@@ -0,0 +1,96 @@
import settings
import random
import numpy as np
from ..BaseBehaviour import *
settings.init()
class SISaModel(BaseBehaviour):
"""
Settings:
neutral_discontent_spon_prob
neutral_discontent_infected_prob
neutral_content_spong_prob
neutral_content_infected_prob
discontent_neutral
discontent_content
variance_d_c
content_discontent
variance_c_d
content_neutral
standard_variance
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.neutral_discontent_spon_prob = np.random.normal(settings.neutral_discontent_spon_prob,
settings.standard_variance)
self.neutral_discontent_infected_prob = np.random.normal(settings.neutral_discontent_infected_prob,
settings.standard_variance)
self.neutral_content_spon_prob = np.random.normal(settings.neutral_content_spon_prob, settings.standard_variance)
self.neutral_content_infected_prob = np.random.normal(settings.neutral_content_infected_prob,
settings.standard_variance)
self.discontent_neutral = np.random.normal(settings.discontent_neutral, settings.standard_variance)
self.discontent_content = np.random.normal(settings.discontent_content, settings.variance_d_c)
self.content_discontent = np.random.normal(settings.content_discontent, settings.variance_c_d)
self.content_neutral = np.random.normal(settings.content_neutral, settings.standard_variance)
def step(self, now):
if self.state['id'] == 0:
self.neutral_behaviour()
if self.state['id'] == 1:
self.discontent_behaviour()
if self.state['id'] == 2:
self.content_behaviour()
self.attrs['status'] = self.state['id']
super().step(now)
def neutral_behaviour(self):
# Spontaneous effects
if random.random() < self.neutral_discontent_spon_prob:
self.state['id'] = 1
if random.random() < self.neutral_content_spon_prob:
self.state['id'] = 2
# Infected
discontent_neighbors = self.get_neighboring_agents(state_id=1)
if random.random() < len(discontent_neighbors) * self.neutral_discontent_infected_prob:
self.state['id'] = 1
content_neighbors = self.get_neighboring_agents(state_id=2)
if random.random() < len(content_neighbors) * self.neutral_content_infected_prob:
self.state['id'] = 2
def discontent_behaviour(self):
# Healing
if random.random() < self.discontent_neutral:
self.state['id'] = 0
# Superinfected
content_neighbors = self.get_neighboring_agents(state_id=2)
if random.random() < len(content_neighbors) * self.discontent_content:
self.state['id'] = 2
def content_behaviour(self):
# Healing
if random.random() < self.content_neutral:
self.state['id'] = 0
# Superinfected
discontent_neighbors = self.get_neighboring_agents(state_id=1)
if random.random() < len(discontent_neighbors) * self.content_discontent:
self.state['id'] = 1

View File

@@ -0,0 +1,2 @@
from .BigMarketModel import BigMarketModel
from .SISaModel import SISaModel